Эдс батареи: №976. ЭДС батареи равна 1,55 В. При замыкании ее на нагрузку сопротивлением 3 Ом напряжение на полюсах батареи становится равным 0,95 В. Каково внутреннее сопротивление батареи?

Содержание

ЭДС аккумулятора

ЭДС аккумулятора

ЭДС аккумулятора (Электродвижущая сила) это разность электродных потенциалов при отсутствии внешней цепи. Электродный потенциал складывается из равновесного электродного потенциала. Он характеризует состояние электрода в состоянии покоя, то есть отсутствии электрохимических процессов, и потенциала поляризации, определяющемуся как разность потенциалов электрода при зарядке (разрядке) и при отсутствии цепи.

Процесс диффузии.

Благодаря процессу диффузии, выравниванию плотности электролита в полости корпуса аккумулятора и в порах активной массы пластин, электродная поляризация может сохраняться в аккумуляторе при отключении внешней цепи.

Скорость прохождения диффузии напрямую зависит от температуры электролита, чем выше температура, тем быстрее проходит процесс и может сильно отличаться по времени, от двух часов до суток. Наличие двух составляющих электродного потенциала при переходных режимах привело к разделению на равновесную и не равновесную

ЭДС аккумулятора.
На равновесную ЭДС аккумулятора влияет содержание и концентрация ионов активных веществ в электролите, а так же химические и физические свойства активных веществ. Главную роль в величине ЭДС играет плотность электролита. Так как  плотность электролита зависит от температуры, то и ЭДС так же зависит от температуры. Зависимость ЭДС от плотности можно выразить формулой:

Е = 0,84 + р Где Е – ЭДС аккумулятора (В) Р – плотность электролита приведённая к температуре 25 гр. С (г/см3)Эта формула истинна при рабочей плотности электролита в пределах 1,05 – 1,30 г/см3. ЭДС не может характеризовать степень разрежённости аккумулятора напрямую. Но если замерить его на выводах и сравнить с расчётным по плотности, то можно, с долей вероятности, судить о состоянии пластин и ёмкости.
В состоянии покоя плотность электролита в порах электродов и полости моноблока одинаковы и равны ЭДС покоя. При подключении потребителей или источника заряда, изменяется поляризация пластин и концентрация электролита в порах электродов. Это приводит к изменению ЭДС. При заряде значение ЭДС увеличивается, а при разряде уменьшается. Это связано с изменением плотности электролита, который участвует в электрохимических процессах.

ЭДС аккумулятора не равна напряжению аккумулятора которое зависит от наличия или отсутствия нагрузки на его клеммах.

Электродвижущая сила аккумулятора

Можно ли по ЭДС точно судить о степени заряженности аккумулятора?

Электродвижущей силой (ЭДС) аккумулятора называется разность его электродных потенциалов, измеренная при разомкнутой внешней цепи:

Е = φ+ – φ–

где φ+ и φ– – соответственно потенциалы положительного и отрицательного электродов при разомкнутой внешней цепи.

ЭДС батареи, состоящей из n последовательно соединённых аккумуляторов:

Еб = n · Е

В свою очередь, электродный потенциал при разомкнутой цепи в общем случае состоит из равновесного электродного потенциала, характеризующего равновесное (стационарное) состояние электрода (при отсутствии переходных процессов в электрохимической системе), и потенциала поляризации.

Этот потенциал в общем случае определяется как разность между потенциалом электрода при разряде или заряде и его потенциалом в равновесном состоянии в отсутствии тока. Однако следует отметить, что состояние аккумулятора сразу после выключения зарядного или разрядного тока не является равновесным вследствие различия концентрации электролита в порах электродов и межэлектродном пространстве. Поэтому электродная поляризация сохраняется в аккумуляторе довольно длительное время и после отключения зарядного или разрядного тока и характеризует в этом случае отклонение электродного потенциала от равновесного значения за счёт переходного процесса, то есть в основном вследствие диффузионного выравнивания концентрации электролита в аккумуляторе от момента размыкания внешней цепи до установления равновесного стационарного состояния в аккумуляторе.

Химическая активность реагентов, собранных в электрохимическую систему аккумулятора, и, следовательно, изменение ЭДС аккумулятора весьма незначительно зависит от температуры. При изменении температуры от –30°С до+50°С (в рабочем диапазоне для АКБ) электродвижущая сила каждого аккумулятора в батарее изменяется всего на 0,04 В и при эксплуатации аккумуляторов им можно пренебречь.

С повышением плотности электролита ЭДС повышается. При температуре +18°С и плотности 1,28 г/см3 аккумулятор (имеется в виду одна банка) обладает ЭДС равной2,12 В. Аккумуляторная батарея из шести элементов обладает ЭДС равной 12,72 В(6 ? 2,12 В = 12,72 В).

По ЭДС нельзя точно судить о степени заряженности аккумулятора.
ЭДС разряженного аккумулятора с большей плотностью электролита будет выше, чем ЭДС заряженного аккумулятора, но имеющего меньшую плотность электролита. Величина ЭДС исправного аккумулятора зависит от плотности электролита (степени его заряженности) и изменяется от 1,92 до 2,15 В.

При эксплуатации аккумуляторных батарей путём измерения ЭДС можно обнаружить серьёзную неисправность аккумуляторной батареи (замыкание пластин в одной или нескольких банках, обрыв соединительных проводников между банками и тому подобное).

ЭДС измеряют высокоомным вольтметром (внутреннее сопротивление вольтметране менее 300 Ом/В). В ходе выполнения измерений вольтметр присоединяют к выводам аккумулятора или батареи. При этом через аккумулятор (батарею) не должен протекать зарядный или разрядный ток!


***
Электродвижущая сила (ЭДС) – скалярная физическая величина, характеризующая работу сторонних сил, то есть любых сил неэлектрического происхождения, действующих в квазистационарных цепях постоянного или переменного тока.
ЭДС так же, как и напряжение, в Международной системе единиц (СИ) измеряется в вольтах.

Электрические характеристики аккумуляторных батарей | Аккумуляторные батареи

Страница 2 из 26

1.3. Основные электрические характеристики аккумуляторных батарей

Электродвижущая сила и напряжение. Электродвижущей силой (ЭДС) называется разность потенциалов положительного и отрицательного электродов аккумулятора при разомкнутой внешней цепи.
Величина ЭДС зависит, главным образом, от электродных потенциалов, т. е. от физических и химических свойств веществ, из которых изготовлены пластины и электролит, но не зависит от размеров пластин аккумулятора.
ЭДС кислотного аккумулятора зависит также от плотности электролита. Теоретически и практически установлено, что ЭДС аккумулятора с достаточной для практики точностью можно определить по формуле
Е=0,85 + g,
где g– плотность электролита при 15°С, г/см3.
Для кислотных стартерных аккумуляторов, в которых плотность электролита колеблется в пределах от 1,12 до 1,29 г/см3ЭДС изменяется соответственно от 1,97 до 2,14 В.
Измерить ЭДС с абсолютной точностью почти невозможно. Однако для практических целей ЭДС приблизительно и достаточно точно можно измерить вольтметром, имеющим высокое внутреннее сопротивление (не менее 1000 Ом на 1 В). При этом через вольтметр будет проходить ток незначительной величины.

Напряжением аккумулятора называется разность потенциалов положительных и отрицательных пластин при замкнутой внешней цепи, в которую включен какой-либо потребитель тока, т. е. при прохождении тока через аккумулятор. При этом показания вольтметра при измерении напряжения всегда будут меньше, чем при замере ЭДС, и эта разность будет тем больше, чем больший ток проходит через аккумулятор.
ЭДС и напряжение зависят от ряда факторов. ЭДС изменяется от плотности и температуры электролита. Напряжение в свою очередь зависит от ЭДС, величины разрядного тока (нагрузки) и внутреннего сопротивления аккумулятора.
Зависимость ЭДС аккумулятора от плотности электролита (концентрации раствора Н2SО4) приведена ниже:

Плотность электролита при 25°С,

г/см3……………………………… 1,05        1,10        1,15        1,20        1,25        1,28        1,30
Н2SО4, %……………………….. 7,44       14,72      21,68      27,68       33,8        37,4        39,7
ЭДС аккумулятора, в………. 1,906      1,960      2,005      2,048      2,095      2,125      2,144
Из этой зависимости видно, что с увеличением концентрации серной кислоты ЭДС также увеличивается. Отсюда, однако, не следует, что для получения большей ЭДС можно чрезмерно увеличивать плотность электролита. Установлено, что стартерные аккумуляторные батареи достаточно хорошо работают тогда, когда плотность электролита в них составляет 1,27 – 1,29 г/см3.Кроме того, электролит плотностью 1,29 г/см3имеет самую низкую точку замерзания.
При изменении температуры электролита ЭДС аккумулятора также меняется. Так, с изменением температуры электролита от +20°С до -40°С ЭДС аккумулятора снижается с 2,12 до 2,096 в. В значительно большей степени с изменением температуры электролита меняется напряжение, так как оно зависит не только от ЭДС, но и от внутреннего сопротивления аккумулятора, которое с понижением температуры значительно возрастает.
Между ЭДС, напряжением, внутренним сопротивлением и величиной разрядного тока существует следующая зависимость:
U=Е-Ir,
где U – напряжение;
Е – э. д. с. аккумулятора;
I – величина разрядного тока;
r – внутреннее сопротивление аккумулятора.
Из этой формулы видно, что при постоянном значении ЭДС, измеряемой при разомкнутой цепи, напряжение аккумулятора падает по мере увеличения отдаваемого в процессе разряда тока.
Внутреннее сопротивление. Внутреннее сопротивление аккумулятора сравнительно мало, но в тех случаях, когда аккумуляторная батарея разряжается силой тока большой величины, например, при пуске двигателя стартером, внутреннее сопротивление каждого аккумулятора имеет очень существенное значение.
Внутреннее сопротивление складывается из сопротивления электролита, сепараторов и пластин. Главной составляющей является сопротивление электролита, которое изменяется с изменением температуры и концентрации серной кислоты.
Зависимость удельного сопротивления электролита плотностью 1,30 г/см3 от температуры показана ниже:

Температура, °С                            Удельное   сопротивление электролита Ом·см
+ 40                                                                             0,89
+ 25                                                                             1,28
+ 18                                                                             1,46
0                                                                             1,92
–  18                                                                            2,39

Как видно из приведенных данных, с понижением температуры электролита от +40°С до -18°С удельное сопротивление возрастает в 2,7 раза. Наименьшее значение удельного сопротивления имеет электролит плотностью 1,223 г/см3при 15°С (30%-ный раствор Н2SО4 по весу).
Вторым составляющим сопротивления в аккумуляторе является сопротивление сепараторов. Оно зависит в основном от их пористости. Сепараторы изготавливают из электроизолирующего материала, поры которого заполнены электролитом, что и обусловливает электропроводимость сепаратора.
В связи с этим можно было бы предположить, что с изменением температуры сопротивление сепаратора будет изменяться в той же пропорции, что и сопротивление электролита, но это не совсем так. Некоторые виды сепараторов, например, сепараторы из микропористого эбонита (мипора) не чувствительны к изменению температуры.
Третьим фактором, входящим в общую сумму внутреннего сопротивления элемента, служит активная масса и решетки положительных и отрицательных пластин.
Сопротивление губчатого свинца отрицательной пластины незначительно отличается от сопротивления материала решетки, в то время как сопротивление перекиси свинца положительной пластины превышает сопротивление решетки в 10000 раз. В отличие от сопротивления электролита сопротивление решетки уменьшается с понижением температуры. Но ввиду того, что сопротивление электролита во много раз больше сопротивления пластин, то уменьшение их сопротивления с понижением температуры весьма незначительно компенсирует общее снижение сопротивления электролита.
На сопротивление пластин влияет степень заряженноcти аккумуляторной батареи. В процессе разряда сопротивление пластин возрастает, так как сернокислый свинец, образующийся на положительных и отрицательных пластинах, почти не проводит электрический ток.
По сравнению с другими типами аккумуляторов кислотные аккумуляторы имеют сравнительно малое внутреннее сопротивление, что и определяет их широкое применение в качестве стартерных батарей на автомобильном транспорте.
Емкость. Емкостью аккумулятора называется количество электричества, которое может отдать полностью заряженный аккумулятор при заданном режиме разряда, температуре и конечном напряжении. Емкость измеряют в ампер-часах и определяют по формуле
C=Iptp,
где С – емкость, а·ч;
Ip – сила разрядного тока, а;
tp – время разряда, ч.
Величина емкости аккумуляторной батареи в основном определяется следующими факторами: режимом разряда (величиной разрядного тока), концентрацией электролита и температурой. Аккумуляторы при форсированных режимах разряда отдают емкость меньше, чем при разряде более длительными режимами (небольшой величиной тока).
Снижение емкости при форсированных режимах разряда происходит по следующим причинам.
В процессе разряда превращение активной массы пластин сернокислый свинец происходит не только на поверхности пластин, но и внутри них. Если разряд осуществляют током небольшой силы и медленно, то электролит успевает проникать в глубокие слои активной массы, а вода, образующаяся в результате реакции в порах, успевает смешаться с основной массой электролита. При форсированных режимах разряда концентрация серной кислоты в электролите внутри пластин значительно снижается, свежий электролит не успевает проникнуть в глубь активной массы, реакция идет в основном на поверхности пластин, так как поры закупориваются и внутрилежащие слои активной массы почти не принимают участия в реакции. При этом в результате значительного увеличения внутреннего сопротивления аккумулятора напряжение на его зажимах резко падает.
Однако после того как аккумулятор будет разряжен при форсированном режиме, после небольшого перерыва его снова можно разряжать. Это служит наглядным подтверждением того, что снижение емкости в аккумуляторе при разряде большой величиной силы тока происходит в результате неполного использования активной массы пластин.
Кроме величины разрядного тока, на емкость аккумулятора значительно влияет концентрация электролита, которая определяет потенциал пластин, электрическое сопротивление электролита и его вязкость, влияющую в свою очередь на способность проникания электролита в глубокие слои активной массы пластин.
В процессе разряда плотность электролита уменьшается и в конце разряда к активной массе пластин поступает недостаточное количество кислоты, в результате чего напряжение аккумулятора падает и дальнейший его разряд становится невозможным. Чем больше разница между концентрациями электролита, находящегося вне пластин, и электролита, находящегося в порах активной массы, тем интенсивнее происходит процесс проникновения кислоты в поры пластин. В этом отношении применение электролита с большей плотностью, казалось бы, должно увеличить емкость. Но в действительности чрезмерно большая плотность не ведет к увеличению емкости, так как увеличение плотности электролита неизбежно приводит к повышению вязкости электролита, в результате чего процесс проникновения электролита в глубину активной массы пластин ухудшается, и напряжение на зажимах аккумулятора падает.
Установлено, что наибольшую емкость имеет аккумуляторная батарея с плотностью электролита 1,27 – 1,29 г/см3.
Емкость аккумуляторной батареи зависит также от температуры. С понижением температуры емкость снижается, а с повышением увеличивается. Это объясняется тем, что с понижением температуры увеличивается вязкость электролита, в результате чего он поступает к пластинам в недостаточном количестве.
Значения вязкости электролита плотностью 1,223 г/см3 в зависимости от температуры приведены ниже:
Температура, °С………… +30        +25        +20        +10          0          – 10       – 20       – 30
Абсолютная вязкость,
пз(пуаз)………………….. 1,596     1,784     2,006    2,600    3,520    4,950     7,490    12,200
Емкость положительных и отрицательных пластин с изменением температур изменяется не в одинаковой степени. Если при обычной температуре емкость элемента лимитируется положительными пластинами, то при низких температурах – отрицательными, так как при понижении температуры емкость отрицательной пластины уменьшается в значительно большей степени, чем положительной.
В последнее время емкость аккумуляторных батарей при низких температурах удалось значительно повысить за счет применения более тонких синтетических сепараторов с высокой пористостью (до 80%) и присадок, так называемых расширителей, к активной массе отрицательных пластин, которые придают ей большую пористость.
Помимо режима разряда, концентрации электролита и температуры емкость аккумуляторной батареи зависит от срока ее службы, от срока хранения, в течение которого батарея бездействовала, от наличия вредных примесей и т. д. Емкость новой аккумуляторной батареи, поступающей в эксплуатацию, первое время (в течение гарантийного срока службы) повышается, так как происходит формирование пластин, после чего на протяжении определенного периода остается постоянной и затем начинает постепенно падать. Потеря емкости аккумуляторной батареей в конце срока службы объясняется уменьшением пористости отрицательных пластин и выпадением активной массы положительных пластин.
Если заряженная батарея продолжительное время бездействовала, то при ее разряде отданная емкость будет значительно меньше. Это объясняется естественным явлением саморазряда при бездействии батареи.

