Впрыск топлива в двигатель: Виды впрыска топлива бензиновых и дизельных двигателей. Системы впрыска бензиновых двигателей. Системы впрыска дизельных двигателей

Содержание

Система впрыска топлива | Диагностика двигателя

Существует несколько методов впрыска топлива:
непрерывный впрыск топлива, точечный впрыск топлива, распределённый
впрыск топлива и непосредственный впрыск топлива. Непрерывный впрыск
топлива осуществлялся механическими и электромеханическими системами
впрыска топлива. Остальные электронные системы впрыска топлива подают
топливо строго дозированными порциями.

 

Системы непрерывного впрыска топлива
Наиболее распространёнными примерами непрерывного
впрыска топлива являются механическая система впрыска топлива BOSCH
K-Jetronic и электромеханическая система впрыска топлива BOSCH
KE-Jetronic. Здесь топливо впрыскивается непрерывным потоком при помощи
механических форсунок, распыляющих топливо пред впускными клапанами
каждого цилиндра. Количество топлива регулируется путём изменения
интенсивности потока впрыскиваемого топлива. Данные системы применялись
на ранних системах питания двигателя, и были вытеснены более надёжными и
точными электронными системами подачи топлива.

Системы точечного впрыска топлива
Системы точечного впрыска топлива оснащены одной
электромагнитной форсункой (иногда двумя форсунками работающими в паре,
на двигателях с раздельными группами цилиндров), впрыскивающей топливо
во впускной тракт перед дроссельной заслонкой. Как и в случае
карбюраторного питания, во время работы двигателя оборудованного
точечным впрыском, впускной коллектор двигателя весь заполняется готовой
топливовоздушной смесью.
Впрыск топлива здесь осуществляется не
непрерывной струёй, а подаётся порциями. Количество подаваемого топлива
регулируется путём изменения продолжительности открытого состояния форсунки.
Форсунка точечной системы впрыска топлива за два оборота коленчатого
вала двигателя (один полный цикл работы четырёхтактного двигателя)
впрыскивает топливо четыре раза. Недостатки такой системы приготовления
топливовоздушной смеси схожи с карбюраторными системами, связанные с
задержкой и неравномерностью подачи топливовоздушной смеси для разных
цилиндров, не столь хорошей приемистостью двигателя, оседание топлива на
стенках впускного коллектора, особенно во время холодного запуска
двигателя. Хотя для такой системы впрыска не предъявляются высокие
требования к качеству распыла топлива, так как отводится достаточно
времени на испарение и смешивание топлива с поступившим в впускной
коллектор воздухом.
 

Осциллограммы напряжения сигналов системы
управления двигателем BOSCHMONO-Motronic, демонстрирующие схему впрыска
топлива данной системы.

1 Осциллограмма
напряжения выходного сигнала датчика Холла, встроенного в корпус
механического распределителя зажигания. Датчик генерирует четыре
импульса за два оборота коленчатого вала двигателя.

2 Осциллограмма
напряжения управляющих импульсов топливной форсункой. За один полный
цикл работы двигателя форсунка осуществляет четыре впрыска топлива.

3 Импульс синхронизации с моментом зажигания в первом цилиндре.
 

Обмотка топливной форсунки точечной системы
впрыска, имеет низкое электрическое сопротивление — единицы Ома
(топливные форсунки с низким электрическим сопротивлением встречаются и в
других систем впрыска топлива). За счёт уменьшения сопротивления
обмотки увеличивается быстродействие форсунки, что позволяет впрыскивать
небольшие порции топлива. Для уменьшения нагрева обмотки форсунки,
применяются меры, ограничивающие величину протекающего через обмотку
форсунки тока.
 
В некоторых системах с этой целью используется
мощный токоограничивающий резистор, включённый последовательно в цепь
питания форсунки.
 

Осциллограммы напряжения питания и
управляющего импульса на выводах обмотки низкоомной форсунки (система
точечного впрыска топлива BOSCH MONO Jetronic).

1

 Осциллограмма напряжения на управляющем выводе обмотки форсунки.
2 Осциллограмма напряжения на питающем выводе обмотки форсунки (после токоограничивающего резистора).
 

Как видно по приведённым осциллограммам, за счёт
возникновения падения напряжения на токоограничивающем резисторе,
напряжение питания обмотки форсунки автоматически снижается.
В некоторых системах, применяются более сложные
алгоритмы управления форсункой. В таких случаях, импульс управления
форсункой имеет более сложную форму и делится уже на две фазы: фаза
открывания клапана топливной форсунки и фаза удержания клапана топливной
форсунки в открытом состоянии.
 

Осциллограмма напряжения управляющего
импульса низкоомной форсункой системы управления двигателем с точечным
впрыском топлива Multec IEFI автомобиля производства OPEL.

A: Значение напряжения в
момент времени указанный маркером. В данном случае соответствует

напряжению питания обмотки форсунки и равно 14,6 V.
1 Момент
открытия управляющего форсункой силового транзистора. С этого момента
на обмотку форсунки действует напряжение величиной около 14 V.

2 Фаза открывания клапана топливной форсунки.
3 Момент переключения управляющего форсункой силового транзистора в режим ограничения тока в цепи форсунки.
4 Фаза
удержания клапана топливной форсунки в открытом состоянии Управляющий
форсункой силовой транзистор работает в режиме ограничения тока в цепи
форсунки, обеспечивая подвод к обмотке форсунки пониженного напряжения.

A-B: Значение разницы
напряжений между указанными маркерами моментами времени. В данном случае
соответствует величине воздействующего на обмотку форсунки напряжения
во время фазы удержания клапана топливной форсунки в открытом состоянии и
равно ~1,7 V

5 Момент закрытия управляющего форсункой силового транзистора.
 
Как можно видеть по приведённой выше
осциллограмме, в первоначальный момент времени на низкоомную обмотку
форсунки кратковременно подаётся напряжение, близкое к напряжению на
клеммах аккумуляторной батареи, что обеспечивает ускорение процесса
открытия клапана топливной форсунки. Продолжительность фазы открывания
клапана 
топливной форсунки здесь составляет около 1 mS.
Теперь, когда клапан форсунки открыт, для удержания клапана в открытом
состоянии достаточно уже меньшего тока. Величина протекающего через
обмотку тока ограничивается путём уменьшения величины воздействующего на
обмотку напряжения. В данном случае, уменьшение воздействующего на
обмотку форсунки напряжения достигается путём «призакрытия» управляющего
силового транзистора. Тем самым уменьшается чрезмерный нагрев обмотки
форсунки (дополнительное охлаждение форсунки обеспечивается за счёт
омывающего форсунку топлива). Продолжительность фазы удержания клапана
топливной форсунки в открытом состоянии может изменяться и зависит от
того, какую порцию топлива в данный момент требуется впрыснуть.

В некоторых системах, ограничение протекающего
через обмотку форсунки тока во время фазы удержания клапана в открытом
состоянии реализовано другим способом.
 

Осциллограмма напряжения управляющего
импульса низкоомной форсункой системы управления двигателем BDZ с
точечным впрыском топлива, устанавливаемого на автомобили Peugeot 405.

 

Здесь во время фазы удержания, управляющий
обмоткой форсунки силовой транзистор переключается в режим
Широтно-Импульсной Модуляции (ШИМ). Благодаря этому, обмотка форсунки
многократно подключается к источнику напряжения и отключается от него,
после чего процесс повторяется. Частота процесса подключения /

отключения обмотки настолько высока, что механическая система форсунки
(клапан) «не успевает» закрываться в моменты, когда питающее напряжение
отключено.
 

Системы распределённого впрыска топлива
Каждый цилиндр системы распределённого впрыска
топлива обслуживается собственной электромагнитной форсункой. Каждая
форсунка такой системы впрыскивает топливо во впускной коллектор пред
впускными клапанами каждого цилиндра. Таким образом, только часть
внутреннего объёма впускного коллектора работающего двигателя
заполняется подготовленной топливной смесью. Как и в системе точечного
впрыска топлива, здесь впрыск осуществляется не непрерывной струёй
топлива, а подаётся порциями. Количество подаваемого топлива
регулируется путём изменения продолжительности открытого состояния
форсунки.
Электромагнитные топливные форсунки имеют
некоторую инерционность. Проявляется эта инерционность как задержка
открытия и задержка закрытия клапана форсунки относительно управляющего
напряжения. Задержка открытия клапана форсунки может составлять около
1,5 mS, кроме того, она может изменяться с изменением величины
напряжения на аккумуляторной батарее. Задержка закрытия клапана форсунки
может составлять около 1,0 mS. Когда двигатель работает под нагрузкой,
длительность впрыска топлива может составлять несколько единиц или даже
десятки миллисекунд, то есть -длительность впрыска топлива при этом
значительно превышает время задержки срабатывания клапана форсунки, и за
счёт этого инерционность форсунки сказывается мало заметно.

Когда двигатель работает при малых нагрузках или
на холостом ходу, длительность впрыска значительно уменьшается, и
становится сравнимой с временем задержки срабатывания клапана форсунки.
Из-за этого, инерционность форсунки может сказываться значительно
сильнее и точность дозирования количества впрыскиваемого топлива может
сильно снизиться. Поэтому, для таких форсунок не используют управляющие

импульсы продолжительностью менее 1,5 mS. Кроме того, инерционность
форсунок, обслуживающих разные цилиндры одного и того же двигателя со
значительным пробегом может заметно различаться, что вносит
дополнительную погрешность дозирования малых порций топлива.

Классификация систем распределённого впрыска топлива
Распределённые системы впрыска топлива
различаются по схеме работы впрыска топлива: параллельный впрыск,
попарно-параллельный, фазированный (последовательный).

Параллельный впрыск топлива
Топливные форсунки многих ранних распределённых
систем впрыска топлива соединены параллельно. При такой схеме,
управление форсунками двигателя происходит одновременно — все форсунки
такой системы работают синхронно.
 

Осциллограммы напряжения сигналов системы
управления 4-х цилиндрового 4-х тактного двигателя, осуществляющей
параллельный впрыск топлива, демонстрирующие схему впрыска топлива
данной системы.