Эдс батареи формула. Эдс и напряжение свинцового аккумулятора. Измерение ЭДС аккумуляторной батареи


просмотров 6 817 Google+

ЭДС аккумулятора (Электродвижущая сила) это разность электродных потенциалов при отсутствии внешней цепи. Электродный потенциал складывается из равновесного электродного потенциала. Он характеризует состояние электрода в состоянии покоя, то есть отсутствии электрохимических процессов, и потенциала поляризации, определяющемуся как разность потенциалов электрода при зарядке (разрядке) и при отсутствии цепи.

Процесс диффузии.

Благодаря процессу диффузии, выравниванию плотности электролита в полости корпуса аккумулятора и в порах активной массы пластин, электродная поляризация может сохраняться в аккумуляторе при отключении внешней цепи.

Скорость прохождения диффузии напрямую зависит от температуры электролита, чем выше температура, тем быстрее проходит процесс и может сильно отличаться по времени, от двух часов до суток. Наличие двух составляющих электродного потенциала при переходных режимах привело к разделению на равновесную и не равновесную ЭДС аккумулятора.На равновесную ЭДС аккумулятора влияет содержание и концентрация ионов активных веществ в электролите, а так же химические и физические свойства активных веществ. Главную роль в величине ЭДС играет плотность электролита и практически не влияет на неё температура. Зависимость ЭДС от плотности можно выразить формулой:

Е = 0,84 + р Где Е – ЭДС аккумулятора (В) Р – плотность электролита приведённая к температуре 25 гр. С (г/см3)Эта формула истинна при рабочей плотности электролита в пределах 1,05 – 1,30 г/см3. ЭДС не может характеризовать степень разрежённости аккумулятора напрямую. Но если замерить его на выводах и сравнить с расчётным по плотности, то можно, с долей вероятности, судить о состоянии пластин и ёмкости. В состоянии покоя плотность электролита в порах электродов и полости моноблока одинаковы и равны ЭДС покоя. При подключении потребителей или источника заряда, изменяется поляризация пластин и концентрация электролита в порах электродов. Это приводит к изменению ЭДС. При заряде значение ЭДС увеличивается, а при разряде уменьшается. Это связано с изменением плотности электролита, который участвует в электрохимических процессах.

ЭДС аккумулятора не равна напряжению аккумулятора которое зависит от наличия или отсутствия нагрузки на его клеммах.

«Если Вы заметили ошибку в тексте, пожалуйста выделите это место мышкой и нажмите CТRL+ENTER»

admin 25/07/2011″Если статья была Вам полезна, поделитесь ссылкой на неё в соцсетях»

Avtolektron.ru

Электродвижущая сила аккумулятора

Можно ли по ЭДС точно судить о степени заряженности аккумулятора?

Электродвижущей силой (ЭДС) аккумулятора называется разность его электродных потенциалов, измеренная при разомкнутой внешней цепи:

Е = φ+ – φ–

где φ+ и φ– – соответственно потенциалы положительного и отрицательного электродов при разомкнутой внешней цепи.

ЭДС батареи, состоящей из n последовательно соединённых аккумуляторов:

В свою очередь, электродный потенциал при разомкнутой цепи в общем случае состоит из равновесного электродного потенциала, характеризующего равновесное (стационарное) состояние электрода (при отсутствии переходных процессов в электрохимической системе), и потенциала поляризации.

Этот потенциал в общем случае определяется как разность между потенциалом электрода при разряде или заряде и его потенциалом в равновесном состоянии в отсутствии тока. Однако следует отметить, что состояние аккумулятора сразу после выключения зарядного или разрядного тока не является равновесным вследствие различия концентрации электролита в порах электродов и межэлектродном пространстве. Поэтому электродная поляризация сохраняется в аккумуляторе довольно длительное время и после отключения зарядного или разрядного тока и характеризует в этом случае отклонение электродного потенциала от равновесного значения за счёт переходного процесса, то есть в основном вследствие диффузионного выравнивания концентрации электролита в аккумуляторе от момента размыкания внешней цепи до установления равновесного стационарного состояния в аккумуляторе.

Химическая активность реагентов, собранных в электрохимическую систему аккумулятора, и, следовательно, изменение ЭДС аккумулятора весьма незначительно зависит от температуры. При изменении температуры от –30°С до+50°С (в рабочем диапазоне для АКБ) электродвижущая сила каждого аккумулятора в батарее изменяется всего на 0,04 В и при эксплуатации аккумуляторов им можно пренебречь.

С повышением плотности электролита ЭДС повышается. При температуре +18°С и плотности 1,28 г/см3 аккумулятор (имеется в виду одна банка) обладает ЭДС равной2,12 В. Аккумуляторная батарея из шести элементов обладает ЭДС равной 12,72 В(6 ? 2,12 В = 12,72 В).

По ЭДС нельзя точно судить о степени заряженности аккумулятора. ЭДС разряженного аккумулятора с большей плотностью электролита будет выше, чем ЭДС заряженного аккумулятора, но имеющего меньшую плотность электролита. Величина ЭДС исправного аккумулятора зависит от плотности электролита (степени его заряженности) и изменяется от 1,92 до 2,15 В.

При эксплуатации аккумуляторных батарей путём измерения ЭДС можно обнаружить серьёзную неисправность аккумуляторной батареи (замыкание пластин в одной или нескольких банках, обрыв соединительных проводников между банками и тому подобное).

ЭДС измеряют высокоомным вольтметром (внутреннее сопротивление вольтметране менее 300 Ом/В). В ходе выполнения измерений вольтметр присоединяют к выводам аккумулятора или батареи. При этом через аккумулятор (батарею) не должен протекать зарядный или разрядный ток!

*** Электродвижущая сила (ЭДС) – скалярная физическая величина, характеризующая работу сторонних сил, то есть любых сил неэлектрического происхождения, действующих в квазистационарных цепях постоянного или переменного тока. ЭДС так же, как и напряжение, в Международной системе единиц (СИ) измеряется в вольтах.

orbyta.ru

27.3. Электрохимические реакции в аккумуляторе. Электродвижущая сила. Внутреннее сопротивление. Саморазряд. Сульфатация пластин

Если замкнуть внешнюю цепь заря­женного аккумулятора, появится элек­трический ток. При этом происходят сле­дующие реакции:

у отрицательной пластины

у положительной пластины

где е — заряд электрона, равный

На каждые две молекулы расходуе­мой кислоты образуются четыре моле­кулы воды, но в то же время расходуют­ся две молекулы воды. Поэтому в итоге имеет место образование только двух молекул воды. Складывая уравнения (27.1) и (27.2), получаем реакцию разряда в окончательном виде:

Уравнения (27.1) — (27.3) следует чи­тать слева направо.

При разряде аккумулятора на пласти­нах обеих полярностей образуется сульфат свинца. Серная кислота расхо­дуется как у положительных, так и у отри­цательных пластин, при этом у поло­жительных пластин расход кислоты больше, чем у отрицательных. У поло­жительных пластин образуются две мо­лекулы воды. Концентрация электро­лита при разряде аккумулятора сни­жается, при этом в большей мере она снижается у положительных пластин.

Если изменить направление тока че­рез аккумулятор, то направление хими­ческой реакции изменится на обратное. Начнется процесс заряда аккумулятора. Реакции заряда у отрицательной и поло­жительной пластин могут быть пред­ставлены уравнениями (27.1) и (27.2), а суммарная реакция — уравнением (27.3). Эти уравнения следует теперь читать справа налево. При заряде сульфат свинца у положительной пластины вос­станавливается в перекись свинца, у от­рицательной пластины — в металличе­ский свинец. При этом образуется серная кислота и концентрация электролита повышается.

Электродвижущая сила и напря­жение аккумулятора зависят от мно­жества факторов, из которых важней­шими являются содержание кислоты в электролите, температура, ток и ею направление, степень заряженности. Связь между электродвижущей силой, напряжением и током может быть запи-

сана следующим образом:

при разряде

где Е0 — обратимая ЭДС; Eп — ЭДС по­ляризации; R — внутреннее сопротивле­ние аккумулятора.

Обратимая ЭДС — это ЭДС идеаль­ного аккумулятора, в котором устра­нены все виды потерь. В таком аккумуля­торе энергия, полученная при заряде, полностью возвращается при разряде. Обратимая ЭДС зависит только от со­держания кислоты в электролите и темпе­ратуры. Она может быть определена аналитически, исходя из теплоты образо­вания реагирующих веществ.

Реальный аккумулятор находится в условиях, близких к идеальным, если ток ничтожно мал и продолжитель­ность его прохождения также мала. Такие условия можно создать, если уравновесить напряжение аккумулятора некоторым внешним напряжением (эта­лоном напряжения) с помощью чувстви­тельного потенциометра. Напряжение, измеренное таким образом, называется напряжением при разомкнутой цепи. Оно близко к обратимой ЭДС. В табл. 27.1 приведены значения этого напряжения, соответствующие плотности электро­лита от 1,100 до 1,300 (отнесены к тем­пературе 15°С) и температуре от 5 до 30 °С.

Как видно из -таблицы, при плотности электролита 1,200, обычной для стацио­нарных аккумуляторов, и температуре 25 °С напряжение аккумулятора при разомкнутой цепи равно 2,046 В. В про­цессе разряда плотность электролита несколько снижается. Соответствующее снижение напряжения при разомкнутой цепи составляет всего несколько сотых долей вольта. Изменение напряжения при разомкнутой цепи, вызванное измене­нием температуры, ничтожно мало и представляет скорее теоретический ин­терес.

Если через аккумулятор проходит некоторый ток в направлении заряда или разряда, напряжение аккумулятора изменяется вследствие внутреннего па­дения напряжения и изменения ЭДС, вызванного побочными химическими и физическими процессами у электродов и в электролите. Изменение ЭДС акку­мулятора, вызванное указанными необ­ратимыми процессами, называется по­ляризацией. Основными причинами поляризации в аккумуляторе являются изменение концентрации электролита в порах активной массы пластин по отно­шению к концентрации его в осталь­ном объеме и вызываемое этим изме­нение концентрации ионов свинца. При разряде кислота расходуется, при заряде образуется. Реакция происходит в порах активной массы пластин, и приток или удаление молекул и ионов кислоты происходит через диффузию. Последняя может иметь место только при наличии некоторой разности концентраций элек­тролита в области электродов и в осталь­ном объеме, которая устанавливается в соответствии с током и температурой, определяющей вязкость электролита. Изменение концентрации электролита в порах активной массы вызывает измене­ние концентрации ионов свинца и ЭДС. При разряде вследствие понижения концентрации электролита в порах ЭДС уменьшается, а при заряде вследствие повышения концентрации электролита ЭДС повышается.

Электродвижущая сила поляризации направлена всегда навстречу току. Она зависит от пористости пластин, тока и

температуры. Сумма обратимой ЭДС и ЭДС поляризации, т. е. Е0 ± Еп, представ­ляет собой ЭДС аккумулятора под током или динамическую ЭДС. При разряде она меньше обратимой ЭДС, а при заряде — больше. Напряже­ние аккумулятора под током отличается от динамической ЭДС только на значе­ние внутреннего падения напряжения, которое относительно мало. Следова­тельно, напряжение аккумулятора под током также зависит от тока и темпе­ратуры. Влияние последней на напряже­ние аккумулятора при разряде и заряде значительно больше, чем при разомкну­той цепи.

Если разомкнуть цепь аккумулятора при разряде, напряжение его медленно увеличится до напряжения при разомкну­той цепи вследствие продолжающейся диффузии электролита. Если разомкнуть цепь аккумулятора при заряде, напряже­ние его медленно уменьшится до напря­жения при разомкнутой цепи.

Неравенство концентраций электро­лита в области электродов и в остальном объеме отличает работу реального акку­мулятора от идеального. При заряде аккумулятор работает так, как если бы он содержал очень разбавленный элек­тролит, а при заряде — очень концентри­рованный. Разбавленный электролит все время смешивается с более концентри­рованным, при этом некоторое коли­чество энергии выделяется в виде тепла, которое при условии равенства кон­центраций могло бы быть использовано. В результате энергия, отданная акку­мулятором при разряде, меньше энергии, полученной при заряде. Потеря энергии происходит вследствие несовершенства химического процесса. Этот вид потерь является основным в аккумуляторе.

Внутреннее сопротивление аккумуля­тора. Внутреннее сопротивление сла­гается из сопротивлений каркаса пластин, активной массы, сепараторов и электро­лита. Последнее составляет большую часть внутреннего сопротивления. Со­противление аккумулятора увеличивает­ся при разряде и уменьшается при заряде, что является следствием изменения кон­центрации раствора и содержания суль-

фата в активной массе. Сопротивле­ние аккумулятора невелико и заметно лишь при большом разрядном токе, когда внутреннее падение напряжения достигает одной или двух десятых долей вольта.

Саморазряд аккумулятора. Самораз­рядом называется непрерывная потеря химической энергии, запасенной в акку­муляторе, вследствие побочных реакций на пластинах обеих полярностей, вызван­ных случайными вредными примесями в использованных материалах или при­месями, внесенными в электролит в про­цессе эксплуатации. Наибольшее практи­ческое значение имеет саморазряд, выз­ванный присутствием в электролите различных соединений металлов, более электроположительных, чем свинец, на­пример меди, сурьмы и др. Металлы вы­деляются на отрицательных пластинах и образуют со свинцом пластин мно­жество короткозамкнутых элементов. В результате реакции образуются свин­цовый сульфат и водород, который выде­ляется на металле загрязнения. Самораз­ряд может быть обнаружен по легкому выделению газа у отрицательных пластин.

На положительных пластинах само­разряд происходит также вследствие обычной реакции между свинцом осно­вы, перекисью свинца и электролитом, в результате которой образуется суль­фат свинца.

Саморазряд аккумулятора проис­ходит всегда: как при разомкнутой цепи, так и при разряде и заряде. Он зависит от температуры и плотности электролита (рис. 27.2), причем с повыше­нием температуры и плотности электро­лита саморазряд увеличивается (потеря заряда при температуре 25 °С и плотности электролита 1,28 принята за 100%). По­теря емкости новой батареи вследствие саморазряда составляет около 0,3% в сутки. С возрастом батареи саморазряд увеличивается.

Ненормальная сульфатация пластин. Свинцовый сульфат образуется на пластинах обеих полярностей при каж­дом разряде, что видно из уравнения реакции разряда. Этот сульфат имеет

тонкое кристаллическое строение и за­рядным током легко восстанавливается в металлический свинец и перекись свин­ца на пластинах соответствующей по­лярности. Поэтому сульфатация в этом смысле — нормальное явление, состав­ляющее неотъемлемую часть работы аккумулятора. Ненормальная сульфата­ция возникает, если аккумуляторы под­вергаются чрезмерному разряду, систе­матически недозаряжаются или остают­ся в разряженном состоянии и бездейст­вии в течение длительного времени, а также если они работают с чрезмерно высокой плотностью электролита и при высокой температуре. В этих условиях тонкий кристаллический сульфат стано­вится более плотным, кристаллы растут, сильно расширяя активную массу, и трудно восстанавливаются при заряде вследствие большого сопротивления. Если батарея находится в бездействии, образованию сульфата способствуют колебания температуры. При повышении температура мелкие кристаллы суль­фата растворяются, а при последующем ее понижении сульфат медленно вы­кристаллизовывается и кристаллы рас­тут. В результате колебаний температу­ры крупные кристаллы образуются за счет мелких.

У сульфатированных пластин поры закупорены сульфатом, активный мате­риал выдавливается из решеток и пласти­ны часто коробятся. Поверхность суль­фатированных пластин становится жест­кой, шероховатой, и при растирании

материала пластин между пальцами ощущается как бы песок. Темно-корич-невые положительные пластины стано-вятся светлее, и на поверхности высту-пают белые пятна сульфата. Отрицательные пластины становятся твердыми, желовато-серыми. Емкость сульфатиро-шнного аккумулятора понижается.

Начинающаяся сульфатация может быть устранена длительным зарядом лалым током. При сильной сульфатации необходимы особые меры для приведе-гая пластин в нормальное состояние.

studfiles.net

Параметры автомобильного аккумулятора | Все про аккумуляторы

Давайте рассмотрим основные параметры аккумулятора, которые понадобяться нам при его эксплуатации.

1. Электродвижущая сила (ЭДС) аккумуляторной батареи — напряжение между выводами аккумуляторной батареи при разомкнутой внешней цепи (и, конечно-же, при отсутствии каких-либо утечек). В «полевых» условиях (в гараже) ЭДС можно измерить любым тестером, перед этим сняв одну из клемм («+» или «-») с аккумулятора.

ЭДС аккумулятора зависит от плотности и от температуры электролита и совершенно не зависит от размеров и формы электродов, а также от количества электролита и активных масс. Изменение ЭДС аккумулятора от температуры весьма мало и при эксплуатации им можно пренебречь. С повышением плотности электролита ЭДС повышается. При температуре плюс 18°С и плотности d = 1,28 г/см3 аккумулятор (имеется в виду одна банка) обладает ЭДС рав­ной 2,12 В (АКБ — 6 х 2,12 В = 12,72 В). Зависимость ЭДС от плотности электролита при изме­нении плотности в пределах 1,05÷1,3 г/см3 вы­ражается эмпирической формулой

Е=0,84+d, где

d — плотность электролита при температуре плюс 18°С, г/см3.

По ЭДС нельзя точно судить о степени разряженности ак­кумулятора. ЭДС разряженного аккумулятора с большей плот­ностью электролита будет выше, чем ЭДС заряженного акку­мулятора, но имеющего меньшую плотность электролита.

Путём измерения ЭДС можно только быстро обнаружить серьезную неисправность аккумуляторной батареи (замыкание пластин в одной или нескольких банках, обрыв соединительных проводников между банками и тому подобное).

2. Внутреннее сопротивление аккумулятора представляет собой сумму сопротивлений выводных зажимов, межэлементных соеди­нений, пластин, электролита, сепараторов и сопротивления, во­зникающего в местах соприкосновения электродов с электро­литом. Чем больше емкость аккумулятора (число пластин), тем меньше его внутреннее сопротивление. С понижением темпера­туры и по мере разряда аккумулятора его внутреннее сопротив­ление растет. Напряжение аккумулятора отличается от его ЭДС на величину падения напряжения на внутреннем сопротивлении ак­кумулятора.

При заряде U3 = Е + I х RВН,

а при разряде UР = Е — I х RВН, где

I — ток, протекаю­щий через аккумулятор, A;

RВН — внутреннее сопротивление акку­мулятора, Ом;

Е — ЭДС аккуму­лятора, В.

Изменение напряже­ния на аккумуляторной батарее при ее заряде и разряде показано на Рис. 1.

Рис.1. Изменение напряжения аккумуляторной батареи при её заряде и разряде.

1 — начало газовыделения, 2 — заряд, 3 — разряд.

Напряжение автомобильного генератора, от которого производится заряд батареи, составляет 14,0÷14,5 В. На автомобиле батарея, даже в лучшем случае, при полностью благоприятных условиях, остается недозаряженной на 10÷20%. Виной всему — работа автомобильного генератора.

Достаточное для зарядки напряжение генератор начинает выдавать при 2000 об/мин и более. Обороты холостого хода 800÷900 об/мин. Стиль езды в городе: разгон (длительность меньше минуты), торможение, остановка (светофор, пробка — длительность от 1 минуты до ** часов). Заряд идёт только во время разгона и движения на довольно высоких оборотах. В остальное время идёт интенсивный разряд АКБ (фары, прочие потребители электроэнергии, сигнализация — круглосуточно).

Ситуация улучшается при движении за городом, но не критическим образом. Длительность поездок не так велика (полный заряд батареи — 12÷15 часов).

В точке 1 — 14,5 В начинается газовыделение (электролиз воды на кислород и водород), увеличивается расход воды. Другой неприятный эффект при электролизе — увеличивается коррозия пластин, поэтому не следует допускать длительного превышения напряжения 14,5 В на клеммах АКБ.

Напряжение автомобильного генератора (14,0÷14,5 В) выбрано из компромиссных условий — обеспечение более-менее нормальной зарядки батареи при уменьшении газообразования (снижается расход воды, понижается пожароопасность, уменьшается скорость разрушения пластин).

Из вышесказанного можно сделать вывод, что батарею нужно периодически, хотя бы раз в месяц, полностью дозаряжать внешним зарядным устройством для уменьшения сульфатации пластин и увеличения срока службы.

Напряжение аккумуляторной батареи при ее разряде стартерным током (IР = 2÷5 С20) зависит от силы раз­рядного тока и темпе­ратуры электролита. На Рис.2 показаны вольт-амперные харак­теристики аккумуля­торной батареи 6СТ-90 при различной темпе­ратуре электролита. Если разрядный ток будет постоянным (например, IР = 3 С20, линия 1), то напряжение батареи при разряде будет тем меньше, чем ниже ее температура. Для сохранения по­стоянства напряжения при разряде (линия 2) необходимо с пониже­нием температуры ба­тареи снижать силу разрядного тока.

Рис.2. Вольт-амперные характеристики АКБ 6СТ-90 при различной температуре электролита.

3. Емкостью аккумулятора (С) называется количество электри­чества, которое аккумулятор отдает при разряде до наименьшего допустимого напряжения. Ёмкость аккумулятора выражается в Ампер-часах (А ч). Чем больше сила разрядного тока, тем ниже напряжение, до которого может разряжаться аккумулятор, например при определении номинальной емкости аккумуляторной батареи разряд ведется током I = 0,05С20 до напряжения 10,5 В, температура электролита должна быть в интервале +(18÷27)°С, а время разряда 20 ч. Считается, что конец срока службы батареи наступает, когда ее емкость составляет 40% от С20.

Емкость батареи в стартерных режимах определяется при температуре +25°С и разрядном токе ЗС20. В этом случае время разряда до напряжения 6 В (один вольт на аккумулятор) дол­жно быть не менее 3 мин.

При разряде батареи током ЗС20 (температура электро­лита -18°С) напряже­ние батареи через 30 с после начала разряда должно быть 8,4 В (9,0 В для необслужи­ваемых батарей), а после 150 с не ниже 6 В. Этот ток иногда называют током холодной прокрутки или пусковым током, он может отличаться от ЗС20 Этот ток указывается на корпусе батареи рядом с ее емкостью.

Если разряд происходит при постоянной силе тока, то ем­кость аккумуляторной батареи определяется по формуле

С = I х t где,

I — ток разряда, A;

t — время разряда, ч.

Емкость аккумуляторной батареи зависит от ее конструкции, числа пластин, их толщины, материала сепаратора, пористости активного материала, конструкции решетки пластин и других факторов. В эксплуатации емкость батареи зависит от силы разрядного тока, температуры, режима разряда (прерывистый или непрерывный), степени заряженности и изношенности акку­муляторной батареи. При увеличении разрядного тока и степени разряженности, а также с понижением температуры емкость ак­кумуляторной батареи уменьшается. При низких температурах падение емкости аккумуляторной батареи с повышением разряд­ных токов происходит особенно интенсивно. При температуре −20°С остается около 50% от емкости батареи при температуре +20°С.

Наиболее полно состояние аккумуляторной батареи показывает как раз её ёмкость. Для определения реальной емкости достаточно полностью заряженную исправную батарею поставить на разряд током I = 0,05 С20 (например, для батареи с ёмкостью 55 Ач, I = 0,05 х 55 = 2,75 А). Разряд следует продолжать до достижения величины напряжения на батарее 10,5 В. Время разряда должно составить не менее 20 часов.

В качестве нагрузки при определении ёмкости удобно использовать автомобильные лампы накаливания. Например, чтобы обеспечить разрядный ток 2,75 А, при котором потребляемая мощность составит Р = I x U = 2,75 А x 12,6 В = 34,65 Вт, достаточно соединить параллельно лампу на 21 Вт и лампу на 15 Вт. Рабочее напряжение ламп накаливания для нашего случая должно быть 12 В. Конечно, точность установки тока подобным образом — «плюс-минус лапоть», но для приблизительного определения состояния аккумуляторной батареи вполне достаточно, а так-же дёшево и доступно.

При проверке таким образом новых батарей, время разряда может оказаться меньше 20 часов. Это обусловлено тем, что номинальную ёмкость они набирают после 3÷5 полных циклов заряд-разряд.

Ёмкость АКБ можно оценить также с помощью нагрузочной вилки. Нагрузочная вилка состоит из двух контактных ножек, рукоятки, переключаемого нагрузочного сопротивления и вольтметра. Один из возможных вариантов показан на Рис.3.

Рис.3. Вариант нагрузочной вилки.

Для проверки современных батарей, у которых доступны только выходные клеммы, надо использовать 12-ти вольтовые нагрузочные вилки. Нагрузочное сопротивление выбирается таким, чтобы обеспечить нагрузку аккумулятора током I = ЗС20 (например, при ёмкости батареи 55 Ач, нагрузочное сопротивление должно потреблять ток I = ЗС20 = 3 х 55 = 165 А). Нагрузочная вилка подсоединяется параллельно выходным контактам полностью заряженной батареи, замечается время, в течение которого выходное напряжение снизится от 12,6 В до 6 В. Это время у новой, исправной и полностью заряженной батареи должно быть не менее трёх минут при температуре электролита +25°С.

4. Саморазряд аккумулятора. Саморазрядом называют снижение емкости аккумуляторов при разомкнутой внешней цепи, то есть при бездействии. Это явление вызвано окислительно-восстановительными процессами, самопроизвольно протекающими как на отрицательном, так и на положительном электродах.

Саморазряду особенно подвержен отрицательный электрод вследствие самопроизвольного растворения свинца (отрицательной активной массы) в растворе серной кислоты.

Саморазряд отрицательного электрода сопровождается выделением газообразного водорода. Скорость самопроизвольного растворения свинца существенно возрастает с повышением концентрации электролита. Повышение плотности электролита с 1,27 до 1,32 г/см3 приводит к росту скорости саморазряда отрицательного электрода на 40 %.

Саморазряд может возникать также, когда аккумулятор снаружи загрязнен или залит электролитом, водой или другими жидкостями, которые создают возможность разряда через электропроводную пленку, находящуюся между полюсными выводами аккумулятора или его перемычками.

Саморазряд батарей в значительной мере зависит от температуры электролита. С понижением температуры саморазряд уменьшается. При температуре ниже 0°С у новых батарей он практически прекращается. Поэтому хранение батарей рекомендуется в заряженном состоянии при низких температурах (до −30°С). Всё это показано на Рис.4.

Рис.4. Зависимость саморазряда АКБ от температуры.

В процессе эксплуатации саморазряд не остается постоянным и резко усиливается к концу срока службы.

Для снижения саморазряда необходимо использовать возможно более чистые материалы для производства аккумуляторов, использовать только чистую серную кислоту и дистиллированную воду для приготовления электролита, как при производстве, так и при эксплуатации.

Обычно степень саморазряда выражают в процентах потери емкости за установленный период времени. Саморазряд аккумуляторов считается нормальным, если он не превышает 1% в сутки, или 30% емкости батареи в месяц.

5. Срок хранения новых батарей. В настоящее время автомобильные батареи выпускаются заводом-изготовителем только в сухозаряженном состоянии. Срок хранения батарей без эксплуатации весьма ограничен и не превышает 2 лет (гарантийный срок хранения 1 год).

6. Срок службы автомобильных свинцово-кислотных аккумуляторных батарей — не менее 4-х лет при соблюдении установленных заводом условий эксплуатации. Из моей практики шесть батарей прослужили по четыре года, а одна, самая стойкая, — целых восемь лет.

akkumulyator.reglinez.org

Электродвижущая сила аккумулятора — ЭДС

электродвижущая, сила, аккумулятора

Аккумулятор — ЭДС аккумулятора — Электродвижущая сила

Эдс аккумулятора, не включенного на нагрузку, составляет в среднем 2 Вольта. Она не зависит от величины аккумулятора и размера его пластин, а определяется различием активных веществ положительных и отрицательных пластин. В небольших пределах эдс может изменяться от внешних факторов, из которых практическое значение имеет плотность электролита, т. е. большее или меньшее содержание кислоты в растворе. Электродвижущая сила разряженного аккумулятора, имеющего электролит высокой плотности, будет больше эдс заряженного аккумулятора с более слабым раствором кислоты. Поэтому о степени заряда аккумулятора с неизвестной начальной плотностью раствора не следует судить на основании показаний прибора при измерении эдс без подключенной нагрузки. Аккумуляторы имеют внутреннее сопротивление, которое не остается постоянным, а изменяется во время заряда и разряда в зависимости от химического состава активных веществ. Одним самым очевидным фактором сопротивления батареи является электролит. Поскольку сопротивление электролита зависит не только от его концентрации, но и от температуры, то и сопротивление аккумулятора зависит от температуры электролита. С увеличением температуры сопротивление уменьшается. Наличие сепараторов также повышает внутренней сопротивление элементов. Другим фактором, увеличивающим сопротивление элементов, является сопротивление активного материала и решеток. Кроме того, на сопротивление аккумуляторной батареи влияет степень заряда. Сульфат свинца, образующийся во время разряда как на положительных, так и на отрицательных пластинах, не проводит электричества, и его присутствие значительно повышает сопротивление прохождению электрического тока. Сульфат закрывает поры пластин, когда последние находятся в заряженном состоянии, и таким образом препятствует свободному доступу электролита к активному материалу. Поэтому, когда элемент заряжен, сопротивление его оказывается меньше, чем в разряженном состоянии.

roadmachine.ru

Электродвижущая сила — батарея — Большая Энциклопедия Нефти и Газа, статья, страница 1

Электродвижущая сила — батарея

Cтраница 1

Электродвижущая сила батареи, состоящей из двух параллельных групп по три последовательно соединенных аккумулятора в каждой группе, равна 4 5 в, ток в цепи 1 5 а, напряжение 4 2 в.  

Электродвижущая сила батареи равна 1 8 В.  

Электродвижущая сила батареи, состоящей из трех одинаковых последовательно соединенных аккумуляторов, равна 4 2 В. Напряжение батареи при замыкании ее на внешнее сопротивление 20 Ом равно 4 В.  

Электродвижущая сила батареи, состоящей из трех одинаковых последовательно соединенных аккумуляторов, равна 4 2 в. Напряжение батареи при замыкании ее на внешнее сопротивление 20 ом равно 4 в.  

Электродвижущая сила батареи из трех параллельно соединенных аккумуляторов равна 1 5 в, внешнее сопротивление 2 8 ом, ток в цепи равен 0 5 а.  

Ом — м; U — электродвижущая сила батареи, В; / — сила тока, А; К — постоянный коэффициент прибора.  

Поэтому такое покрытие обязательно должно уменьшать электродвижущую силу батареи.  

При параллельном соединении (см. рис. 14) электродвижущая сила батареи остается приблизительно равной электродвижущей силе одного элемента, но емкость батареи увеличивается в п раз.  

Итак, при последовательном включении п одинаковых источников тока электродвижущая сила образующейся батареи в п раз превышает электродвижущую силу отдельного источника тока, однако в этом случае складываются не только электродвижущие силы, но также и внутренние сопротивления источников тока. Такое включение является выгодным, когда внешнее сопротивление цепи весьма велико в сравнении с внутренним сопротивлением.  