1 Осциллограмма напряжения управляющих импульсов топливной форсункой 1-го цилиндра.


2 Осциллограмма напряжения управляющих импульсов топливной форсункой 2-го цилиндра.
3 Осциллограмма напряжения управляющих импульсов топливной форсункой 3-го цилиндра.
4 Осциллограмма напряжения управляющих импульсов топливной форсункой 4-го цилиндра.
7 Импульс синхронизации с моментом зажигания в первом цилиндре.
 
В системах параллельного впрыска, за один полный
цикл работы двигателя (за два оборота коленчатого вала 4-х тактного
двигателя), каждая форсунка впрыскивает топливо дважды. То есть, каждая
порция топлива, попадающего впоследствии в цилиндр во время 
такта впуска, впрыскивается «за два приёма».
Из-за того, что подача каждой порции топлива осуществляется за два
впрыска, в сравнении с точечным впрыском, точность дозирования
получается несколько лучшей; но в сравнении с фазированным впрыском,
точность дозирования получается несколько хуже, особенно на переходных
режимах работы двигателя.
Блок управления параллельной системы впрыска
топлива должен учитывать инерционность открытия клапана форсунки,
которая сильно зависит от величины напряжения в бортовой сети
автомобиля. При больших порциях впрыскиваемого топлива, к примеру, во
время ускорения автомобиля или во время холодного пуска, часть топлива
оседает на стенках впускного коллектора и попадает в цилиндр с некоторой
задержкой, что сказывается на приемистости двигателя. Но к качеству
распыла топлива здесь предъявляются немного меньшие требования, так как
отводится достаточно времени на испарение топлива и смешивание его с
воздухом.
Недостаток параллельного впрыска заключается в
неодинаковом для всех цилиндров времени от начала впрыскивания топлива
форсункой до момента открытия впускного клапана цилиндра. При
одновременном впрыске топлива порядок работы цилиндров не учитывается,
соответственно время подготовки топливовоздушной смеси (время испарения
топлива) для каждого цилиндра получается разным.

 

Попарно-параллельный впрыск топлива
Для уменьшения зависимости качества подготовки
топливовоздушной смеси от момента впрыска топлива, а так же для
улучшения точности дозирования топлива на переходных режимах работы
двигателя, топливные форсунки были разделены на группы согласно порядку
работы цилиндров и соединены попарно-параллельно — половина форсунок
соединена параллельно и управляется своим выходным силовым транзистором
блока управления двигателем, другая половина форсунок так же соединена
параллельно и управляется своим, вторым выходным силовым транзистором
блока управления двигателем.
Управление форсунками одной группы происходит
одновременно — все форсунки одной группы работают синхронно. Когда
форсунки первой группы впрыскивают топливо, форсунки второй группы
закрыты, и наоборот. При этом, первая и вторая группы форсунок, так же
как и в системе параллельного впрыска топлива, впрыскивают топливо
дважды за один цикл работы 4-х тактного двигателя (за два оборота
коленвала).
 

Осциллограммы напряжения сигналов системы
управления 4-х цилиндрового 4-х тактного двигателя, осуществляющей
попарно-параллельный впрыск топлива, демонстрирующие схему впрыска
топлива данной системы. Порядок работы цилиндров 1 — 3 — 4 — 2. В данном
случае в первую пару объединены форсунки, обслуживающие цилиндры №1 и
№4, а во вторую пару объединены форсунки, обслуживающие цилиндры №2 и
№3. Но встречаются системы, где при таком же порядке работы цилиндров
двигателя, форсунки объединены в пары по-другому.

напряжения управляющих импульсов топливной
напряжения управляющих импульсов топливной
напряжения управляющих импульсов топливной
напряжения управляющих импульсов топливной
форсункой форсункой форсункой форсункой
1 Осциллограмма 1-го цилиндра.
2 Осциллограмма 2-го цилиндра.
3 Осциллограмма 3-го цилиндра.
4 Осциллограмма 4-го цилиндра.
5 Осциллограмма
напряжения выходного сигнала датчика положения / частоты вращения
коленчатого вала. За один полный оборот коленвала датчик генерирует 58
импульсов и один пропуск, продолжительность которого соответствует
продолжительности двух импульсов. Соответственно, за один полный цикл
работы 4-х тактного двигателя (за два оборота коленвала) датчик
генерирует такие пропуски дважды.

7 Импульс синхронизации с моментом зажигания в первом цилиндре.
 
Следует заметить, что в момент пуска двигателя
блок управления двигателем переключается на параллельную схему впрыска
топлива, то есть, включает и выключает все топливные форсунки
одновременно.

Фазированный впрыск топлива
Для дальнейшего повышения точности дозирования
впрыскиваемого топлива при малых длительностях впрыска путём уменьшения
негативного влияния инерционности электромагнитных топливных форсунок,
каждую форсунку стали обслуживать собственным выходным транзистором
блока управления двигателем. Такая схема впрыска называется фазированным
впрыском или последовательным впрыском топлива. За счёт уменьшения
частоты срабатывания форсунки по сравнению с параллельным и
попарно-параллельным впрыском в два раза, потребовалось уже более
продолжительное открытие форсунки для обеспечения подачи того же
количества топлива. То есть, схема управления форсунками была
модернизирована так, что вместо двух коротких впрысков топлива
осуществляется один более продолжительный впрыск. Таким образом, замена
параллельной схемы впрыска топлива на фазированную позволила заметно
повысить точность дозирования впрыскиваемого топлива при малых
длительностях впрыска.
 

Осциллограммы
напряжения сигналов системы управления 4-х цилиндрового 4-х двигателя,
осуществляющей фазированный впрыск топлива, демонстрирующие схему
впрыска топлива данной системы.

1 Осциллограмма напряжения управляющих импульсов топливной 1-го цилиндра.
2 Осциллограмма напряжения управляющих импульсов топливной 2-го цилиндра.
3 Осциллограмма напряжения управляющих импульсов топливной 3-го цилиндра.
4 Осциллограмма напряжения управляющих импульсов топливной 4-го цилиндра.
5 Осциллограмма напряжения
выходного сигнала датчика положения / частоты вращения коленчатого
вала. За один полный оборот коленвала датчик генерирует 58 импульсов и
один пропуск, продолжительность которого соответствует продолжительности
двух импульсов. Соответственно, за один полный цикл работы 4-х тактного
двигателя (за два оборота коленвала) датчик генерирует такие пропуски
дважды.

6 Осциллограмма
напряжения выходного сигнала датчика положения распределительного вала
(датчика фаз). За два полных оборота коленвала датчик генерирует один
импульс.

7 Импульс синхронизации с моментом зажигания в первом цилиндре.
 
Здесь, впрыск топлива осуществляется тогда, когда
обслуживаемый данной форсункой цилиндр находится на такте выпуска
отработавших газов, то есть, незадолго до такта впуска. За два полных
оборота коленчатого вала двигателя соответствующих одному полному циклу
работы четырёхтактного двигателя, каждая форсунка впрыскивает топливо
только один раз. То есть, по сравнению с параллельным и
попарно-параллельным впрыском, здесь частота срабатывания форсунки
уменьшена в два раза. За счёт этого, для обеспечения подачи заданного
количества топлива потребовалось более продолжительное открытие
форсунки, а за счёт увеличения продолжительности открытого состояния
форсунки уменьшилось негативное влияние инерционности электромагнитных
топливных форсунок на точность дозирования топлива. Таким образом,
замена попарно-параллельной схемы впрыска топлива на фазированную
позволила ещё больше повысить точность дозирования впрыскиваемого
топлива при малых длительностях впрыска.
Для реализации фазированной схемы впрыска топлива
потребовались заметные доработки системы управления двигателем,
обеспечивающие привязку алгоритма управления форсунками к фазам рабочего
цикла цилиндров. По этому, двигатели, оборудованные фазированным
впрыском топлива, дополнительно оснащены датчиком положения
распределительного вала (датчиком фаз). Кроме того, блок управления
такого двигателя потребовалось дооснастить ещё несколькими силовыми
транзисторами, для управления каждой форсункой индивидуально. Кроме
внесения изменений в блок управления двигателем, потребовалось
применение форсунок с более тонким распылом топлива, так как уменьшилась
продолжительность процесса испарения топлива и смешивания его с
воздухом. На некоторых двигателях, дополнительно, это позволило
использовать режим работы при более бедной смеси (дополнительно
потребовалось изменение конструкции впускного коллектора и применение
заслонок завихрителей, для формирования вертикальных потоков воздуха в
цилиндре).

Следует заметить, что в момент пуска двигателя
блок управления двигателем переключается на параллельную схему впрыска
топлива, то есть, включает и выключает все топливные форсунки
одновременно до тех пор, пока не распознает сигнал от датчика положения
распределительного вала.

Дополнительно применяется асинхронный режим
впрыска. В момент, когда водитель очень резко нажимает на педаль
акселератора, некоторые блоки управления могут осуществлять впрыскивание
дополнительного количества топлива несколькими малыми порциями в
цилиндры, которые в данный момент находятся перед или вначале такта
впуска.
 

Осциллограммы напряжения сигнала управления
форсункой и сигнала от датчика положения дроссельной заслонки системы
фазированного впрыска топлива в момент резкой перегазовки.

4 Осциллограмма напряжения выходного сигнала датчика положения дроссельной заслонки.
6 Осциллограмма напряжения управляющих импульсов топливной форсункой одного из цилиндров.

Как видно из приведённым выше осциллограммам, на
переходных режимах работы двигателя, в данном примере в момент резкого
открытия дроссельной заслонки, система фазированного впрыска топлива
может осуществлять дополнительные циклы впрыска топлива, дополнительно
обогащая таким образом состав приготовляемой топливовоздушной смеси.
Благодаря этому снижается вероятность возникновения пропусков
воспламенения топливовоздушной смеси в цилиндрах при работе двигателя на
переходных режимах.

В системах точечного впрыска топлива подавляющего
большинства двигателей современных автомобилей реализован именно
фазированный впрыск топлива.
 

Системы непосредственного впрыска топлива
Наиболее современными системами управления
двигателем являются системы с непосредственным впрыскиванием топлива.
Здесь топливная форсунка впрыскивает топливо непосредственно в камеру
сгорания, то есть, во внутренний объём цилиндра. Благодаря этому, при
работе двигателя с низкой нагрузкой (холостой ход, равномерное движение
автомобиля с небольшой скоростью…) удалось достичь приготовления
внутри цилиндра топливовоздушной смеси с неоднородным соотношением
воздух-топливо. Вблизи электродов свечи зажигания образуется нормальная
или немного обогащённая смесь, за счёт чего происходит устойчивое
воспламенение этой смеси от искрового разряда между электродами свечи
зажигания. В остальном объёме цилиндра образуются бедные и сверхбедные
смеси, которые сгорают от пламени горения нормальной по составу смеси
вблизи электродов свечи зажигания. За счёт послойного приготовления
топливовоздушной смеси (состав смеси в объёме камеры сгорания
неоднороден), усреднённый состав приготовляемой и сжигаемой таким
образом топливовоздушной смеси оказывается сверхбедным — соотношение
воздух-топливо при работе двигателя в таком режиме может достигать
значений 30:1…40:1. Для сравнения, на бензиновом двигателе с подачей
топлива во впускной коллектор и оборудованном специальными завихрителями
потока воздуха (для создания послойной смеси в камере сгорания) не
удаётся достичь обеднения топливовоздушной смеси с соотношением
воздух-топливо более 25:1. А, как известно, обеднение топливовоздушной
смеси позволяет заметно снизить количество расходуемого двигателем
топлива.

Системы управления двигателем с непосредственным
впрыскиванием топлива, да и сами двигатели, обслуживаемые подобными
системами, имеют ряд отличий от обычных систем с точечным впрыскиванием
топлива. Это: вертикальные каналы ввода потока воздуха в цилиндры,
поршни с закругленной выборкой для направления топливной смеси в сторону
свечи зажигания, вихревые инжекторы высокого давления, топливный насос
высокого давления. Кроме того, при работе двигателя на сверхбедных
смесях, впрыскивание топлива в камеру сгорания происходит в конце такта
сжатия. Из-за высокого давления в камере сгорания в момент впрыска
топлива, а так же для обеспечения направленного перемещения впрыснутого
топлива к свече зажигания, давление топлива в топливной рейке здесь
существенно увеличено, соответственно изменена и конструкция топливной
форсунки. С целью повышения давления в топливной рейке, кроме
электрического топливного насоса, размещённого внутри бака, здесь
дополнительно применён механический топливный насос высокого давления,
приводимый от распределительного вала двигателя. Механический топливный
насос высокого давления обеспечивает поддержание давления в топливной
рейке на уровне нескольких десятков Bar.

Для обеспечения правильного послойного
образования топливовоздушной смеси, движение воздушного потока внутри
цилиндра было оптимизировано за счёт изменения конструкции двигателя —
изменены форма и направление впускного воздушного канала для создания в
камере сгорания вертикально направленных воздушных потоков. Так же здесь
применена специальная форма днища поршня. За счёт изменённой формы
днища поршня, струя впрыскиваемого форсункой топлива «отражается» от
наклонного углубления в днище поршня и направляется к свече зажигания,
где образуется область с достаточно богатым содержанием топлива.

В связи с повышением давления топлива в топливной
рейке, потребовалось значительно сократить длительность открытия
топливной форсунки, измеряемое здесь в единицах десятых долей милли
Секунды. Для уменьшения инерционности топливных форсунок, величина
управляющего форсунками напряжения была значительно увеличена и
достигает нескольких десятков Вольт. Для управления топливными
форсунками многих систем непосредственного впрыска топлива применяется
специальный модуль, преобразующий низковольтные импульсы от блока
управления двигателем в высоковольтные импульсы для управления
топливными форсунками.
 

Осциллограммы напряжений сигналов управления топливной форсункой системы непосредственного впрыска топлива.
1 Осциллограмма напряжения на одном из выводов топливной форсунки системы непосредственного впрыска топлива.
2 Осциллограмма напряжения на втором из выводов топливной форсунки системы непосредственного впрыска топлива.
3 Осциллограмма напряжения, воздействующего на обмотку топливной форсунки системы непосредственного впрыска топлива.
 

Следует отметить, что при работе двигателя на
холостом ходу, для поддержания необходимой температуры нейтрализатора
выхлопных газов приготовление сверхбедной топливовоздушной смеси
периодически чередуется с приготовлением обычный однородной смеси
(послойное смесеобразование чередуется с гомогенным смесеобразованием).
При гомогенном смесеобразовании впрыск топлива в камеру сгорания
происходит не во время такта сжатия, а на такте впуска. Переключения
между послойным и гомогенным смесеобразованием заметны по
незначительному изменению частоты вращения двигателя на холостом ходу.
На определенных режимах работы двигателя возможен
комбинированный режим приготовления смеси, когда топливо впрыскивается
форсунками на такте впуска и дополнительно в конце такта сжатия.

Из-за низкого качества топлива, повышается
степень износа деталей некоторых узлов системы непосредственного
впрыскивания топлива. Высокое содержание серы и нерегламентированных
присадок в бензине фактически сводит на нет экономические, экологические
и мощностные показатели данных двигателей. Поэтому, не многие
производители автомобилей одобряют эксплуатацию таких двигателей в
странах СНГ.

Эволюция системы непосредственного впрыска топлива в двигатель

Подача топлива в двигатель через форсунки непосредственного впрыска

Впервые применение новаторских идей по использованию концепции непосредственного впрыска топлива в двигатель была осуществлена в 1925 году Шведским инженером Йонасем Хесельманом.

Так, во время второй мировой войны, некоторые истребители были оборудованы системой непосредственного впрыска топлива, чтобы предотвратить топливное голодание после осуществления очередного маневра.

По причине дороговизны и отсутствия некоторых сопутствующих технологий, применение непосредственного впрыска в двигателе автомобиля в то время так и не прижилось.

Все автомобильные компании при массовом производстве транспортных средств пошли по пути использования в топливной системе карбюратора (carburateur), механического прибора, использующегося с целью дозированного распределения топлива и дальнейшего его смешивания с воздухом для преображения в топливно-воздушную смесь двигателя внутреннего сгорания.

Система прямого впрыска топлива в двигатель в разрезе

Дроссельный впрыск топлива был одним из первых отечественных систем впрыска, этот шаг потребовался для большей ликвидности своего товара на автомобильном рынке того времени, по причине быстрой и легкой замены/ремонта на существующих конструкциях двигателей.

С течением времени использование непосредственного впрыска топлива в двигатель транспортных средств постепенно стало повседневной обыденностью.

Сейчас управление системой подачи топлива в транспортом средстве лежит на плечах компьютера, способного работать с несколькими форсунками одновременно (инъекционный впрыск), принимать в учет показания положения дроссельной заслонки, датчиков температуры охлаждающей жидкости, абсолютного давления в коллекторе, кислорода и т.д.

Не стоит забывать и о сердце всей топливной системы, без которого это просто груда недвижимого железа — бензонасосе высокого давления, который в зависимости от автомобильного производителя может располагаться в разных местах цепочки всей топливной системы, чаще всего — непосредственно в топливном баке.

Как устроена система прямого впрыска топлива:

TOYOTA Common Rail: виды впрыска топлива

Виды впрыска топлива двигателя фирмы TOYOTA 1CD-FTV (Common Rail)

Данная статья является попыткой рассмотрения видов впрыска топлива на данном двигателе.
И только.
Особая признательность Александру Павловичу Чувилину (автосервис «Абрис-Ама, город Москва, ул. Поморская — 29),  на «территории» которого при помощи мотортестера MotoDoc проводились все описанные ниже измерения.

Начнем, пожалуй.
С момента появления автомобилей с двигателем системы Common Rail, в частности 1 CD-FTV, в Интернете опубликовано всего несколько заметок «по поводу».
У читателей может сложиться впечатление, что двигатель этот «простой, как три рубля», потому что впрыск топлива у него  осуществляется по аналогии с уже «разжеванным» впрыском двигателей системы GDI.
Это не совсем так, в чем мы с вами и постараемся убедиться.

   Посмотрим на фото1:

                     фото 1

   Здесь мы видим так называемый «двустадийный» впрыск топлива в дизельном двигателе.
Но прежде чем следовать в наших рассуждениях далее, давайте вспомним, почему стал применяться этот вид впрыска топлива и нужен ли он?.
…Еще в 90-х года прошлого столетия, когда этот сайт только создавался,  на его «просторах» прозвучали такие слова: «По требованию «Зеленых»…».
Именно так.
Потому что в дизельном двигателе в процессе сгорания образуется множество вредных веществ:
— диоксид серы
— оксид азота
— несгоревшие углеводороды
— оксид углерода
— частицы сажи
— и многое другое, но в меньших пропорциях

Двухфазный впрыск топлива призван максимально уменьшить выбросы вредных веществ.
На фото 1 как раз и показана осциллограмма работы двигателя 1CD-FTV на холостом ходу.
Позиция 1 — предварительный (или «пилотный») впрыск топлива
Позиция 2 — основной впрыск топлива

По времени эти фазы впрыска топлива также различаются, посмотрите фото 2:

                              фото 2

Предварительный («пилотный») впрыск топлива:
В камеру сгорания впрыскивается небольшое количество топлива : от 1 до 5 кубических миллиметров (в разных изданиях приводятся различные цифры, нам  же это проверить  негде, поэтому — поверим).
Впрыск может осуществляться в пределах 90 градусов до ВМТ.
Особенность: если впрыск происходит в пределах от20 до 45 градусов до ВМТ, то в этом случае вполне возможен быстрый выход из строя самого двигателя, его механической части, так как при этих углах впрыска топливо не успевает испариться и в виде капель будет осаждаться на стенках цилиндра  и поверхности поршня, что приведет к разжижению моторного масла.
        Мы привыкли, что «дизель» работает шумно и с копотью.
Но применение предварительного впрыска топлива дает возможность получения более плавной «кривой» увеличения давления, что влияет и на шумность работы двигателя, и на выброс вредных отработавших газов.
Это также  уменьшает период задержки воспламенения основной фазы впрыска топлива.
Очень важное условие для снижения шумности двигателя играет точное временное и массовое дозирование топлива для первой фазы впрыска топлива (предварительный впрыск). В случае нарушения этих условий возрастает и шумность двигателя, и его дымность.
Все это имеет своей конечной целью снижение выброса вредных ОГ.