Практическая единица электродвижущей силы называется вольтом и мало отличается от электродвижущей силы батареи Даниэля.  

Заметим, что начальный заряд конденсатора и, следовательно, напряжение на нем создаются электродвижущей силой батареи. С другой стороны, начальное отклонение тела создается приложенной извне силой. Таким образом, сила, действующая на механическую колебательную систему, играет роль, аналогичную электродвижущей силе, действующей на электрическую колебательную систему.  

Заметим, что начальный заряд конденсатора и, следовательно, напряжение на нем создаются электродвижущей силой батареи. С другой стороны, начальное отклонение тела создается приложенной извне силон. Таким образом, сила, действующая на механическую колебательную систему, играет роль, аналогичную электродвижущей силе, действующей на электрическую колебательную систему.  

Заметим, что начальный заряд конденсатора и, следовательно, напряжение на нем создается электродвижущей силой батареи. С другой стороны, начальное отклонение тела создается извне приложенной силой. Таким образом, сила, действующая на механическую колебательную систему, играет роль, аналогичную электродвижущей силе, действующей на электрическую колебательную систему.  

Страницы:      1    2

www.ngpedia.ru

Формула ЭДС

Здесь – работа сторонних сил, – величина заряда.

Единица измерения напряжения – В (вольт).

ЭДС – скалярная величина. В замкнутом контуре ЭДС равна работе сил по перемещению аналогичного заряда по всему контуру. При этом ток в контуре и внутри источника тока будут течь в противоположных направлениях. Внешняя работа, которая создаёт ЭДС, должна быть не электрического происхождения (сила Лоренца, электромагнитная индукция, центробежная сила, сила, возникающая в ходе химических реакций). Эта работа нужна для преодоления сил отталкивания носителей тока внутри источника.

Если в цепи идёт ток, то ЭДС равна сумме падений напряжений во всей цепи.

Примеры решения задач по теме «Электродвижущая сила»


Если замкнуть внешнюю цепь заря­женного аккумулятора, появится элек­трический ток. При этом происходят сле­дующие реакции:

у отрицательной пластины

у положительной пластины

где е — заряд электрона, равный

На каждые две молекулы расходуе­мой кислоты образуются четыре моле­кулы воды, но в то же время расходуют­ся две молекулы воды. Поэтому в итоге имеет место образование только двух молекул воды. Складывая уравнения (27.1) и (27.2), получаем реакцию разряда в окончательном виде:

Уравнения (27.1) — (27.3) следует чи­тать слева направо.

При разряде аккумулятора на пласти­нах обеих полярностей образуется сульфат свинца. Серная кислота расхо­дуется как у положительных, так и у отри­цательных пластин, при этом у поло­жительных пластин расход кислоты больше, чем у отрицательных. У поло­жительных пластин образуются две мо­лекулы воды. Концентрация электро­лита при разряде аккумулятора сни­жается, при этом в большей мере она снижается у положительных пластин.

Если изменить направление тока че­рез аккумулятор, то направление хими­ческой реакции изменится на обратное. Начнется процесс заряда аккумулятора. Реакции заряда у отрицательной и поло­жительной пластин могут быть пред­ставлены уравнениями (27.1) и (27.2), а суммарная реакция — уравнением (27.3). Эти уравнения следует теперь читать справа налево. При заряде сульфат свинца у положительной пластины вос­станавливается в перекись свинца, у от­рицательной пластины — в металличе­ский свинец. При этом образуется серная кислота и концентрация электролита повышается.

Электродвижущая сила и напря­жение аккумулятора зависят от мно­жества факторов, из которых важней­шими являются содержание кислоты в электролите, температура, ток и ею направление, степень заряженности. Связь между электродвижущей силой, напряжением и током может быть запи-

сана следующим образом:

при разряде

где Е 0 обратимая ЭДС; E п — ЭДС по­ляризации; R внутреннее сопротивле­ние аккумулятора.

Обратимая ЭДС — это ЭДС идеаль­ного аккумулятора, в котором устра­нены все виды потерь. В таком аккумуля­торе энергия, полученная при заряде, полностью возвращается при разряде. Обратимая ЭДС зависит только от со­держания кислоты в электролите и темпе­ратуры. Она может быть определена аналитически, исходя из теплоты образо­вания реагирующих веществ.

Реальный аккумулятор находится в условиях, близких к идеальным, если ток ничтожно мал и продолжитель­ность его прохождения также мала. Такие условия можно создать, если уравновесить напряжение аккумулятора некоторым внешним напряжением (эта­лоном напряжения) с помощью чувстви­тельного потенциометра. Напряжение, измеренное таким образом, называется напряжением при разомкнутой цепи. Оно близко к обратимой ЭДС. В табл. 27.1 приведены значения этого напряжения, соответствующие плотности электро­лита от 1,100 до 1,300 (отнесены к тем­пературе 15°С) и температуре от 5 до 30 °С.

Как видно из -таблицы, при плотности электролита 1,200, обычной для стацио­нарных аккумуляторов, и температуре 25 °С напряжение аккумулятора при разомкнутой цепи равно 2,046 В. В про­цессе разряда плотность электролита несколько снижается. Соответствующее снижение напряжения при разомкнутой цепи составляет всего несколько сотых долей вольта. Изменение напряжения при разомкнутой цепи, вызванное измене­нием температуры, ничтожно мало и представляет скорее теоретический ин­терес.

Если через аккумулятор проходит некоторый ток в направлении заряда или разряда, напряжение аккумулятора изменяется вследствие внутреннего па­дения напряжения и изменения ЭДС, вызванного побочными химическими и физическими процессами у электродов и в электролите. Изменение ЭДС акку­мулятора, вызванное указанными необ­ратимыми процессами, называется по­ляризацией. Основными причинами поляризации в аккумуляторе являются изменение концентрации электролита в порах активной массы пластин по отно­шению к концентрации его в осталь­ном объеме и вызываемое этим изме­нение концентрации ионов свинца. При разряде кислота расходуется, при заряде образуется. Реакция происходит в порах активной массы пластин, и приток или удаление молекул и ионов кислоты происходит через диффузию. Последняя может иметь место только при наличии некоторой разности концентраций элек­тролита в области электродов и в осталь­ном объеме, которая устанавливается в соответствии с током и температурой, определяющей вязкость электролита. Изменение концентрации электролита в порах активной массы вызывает измене­ние концентрации ионов свинца и ЭДС. При разряде вследствие понижения концентрации электролита в порах ЭДС уменьшается, а при заряде вследствие повышения концентрации электролита ЭДС повышается.

Электродвижущая сила поляризации направлена всегда навстречу току. Она зависит от пористости пластин, тока и

температуры. Сумма обратимой ЭДС и ЭДС поляризации, т. е. Е 0 ± Е п , представ­ляет собой ЭДС аккумулятора под током или динамическую ЭДС. При разряде она меньше обратимой ЭДС, а при заряде — больше. Напряже­ние аккумулятора под током отличается от динамической ЭДС только на значе­ние внутреннего падения напряжения, которое относительно мало. Следова­тельно, напряжение аккумулятора под током также зависит от тока и темпе­ратуры. Влияние последней на напряже­ние аккумулятора при разряде и заряде значительно больше, чем при разомкну­той цепи.

Если разомкнуть цепь аккумулятора при разряде, напряжение его медленно увеличится до напряжения при разомкну­той цепи вследствие продолжающейся диффузии электролита. Если разомкнуть цепь аккумулятора при заряде, напряже­ние его медленно уменьшится до напря­жения при разомкнутой цепи.

Неравенство концентраций электро­лита в области электродов и в остальном объеме отличает работу реального акку­мулятора от идеального. При заряде аккумулятор работает так, как если бы он содержал очень разбавленный элек­тролит, а при заряде — очень концентри­рованный. Разбавленный электролит все время смешивается с более концентри­рованным, при этом некоторое коли­чество энергии выделяется в виде тепла, которое при условии равенства кон­центраций могло бы быть использовано. В результате энергия, отданная акку­мулятором при разряде, меньше энергии, полученной при заряде. Потеря энергии происходит вследствие несовершенства химического процесса. Этот вид потерь является основным в аккумуляторе.

Внутреннее сопротивление аккумуля­ тора. Внутреннее сопротивление сла­гается из сопротивлений каркаса пластин, активной массы, сепараторов и электро­лита. Последнее составляет большую часть внутреннего сопротивления. Со­противление аккумулятора увеличивает­ся при разряде и уменьшается при заряде, что является следствием изменения кон­центрации раствора и содержания суль-

фата в активной массе. Сопротивле­ние аккумулятора невелико и заметно лишь при большом разрядном токе, когда внутреннее падение напряжения достигает одной или двух десятых долей вольта.

Саморазряд аккумулятора. Самораз­рядом называется непрерывная потеря химической энергии, запасенной в акку­муляторе, вследствие побочных реакций на пластинах обеих полярностей, вызван­ных случайными вредными примесями в использованных материалах или при­месями, внесенными в электролит в про­цессе эксплуатации. Наибольшее практи­ческое значение имеет саморазряд, выз­ванный присутствием в электролите различных соединений металлов, более электроположительных, чем свинец, на­пример меди, сурьмы и др. Металлы вы­деляются на отрицательных пластинах и образуют со свинцом пластин мно­жество короткозамкнутых элементов. В результате реакции образуются свин­цовый сульфат и водород, который выде­ляется на металле загрязнения. Самораз­ряд может быть обнаружен по легкому выделению газа у отрицательных пластин.

На положительных пластинах само­разряд происходит также вследствие обычной реакции между свинцом осно­вы, перекисью свинца и электролитом, в результате которой образуется суль­фат свинца.

Саморазряд аккумулятора проис­ходит всегда: как при разомкнутой цепи, так и при разряде и заряде. Он зависит от температуры и плотности электролита (рис. 27.2), причем с повыше­нием температуры и плотности электро­лита саморазряд увеличивается (потеря заряда при температуре 25 °С и плотности электролита 1,28 принята за 100%). По­теря емкости новой батареи вследствие саморазряда составляет около 0,3% в сутки. С возрастом батареи саморазряд увеличивается.

Ненормальная сульфатация пластин. Свинцовый сульфат образуется на пластинах обеих полярностей при каж­дом разряде, что видно из уравнения реакции разряда. Этот сульфат имеет

тонкое кристаллическое строение и за­рядным током легко восстанавливается в металлический свинец и перекись свин­ца на пластинах соответствующей по­лярности. Поэтому сульфатация в этом смысле — нормальное явление, состав­ляющее неотъемлемую часть работы аккумулятора. Ненормальная сульфата­ция возникает, если аккумуляторы под­вергаются чрезмерному разряду, систе­матически недозаряжаются или остают­ся в разряженном состоянии и бездейст­вии в течение длительного времени, а также если они работают с чрезмерно высокой плотностью электролита и при высокой температуре. В этих условиях тонкий кристаллический сульфат стано­вится более плотным, кристаллы растут, сильно расширяя активную массу, и трудно восстанавливаются при заряде вследствие большого сопротивления. Если батарея находится в бездействии, образованию сульфата способствуют колебания температуры. При повышении температура мелкие кристаллы суль­фата растворяются, а при последующем ее понижении сульфат медленно вы­кристаллизовывается и кристаллы рас­тут. В результате колебаний температу­ры крупные кристаллы образуются за счет мелких.

У сульфатированных пластин поры закупорены сульфатом, активный мате­риал выдавливается из решеток и пласти­ны часто коробятся. Поверхность суль­фатированных пластин становится жест­кой, шероховатой, и при растирании

материала пластин между пальцами ощущается как бы песок. Темно-корич-невые положительные пластины стано-вятся светлее, и на поверхности высту-пают белые пятна сульфата. Отрицательные пластины становятся твердыми, желовато-серыми. Емкость сульфатиро-шнного аккумулятора понижается.

Начинающаяся сульфатация может быть устранена длительным зарядом лалым током. При сильной сульфатации необходимы особые меры для приведе-гая пластин в нормальное состояние.

Выражаю искреннюю благодарность Кувалде (Kuvalda.spb.ru Ушкалов Евгений Юрьевич)
за поддержку и побудительство меня: тряхнуть стариной, вспомнить,
что я все-таки физик и химик, и взяться за старое:

Прежде всего, считаю долгом отметить, что (не смотря на мои старания) нижеприведенные соображения основаны на фундаментальных науках, а потому требуют все же некоторых усилий для осмысления. Не желающим прилагать эти усилия, а также тем, кто путает напряжение и емкость, читать не рекомендуется — берегите себя!

Для ясности изложения, и не желая перегружать текст слишком сложными понятиями термодинамики и химической кинетики, далеко выходящими за рамки общих курсов физики и химии технических вузов, я позволю себе некоторые упрощения (во всех случаях корректные), которые (ни в коем случае) не будут противоречить истине — заранее приношу свои извинения перфекционистам. Точные выкладки все желающие могут исполнить самостоятельно — вся необходимая литература имеется в любой научно-технической библиотеке

Путаница

Мои дискуссии на страницах уазовской конфы, ясно продемонстрировали, что не все участники автомобилизации страны ясно представляют себе что же такое аккумуляторная батарея. Чтобы быть понятым верно, постараюсь определить понятия с которыми буду иметь дело.

Батарея (АКБ)

Набор ячеек (банок), соединеных последовательно в количестве шести. В тексте на правах синонимов используются слова «аккумулятор» и АКБ.
Ячейка, она же «банка» — элементарный элемент аккумулятора, состоящий как минимум (реально более 10) из одной пары активных пластин Pb — PbO2, залитых электролитом.

Напряжение

То, что измеряется на клеммах АКБ путем подключения тестера или напряжеметром, который находится на приборной панели. Исключительно внешняя характеристика. Зависит от множества факторов, как внешних по отношению к АКБ, так и внутренних.

В общем то, напряжение это единственная нормально измеряемая величина, ассоциированная с АКБ. Ничего другого нормально померить не удается. Ни емкость. Ни реальный ток. Ни внутреннее сопротивление, ни ЭДС

ЭДС

Сугубо внутренняя характеристика ячейки АКБ, к сожалению самым драматическим образом влияющая на внешние проявления АКБ.

Величина ЭДС определяется равновесным состоянием реакции основных реагентов. В нашем случае это Pb+PbO2+2h3SO4(-)+2H(+) = 2PbSO4+2h3O.

Определить ее формально достаточно сложно — для этого требуется применение сложных термодинамических расчетов термодинамического состояния системы, но в инженерной практике применяется инженерная формула, обеспечивающая инженерную точность для свинцовых аккумуляторов в диапазоне плотностей электолита 1.1-1.3 кг/л E=0.85+P где Р — плотность электолита.

Применяя ее для определения ЭДС при стандартном значении плотности электролита автомобильного аккумулятора 1.27 получаем значение 2.12В на банку или 12.7В на АКБ.
Для перфекционистов. Искать здесь размерность бессмысленно — как в большинстве формул для упрощенных инженерных рассчетов.

В практическом смысле эта формула нам еще пригодится.
С точностью, нас тут интересующей, никакие другие факторы на величину ЭДС не влияют. Зависимость ЭДС от температуры оценивается тысячными вольта на градус, чем очевидно можно пренебречь.
Все легирующие добавки и прочее серебро действительно улучшают эксплуатационные характеристики (повышают стабильность, увеличивают срок службы, снижают внутреннее сопротивление) но не влияют на ЭДС.

К сожалению, в современном аккумуляторе померить ее можно только косвенно и с известными допущениями. Например, допуская, что токи утечки равны нулю (то есть АКБ чистый и сухой снаружи, не имеет трещин и протечек внутри между банками, что в электролите нет солей металлов, а сопротивление измерительного прибора бесконечно).

Для измерений с интересующей нас точностью, достаточно просто отсоединить АКБ от всех потребителей (снять клемму) и воспользоваться цифровым мультиметром (тут надо иметь в виду, что класс точности большинства этих приборов не позволяет определить истинное значение, делая их пригодными лишь для относительных измерений).