   При нажатии на педаль газа вид впрыска начинает меняться:

                               фото 3

На фото 3 мы видим, как при нажатии на педаль газа двухфазный впрыск (фото 3, позиция 1) переходит в однофазный (фото 3, позиция 2).
Меняется также и время между импульсами(фото 4 и 5):

                               фото 4

                             фото 5

 

Время открытия форсунки при однофазном впрыске при 1250 RPM составляет 1.09 ms(погрешность измерений около 10 мкс).

                                      фото 6

 

Есть у этого двигателя  знакомая нам по «обычному» впрыску так называемая «отсечка» (набираем обороты, а потом резко «бросаем» педаль газа):

                                    фото 7

«Отсечка» для разных регулировок тоже разная, но в принципе должна начинаться от 1800 оборотов и продолжаться до 1200 оборотов.
А вот далее аналогию проводить уже нельзя, потому что после «отсечки» вид впрыска существенно отличается от «обычного», посмотрите:

                                     фото 8

Мы видим «пачки» импульсов, при помощи которых система управления плавно  переводит двигатель в работу на ХХ.

   При запуске двигателя также используется двухфазный впрыск топлива:

                                         рис.1

Это позволяет добиться надежности «холодного» пуска двигателя,  стабильности оборотов на еще 
«не горячем» двигателе и снижения эмиссии CH_x.
Временные показатели на рисунке 1 не проставлены вследствии того, что они будут различными для различных температур, для различных сортов «дизельного» топлива, для различных сортов применяемого моторного масла и так далее. По этим же причинам величина оборотов двигателя при «холодном» запуске будет  также  различная.
На рисунке 1 написано: «двухфазный впрыск — 1» и «двухфазный впрыск — 2».
Ни в одних «мануалах» об этом не написано и такие слова не приводятся.
Но опытным путем установлено, что такие выражения в обиход ввести надо.
Потому что:
«Двухфазный впрыск — 1» — впрыск, который происходит в две стадии, но без возможности перехода его в однофазный впрыск.
«Двухфазный впрыск — 2» — впрыск, который происходит в две стадии, но с возможностью перехода его в однофазный (основной) впрыск.
Здесь все зависит от многих факторов, но основным является температура охлаждающей жидкости и температура топлива.

Развитие автомобилестроения  можно сравнить со спиралью, которая «упирается»  в  Вечность. «Зеленые» потребовали — автомобилестроение  «выполнило». Через  несколько лет, когда «зеленые» найдут еще «кое-что», они проведут через Закон  уже другие ограничения на выброс ОГ автомобилями.

И тогда мы будем лицезреть уже другой тип двигателя и другой вид впрыска топлива. Все связано, все закономерно, но
 всему основой не забота о людях, как можно подумать, нет. Основой основ являются цифры в чековой книжке. А уж к ним «привязывается» все остальное. 
Такие двигатели с таким видом впрыска топлива существенно помогли бы улучшению экологии в нашей стране.
Если бы  наше топливо было «нормальным».

Владимир Петрович

Руководства по ремонту и эксплуатации TOYOTA

Книги по ремонту других автомобилей

Механический впрыск топлива НАМИ для мотора ГАЗ-13 | DL24 | История авто

Довольно неплохо освещена разработка Центральным НИИ Топливной аппаратуры системы электронного впрыска для ГАЗ-21, а также созданной при участии завода ФЭД системы механического впрыска с ТНВД (по схеме, похожей на топливную аппаратуру дизеля) для «Москвича», которая даже пошла в малую серию. А вот об аналогичных разработках для ГАЗовских V8 как-то практически забыли.

Механический впрыск топлива НАМИ для мотора ГАЗ-13

Предыстория

Напомню, что впрыск топлива впервые нашёл широкое применение на мощных авиационных двигателях, для которых после роста числа цилиндров до двух десятков и более карбюраторная система питания (с одним карбюратором на каждый цилиндр !) оказалась крайне неудобна. Такие системы были ещё до войны разработаны в Германии, Японии и СССР, а в её ходе стали использоваться и в США с Великобританией. В большинстве случаев речь шла о непосредственном впрыске топлива в цилиндры при помощи топливного насоса высокого давления (ТНВД), отчасти аналогичного ТНВД дизеля.

Естественно, после войны появилась идея приспособить ту же систему впрыска к автомобильному мотору. Проблем при этом возникало сразу множество, и одной из главных было наличие в ТНВД прецизионных, то есть — обработанных с высочайшей точностью, пар деталей. Причём если в дизельном моторе они работали в соляровом масле, то в случае бензинового двигателя их необходимо было заставить надёжно работать со смывающем масляную плёнку лёгким топливом, что требовало обеспечения принудительного смазывания. Всё это делало подобные системы механического впрыска очень сложными и дорогими в производстве.

Были и другие проблемы — например, в отличие от авиамотора, который в полёте практически постоянно «молотит» на одних и тех же оборотах при практически полностью открытом дросселе, автомобильному двигателю нужно иметь ровный холостой ход и нормальные переходные режимы, а со всем этим у первых систем непосредственного механического впрыска дела обстояли так себе. И хотя удовлетворительное решение технических проблем найти удалось, из-за сложности и дороговизны их применение на четырёхтактных бензиновых моторах оказалось ограничено гоночными или очень дорогими спортивными автомобилями, такими, как Mercedes-Benz 300SL (1954).

Следующим поколением стали чуть более простые в реализации системы механического впрыска топлива во впускной коллектор, которые были созданы ещё в конце сороковых годов для гоночного применения (система Хилборна). Впоследствии фирма Bosch «довела до ума» систему механического впрыска топлива во впускной коллектор с плунжерным ТНВД «дизельного» типа, и она под названием Kugelfischer устанавливался на спортивные модификации некоторых европейских автомобилей 1960-х — 70-х годов, вроде Porsche 911. Примерно аналогичной была и система итальянской фирмы SPICA, использовавшаяся на некоторых моторах Alfa-Romeo.

Но одновременно с этим вёлся и поиск более дешёвых и простых в производстве альтернативных вариантов. Одним из них были системы впрыска с электронным управлением, разработанные на рубеже пятидесятых и шестидесятых годов у нас в ЦНИИ ТА и в США фирмой Bendix. А над другой альтернативой примерно в то же самое время работали в НАМИ.

Устройство и принцип действия

Главной идеей системы впрыска бензина разработки НАМИ была непрерывная подача бензина под давлением во впускной коллектор двигателя в районе впускных клапанов, с регулированием количества подаваемого топлива за счёт давления в топливной магистрали. Таким образом, речь шла о системе непрерывного впрыска, по принципу действия отчасти подобной Bosch К-Jetronic (в серии с 1973 года). Для регулирования состава топливной смеси использовалось изменение давления топлива, которое осуществлялось в зависимости от режима работы двигателя и разницы между разрежением во впускном коллекторе за дросселем и в диффузоре системы впрыска над дросселем. Принципиально система впрыска топлива состояла из двух подсистем: подачи топлива и регулирования состава смеси.

Механический впрыск топлива НАМИ для мотора ГАЗ-13

Подача топлива осуществлялась шестерёнчатым топливным насосом 1 с механическим приводом от валика распределителя системы зажигания. Насос был погружён в поплавковую камеру 18, куда топливо нагнетал обычный диафрагменный подкачивающий насос, создающий давление около 0,25 кг/см2, а его постоянный уровень обеспечивал поплавок с «иглой» 19 — как в карбюраторном моторе. Использование дешёвого шестерёнчатого насоса позволило на порядок снизить сложность и стоимость системы впрыска по сравнению с использующими ТНВД плунжерного типа.

При работе системы шестерёнчатый насос через топливную магистраль нагнетал бензин к распределителю 4, из которого оно попадало к установленным на впускном коллекторе распылителям (форсункам) 5 — по одной на каждый цилиндр. Давлением топлива в пределах от 0,5 до 10 кг/см2 управлял установленный в начале топливной магистрали золотниковый перепускной клапан 14, который перепускал часть топлива обратно в поплавковую камеру через одно из десяти калиброванных отверстий различного диаметра, причём он также не требовал высокой точности изготовления.

Работой перепускного клапана управлял регулятор с вакуумной диафрагмой 12, одна из камер которого была через воздушный жиклёр 11 связана с малым диффузором 6 аппаратуры впрыска — таким образом через создаваемое в нём разрежение учитывался расход воздуха через малый диффузор. Другая камера диафрагмы была соединена с атмосферой. Шток диафрагмы через систему рычагов 13 был связан с золотником перепускного клапана 14. Благодаря этому давление топлива выставлялось в зависимости от разрежения на впуске. Для калибровки этой системы при настройке топливной аппаратуры использовался воздушный жиклёр, а для более тонкого управления составом смеси на различных режимах работы двигателя — вспомогательные устройства, включая экономайзер, систему холостого хода, пусковой обогатитель и ускорительный насос.

Экономайзер в режиме средних нагрузок подавал в камеру регулятора небольшое количество воздуха, уменьшая разрежение и немного обедняя топливную смесь, что способствовало экономии топлива. При полностью нажатой же дроссельной заслонке он отключался, и смесь обогащалась до мощностного состава.

Система холостого хода вступала в работу при холостом ходе и в режиме малых нагрузок, она дополнительно обогащала топливную смесь, соединяя камеру регулятора с задроссельным пространством через жиклёр холостого хода 21. Также она позволяла регулировать состав смеси на холостом ходу привычным по карбюраторам способом — регулировочным винтом 22. Число оборотов холостого хода устанавливалось тоже как в карбюраторе — упорным винтом дроссельной заслонки.

Пусковой обогатитель значительно обогащал смесь при прогреве двигателя, опять же, за счёт соединения камеры регулятора с задроссельным пространством через жиклёр 9, что осуществлялось плужером 23, имевшим ручной привод от манетки на панели приборов. Также имелась пусковая система, соленоидный клапан которой 25 срабатывал при нажатии на кнопку стартера и дополнительно обогащал смесь непосредственно в момент пуска за счёт подачи дополнительного топлива от подкачивающего насоса.

Ускорительный насос 24 работал так же, как и в карбюраторе — при резком нажатии на педаль «газа» подавал во впускной коллектор дополнительную порцию топлива. Он имел пневматический привод и срабатывал при резком уменьшении разрежения во впуске.

Вся система была реализована в виде единого агрегата, совмещавшего в себе топливоподающую и регулирующую подсистемы, который устанавливался непосредственно на впускной коллектор двигателя, имевший специальную конструкцию.

Испытания

Разработанная на основе приведённой выше принципиальной схемы впрысковая топливная аппаратура была установлена на серийный двигатель ГАЗ-13 с увеличенной до 9,5 степенью сжатия и была оттарирована так, чтобы воспроизводить работу штатного для него четырёхкамерного карбюратора К-113. При его испытаниях на стенде удалось при коэффициенте избытка воздуха (численно выражающем степень обогащения топливной смеси) в пределах 0,82…0,87 добиться мощности в 202 л.с. при 3900 об/мин и минимального удельного расхода топлива в 206 г на л.с. в час. Обычный серийный мотор 1961 года выпуска при том же цикле испытаний показал 180 л.с. и минимальный удельный расход порядка 230 г на л.с. в час, причём если у карбюраторного мотора минимальный расход приходился на сравнительно высокие обороты (около 3500 об/мин), то у впрыскового — на более выгодный при обычном вождении режим в районе 2000 об/мин.

Ещё одним «побочным» эффектом от внедрения впрыска топлива была возможность существенно увеличить степень сжатия при сохранении возможности использования штатного для «Чайки» бензина «Экстра» — это достигалось за счёт более эффективного смесеобразования и отсутствия подогрева впускного коллектора, что уменьшило температуру заряда бензовоздушной смеси и тем самым повысило её детонационную стойкость.

Далее мотор поставили на «Чайку» и погнали её на дорожные испытания. Было отмечено снижение расхода топлива по сравнению с карбюратором на 5…6% при движении по трассе (в городском режиме расход практически не изменился), а также улучшение динамики — до «сотни» машина стала разгоняться за 17,5 с вместо 20 у серийного автомобиля, а максимальная скорость повысилась со 157 км/ч до 165. Поломок системы впрыска за время испытаний (10 тыс. км) не отмечалось, а всё обслуживание каждый 3,5…4 тыс. км сводилось к прочистке фильтров.

Были выявлены и существенные недостатки системы впрыска. Так, двигатель неустойчиво работал на холостом ходу из-за очень малого давления впрыска и отмечавшейся при нём неравномерности подачи топлива по цилиндрам, а также в некоторых случаях отмечался «провал» в работе двигателя при резком нажатии на педаль «газа», что происходило из-за того, что нормально ускорительный насос работал только при давлении в системе впрыска порядка 0,15…0,25 кг/см2, а при низком давлении (0,05…0,15 кг/см2) смесь при резком открытии дросселя излишне обеднялась.

Стоит отметить, что есть информация о разработке НАМИ аналогичной системы ещё для двигателя автомобиля ЗИМ ГАЗ-12 в 1956-1958 годах.

Перспективы

Составившие описание системы работники НАМИ — кандидаты технических наук А. А. Чапчаев и Б. М. Енукидзе — описывали её перспективы в крайне оптимистичных тонах, заявляя, что данная система является самой простой из известных видов впрысковой топливной аппаратуры и при массовом производстве будет стоить не дороже четырёхкамерного карбюратора. После доработки её внедрение считалось возможным на спортивно-гоночных автомобилях, а затем и серийный среднего и большого классов. Данная позиция представляется излишне оптимистичной — хотя завод с интересом относился к работам ЦНИИ ТА и НАМИ в этой области, практическое их внедрение явно считалось преждевременным.

Видимо, отчасти здесь повинны недостатки самой системы впрыска, отчасти — неготовность эксплуатационников и ремонтников к новой, на порядок более сложной, чем привычный карбюратор, топливной аппаратуре (и эта проблема была важнейшим сдерживающим фактором для внедрения систем впрыска топлива далеко не только у нас). А отчасти — то, что во второй половине шестидесятых автомобилестроительная отрасль страны стала перестраиваться под выпуск миллионов относительно простых по конструкции, лишённых «наворотов» и конструктивных излишеств, автомобилей для начинавшейся в СССР в правление Брежнева массовой автомобилизации. И если на Западе в те годы считали возможным выпускать, наряду с миллионами обычных карбюраторных, также и десяток-другой процентов автомобилей со впрысковой топливной аппаратурой для богатых покупателей, то у нас снабжение и без того супер-элитной «Чайки» или элитных вариантов «Волги» системой впрыска топлива, что ещё более увеличило бы разрыв между этим автомобилем и массовыми моделями, на тот момент вряд ли выглядело особо привлекательной целью.

Массово применяться впрысковая топливная аппаратура даже на Западе стала лишь в восьмидесятые годы, причём в основном из-за ужесточения экологических стандартов, адаптация к которым карбюраторов была слишком сложной и приводила к резкому снижению надёжности, при стоимости, сравнимой с полноценной системой впрыска. До этого же она применялась или на очень дорогих автомобилях, где её высокая цена особой роли не играла, или на малосерийных спортивных вариантах, для которых выигрыш в динамике компенсировал все недостатки тогдашнего впрыска.

Двигатель ЗМЗ-24Д с электронным аналоговым впрыском топлива АВТЭ. Конец 1970-х.

Двигатель ЗМЗ-24Д с электронным аналоговым впрыском топлива АВТЭ. Конец 1970-х.

В СССР экспериментальные работы над системами впрыска топлива никогда не прекращались, но их «центр тяжести», как и во всём мире, с оказавшегося тупиковым механического впрыска со временем сместился в сторону более перспективного направления — впрыска с электронной системой управления двигателем (ЭСУД). Именно такая система была создана, в частности, для V8 «Чайки» ГАЗ-14 и четырёхцилиндровых двигателей «Волги» — сначала аналоговая на основе прежних наработок ЦНИИ ТА, которая себя не оправдала (конец семидесятых — середина восьмидесятых годов), а затем и комплексная микропроцессорная (КМСУД).

Последняя, в частично унифицированном по периферийным компонентам с системами впрыска фирмы Bosch виде, и пошла в серию в девяностые годы на моторах семейства ЗМЗ-406 и сегодня известна под названием «Микас» (по марке служащего её «сердцем» блока управления), что позволило не только существенно повысить потребительские качества мотора, но и подготовить его к принятию экологических норм семейства «Евро», в которые карбюраторные системы питания уже не вписывались (без технических извращений вроде системы дополнительной подачи воздуха в обход карбюратора по показаниям кислородного датчика, как было сделано на моторах автобусов ПАЗ).

Так что, несмотря на то, что в шестидесятые и семидесятые годы работы по этому направлению велись в основном «в стол», так как практическое внедрение впрыска топлива долгое время считалось преждевременным, происходило непрерывное накопление опыта в данной области. И в конечном итоге именно это советское «наследство» позволило нашей автомобильной промышленности «вскочить в последний вагон уходящего поезда» внедрения впрысковых топливных систем. Но обо всём этом — как нибудь в другой раз…

Сами или не сами ?

Ну, и традиционно волнующий общественность вопрос — самостоятельно ли у нас разработали эту систему, или не очень. Так вот — видимо, всё же «не очень»: принцип действия очень похож на американские системы впрыска семейства Ramjet фирмы Rochester (филиал General Motors), устанавливавшиеся на некоторые автомобили Chevrolet, вроде «Корвета»:

Механический впрыск топлива НАМИ для мотора ГАЗ-13

У американцев тоже был непрерывный механический впрыск за счёт шестерёнчатого бензонасоса, тоже вакуумная система регулирования подачи топлива с диафрагменным регулятором и золотниковым перепускным клапаном. Короче — вся идея системы была взята явно отсюда. Судить о том, имело ли место буквальное копирование с адаптацией к отечественному мотору, или только заимствование принципа работы для своей конструкции, не представляется возможным, поскольку никаких данных кроме приведённого выше описания работы и принципиальной схемы в открытых источниках по системе разработки НАМИ нет. Можно надеяться, что со временем эта информация всё же будет найдена в архивах НАМИ вхожим туда людьми.

Как выглядела наша система впрыска — неизвестно. На фото её американский аналог.

Как выглядела наша система впрыска — неизвестно. На фото её американский аналог.

Впрочем, провал американской системы, которая не прижилась даже на недешёвых спортивных «Корветах» и была снята с производства в 1965 году, позволяет оценить перспективы её отечественного аналога, и они в этом свете выглядят ещё более блёкло. Во-первых — американцы считали эту систему очень дорогой (вопреки радужным мечтам сотрудников НАМИ о том, что она будет стоить не дороже карбюратора). Во-вторых, её обслуживание было сопряжено с большим количеством проблем, связанных с необходимостью специального оборудования для диагностики и настройки, которое в тогдашней системе автосервиса, ориентированной на карбюраторные машины, попросту отсутствовало. И наконец — действительно надёжной работы, приемлемой для массовых моделей, от неё добиться так и не удалось.

Да в ней и не было особой нужды в те годы, ибо как раз к середине шестидесятых карбюраторная система питания достигла наивысшего конструктивного совершенства, в полной мере отвечая запросам автомобилистов того времени. До того момента, когда карбюратор окончательно исчерпает свой потенциал и перестанет удовлетворять требованиям эксплуатации, должно было пройти ещё много времени.

Для чтения:

  • А. А. Чапчаев и Б. М. Енукидзе, Экспериментальная система впрыска бензина для двигателя ГАЗ-13 («Автомобильная промышленность», №11 за 1965 год).
  • В. А. Ломовский, Впрыск топлива в транспортные дви­гатели с принудительным зажиганием (Машгиз, 1958 год).