Внутреннее сопротивление

Величина играющая ключевую роль в нашем восприятии действительности АКБ.
Именно благодаря ему, точнее его увеличению, происходят все неприятности, связанные с АКБ.

Упрощенно это можно представить как подключенный последовательно с аккумулятором резистор, некоторого сопротивления:

Величина, которую невозможно не пощупать, ни померить. Зависит она от конструктивных особенностей АКБ, емкости, степени его разряженности, наличию сульфатации пластин, внутренних обрывов, концентрации электролита и его количества и, конечно же, температуры. К сожалению, внутреннее сопротивление зависит не только от «механических» параметров, но и от тока, при котором работает АКБ.

Чем АКБ больше, тем внутреннее сопротивление меньше. У новой АКБ 70-100 Ач величина внутреннего сопротивления около 3-7 мОм (при нормальных условиях).

При понижении температуры скорость обмена химических реакций падает, а внутреннее сопротивление, соответственно, возрастает.

У нового аккумулятора внутреннее сопротивление самое маленькое. В основном оно определяется конструкцией токонесущих элементов и их сопротивлением. Но в процессе эксплуатации начинают накапливаться необратимые изменения — уменьшается активная поверхность пластин, появляется сульфатация, изменяются свойства электролита. И сопротивление начинает возрастать.

Ток утечки

Присутствует в аккумуляторе любого типа. Бывает внутренним и внешним .

Внутренний ток утечки невелик и для современной батареи 100Ач составляет около 1 мА (примерно эквивалентно потери 1% емкости в месяц) Его величина определяется чистотой электролита, особенно степенью загрязненности его солями металлов.

Надо заметить, что внешние токи утечки через бортовую сеть автомобиля, существенно выше внутренних исправного АКБ.

Процессы

Нежелающие «вдаваться» могут пропустить этот раздел и перебраться прямо к разделу

Разряд аккумулятора

При разряде аккумулятора генерируется ток за счет осаждения SO4 на пластинах, в связи с чем снижается концентрация электролита и постепенно повышается внутреннее сопротивление.

Характеристики разряда АКБ.
Верхняя кривая соответствует току десятичасового разряда
Нижняя — трехчасового

При полном разряде практически вся активная масса превращается в сернокислый свинец. Именно поэтому долгое пребывание в состоянии разрядки губительно для аккумулятора. Чтобы избежать сульфатации необходимо как можно быстрее провести зарядку батареи.

При этом, чем больше в АКБ электролита (относительно массы свинца) тем меньше снижается ЭДС ячейки. Для разряженного на 50% аккумулятора падение ЭДС составляет около 1%. Кроме того, «запас» электролита у разных производителей разный, поэтому и снижение ЭДС, равно как и плотности электролита будет отличаться.

Из-за незначительного снижения ЭДС практически невозможно определить степень разряженности батареи, просто измеряя напряжение на ней (для этого существуют нагрузочные вилки, задающие значительный ток). Особенно применяя штатный напряжеметр (прибор это не является вольтметром в точном понимании этого слова — скорее индикатором напряжения) автомобиля.

Максимальный ток, который способна обеспечить батарея в основном зависит от активной поверхности пластин, а ее емкость от активной массы свинца. При этом более толстые пластины могут быть даже менее эффективны, поскольку «внутренние слои свинца при этом трудно сделать «активными». Кроме того, требуется дополнительный электролит.
Чем более пористой ухитрился сделать производитель пластину, тем больший ток она способна обеспечить.

Поэтому все батареи, построенные по сходной технологии обеспечивают примерно одинаковые стартовые токи, но более тяжелые могут обеспечить большую емкость при сопоставимых размерах.

Зарядка Батареи

Процесс зарядки батареи состоит в электрохимическом разложении PbSO4 на электродах под воздействием постоянного тока внешнего источника.
Процесс заряда полностью разряженной батареи похож на процесс разряда как бы «перевернутый» вверх ногами.

Первоначально ток заряда ограничен лишь способностью источника генерировать необходимый ток и сопротивлением токонесущих элементов. Теоретически он ограничен только кинематикой процесса растворения (скоростью с которой продукты реакции выводятся из активной зоны). Затем, по мере «растворения» молекул серной кислоты, ток снижается.

Если бы можно было пренебречь побочными процессами, при полной зарядке батареи ток стал бы равен нулю. Аккумулятор перестает «принимать» заряд. К сожалению в реальной батарее всегда есть ток утечки и вода. Для компенсации тока утечки применяется постоянный подзаряд батареи.

Стандартно свинцовую АКБ рекомендуют заряжать используя источник напряжения.
Рекомендуемое напряжении заряда на одну ячейку (по данным VARTA) составляет приблизительно 2.23В или 13.4В на всю батарею. Более высокое напряжение заряда приводит к более быстрому накоплению заряда, но одновременно увеличивает количество разлагаемой воды.

Легенда:
«Перезаряженный» аккумулятор портится и теряет емкость.

Действительно Ni-Cd аккумуляторы портятся (теряют емкость) при длительном перезаряде, чего не происходит со свинцовыми. Свинцовые при заряде большими напряжениями только теряют воду (выкипает именно вода) — в широких пределах процесс полностью обратим простым добавлением воды. При длительным подзаряде «правильным» напряжением (2.23В) потерь воды не происходит.

К счастью для нас, свинцовый аккумулятор не портится в режиме непрерывного подзаряда. Напротив, этот режим всячески поощряется и рекомендуется. Поэтому на автомобиле (и во всех прочих случаях промышленного использования) свинцовые АКБ находятся в режиме постоянной подзарядки при напряжениях в пределе 2.23 — 2.4В на ячейку.

Из рисунка видно, что при увеличении избыточного напряжения на аккумуляторе в два раза, ток подзаряда возрастает в десять раз, что приводит к неоправданному расходу воды и преждевременному выходу АКБ из строя.

Для современного аккумулятора ток оптимальный ток подзаряда около 15 мА (что как раз и соответствует напряжению подзаряда в 2.23В на ячейку). При таком токе вода, разлагающаяся при электролизе, «успевает» рекомбинировать в растворе и не теряется — то есть процесс может продолжаться бесконечно долго (в инженерном смысле).

Практика

Напряжение на АКБ

Многие путают напряжение на батарее с ЭДС аккумулятора. Как уже отмечалось, эти величины взаимосвязаны, но не тождественны. Тут колоссальную роль играет внутреннее сопротивление.

Например при разряде стартерными токами, обозначенными порядка 400 А, внутреннее сопротивление в 4 мОм в соответствии с законом Ома превращается в падение напряжения в 1.6 В, сопротивление поляризации добавляет еще около 0.5В — и это в самом начале разряда. Приведенные данные соответствуют новым АКБ емкостью порядка 100 Ач. Для старых, устаревших батарей или батарей меньшей емкости потери будут больше. Для батареи в 50 Ач того же типа потер приблизительно вдвое больше.

При заряде от генератора (который прикидывается источником напряжения, на самом деле являясь источником тока, придушенным регулятором), напряжение должно соответствовать условиям быстрого подзаряда и определяется реле регулятором.

Поскольку средний пробег автомобиля недостаточен для полной зарядки аккумулятора, применяется компромиссное значение напряжения, несколько превышающее оптимальное значение подзаряда в 2.23В на банку или 13.38 на батарею, но несколько меньшее, чем напряжение быстрой подзарядки в 2.4В (14.4В на батарею). Оптимальным считается значение 13.8-14.2В. При этом потери воды остаются приемлемыми, а аккумулятор получает достаточно полный заряд при среднестатистическом пробеге.

Старение (разряд) АКБ приводит к тому, что напряжение, которое он способен обеспечить под нагрузкой падает за счет больших потерь на внутреннем сопротивлении, при том, что без нагрузки его значение остается практически тождественным новому (полностью заряженному). Поэтому определить состояние АКБ просто вольтметром практически не представляется возможным.

Разные типы батарей могут иметь разные плотности электролита. При этом ЭДС (и соответственно напряжение разомкнутого аккумулятора) может несколько отличаться для разных батарей. При этом разряженная батарея с большей плотностью электролита может выдавать большее значение напряжения, чем полностью заряженная батарея с меньшей плотностью электролита.

Легенда:
Напряжение на АКБ зависит от температуры.

Напряжение отсоединенного аккумулятора практически не зависит от температуры. Зависит внутреннее сопротивление и количество запасенной энергии. Стартер плохо крутит по причине большого падения напряжения на внутреннем сопротивлении, а ограничение времени работы стартера связано с пониженной емкостью аккумулятора из за сниженной активности химических реакций.

Соединение АКБ

Именно эта тема и вынудила меня взяться за этот масштабный труд. Выводы, представленные тут, основаны на аргументации, приведенной выше. Практические выводы аргументации не требуют.

Легенда 1
Автомобильные аккумуляторы соединять параллельно нельзя, поскольку при этом аккумулятор, обладающий большим напряжением будет постоянно дозаряжать аккумулятор с меньшим напряжением. Соответственно один будет постоянно перезаряжен, а другой разряжен.

В этой легенде присутствует несколько фактических и понятийных ошибок.

Ячейка АКБ образуется несколькими парами (или несколькими десятками пар) пластин, срединными параллельно для повышения эффективной поверхности элемента. Так что параллелизм заложен в основе технологии аккумулятора.

Напряжение на аккумуляторе при отсутствии нагрузке условно равно его ЭДС.
Как известно, величина ЭДС практически не зависит ни от каких внешних и внутренних параметров, кроме плотности электролита. Эта величина не зависит ни от емкости АКБ, ни от пористости электрода, ни от легирующих добавок, ни от материала токоведущих частей. Также слабо она зависит от степени разряженности батареи. Поэтому напряжение двух свинцовых автомобильных аккумуляторов, соответствующих нормам будет всегда близким . Технологическая разница, возникающая за счет неточности плотности электролита (1.27-1.29 по ГОСТ, допуски VARTA на порядок меньше) может быть легко определена (см. выше) и составляет 0.02В, то есть 20 мВ.

Если считать, что в момент прекращения заряда (выключения двигателя) оба аккумулятора полностью заряжены, максимально возможная разность потенциалов на их клеммах составит 20 мВ, независимо от их состояния, производителя и проч.

Даже если предположить, что используются АКБ разных классов (например автомобильная и промышленна с плотностью электролита 1.25), то и в этом случае разность потенциалов составить лишь около 40 мВ. Для полностью заряженной батареи это приведет к возникновению тока электролиза порядка 3-5 мА, что примерно соответствует току утечки не очень хорошего аккумулятора.

Разряд такими токами для батареи несущественен, а перезаряд не наступает.

Теперь рассмотрим ситуацию, когда параллельно объединены два аккумулятора существенно разной емкости.

В начале зарядки, когда ток ограничен возможностями генератора, естественно предположить, что он поделится между батареями пропорционально активной площади пластин. То есть степень заряженности аккумуляторов при неполном заряде будет примерно одинаковой (коротком пробеге).. Система будет себя вести как большой аккумулятор, который не успел дозарядиться.

Легенда 2
В импортных автомобилях используют специальные реле для подключения батарей дополнительного оборудования (Auxiliary), чтобы не соединять их параллельно (Легенда 1)

Полная чушь, имея ввиду вышесказанное. Это реле служит для куда более прозаичной цели. При большой нагруженности электросистемы автомобиля дополнительным оборудованием (типа телевизор, музыка большой мощности, холодильник и проч), существует большая вероятность «посадить» аккумулятор. Для того, чтобы после того, как весело провел день на природе под музыку, все таки уехать, стартерную батарею отключают, избегая тем самым ее глубокого разряда.
Есть старый анекдот про наших ментов, которые всласть «настрелявшись» радаром суетились «прикурить»:

Так вот этот эффект куда значительнее, чем «перезарядки».

Практические выводы

Параллельно соединять аккумуляторы возможно, но учитывая следующие рекомендации.

    • Не стоит использовать АКБ разных классов (например автомобильные и промышленные), а так же различных исполнений (например тропического и арктического) поскольку они используют электролит разной плотности.
    • При длительной стоянке стоит отключать АКБ не только от потребителей, но и друг от друга.

Аккумулятор — ЭДС аккумулятора — Электродвижущая сила

Эдс аккумулятора, не включенного на нагрузку, составляет в среднем 2 Вольта. Она не зависит от величины аккумулятора и размера его пластин, а определяется различием активных веществ положительных и отрицательных пластин.
В небольших пределах эдс может изменяться от внешних факторов, из которых практическое значение имеет плотность электролита, т. е. большее или меньшее содержание кислоты в растворе.

Электродвижущая сила разряженного аккумулятора, имеющего электролит высокой плотности, будет больше эдс заряженного аккумулятора с более слабым раствором кислоты. Поэтому о степени заряда аккумулятора с неизвестной начальной плотностью раствора не следует судить на основании показаний прибора при измерении эдс без подключенной нагрузки.
Аккумуляторы имеют внутреннее сопротивление, которое не остается постоянным, а изменяется во время заряда и разряда в зависимости от химического состава активных веществ. Одним самым очевидным фактором сопротивления батареи является электролит. Поскольку сопротивление электролита зависит не только от его концентрации, но и от температуры, то и сопротивление аккумулятора зависит от температуры электролита. С увеличением температуры сопротивление уменьшается.
Наличие сепараторов также повышает внутренней сопротивление элементов.
Другим фактором, увеличивающим сопротивление элементов, является сопротивление активного материала и решеток. Кроме того, на сопротивление аккумуляторной батареи влияет степень заряда. Сульфат свинца, образующийся во время разряда как на положительных, так и на отрицательных пластинах, не проводит электричества, и его присутствие значительно повышает сопротивление прохождению электрического тока. Сульфат закрывает поры пластин, когда последние находятся в заряженном состоянии, и таким образом препятствует свободному доступу электролита к активному материалу. Поэтому, когда элемент заряжен, сопротивление его оказывается меньше, чем в разряженном состоянии.

Аккумуляторная батарея — одно из самых сложных устройств современного автомобиля. В ней непрерывно протекают многие электрохимические и физические процессы, взаимосвязанные и в значительной мере обусловленные влиянием внешних факторов. И как любое сложное устройство, требует соответствующего ухода при соответствующей квалификации.

Автолюбителя, в большинстве своем, интересуют чисто практические вопросы. Такие, как например, почему батарея уже через два сезона не обеспечивает пуск совершенно исправного двигателя? Почему батарея прослужила всего два года, а не 5 или 8 лет, хотя и прошел автомобиль по 3 тысячи км в год из-за отсутствия бензина? Что надо делать для того, чтобы аккумуляторная батарея служила долго и не подводила в самый неподходящий момент? И сколько ей уделять времени, и не следует ли с ней возиться каждый день? И многие другие подобные вопросы.

Для ответов на эти вопросы необходимо пользоваться не только готовыми рекомендациями и инструкциями, но и иметь определенный уровень знаний об аккумуляторных батареях.

Аккумуляторы, как и иные химические источники тока, интенсивно изучаются и совершенствуются, однако зачастую многие публикации недоступны для автолюбителя и понимание ряда вопросов требует специальной профессиональной подготовки. Во многих журнальных статьях, пособиях, рекомендациях, инструкциях и т.п. наряду с безусловно правильной и полезной информацией много субъективизма, а в ряде случаев, к сожалению, просматривается непонимание, незнание и корпоративные интересы авторов (особенно в журнале «За рулем»).

Настоящее пособие преследует очень простую цель — дать автолюбителю начальные знания по уходу за аккумуляторной батареей. Мы старались избежать сложных теоретических выкладок м формул. Тем не менее, полностью исключить теоретические сведения нельзя.

Без понимания основных процессов, протекающих в аккумуляторе в тех или иных условиях, невозможно построить оптимальную тактику ухода за аккумуляторной батареей в реальных условиях эксплуатации

(собственно аккумулятора), избежать досадных ошибок, даже пользуясь огромным количеством правильных рекомендаций.

Мы понимаем, что данное пособие тоже не лишено недостатков, однако постарались в логической последовательности изложить известные факты, различные методики и выполняемые работы по уходу за

аккумулятором. Надеемся, что материал, изложенный в пособии, поможет автолюбителю в уходе за аккумуляторной батареей.

2. ОСНОВНЫЕ ПРОЦЕССЫ В АККУМУЛЯТОРЕ

2.1. Понятия и определения

Аккумулятор является обратимым источником тока. Он способен отдавать в нагрузку во внешней цепи ранее запасенную энергию. На легковые автомобили устанавливаются аккумуляторные батареи, состоящие из шести последовательно включенных аккумуляторов. Они способны обеспечивать большие разрядные токи и относятся к классу стартерных аккумуляторных батарей. Это отражено в маркировке батарей. Например, батарея 6СТ-55 содержит 6 аккумуляторов, стартерная, номинальная энергоемкость составляет 55 ампер-часов.

Приведем некоторые основные понятия и определения, характеризующие аккумуляторную батарею в различных режимах работы.

Электродвижущая сила (ЭДС) — это разность электродных потенциалов при разомкнутой электрической цепи. ЭДС аккумулятора зависит от плотности температуры электролита и состава активной массы пластин. Выражается ЭДС в вольтах и обычно обозначается буквой Е . Измерить ЭДС можно вольтметром с большим внутренним сопротивлением, превышающим 20 кОм.

ЭДС покоя (Е0) — это ЭДС аккумулятора, находящегося длительное время (более 2-3 часов) без нагрузки.

ЭДС аккумулятора под нагрузкой отличается от ЭДС покоя. Это вызвано том, что при прохождении тока в цепи на электродах и в электролите происходят необратимые физические и химические процессы, связанные с потерей энергии. Один из них — это процесс поляризации.

ЭДС поляризации (Еп ) — это ЭДС аккумулятора при наличии поляризации пластин.

Еп всегда направлена навстречу току.

При заряде ЭДС аккумулятора равна сумме ЭДС покоя и ЭДС поляризации:

Е = Е0 + Еп ,

а при заряде

Е = Е0 — Еп .

Величину Е называют динамической ЭДС, или просто ЭДС аккумулятора.

В замкнутой электрической цепи постоянного тока, когда к аккумулятору подключены потребители, связи между ЭДС, проходящим по цепи током и сопротивлением цепи определяется по закону Ома:

Е = I (R + r), (1)

где Е — ЭДС, В;

I — сила тока в цепи, А;

R — активное сопротивление внешней цепи, Ом;

r — полное сопротивление участка электрической цепи внутри самого источника тока, Ом.

Выражение (1) можем переписать в виде:

Е = IR + Ir , (2)

т.е. ЭДС аккумулятора компенсирует падение напряжения на внешней цепи U=IR и падение напряжения внутри самого источника тока на его полном внутреннем сопротивлении Ur=I*r .

Величина U=I*R — это напряжение аккумулятора. Это напряжение на зажимах аккумулятора, которое используется для работы потребителей тока.

Из уравнения (2) видно, что при работе аккумулятора его напряжение U всегда меньше чем ЭДС, так как

U = E — Ur .

По мере износа аккумулятора его внутреннее сопротивление возрастает. Это одна из причин пониженного напряжения на зажимах аккумулятора под нагрузкой. поскольку увеличивается Ur. У разряженного аккумулятора ситуация подобная.

Различают зарядное напряжение, равное

Uэ = E + Iз*r ,

и разрядное напряжение:

Uр — E — Iр*r ,

где — зарядный ток, А;

— разрядный ток, А;

r — внутреннее сопротивление аккумулятора, Ом.

Нормальный зарядный ток — величина зарядного тока (А ).

численно равная 0.1 емкости аккумуляторной батареи, выраженная в ампер-часах.

Внутреннее сопротивление аккумулятора складывается из сопротивления электродов, электролита и сопротивления, обусловленного сепараторами (прокладками между пластинами). Внутреннее сопротивление — величина непостоянная. Оно зависит от конструкции электродов, состояния активной массы, плотности электролита, температуры. В полностью заряженном аккумуляторе внутреннее сопротивление значительно меньше, чем у разряженного. Объясняется это тем, что электропроводность активной массы заряженного аккумулятора выше, чем у разряженного.

Емкость аккумулятора — это количество электричества, которое может запасти или отдать аккумулятор.

Емкость зависит от величины тока разряда. Емкость аккумулятора определяется как величина, равная произведению постоянного тока на время при 20-часовом режиме разряда до напряжения 1.7 В:

Q20 = Ip*tp = Ip*20 (А*ч),

где — величина разрядного тока,

tр — время разряда.

Емкость по току разрядная — номинальная емкость аккумулятора при разряде:

Qp = Ip*tp ,

где Ip — величина разрядного тока, А;

tp — время разряда.

Зарядная емкость аккумулятора — характеризует количество электричества, полученное аккумулятором в процессе заряда:

Qз = Iз * tз ,

где Qз — зарядная емкость, А*ч;

— зарядный ток, А;

— время заряда, ч.

У современных аккумуляторов КПД по емкости равно 0.85.

Емкость по энергии — характеризует способность аккумулятора выполнить электрическую работу за определенное время.

Измеряется в ватт-часах.

Емкость по энергии при разряде:

Ap = Up * Ip * tp ,

Почему ЭДС батареи не зависит от расстояния между двумя электродами?

Я не собираюсь использовать слишком много «Профессиональных терминов» здесь. Я просто дам вам приблизительное представление о том, что происходит.

ЭДС измеряется в вольтах.
Вольт обозначает работу, проделанную, чтобы довести единичный заряд от бесконечности до точки.

Вы можете думать о Вольте как о «кажущейся плотности заряда». Подобные заряды отталкивают друг друга, «кажущаяся плотность заряда» — это сила отталкивания (или притяжения) заряда, ощущаемого по мере приближения к другому заряду.
Чем выше вольт электрода, тем выше «кажущаяся плотность заряда», и вам нужно больше энергии, чтобы подвести заряд к этому электроду (для отражения заряда)

С учетом вышесказанного, EMF — это способность ячейки объединять заряды и заряды вместе, хотя заряды отталкивают друг друга.

Вы должны понимать:
1. Электроды (любой простой кусок проводника) могут хранить заряд, если к нему приложено напряжение. Таким образом, электрод действует как конденсатор.
2. Чем выше приложенное напряжение, тем больше заряда может храниться на электроде.
3. Когда заряды накапливаются на электроде, он вырабатывает противоположное напряжение, чтобы предотвратить попадание дальнейших зарядов в этот электрод. (Подобные заряды отражаются).
4. Если ЭДС ячейки выше, она сможет выдвинуть больше зарядов в электрод.
5. Если электрод больше по объему, он сможет хранить больше зарядов до того, как противоположное напряжение поднимется достаточно высоко, чтобы полностью предотвратить попадание зарядов из ячейки. (Больше зарядов на вольт)

С учетом сказанного, наличие большего электрода не будет уменьшать ЭДС до тех пор, пока накопленные заряды не будут удалены (заряды не текут с одного электрода на другой), потому что элемент будет накачивать заряды в электрод, пока электрод не произведет достаточно сильный заряд. противоположное напряжение, чтобы остановить ячейку.
Таким образом, измерение концов электродов (катода и анода) всегда даст одинаковое количество ЭДС (и это значение ЭДС ячейки) независимо от того, сколько резисторов вы подключаете между вашим измерительным устройством и электродами до тех пор, пока между электродами нет заряда, пока вы измеряете.
Помните, что коммерческие вольтметры фактически пропускают небольшое количество тока в них, поэтому они не могут измерить точную ЭДС элемента. И если сопротивление вашего электрода выше, чем сопротивление вольтметра, вы получите другое значение ЭДС, так как заряды уходят быстрее, чем ячейка может накачать.

Эдс батареи формула

На нашем сайте собрано более бесплатных онлайн калькуляторов по математике, геометрии и физике. Не можете решить контрольную?! Мы поможем! Более 20 авторов выполнят вашу работу от руб! Здесь — ЭДС, — работа сторонних сил, — величина заряда.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам. ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Урок 264. Соединение источников тока в батареи

ЭДС батареи аккумуляторов 12 В. Сила тока короткого замыкания 5 А. Какую наибольшую


Тензор электромагнитного поля Тензор энергии-импульса 4-потенциал 4-ток. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль всего контура [1] [2]. Можно говорить об электродвижущей силе на любом участке цепи. Это удельная работа сторонних сил не во всем контуре, а только на данном участке. ЭДС гальванического элемента есть работа сторонних сил при перемещении единичного положительного заряда внутри элемента от одного полюса к другому.

Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит от формы траектории. Электродвижущая сила источника связана с электрическим током , протекающим в цепи, соотношениями закона Ома. Закон Ома для неоднородного участка цепи имеет вид [1] :.

С учётом этого следует:. Если на участке цепи не действуют сторонние силы однородный участок цепи и, значит, источника тока на нём нет, то, как это следует из закона Ома для неоднородного участка цепи, выполняется:. Таким образом, ЭДС источника тока равна разности потенциалов между его клеммами в состоянии, когда источник отключён от цепи [1]. Причиной возникновения электродвижущей силы в замкнутом контуре может стать изменение потока магнитного поля , пронизывающего поверхность, ограниченную данным контуром.

Это явление называется электромагнитной индукцией. Величина ЭДС индукции в контуре определяется выражением. В свою очередь причиной изменения магнитного потока может быть как изменение магнитного поля, так и движение контура в целом или его отдельных частей. Поэтому для того, чтобы заставить ток течь в противоположном направлении, необходима дополнительная сила неэлектростатической природы центробежная сила , сила Лоренца , силы химической природы, сила со стороны вихревого электрического поля которая бы преодолевала силу со стороны электростатического поля.

Диссипативные силы, хотя и противодействуют электростатическому полю, не могут заставить ток течь в противоположном направлении, поэтому они не входят в состав сторонних сил, работа которых используется в определении ЭДС. Сторонними силами называются силы, вызывающие перемещение электрических зарядов внутри источника постоянного тока против направления действия сил электростатического поля. Например, в гальваническом элементе или аккумуляторе сторонние силы возникают в результате электрохимических процессов, происходящих на границе соприкосновения электрода с электролитом; в электрическом генераторе постоянного тока сторонней силой является сила Лоренца [3].

Материал из Википедии — свободной энциклопедии. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии , проверенной 19 сентября ; проверки требуют 5 правок. У этого термина существуют и другие значения, см. Сила значения. Электрическая цепь. Ковариантная формулировка. Известные учёные. Общий курс физики. В этой статье не хватает ссылок на источники информации.

Информация должна быть проверяема , иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 19 июня года. Категории : Электричество Физические величины. Скрытые категории: Страницы, использующие волшебные ссылки ISBN Незавершённые статьи по физике Википедия:Статьи без изображений объекты менее указанного лимита: 21 Википедия:Статьи без ссылок на источники с июня года Википедия:Статьи без источников тип: скалярная физическая величина.

Пространства имён Статья Обсуждение. Эта страница в последний раз была отредактирована 1 сентября в Текст доступен по лицензии Creative Commons Attribution-ShareAlike ; в отдельных случаях могут действовать дополнительные условия.

Подробнее см. Условия использования. Политика конфиденциальности Описание Википедии Отказ от ответственности Свяжитесь с нами Разработчики Заявление о куки Мобильная версия. Классическая электродинамика. Ковариантная формулировка Тензор электромагнитного поля Тензор энергии-импульса 4-потенциал 4-ток.

Это заготовка статьи по физике. Вы можете помочь проекту, дополнив её.


Формула ЭДС

Тензор электромагнитного поля Тензор энергии-импульса 4-потенциал 4-ток. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль всего контура [1] [2]. Можно говорить об электродвижущей силе на любом участке цепи. Это удельная работа сторонних сил не во всем контуре, а только на данном участке. ЭДС гальванического элемента есть работа сторонних сил при перемещении единичного положительного заряда внутри элемента от одного полюса к другому. Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит от формы траектории. Электродвижущая сила источника связана с электрическим током , протекающим в цепи, соотношениями закона Ома.

Условие задачи: ЭДС батареи аккумуляторов 12 В. Сила тока короткого замыкания которая выделяется на внешней цепи, можно найти по формуле.

ИНФОФИЗ — мой мир…

Для поддержания электрического тока в проводнике длительное время, необходимо чтобы от конца проводника, имеющего меньший потенциал учтем, что носители тока предполагаются положительными зарядами постоянно убирались доставляемые током заряды, при этом к концу с большим потенциалом заряды постоянно подводились. То есть следует обеспечить круговорот зарядов. В этом круговороте заряды должны перемещаться по замкнутому пути. Движение носителей тока при этом реализуется при помощи сил неэлектростатического происхождения. Такие силы именуются сторонними. Получается, что для поддержания тока нужны сторонние силы, которые действуют на всем протяжении цепи или на отдельных участках цепи. Скалярная физическая величина, которая равна работе сторонних сил по перемещению единичного положительного заряда, называется электродвижущей силой ЭДС , действующей в цепи или на участке цепи. ЭДС обозначается. Математически определение ЭДС запишем как:. Электродвижущая сила источника численно равна разности потенциалов на концах элемента, если он разомкнут, что дает возможность измерить ЭДС по напряжению.

ЭДС аккумулятора

Цель: научиться определять электродвижущую силу и внутреннее сопротивление источника электрической энергии. Возникновение разности потенциалов на полюсах любого источника является результатом разделения в нем положительных и отрицательных зарядов. Это разделение происходит благодаря работе, совершаемой сторонними силами. Силы неэлектрического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами.

Закон Ома для замкнутой цепи.

Электродвижущая сила

Электродвижущая сила ЭДС — в устройстве, осуществляющем принудительное разделение положительных и отрицательных зарядов генераторе , величина, численно равная разности потенциалов между зажимами генератора при отсутствии тока в его цепи, измеряется в Вольтах. Источники электромагнитной энергии генераторы — устройства, преобразующие энергию любого неэлектрического вида в электрическую. Такими источниками, например, являю тся :. ЭДС численно равна работе, которую совершают сторонние силы при перемещении единичного положительного заряда внутри источника или сам источник, проводя единичный положительный заряд по замкнутой цепи. Электродвижущая сила ЭДС Е — скалярная величина, характеризующая способность стороннего поля и индуктированного электрического поля вызывать электрический ток. ЭДС Е численно равна работе энергии W в джоулях Дж , затрачиваемой этим полем на перемещение единицы заряда 1 Кл из одной точки поля в другую.

ЭДС. Закон Ома для полной цепи

Электродвижущая сила и напряжение. Электродвижущей силой ЭДС называется разность потенциалов положительного и отрицательного электродов аккумулятора при разомкнутой внешней цепи. Величина ЭДС зависит, главным образом, от электродных потенциалов, т. ЭДС кислотного аккумулятора зависит также от плотности электролита. Измерить ЭДС с абсолютной точностью почти невозможно.

Источники ЭДС можно соединять и параллельно (рис. Каждая из параллельно включенных батарей обеспечивает лишь часть общей силы тока, и потери на ,б} и достигнет максимального значения Сё’ [ формула ().

Работа сторонних сил в цепи постоянного тока и источники ЭДС

Пусть батарею образуют n последовательно соединенных элементов. Батарея замкнута на внешнее сопротивление R рис. Сопротивлением соединительных проводов пренебрегаем.

КПД источника тока

ВИДЕО ПО ТЕМЕ: all-audio.pro определить плотность электролита АКБ математическим способом, по напряжению на клеммах.

В разгар учебного года многим ученым деятелям требуется эдс формула для разных расчетов. Эксперименты, связанные с гальваническим элементом, так же нуждаются в информации об электродвижущей силе. Но для начинающих не так-то просто понять, что же это такое. ЭДС или электродвижущая сила — это параметр характеризующий работу любых сил не электрической природы, работающих в цепях где сила тока как постоянного, так и переменного одинакова по всей длине.