Схема системы впрыска топлива

Система впрыска топлива применяется для дозированной подачи топлива в двигатель внутреннего сгорания в строго определенный момент времени. От характеристик данной системы зависит мощность, экономичность и экологический класс двигателя автомобиля. Системы впрыска могут иметь различную конструкцию и варианты исполнения, что характеризует их эффективность и сферу применения.

Краткая история появления

Инжекторная система подачи топлива начала активно внедряться в 70-х годах, явившись реакцией на возросший уровень выбросов загрязняющих веществ в атмосферу. Она была заимствована в авиастроении и являлась экологически более безопасной альтернативой карбюраторному двигателю. Последний был оснащен механической системой подачи топлива, при которой топливо поступало в камеру сгорания за счет разницы давлений.

Первая система впрыска была практически полностью механической и отличалась малой эффективностью. Причиной этого был недостаточный уровень технического прогресса, который не мог полностью раскрыть ее потенциал. Ситуация изменилась в конце 90-х годов с развитием электронных систем управления работой двигателя. Электронный блок управления стал контролировать количество впрыскиваемого топлива в цилиндры и процентное соотношение компонентов топливовоздушной смеси.

Виды систем впрыска бензиновых двигателей

Существует несколько основных видов систем впрыска топлива, которые отличаются способом образования топливовоздушной смеси.

Моновпрыск, или центральный впрыск

Схема с центральным впрыском предусматривает наличие одной форсунки, которая расположена во впускном коллекторе. Такие системы впрыска можно найти только на старых легковых автомобилях. Она состоит из следующих элементов:

  • Регулятор давления — обеспечивает постоянную величину рабочего давления 0,1 МПа и предотвращает появление воздушных пробок в топливной системе.
  • Форсунка впрыска — осуществляет импульсную подачу бензина во впускной коллектор двигателя.
  • Дроссельная заслонка — выполняет регулирование объема подаваемого воздуха. Может иметь механический или электрический привод.
  • Блок управления — состоит из микропроцессора и блока памяти, который содержит эталонные данные характеристики впрыска топлива.
  • Датчики положения коленчатого вала двигателя, положения дроссельной заслонки, температуры и т.д.

Системы впрыска бензина с одной форсункой работают по следующей схеме:

  • Двигатель запущен.
  • Датчики считывают и передают информацию о состоянии системы в блок управления.
  • Полученные данные сравниваются с эталонной характеристикой, и, на основе этой информации, блок управления рассчитывает момент и длительность открытия форсунки.
  • На электромагнитную катушку направляется сигнал об открытии форсунки, что приводит к подаче топлива во впускной коллектор, где он смешивается с воздухом.
  • Смесь топлива и воздуха подается в цилиндры.

Распределенный впрыск (MPI)

Система с распределенным впрыском состоит из аналогичных элементов, но в такой конструкции предусмотрены отдельные форсунки для каждого цилиндра, которые могут открываться одновременно, попарно или по одной. Смешение воздуха и бензина происходит также во впускном коллекторе, но, в отличие от моновпрыска, подача топлива осуществляется только во впускные тракты соответствующих цилиндров.

Схема работы системы с распределенным впрыском

Управление осуществляется электроникой (KE-Jetronic, L-Jetronic). Это универсальные системы впрыска топлива Bosch, получившие широкое распространение.

Принцип действия распределенного впрыска:

  • В двигатель подается воздух.
  • При помощи ряда датчиков определяется объем воздуха, его температура, скорость вращения коленчатого вала, а также параметры положения дроссельной заслонки.
  • На основе полученных данных электронный блок управления определяет объем топлива, оптимальный для поступившего количества воздуха.
  • Подается сигнал, и соответствующие форсунки открываются на требуемый промежуток времени.

Непосредственный впрыск топлива (GDI)

Система предусматривает подачу бензина отдельными форсунками напрямую в камеры сгорания каждого цилиндра под высоким давлением, куда одновременно подается воздух. Эта система впрыска обеспечивает наиболее точную концентрацию топливовоздушной смеси, независимо от режима работы мотора. При этом смесь сгорает практически полностью, благодаря чему уменьшается объем вредных выбросов в атмосферу.

Разные системы и типы впрыска топлива.

Рассмотрим кратко некоторые схемы.

Топливный инжектор — это не что иное, как автоматический контролируемый клапан. Топливные форсунки являются частью механической системы, которая впрыскивает топливо в камеры сгорания через определенный интервал. Топливные инжекторы способны открываться и закрываться много раз в течение одной секунды. В последние годы, использованные ранее для доставки топлива карбюраторы, были практически заменены инжекторами.

  • Дроссельно-заслонный инжектор.

Корпус дроссельной заслонки является самым простым типом впрыска. Как и карбюраторы, дроссельно-заслонный инжектор расположен на верхней части двигателя. Такие инжекторы очень сильно напоминают карбюраторы, кроме их работы. Как и карбюраторы, они не имеют миску топлива или жиклеры. В том виде форсунки передают его непосредственно в камеры сгорания.

  • Система непрерывного впрыска.

Как и предполагает название, существует непрерывный поток топлива из форсунок. Вход его в цилиндры или трубки контролируется с помощью впускных клапанов. Существует непрерывный поток топлива при переменной ставке в непрерывной инъекции.

  • Центральный порт впрыска (ИПЦ).

Эта схема использует особый тип арматуры, так называемые ‘тарелки клапанов’. Тарелками клапанов являются клапаны, используемые для управления входа и выброса топлива к цилиндру. Это распыляет горючее на каждый прием с помощью трубки, прикрепленной к центральному инжектору.

  • Мульти-порт или многоточечный впрыск топлива — схема работы.

Один из более продвинутых схем впрыска топлива в наше время называется ‘многоточечный или мульти-порт впрыска’. Это динамический тип впрыска, в котором содержится отдельная форсунка для каждого цилиндра. В мульти-порт системе впрыска топлива все форсунки распыляют его одновременно без каких-либо задержек. Одновременный многоточечный впрыск — это одна из самых продвинутых механических настроек, которая позволяет горючему в цилиндре мгновенно воспламеняться. Следовательно, с многоточечным впрыском топлива водитель получит быстрый отклик.

Современные схемы впрыска топлива являются довольно сложными компьютеризированными механическими системами, которые сводятся не только к топливным форсункам. Весь процесс контролируется с помощью компьютера. И различные детали реагируют в соответствии с данными инструкциями. Существует ряд датчиков, которые адаптируется с помощью посыла важной информации компьютером. Существуют различные датчики, которые контролируют расход топлива, уровень кислорода и другие.

Хотя эта схема топливной системы более сложная, но работа ее разных частей очень уточненная. Она помогает контролировать уровень кислорода и расход топлива, что поможет избежать ненужного расхода горючего в двигателе. Топливная форсунка дает вашему авто потенциал для выполнения задач с высокой степенью точности.

Для разных топливных систем зачастую приходит необходимость для промывки специальным оборудованием.

Сущность схемы непосредственного впрыска в камеру сгорания

Для человека, который не обладает техническим складом ума, разобраться в данном вопросе – задача чрезвычайно сложная. Но все же знание отличий данной модификации двигателя от инжекторной или карбюраторной необходимо. Впервые двигатели с непосредственным впрыском применялись в модели Mercedes-Benz 1954 года выпуска, но большую популярность данная модификация приобрела благодаря компании Mitsubishi под названием Gasoline Direct Injection.

И с тех пор данная конструкция применяется многими известными брендами, такими как:

При этом каждая из фирм использует свое название для рассматриваемой системы. Но принцип действия остается одним и тем же.

Росту популярности системы впрыска топлива способствуют показатели ее экономичности и экологичности, так как при ее использовании значительно сокращается выброс вредных веществ в атмосферу.

Основные особенности системы впрыска топлива

Основной принцип работы данной системы состоит в том, что топливо непосредственно впрыскивается в цилиндры двигателя. Для работы системы обычно необходимо наличие двух топливных насосов:

  1. первый располагается в баке с бензином,
  2. второй – на двигателе.

Причем второй является насосом высокого давления, иногда выдающим более 100 бар. Это необходимое условие работы, так как топливо поступает в цилиндр на такте сжатия. Высокое давление является основной причиной особого строения форсунок, которые выполняются в виде уплотнительных тефлоновых колец.

Данная топливная система, в отличие от системы с обычным впрыском, является системой с внутренним смесеобразованием с послойным или однородным образованием топливовоздушной массы. Способ смесеобразования изменяется с изменением нагрузки двигателя. Разберемся в работе двигателя при послойном и однородном образовании топливовоздушной смеси.

Работа при послойном образовании топливной смеси

Из-за особенностей строения коллектора (наличия заслонок, которые закрывают низы) перекрывается доступ к низу. На такте впуска воздух поступает в верхнюю часть цилиндра, после некоторого вращения коленчатого вала на такте сжатия происходит впрыск топлива, который и требует большого давления насоса. Далее полученная смесь сносится при помощи воздушного вихря на свечу. В момент подачи искры бензин уже будет хорошо перемешан с воздухом, что способствует качественному сгоранию. При этом воздушная прослойка создает своеобразную оболочку, которая снижает потери и повышает коэффициент полезного действия, тем самым уменьшая расход топлива.

Следует отметить, что работа при послойном впрыске топлива является наиболее перспективным направлением, так как в этом режиме можно достичь наиболее оптимального сгорания топлива.

Однородное образование топливной смеси

В данном случае происходящие процессы понять еще легче. Топливо и необходимый для сгорания воздух почти одновременно попадают в цилиндр двигателя на такте впуска. Еще до достижения поршнем верхней мертвой точки топливовоздушная смесь находится в смешанном состоянии. Образование высококачественной смеси происходит благодаря высокому давлению впрыска. Система переключается с одного режима работы на другой благодаря анализу поступающих данных. Это в результате и приводит к повышению экономичности двигателя.