ЭДС аккумулятора Электродвижущая сила это разность электродных потенциалов при отсутствии внешней цепи. Электродный потенциал складывается из равновесного электродного потенциала.

Электродвижущая сила аккумулятора — ЭДС. Эдс батареи

Мой доход Новости Поиск курсов Войти. Вход Регистрация. Забыли пароль? Войти с помощью:. Закон Ома для полной цепи. Электродвижущая сила.

В электрической или электронной схеме есть два типа элементов: пассивные и активные. Активный элемент способен непрерывно подавать энергию в цепь — аккумулятор, генератор. Пассивные элементы — резисторы, конденсаторы, катушки индуктивности, только потребляют энергию.


Электродвижущая сила аккумулятора — ЭДС

электродвижущая, сила, аккумулятора

Аккумулятор — ЭДС аккумулятора — Электродвижущая сила


Эдс аккумулятора, не включенного на нагрузку, составляет в среднем 2 Вольта. Она не зависит от величины аккумулятора и размера его пластин, а определяется различием активных веществ положительных и отрицательных пластин.
В небольших пределах эдс может изменяться от внешних факторов, из которых практическое значение имеет плотность электролита, т. е. большее или меньшее содержание кислоты в растворе.

Электродвижущая сила разряженного аккумулятора, имеющего электролит высокой плотности, будет больше эдс заряженного аккумулятора с более слабым раствором кислоты. Поэтому о степени заряда аккумулятора с неизвестной начальной плотностью раствора не следует судить на основании показаний прибора при измерении эдс без подключенной нагрузки.
Аккумуляторы имеют внутреннее сопротивление, которое не остается постоянным, а изменяется во время заряда и разряда в зависимости от химического состава активных веществ. Одним самым очевидным фактором сопротивления батареи является электролит. Поскольку сопротивление электролита зависит не только от его концентрации, но и от температуры, то и сопротивление аккумулятора зависит от температуры электролита. С увеличением температуры сопротивление уменьшается.
Наличие сепараторов также повышает внутренней сопротивление элементов.
Другим фактором, увеличивающим сопротивление элементов, является сопротивление активного материала и решеток. Кроме того, на сопротивление аккумуляторной батареи влияет степень заряда. Сульфат свинца, образующийся во время разряда как на положительных, так и на отрицательных пластинах, не проводит электричества, и его присутствие значительно повышает сопротивление прохождению электрического тока. Сульфат закрывает поры пластин, когда последние находятся в заряженном состоянии, и таким образом препятствует свободному доступу электролита к активному материалу. Поэтому, когда элемент заряжен, сопротивление его оказывается меньше, чем в разряженном состоянии.

Физика — Электродвижущая сила — Университет Бирмингема

Электродвижущая сила (ЭДС) равна разности потенциалов на клеммах при отсутствии тока. ЭДС и разность потенциалов на клеммах ( В ) измеряются в вольтах, однако это не одно и то же. ЭДС ( ϵ ) — это количество энергии ( E ), обеспечиваемое батареей на каждый кулон проходящего заряда ( Q ).

Как рассчитать ЭДС?

ЭДС можно записать через внутреннее сопротивление батареи ( r ), где: ϵ  = I(r+R )

Что, исходя из закона Ома, мы можем преобразовать в термины конечного сопротивления:  ϵ  = В+Ir

ЭДС элемента можно определить путем измерения напряжения на элементе с помощью вольтметра и силы тока в цепи с помощью амперметра для различных сопротивлений.Затем мы можем настроить схему для определения ЭДС, как показано ниже.

 ЭДС и внутреннее сопротивление электрических элементов и аккумуляторов

 

Исследование ЭМП

 Как закон Фарадея связан с ЭДС?

Закон Фарадея гласит, что любое изменение магнитного поля катушки индуцирует ЭДС в катушке (и, следовательно, также ток). Она пропорциональна минус скорости изменения магнитного потока ( ϕ ) (обратите внимание, что N — число витков в катушке).

Используя закон Фарадея, общество извлекло выгоду из важных технологий, таких как трансформаторы, которые используются для передачи электроэнергии в национальной сети Великобритании, что в настоящее время является необходимостью в наших домах. Также он используется в электрогенераторах и двигателях, таких как плотины гидроэлектростанций, которые производят электричество, которое сейчас является неотъемлемой частью наших современных технологических потребностей. Текущий исследовательский проект MAG-DRIVE в Бирмингеме ищет способы разработки и улучшения материалов с постоянными магнитами, которые можно использовать в электромобилях следующего поколения.ЭМП также генерируется солнечными батареями, поэтому это важно для исследований в области возобновляемых источников энергии.

 

Лабораторные признания

В подкасте Labor Confessions исследователи рассказывают о своем лабораторном опыте в контексте практических оценок уровня A. Эпизоды, которые охватывают правильное использование цифровых инструментов (простое гармоническое движение), правильное построение принципиальных схем (удельное сопротивление в проводе) и использование источников питания постоянного тока (конденсаторов), имеют отношение к эксперименту с ЭДС, ниже вы можете услышать удельное сопротивление. в проводном подкасте.

Как мы интерпретируем наши данные?

По мере увеличения сопротивления переменного резистора величина тока будет уменьшаться. График зависимости напряжения от тока должен давать линейную зависимость, где градиент линии дает отрицательное внутреннее сопротивление ячейки ( -r ), а точка пересечения дает ЭДС (напряжение, при котором ток равен 0).

Получение нескольких показаний при разных значениях сопротивления даст больше точек на графике V-I, что сделает подгонку более надежной.Также рекомендуется проводить повторные измерения, так как ячейка будет постепенно разряжаться, что повлияет на показания. Чтобы предотвратить разрядку ячейки/батареи, ее следует отсоединять между измерениями. В качестве альтернативы в цепь может быть включен переключатель. Также не рекомендуется использовать перезаряжаемые батареи, так как они обычно имеют низкое внутреннее сопротивление.

Хотя этот эксперимент довольно прост, он поможет вам отличить терминальную разницу от ЭДС, что может быть трудным для понимания учащимися.Поскольку люди все больше зависят от электричества, исследования, связанные с ЭМП, важны для развития и технического прогресса в области электричества.

Следующие шаги

 

Эти ссылки предоставляются для удобства и только в информационных целях; они не являются подтверждением или одобрением Бирмингемским университетом какой-либо информации, содержащейся на внешнем веб-сайте. Университет Бирмингема не несет ответственности за точность, законность или содержание внешнего сайта или последующих ссылок.Пожалуйста, свяжитесь с внешним сайтом для получения ответов на вопросы, касающиеся его содержания.

ЭДС и внутреннее сопротивление

ЭДС и внутреннее сопротивление
Далее: Резисторы последовательно и Вверх: Электрический ток Предыдущий: Сопротивление и удельное сопротивление Теперь настоящие батареи строятся из материалов с ненулевым сопротивлением. Отсюда следует, что настоящие батареи — это не просто источники чистого напряжения. Они также обладают внутренние сопротивления .Кстати, чистое напряжение Источник обычно называют ЭДС (что означает электродвижущая сила ). Конечно, ЭДС измеряется в единицах вольт. Батарея может быть смоделирована как ЭДС, соединенная последовательно с резистором. , что представляет собой его внутреннее сопротивление. Предположим, что такие батарея используется для подачи тока через внешний нагрузочный резистор, как показано на рис. 17. Обратите внимание, что на принципиальных схемах ЭДС изображается в виде двух близко расположенных параллельных линии неравной длины.Электрический потенциал более длинной линии больше, чем что у более короткого на вольт. Резистор представлен как зигзагообразная линия.
Рисунок 17: Батарея ЭДС и внутреннего сопротивления подключена к нагрузочному резистору сопротивления .

Рассмотрим батарею на рисунке. Напряжение батареи определяется как разность электрических потенциалов между его положительным и отрицательные клеммы: i.е. , точки и , соответственно. По мере перехода от к , электрический потенциал увеличивается на вольт, когда мы пересекаем ЭДС, но затем уменьшается на вольт, когда мы пересекаем внутренний резистор. Падение напряжения на резисторе следует из закона Ома, из которого следует, что падение напряжения на резисторе, по которому течет ток , находится в том направлении, в котором текущие потоки. Таким образом, напряжение батареи связано с ее ЭДС и внутреннее сопротивление через

(133)

Теперь мы обычно думаем об ЭДС батареи как о постоянной величине (поскольку она зависит только от химической реакции, протекающей внутри батареи, которая преобразует химическую энергию в электрическую), поэтому мы должны заключить, что напряжение батарея на самом деле уменьшается на по мере увеличения потребляемого от нее тока.На самом деле напряжение равно только ЭДС при токе пренебрежимо мала. Текущий розыгрыш от батареи обычно не может превышать критического значения
(134)

поскольку поскольку напряжение становится отрицательным (что может произойти только если нагрузочный резистор тоже отрицательный: это практически невозможно). Отсюда следует, что если мы замкнем накоротко батарею, подключив ее положительные и отрицательные клеммы вместе, используя проводник с незначительным сопротивлением, ток, потребляемый от батареи, ограничен ее внутренним сопротивлением.Фактически в этом случае ток равен максимально возможному ток .

Настоящая батарея обычно характеризуется его ЭДС ( т.е. , его напряжение при нулевом токе) и максимальный ток, который он может обеспечить. Например, стандартный сухой элемент ( т.е. , своего рода батарея, используемая для питания калькуляторов и фонариков) обычно оценивается в и скажи) . Так что ничего катастрофического не предвидится. произойдет, если мы замкнем накоротко сухой элемент.Мы разрядим аккумулятор в сравнительно короткий промежуток времени, но опасный большой ток не собирается поток. С другой стороны, автомобильный аккумулятор обычно рассчитан на и что-то вроде (это вид тока, необходимый для включить стартер). Понятно, что автомобильный аккумулятор должен иметь большую внутреннее сопротивление ниже, чем у сухого элемента. Отсюда следует, что если мы были достаточно глупы, чтобы закоротить автомобильный аккумулятор, результат был бы довольно катастрофические (представьте себе всю энергию, необходимую для проворачивания двигателя автомобиль собирается в тонкий провод, соединяющий клеммы аккумулятора между собой).



Далее: Резисторы последовательно и Вверх: Электрический ток Предыдущий: Сопротивление и удельное сопротивление
Ричард Фицпатрик 2007-07-14

6.1 Электродвижущая сила – введение в электричество, магнетизм и электрические цепи

ЦЕЛИ ОБУЧЕНИЯ

К концу раздела вы сможете:
  • Описать электродвижущую силу (ЭДС) и внутреннее сопротивление батареи
  • Объясните принцип работы батареи

Если вы забудете выключить автомобильные фары, они будут постепенно тускнеть по мере разрядки аккумулятора.Почему они не мигают внезапно, когда энергия батареи заканчивается? Их постепенное затемнение означает, что выходное напряжение батареи уменьшается по мере разрядки батареи. Причина снижения выходного напряжения у разряженных аккумуляторов заключается в том, что все источники напряжения имеют две основные части — источник электрической энергии и внутреннее сопротивление. В этом разделе мы исследуем источник энергии и внутреннее сопротивление.

Введение в электродвижущую силу

Напряжение имеет множество источников, некоторые из которых показаны на Рис. 6.1.1. Все такие устройства создают разность потенциалов и могут подавать ток, если они подключены к цепи. Особый тип разности потенциалов известен как электродвижущая сила (ЭДС). ЭДС вообще не является силой, но термин «электродвижущая сила» используется по историческим причинам. Он был придуман Алессандро Вольта в 1800-х годах, когда он изобрел первую батарею, также известную как гальваническая батарея . Поскольку электродвижущая сила не является силой, эти источники принято называть просто источниками ЭДС (произносится буквами «э-э-э-э»), а не источниками электродвижущей силы.

(рис. 6.1.1)  

Рисунок 6.1.1  Различные источники напряжения. а) ветряная электростанция Бразос в Флуванне, штат Техас; (б) Красноярская ГЭС в России; в) солнечная ферма; (d) группа никель-металлогидридных аккумуляторов. Выходное напряжение каждого устройства зависит от его конструкции и нагрузки. Выходное напряжение равно ЭДС только при отсутствии нагрузки. (кредит a: модификация работы «Leaflet»/Wikimedia Commons; кредит b: модификация работы Алекса Полежаева; кредит c: модификация работы Министерства энергетики США; кредит d: модификация работы Тиаа Монто)

Если электродвижущая сила вовсе не сила, то что такое ЭДС и что является источником ЭДС? Чтобы ответить на эти вопросы, рассмотрим простую схему лампы, подключенной к батарее, как показано на Рисунке 6.1.2. Аккумулятор можно смоделировать как устройство с двумя клеммами, в котором одна клемма имеет более высокий электрический потенциал, чем вторая клемма. Более высокий электрический потенциал иногда называют положительной клеммой и обозначают знаком плюс. Клемму с более низким потенциалом иногда называют отрицательной клеммой и обозначают знаком минус. Это источник ЭДС.

(рис. 6.1.2)  

Рисунок 6.1.2  Источник ЭДС поддерживает на одной клемме более высокий электрический потенциал, чем на другой клемме, действуя как источник тока в цепи.

Когда источник ЭДС не подключен к лампе, в источнике ЭДС нет чистого потока заряда. Как только батарея подключена к лампе, заряды текут от одной клеммы батареи, через лампу (заставляя лампу загораться) и обратно к другой клемме батареи. Если мы рассмотрим положительный (обычный) ток, положительные заряды покидают положительную клемму, проходят через лампу и входят в отрицательную клемму.

Положительный ток полезен для большинства анализов цепей в этой главе, но в металлических проводах и резисторах наибольший вклад в ток вносят электроны, протекающие в направлении, противоположном положительному току.Поэтому более реалистично рассмотреть движение электронов для анализа схемы на рисунке 6.1.2. Электроны покидают отрицательную клемму, проходят через лампу и возвращаются к положительной клемме. Чтобы источник ЭДС поддерживал разность потенциалов между двумя выводами, отрицательные заряды (электроны) должны перемещаться от положительного вывода к отрицательному. Источник ЭДС действует как зарядовый насос, перемещая отрицательные заряды от положительного вывода к отрицательному для поддержания разности потенциалов.Это увеличивает потенциальную энергию зарядов и, следовательно, электрический потенциал зарядов.

Сила электрического поля, действующая на отрицательный заряд, действует в направлении, противоположном электрическому полю, как показано на Рисунке 6.1.2. Чтобы отрицательные заряды переместились на отрицательный полюс, над отрицательными зарядами должна быть совершена работа. Для этого требуется энергия, которая возникает в результате химических реакций в аккумуляторе. Потенциал поддерживается высоким на положительной клемме и низким на отрицательной клемме, чтобы поддерживать разность потенциалов между двумя клеммами.ЭДС равна работе, совершаемой над зарядом на единицу заряда () при отсутствии тока. Поскольку единицей работы является джоуль, а единицей заряда — кулон, единицей ЭДС является вольт ().

Напряжение на клеммах  аккумулятора – это напряжение, измеренное на клеммах батареи, когда к клемме не подключена нагрузка. Идеальная батарея представляет собой источник ЭДС, который поддерживает постоянное напряжение на клеммах, независимо от тока между двумя клеммами.Идеальная батарея не имеет внутреннего сопротивления, а напряжение на клеммах равно ЭДС батареи. В следующем разделе мы покажем, что реальная батарея имеет внутреннее сопротивление и напряжение на клеммах всегда меньше, чем ЭДС батареи.

Происхождение потенциала батареи

Комбинация химических веществ и состав клемм в батарее определяют ее ЭДС. Свинцово-кислотный аккумулятор , используемый в автомобилях и других транспортных средствах, представляет собой одну из наиболее распространенных комбинаций химических веществ.На рис. 6.1.3 показана одна ячейка (одна из шести) этой батареи. Катодная (положительная) клемма элемента соединена с пластиной из оксида свинца, тогда как анодная (отрицательная) клемма подключена к свинцовой пластине. Обе пластины погружены в серную кислоту, электролит для системы.