Основные недостатки впрыска топлива

Все преимущества системы с непосредственным впрыском топлива достигаются только при использовании бензина, качество которого соответствует определенным критериям. В них и следует разобраться. Требования к октановому числу у системы больших особенностей не имеют. Хорошее охлаждение топливовоздушной смеси достигается и при использовании бензинов, имеющих октановые числа от 92 до 95.

Наиболее жесткие требования выдвигаются именно к очистке бензина, его составу, содержанию свинца, серы и грязи. Серы быть вообще не должно, так как ее наличие приведет к скорому износу топливной аппаратуры и выходу из строя электроники. К числу недостатков также следует отнести увеличение стоимости системы. Это вызвано усложнением конструкции, которое в свою очередь приводит к увеличению себестоимости компонентов.

Итоги

Анализируя вышеприведенную информацию, можно с уверенностью сказать, что система с непосредственным впрыском топлива в камеру сгорания является более перспективной и современной, чем впрыск с распределением. Она позволяет существенно повышать экономичность двигателя за счет высокого качества топливовоздушной смеси. Основным недостатком системы является наличие высоких требований к качеству бензина, большая стоимость ремонта и обслуживания. А при использовании бензина низкого качества потребность в более частом ремонте и обслуживании сильно возрастает.

Инжектор или впрыск (от английского inject — «впрыск») топлива — система дозированной подачи топлива в цилиндры двигателя. (схема системы впрыска топлива)Существует много разновидностей впрыска — механический, моновпрыск, распределенный, непосредственный. Мы будем рассматривать только относительно современные электронные системы распределенной подачи топлива, на основе ЭСУД (электронной системы управления двигателем) рассчитывающей подачу топлива на основе сигналов установленных на двигателе датчиков.
На рисунке схематично показан принцип многоточечного распределенного впрыска. Подача воздуха (2) регулируется дроссельной заслонкой (3) и перед разделением на 4 потока накапливается в ресивере (4). Ресивер необходим для правильного измерения массового расхода воздуха (т.к измеряется общий массовый расход (MAF) или давление в ресивере (MAP). Последний должен быть достаточного объема для исключения воздушного «голодания» цилиндров при большом потреблении воздуха и сглаживания пульсаций на пуске. Форсунки (5) устанавливаются в канал в непосредственной близости от впускных клапанов.

Схема системы впрыска топлива (СНВТ) (Gasoline Direct Injection (GDI)) — Инжекторная система подачи топлива для бензиновых двигателей внутреннего сгорания с непосредственным впрыском топлива, у которой форсунки расположены в головке блока цилиндров и впрыск топлива происходит непосредственно в цилиндры. Топливо подается под большим давлением в камеру сгорания каждого цилиндра в противоположность стандартной системе распределённого впрыска топлива, где впрыск производится во впускной коллектор.

Такие двигатели более экономичны (до 20% экономии), отвечают более высоким экологическим стандартам, однако и более требовательны к качеству топлива. Источник

Распределенный или точечный (то есть, когда на каждый цилиндр работает своя форсунка) схема системы впрыска топлива делится на три типа:
Одновременный , когда за один рабочий цикл двигателя все 4 форсунки отрабатывают два раза одновременно. Диаграмма работы:

Попарно-параллельный или групповой, когда за один рабочий такт двигателя форсунки отрабатывают парами (1-4 и 2-3) параллельно два раза за рабочий такт. Диаграмма работы:

Фазированный или последовательный, когда за один рабочий такт двигателя каждая форсунка отрабатывает по одному разу в соответствии с фазой впрыска.
Естественно, что время впрыска во всех системах различно, при этом количество поданного в цилиндры за один рабочий такт топлива примерно одинаково. Диаграмма работы:

На диаграммах работы желтым обозначен впуск, черным — впрыск топлива, молнией — зажигание. В системах впрыска Bosch MP7.0H используется несколько другой алгоритм фазированного впрыска, вместо привычного 1-3-4-2 топливо подается последовательно 1-2-3-4.

Суммарное время схема системы впрыска топлива на одновременном и попарно-параллельном способе одинаково, на фазированном — в два раза выше, т.к за 1 цикл одновременного и попарно-параллельного впрыска форсунка включается 2 раза, а на фазированном — 1, поэтому время ее работы увеличено в 2 раза.

I. Датчики

Итак, начнем с информации, необходимой ЭБУ (Электронному блоку управления) для управления впрыском и зажиганием, т.н «Определяющие параметры»

Положение коленвала Датчик положения коленвала (ДПКВ)
Частота вращения коленвала Датчик положения коленвала (ДПКВ)
Массовый расход воздуха Датчик массового расхода воздуха (ДМРВ)
Температура охлаждающей жидкости Датчик температуры ОЖ (ДТОЖ)
Положение дросселя Датчик положения дроссельной зсалонки (ДПДЗ)
Напряжение питания бортовой сети автомобиля
Скорость движения автомобиля Датчик скорости (ДС)
Наличие детонации Датчик детонации (ДД)
Включение кондиционера
Содержание О2 в отработанных газах Датчик кислорода (ДК)
Положение (фаза) распредвала Датчик фазы (ДФ)
Контроль вибрации двигателя Датчик неровной дороги

Для функционирования ЭСУД не обязательно наличие всех датчиков. Комплектации зависят от системы впрыска, от норм токсичности и пр. В программе управления

есть флаги комплектации, которые информируют ПО о наличии или отсутствии каких-либо датчиков. В таблице серым выделены основные датчики, необходимые для работы (исключение составляют системы впрыска на «классику», где не используется датчик детонации).
Датчик кислорода используется только в системах с катализатором под нормы токсичности Евро-2 и Евро-3 (в Евро-3 используется два датчика кислорода (ДК) — до катализатора и после него). Датчик фазы нужен для более точного расчета времени впрыска в системах с фазированным впрыском.
ДПКВ служит для общей синхронизации системы, расчета оборотов двигателя и положения КВ в определенные моменты времени. ДПКВ — полярный датчик. При неправильном включении двигатель заводится не будет. При аварии датчика работа системы невозможна. Это единственный «жизненно важный» в системе датчик, при котором движение автомобиля невозможно. Аварии всех остальных датчиков позволяют своим ходом добраться до автосервиса.
ДМРВ служит для расчета циклового наполнения цилиндров. Измеряется массовый расход воздуха, который потом пересчитывается программой в цилиндровое цикловое наполнение. При аварии датчика его показания игнорируются, расчет идет по аварийным таблицам.
ДТОЖ служит для определения коррекции топливоподачи и зажигания по температуре и управления электровентилятором. При аварии датчика его показания игнорируются, температура берется из таблицы в зависимости от времени работы двигателя. Внимание! Сигнал ДТОЖ подается только на ЭБУ, для индикации на панели используется другой датчик.
ДПДЗ служит для расчета фактора нагрузки на двигатель и его изменения в зависимости от угла открытия ДЗ, оборотов двигателя и циклового наполнения.
Датчик детонации служит для контроля за детонацией. При обнаружении последней ЭБУ включает алгоритм гашения детонации, оперативно корректируя УОЗ. В первых ЭСУД применялся резонансный ДД, пришедший с системы GM. Сейчас повсеместно используются широкополосные ДД.
Напряжение бортовой сети автомобиля — по нему определяется степень коррекции работы электромагнитных клапанов форсунок и времени накопления в модуле зажигания (МЗ).
Датчик скорости автомобиля используется при расчетах блокировки/возобновления топливоподачи при движении. Этот сигнал так же подается на приборную панель для расчета пробега. 6000 сигналов с ДС примерно соответствуют 1 км. пробега автомобиля.
Датчик фазы служит для точной синхронизации по времени впрыска в системах с фазированным (последовательным) впрыском. При аварии или отсутствие датчика система переходит на попарно — параллельную (групповую) систему подачи топлива.
Запрос на включение кондиционера служит для информации ЭБУ о том, что необходимо подготовить двигатель к включению кондиционера (появлению нагрузки на двигатель) — изменить обороты ХХ и принцип регулирования ХХ.
Датчик неровной дороги (раньше применяется довольно редко, сейчас все чаще, в связи с вводом норм токсичности Евро-3) служит для оценки уровня вибраций автомобиля при детектировании пропусков воспламенения, с его помощью оценивается правильность работы зажигания (служит для оценки уровня вибраций автомобиля. Это необходимо для правильной работы системы детектирования пропусков воспламенения, чтобы определить причину неравномерности.)

II. Исполнительные механизмы

Про результатам опроса определенных в программе датчиков, программа ЭБУ осуществляет управление исполнительными механизмами (ИМ).

Топливоподача Форсунки
Бензонасос
Система зажигания Модуль зажигания
Регулировка холостого хода регулятор холостого хода (РХХ)
Диагностика Лампа Check Engine (CE)
Вывод данных через колодку диагностики
Вентилятор системы охлаждения
Функции маршрутного компьютера Сигнал на тахометр
Сигнал расхода топлива
Муфта компрессора кондиционера
Система улавливания паров бензина (Евро-2;3) Клапан СУПБ (или «адсорбер»)

Форсунка – прецензионный электромагнитный (встречаются пьезоэлектрические) клапан с нормированной производительностью. Служит для впрыска вычисленного для данного режима движения количества топлива.
Бензонасос предназначен для нагнетания топлива в топливную рампу. Давление в топливной рампе поддерживается вакуумно-механическим регулятором давления. В некоторых системах регулятор давления топлива (РДТ) совмещен с бензонасосом. Исправный бензонасос без регулирования (с пережатой обраткой) должен создавать в магистрали давление не менее 5 атм. Рабочее давление на ХХ должно быть около 2,2-2,4 атм, на ХХ со снятым вакуумом — 3 атм. Бензонасос, совмещенный с РДТ, используемый в системах с безсливной рампой — 3,8 атм.
Модуль зажигания – электронное устройство управления искрообразованием. Содержит в себе два независимых канала для поджига смеси в 1-4 и 2-3 цилиндрах. То есть реализуется принцип «холостой искры». В последних модификациях низковольтные элементы МЗ помещены в ЭБУ, а для получения высокого напряжения используются либо выносная двухканальная катушка зажигания, либо катушки зажигания непосредственно на свече.
Регулятор холостого хода служит (совместно с УОЗ — регулированием) для поддержании заданных оборотов ХХ. Представляет собой прецизионный шаговый двигатель, регулирующий обводной канал воздуха в корпусе дроссельной заслонки, для обеспечения двигателя воздухом, необходимым для поддержания ХХ (7-12 кг./час) при закрытой дроссельной заслонке.
Вентилятор системы охлаждения управляется ЭБУ по сигналам ДТОЖ. Разница между включением/выключением как правило 4-5 грд.С.
Сигнал на тахометр выдается на приборную панель для индикации текущих оборотов двигателя.
Сигнал расхода топлива выдается на маршрутный компьютер — 16000 импульсов на 1 расчетный литр израсходованного топлива. Данные эти приблизительные, т.к рассчитываются они на основе суммарного времени открытия форсунок с учетом некоторого эмпирического коэффициента, который необходим для компенсации погрешностей измерения, вызванных работой форсунок в нелином участке диапазона, асинхронной топливоподачей и другими факторами. Как показывает практика, сигнал расхода топлива более — менее соответствует истине на системах с ДК.
Адсорбер, он же СУПБ является элементом замкнутой цепи рециркуляции паров бензина. Нормами Евро-2 не предусмотрен контакт вентиляции бензобака с атмосферой, пары бензина должны собираться (адсорбироваться) и при продувке посылаться в цилиндры на дожиг.
Управление муфтой кондиционера служит для включения кондиционера после обработки сигнала на запрос включения кондиционера, т.е когда система готова к этому.

III. Электронный блок управления

ЭБУ (электронный блок управления) – по сути специализированный микрокомпьютер, обрабатывающий данные, поступающие с датчиков и по определенному алгоритму управляющий исполнительными механизмами.
Сама программа хранится в микросхеме ПЗУ, английское название микросхемы — CHIP (чип), отсюда и пошло название ЧИП-ТЮНИНГ, то есть изменение программы управления двигателем. Содержимое «чипа» — обычно делится на две функциональные части — собственно программа, осуществляющая обработку данных и математические расчеты и блок калибровок. Калибровки — набор (массив) фиксированных данных (переменных) для работы программы управления.
Сам чип-тюнинг делится, соответственно два направления: рекалибровку переменных программы и на изменение алгоритмов обработки калибровок. Часто эти направления смешиваются, но цель у них одна — улучшение эксплуатационных характеристик управляемого двигателя. Следует иметь ввиду, что для правильной работы любой программы необходимо наличие полностью исправных датчиков и ИМ. Тюнинговые прошивки, как правило, более точно настроены но и более требовательны к состоянию датчиков и ИМ. При «затюнивании» неисправности можно получить прямо противоположный ожидаемому эффект. Поэтому любой чип-тюнинг должен производиться на полностью продиагностированном авто, к которому нет никаких замечаний. Самый «правильный», но самый сложный и дорогой чип-тюнинг — это настройка программы на конкретное авто и конкретного водителя.

Последние разработки в области систем управления двигателем — это новые контроллеры Bosch MP7.0H и Bosch M7.9.7. В отличие от предыдущих систем, здесь используется так называемая ‘моментная’ математическая модель двигателя, такие системы намного сложнее калибруются и более ‘капризны’ в случае изменения физических параметров двигателя (рабочий объем, геометрия, впуск-выпуск). В последнем случае требуется калибровка самой матмодели (которая включает несколько сотен калибровок), что практически невозможно без специального оборудования и методик. Несмотря на это можно утверждать, что в настоящее время данные системы успешно поддаются чип-тюнингу.

“>

Системы впрыска топлива — Honest-1 Auto Care Provo

Системы впрыска топлива

Как работают системы впрыска топлива

В прошлом для подачи топлива в двигатель использовались карбюраторы. Сегодня в большинстве автомобилей используется система впрыска топлива. Этот тип системы подачи топлива использует топливную форсунку, которая представляет собой клапан, управляемый компьютером, который принимает топливо под давлением, подаваемое электронным топливным насосом, и распыляет его, превращая его в мелкодисперсную струю, которая легко сгорает. Распыленное топливо распыляется через корпус дроссельной заслонки, который подает распыленное топливо в каждый цилиндр через впускной коллектор.Несколько датчиков сообщают об этом компьютеру, чтобы регулировать скорость впрыска и сжигания топлива.

Обслуживание топливной форсунки и корпуса дроссельной заслонки

Все двигатели, использующие впрыск топлива, требуют обслуживания топливной системы. При сегодняшнем резком росте цен на топливо большинство потребителей выбирают более дешевое топливо. Высокие температуры под капотом и низкокачественное топливо вызывают некоторое накопление олефинового парафина, грязи, воды и других примесей, которые сужают форсунки форсунок и нарушают схему распыления форсунок.Каждая система впрыска топлива имеет уникальную конструкцию управления подачей воздуха, которая также создает различные уровни углеродистых отложений, которые со временем накапливаются, влияя на поток воздуха и распыление топлива. Забитые форсунки и нагар в системе впуска снижают производительность и экономию топлива. Технические специалисты Honest-1® являются экспертами в обслуживании систем впрыска топлива.

В услугу входит:

  • Проверка рабочего давления и объема топливного насоса
  • Проверка регулятора давления на работоспособность и герметичность
  • Промывка всей топливной рампы и верхних сеток топливных форсунок, включая регулятор давления
  • Очистка топливных форсунок
  • Удаление нагара Двигатель в сборе
  • Очистка дроссельной заслонки и каналов управления холостым ходом
  • Проверка минимального расхода воздуха и его регулировка при необходимости
  • При необходимости переобучение бортового компьютера

Преимущества:

  • Увеличенная экономия топлива
  • Увеличенный срок службы форсунок
  • Снижение выбросов токсичных веществ
  • Снижение внутренней температуры
  • Лучшая реакция и производительность вашего автомобиля

Система впрыска топлива Grand Prairie, Tx Arlington, TX Cockrell Hill, TX

Прибл.Время: 60 минут  | Диапазон цен: Узнать цену

Основы услуг по впрыску топлива в Lynn’s Auto Care

Во время впрыска топлива проверяются топливные форсунки вашего автомобиля. Топливные форсунки, расположенные во впускном коллекторе двигателя, используют маленькие форсунки для распыления топливного тумана, который ваш двигатель может сжечь. Топливные форсунки работают с вашим дроссельным клапаном, который пропускает воздух в двигатель всякий раз, когда вы нажимаете педаль газа. Когда клапан открывается, топливные форсунки выпускают топливный туман, который смешивается с воздухом.Затем эта комбинация топлива и воздуха поступает в камеру сгорания и помогает вашему автомобилю работать. Со временем топливные форсунки могут загрязняться. Забитые форсунки могут отрицательно сказаться на характеристиках вашего автомобиля, что приведет к снижению расхода топлива и грязным выбросам выхлопных газов. Во время коротких поездок грязь особенно легко скапливается внутри форсунок топливных форсунок. Поскольку исправная система впрыска топлива важна для общего технического обслуживания автомобиля, мы советуем вам следить за своими топливными форсунками и обслуживать их по мере необходимости.

Почему вам следует обращаться в Lynn’s Auto Care за услугами по впрыску топлива?

Готовы ли вы к службе впрыска топлива? Если вы столкнулись с пропусками воспламенения, плохим ускорением или неровным холостым ходом, возможно, виновата ваша система впрыска топлива. Если вы столкнетесь с любой из этих проблем или заметите, что ваши топливные форсунки забиты грязью и грязью, посетите нас. Наши сотрудники понимают, что грязные форсунки могут вызвать различные проблемы с вашим автомобилем, и у нас есть необходимые инструменты для их очистки.Мы приложим все усилия, чтобы удалить любые отложения в форсунках ваших форсунок. Кроме того, мы можем проверить давление и объем вашего топливного насоса и регулятора давления. При осмотре системы впрыска топлива вашего автомобиля мы также можем осмотреть топливопроводы, топливные рампы, компоненты дроссельной заслонки и топливные фильтры. Мы также проверим, правильно ли работают датчики вашего автомобиля. Когда ваш автомобиль будет готов к обслуживанию впрыска топлива, не откладывайте.

Мы с гордостью обслуживаем потребности клиентов в области впрыска топлива в Гранд-Прери, штат Техас, Арлингтон, штат Техас, Кокрелл-Хилл, штат Техас, и прилегающих районах.

обслуживаемых территорий: Гранд-Прери, Техас | Арлингтон, Техас | Кокрелл-Хилл, Техас | и прилегающие районы

Применимость методов впрыска топлива для современных дизельных двигателей: Материалы конференции AIP: Том 2207, № 1

Дизельные двигатели с мощными и экономичными расходами топлива становятся все более популярными. Разработка электронного впрыска топлива является важной вехой в повышении мощности и производительности дизельных двигателей.Электронная система впрыска топлива направлена ​​​​на оптимизацию процесса впрыска топлива в цилиндры с контролем времени впрыска с помощью ЭБУ, что позволяет осуществлять впрыск топлива под высоким давлением независимо от частоты вращения двигателя. Тем не менее, режимы впрыска топлива ECU являются сложными и разнообразными стратегиями, часто не публикуемыми, но считающимися секретом производителей двигателей. Поэтому важно изучить стратегию впрыска топлива в дизельных двигателях с электронным управлением, чтобы понять режим впрыска топлива в современных дизельных двигателях.Кроме того, режим впрыска топлива представляет собой понятие, охватывающее время впрыска и характеристики распределения скорости впрыска топлива. Режим впрыска топлива напрямую влияет на структуру распыла, процесс смешивания, а также на физико-химические условия в камере сгорания. Таким образом, режим впрыска является одним из ключей к повышению термической эффективности и минимизации выбросов дизельных двигателей. Режим впрыска зависит от стратегии впрыска, используемой в каждом типе дизельного двигателя. Электронная система впрыска топлива обладает многими преимуществами и позволяет разрабатывать различные стратегии впрыска (предварительный впрыск, основной впрыск, поствпрыск и раздельный впрыск).

Добавить комментарий

Ваш адрес email не будет опубликован.