(рис. 6.1.3)  

Рисунок 6.1.3  Химические реакции в свинцово-кислотном элементе разделяют заряд, направляя отрицательный заряд на анод, который соединен со свинцовыми пластинами. Пластины оксида свинца соединены с положительным или катодным выводом элемента.Серная кислота проводит заряд, а также участвует в химической реакции.

Знание того, как взаимодействуют химические вещества в свинцово-кислотном аккумуляторе, помогает понять потенциал, создаваемый аккумулятором. На рис. 6.1.4 показан результат одной химической реакции. Два электрона размещены на аноде , что делает его отрицательным, при условии, что катод поставляет два электрона. Это оставляет катод положительно заряженным, потому что он потерял два электрона.Короче говоря, разделение заряда было вызвано химической реакцией.

Обратите внимание, что реакция не происходит, если нет полной цепи, позволяющей подать два электрона к катоду. Во многих случаях эти электроны исходят от анода, проходят через сопротивление и возвращаются к катоду. Заметим также, что, поскольку в химических реакциях участвуют вещества, обладающие сопротивлением, невозможно создать ЭДС без внутреннего сопротивления.

(Рисунок 6.1.4)  

Рисунок 6.1.4  В свинцово-кислотном аккумуляторе два электрона направляются на анод элемента, а два электрона удаляются с катода элемента. Химическая реакция в свинцово-кислотном аккумуляторе помещает два электрона на анод и удаляет два электрона с катода. Для продолжения требуется замкнутая цепь, поскольку два электрона должны быть подведены к катоду.

Внутреннее сопротивление и напряжение на клеммах

Величина сопротивления протеканию тока внутри источника напряжения называется внутренним сопротивлением .Внутреннее сопротивление батареи может вести себя сложным образом. Обычно он увеличивается по мере разрядки аккумулятора из-за окисления пластин или снижения кислотности электролита. Однако внутреннее сопротивление может также зависеть от величины и направления тока через источник напряжения, его температуры и даже его истории. Внутреннее сопротивление перезаряжаемых никель-кадмиевых элементов, например, зависит от того, сколько раз и насколько глубоко они разряжались. Простая модель батареи состоит из идеализированного источника ЭДС и внутреннего сопротивления (рис. 6.1.5).

(рис. 6.1.5)  

Рисунок 6.1.5  Батарея может быть смоделирована как идеализированная ЭДС () с внутренним сопротивлением (). Напряжение на клеммах аккумулятора равно .

Предположим, внешний резистор, известный как сопротивление нагрузки, подключен к источнику напряжения, например к батарее, как показано на рис. 6.1.6. На рисунке показана модель батареи с ЭДС, внутренним сопротивлением и нагрузочным резистором, подключенным к ее клеммам. Используя обычный ток, положительные заряды покидают положительную клемму батареи, проходят через резистор и возвращаются к отрицательной клемме батареи.Напряжение на клеммах батареи зависит от ЭДС, внутреннего сопротивления и тока и равно

.

(6.1.1)  

При заданных ЭДС и внутреннем сопротивлении напряжение на клеммах уменьшается по мере увеличения тока из-за падения потенциала внутреннего сопротивления.

(рис. 6.1.6)  

Рисунок 6.1.6  Схема источника напряжения и его нагрузочного резистора. Поскольку внутреннее сопротивление включено последовательно с нагрузкой, оно может существенно повлиять на напряжение на клеммах и ток, подаваемый на нагрузку.

График разности потенциалов на каждом элементе цепи показан на рисунке 6.1.7. По цепи протекает ток, и падение потенциала на внутреннем резисторе равно . Напряжение на клеммах равно , что равно падению потенциала на нагрузочном резисторе . Как и в случае с потенциальной энергией, важно изменение напряжения. Когда используется термин «напряжение», мы предполагаем, что на самом деле это изменение потенциала, или . Однако  часто опускается для удобства.

(рис. 6.1.7)  

Ток через нагрузочный резистор . Из этого выражения мы видим, что чем меньше внутреннее сопротивление, тем больший ток дает источник напряжения на свою нагрузку. По мере разрядки батарей значение  увеличивается. Если  составляет значительную долю сопротивления нагрузки, то ток значительно снижается, как показано в следующем примере.

ПРИМЕР 6.1.1


Анализ цепи с аккумулятором и нагрузкой

Данная батарея имеет ЭДС и внутреннее сопротивление .(a) Рассчитайте напряжение на его клеммах при подключении к нагрузке. (b) Каково напряжение на клеммах при подключении к нагрузке? в) Какую мощность рассеивает нагрузка? (d) Если внутреннее сопротивление возрастает до , найдите ток, напряжение на клеммах и мощность, рассеиваемую нагрузкой.

Стратегия

Приведенный выше анализ дал выражение для тока с учетом внутреннего сопротивления. Как только ток найден, напряжение на клеммах можно рассчитать по уравнению. Как только ток найден, мы также можем найти мощность, рассеиваемую резистором.

Решение

а. Ввод заданных значений ЭДС, сопротивления нагрузки и внутреннего сопротивления в приведенное выше выражение дает

   

Введите известные значения в уравнение, чтобы получить напряжение на клеммах:

   

Напряжение на клеммах здесь лишь немного ниже ЭДС, что означает, что ток, потребляемый этой легкой нагрузкой, незначителен.

б. Точно так же с текущий

   

Напряжение на клеммах теперь равно

.

   

Напряжение на клеммах демонстрирует более значительное снижение по сравнению с ЭДС, что означает большую нагрузку для этой батареи.«Большая нагрузка» означает большее потребление тока от источника, но не большее сопротивление.

в. Мощность, рассеиваемую нагрузкой, можно найти по формуле. Ввод известных значений дает

   

Обратите внимание, что эту мощность можно также получить с помощью выражения или , где напряжение на клеммах (в данном случае).

д. Здесь внутреннее сопротивление увеличилось, возможно, из-за разрядки батареи, до точки, где оно равно сопротивлению нагрузки.Как и раньше, мы сначала находим ток, вводя известные значения в выражение, что дает

   

Теперь напряжение на клеммах равно

.

   

, а мощность, рассеиваемая нагрузкой, равна

.

   

Мы видим, что повышенное внутреннее сопротивление значительно уменьшило напряжение на клеммах, ток и мощность, подаваемую на нагрузку.

Значение

Внутреннее сопротивление батареи может увеличиться по многим причинам.Например, внутреннее сопротивление перезаряжаемой батареи увеличивается по мере увеличения количества перезарядок батареи. Повышенное внутреннее сопротивление может иметь два последствия для батареи. Во-первых, напряжение на клеммах уменьшится. Во-вторых, батарея может перегреться из-за увеличения мощности, рассеиваемой внутренним сопротивлением.

ПРОВЕРЬТЕ ВАШЕ ПОНИМАНИЕ 6.1

Если вы подсоедините провод непосредственно к двум клеммам батареи, эффективно закоротив клеммы, батарея начнет нагреваться.Как вы думаете, почему это происходит?

Тестеры аккумуляторов

Тестер аккумуляторов , например те, что показаны на рис. 6.1.8, используют небольшие нагрузочные резисторы для преднамеренного отбора тока, чтобы определить, падает ли потенциал на клеммах ниже допустимого уровня. Хотя измерить внутреннее сопротивление батареи сложно, тестеры батарей могут обеспечить измерение внутреннего сопротивления батареи. Если внутреннее сопротивление высокое, батарея слабая, о чем свидетельствует низкое напряжение на клеммах.

(рис. 6.1.8)  

Рисунок 6.1.8  Тестер батареи измеряет напряжение на клеммах под нагрузкой, чтобы определить состояние батареи. (a) Специалист по электронике ВМС США использует тестер батарей для проверки больших батарей на борту авианосца USS Nimitz . Тестер батареи, который она использует, имеет небольшое сопротивление, которое может рассеивать большое количество энергии. (b) Показанное небольшое устройство используется на небольших батареях и имеет цифровой дисплей для индикации допустимого напряжения на клеммах.(кредит a: модификация работы Джейсона А. Джонстона; кредит b: модификация работы Кейта Уильямсона)

Некоторые аккумуляторы можно заряжать, пропуская через них ток в направлении, противоположном току, который они подают в электроприбор. Это обычно делается в автомобилях и в батареях для небольших электроприборов и электронных устройств (рис. 6.1.9). Выходное напряжение зарядного устройства должно быть больше, чем ЭДС аккумулятора, чтобы ток через него изменил направление. Это приводит к тому, что напряжение на клеммах батареи больше, чем ЭДС, поскольку  и  отрицательны.

(рис. 6.1.9)  

Рисунок 6.1.9 Зарядное устройство автомобильного аккумулятора меняет нормальное направление тока через аккумулятор, обращая его химическую реакцию и пополняя его химический потенциал.

Важно понимать последствия внутреннего сопротивления источников ЭДС, таких как батареи и солнечные элементы, но часто анализ цепей выполняется с напряжением на клеммах батареи, как мы делали в предыдущих разделах. Напряжение на клеммах обозначается просто как , без нижнего индекса «клемма».Это связано с тем, что внутреннее сопротивление батареи трудно измерить напрямую, и оно может меняться со временем.

Цитаты Кандела

Контент под лицензией CC, конкретное указание авторства

  • Загрузите бесплатно по адресу http://cnx.org/contents/[email protected] Получено с : http://cnx.org/contents/[email protected] Лицензия : CC BY: Attribution

Как рассчитать ЭДС | Наука

Обновлено 2 ноября 2020 г.

Автор Lee Johnson

Электродвижущая сила (ЭДС) — незнакомое большинству людей понятие, но оно тесно связано с более знакомым понятием напряжения.Понимание разницы между ними и того, что означает ЭДС, дает вам инструменты, необходимые для решения многих задач в физике и электронике, и вводит понятие внутреннего сопротивления батареи. ЭДС говорит вам о напряжении батареи без уменьшения внутреннего сопротивления, как это происходит при обычном измерении разности потенциалов. Вы можете рассчитать его несколькими способами, в зависимости от того, какая информация у вас есть.

TL;DR (слишком длинный; не читал)

Рассчитайте ЭДС по формуле:

ε = V + Ir

ток в цепи и (r) означает внутреннее сопротивление элемента.

Что такое ЭДС?

Электродвижущая сила представляет собой разность потенциалов (т. е. напряжение) на клеммах батареи при отсутствии тока. Может показаться, что это не имеет значения, но каждая батарея имеет «внутреннее сопротивление». Это похоже на обычное сопротивление, уменьшающее ток в цепи, но оно существует внутри самой батареи. Это связано с тем, что материалы, используемые для изготовления элементов батареи, имеют собственное сопротивление (поскольку практически все материалы имеют его).

Когда через ячейку не протекает ток, это внутреннее сопротивление ничего не меняет, потому что нет тока, который мог бы его замедлить. В некотором смысле, ЭДС можно рассматривать как максимальную разность потенциалов на клеммах в идеализированной ситуации, и на практике она всегда больше, чем напряжение батареи.

Уравнения для расчета ЭДС

Существуют два основных уравнения для расчета ЭДС. Наиболее фундаментальным определением является количество джоулей энергии (E), которое получает каждый кулон заряда (Q) при прохождении через ячейку:

Где (ε) — символ электродвижущей силы, (E) — энергия в цепь и (Q) заряд цепи.Если вы знаете результирующую энергию и количество заряда, прошедшего через ячейку, это самый простой способ рассчитать ЭДС, но в большинстве случаев у вас не будет этой информации.

Вместо этого вы можете использовать определение, больше похожее на закон Ома (V = IR). Это можно выразить следующим образом:

\epsilon = I(R+r)

Где (I) означает ток, (R) — сопротивление рассматриваемой цепи, а (r) — внутреннее сопротивление ячейки. Расширение показывает тесную связь с законом Ома:

\epsilon =IR+Ir=V+Ir

Это показывает, что вы можете рассчитать ЭДС, если знаете напряжение на клеммах (напряжение, используемое в реальных ситуациях). , текущий ток и внутреннее сопротивление элемента.

Как рассчитать ЭДС: пример

В качестве примера представьте, что у вас есть цепь с разностью потенциалов 3,2 В, с текущим током 0,6 А и внутренним сопротивлением батареи 0,5 Ом. Используя приведенную выше формулу:

\epsilon =V+Ir = 3,2\text{V}+(0,6\text{A})(0,5\text{ }\Omega)=3,5\text{V}

Итак, ЭДС этой цепи составляет 3,5 В.

10.2: Электродвижущая сила — Физика LibreTexts

Цели обучения

По окончании раздела вы сможете:

  • Описать электродвижущую силу (ЭДС) и внутреннее сопротивление батареи
  • Объясните принцип работы батареи

Если вы забудете выключить автомобильные фары, они будут постепенно тускнеть по мере разрядки аккумулятора.Почему они не мигают внезапно, когда энергия батареи заканчивается? Их постепенное затемнение означает, что выходное напряжение батареи уменьшается по мере разрядки батареи. Причина снижения выходного напряжения у разряженных аккумуляторов заключается в том, что все источники напряжения имеют две основные части — источник электрической энергии и внутреннее сопротивление. В этом разделе мы исследуем источник энергии и внутреннее сопротивление.

Введение в электродвижущую силу

Напряжение имеет множество источников, некоторые из которых показаны на рисунке \(\PageIndex{2}\).Все такие устройства создают разность потенциалов и могут подавать ток, если подключены к цепи. Особый тип разности потенциалов известен как электродвижущая сила (ЭДС) . ЭДС вообще не является силой, но термин «электродвижущая сила» используется по историческим причинам. Он был придуман Алессандро Вольта в 1800-х годах, когда он изобрел первую батарею, также известную как гальваническая батарея . Поскольку электродвижущая сила не является силой, эти источники принято называть просто источниками ЭДС (произносится буквами «э-э-э-э»), а не источниками электродвижущей силы.

Рисунок \(\PageIndex{1}\): Различные источники напряжения. а) ветряная электростанция Бразос в Флуванне, штат Техас; (б) Красноярская ГЭС в России; в) солнечная ферма; (d) группа никель-металлогидридных аккумуляторов. Выходное напряжение каждого устройства зависит от его конструкции и нагрузки. Выходное напряжение равно ЭДС только при отсутствии нагрузки. (кредит a: модификация работы «Leaflet»/Wikimedia Commons; кредит b: модификация работы Алекса Полежаева; кредит c: модификация работы Министерства энергетики США; кредит d: модификация работы Тиаа Монто)

Если электродвижущая сила вообще не сила, то что такое ЭДС и что такое источник ЭДС? Чтобы ответить на эти вопросы, рассмотрим простую схему 12-вольтовой лампы, подключенной к 12-вольтовой батарее, как показано на рисунке \(\PageIndex{2}\).Батарея может быть смоделирована как устройство с двумя выводами, в котором один вывод имеет более высокий электрический потенциал, чем второй вывод. Более высокий электрический потенциал иногда называют положительной клеммой и обозначают знаком плюс. Клемму с более низким потенциалом иногда называют отрицательной клеммой и обозначают знаком минус. Это источник ЭДС.

Рисунок \(\PageIndex{2}\): Источник ЭДС поддерживает на одной клемме более высокий электрический потенциал, чем на другой клемме, действуя как источник тока в цепи.

Когда источник ЭДС не подключен к лампе, в источнике ЭДС нет чистого потока заряда. Как только батарея подключена к лампе, заряды текут от одной клеммы батареи, через лампу (заставляя лампу загораться) и обратно к другой клемме батареи. Если мы рассмотрим положительный (обычный) ток, положительные заряды покидают положительную клемму, проходят через лампу и входят в отрицательную клемму.

Положительный ток полезен для большинства анализов цепей в этой главе, но в металлических проводах и резисторах наибольший вклад в ток вносят электроны, протекающие в направлении, противоположном положительному току.Поэтому более реалистично рассматривать движение электронов для анализа схемы на рисунке \(\PageIndex{2}\). Электроны покидают отрицательную клемму, проходят через лампу и возвращаются к положительной клемме. Чтобы источник ЭДС поддерживал разность потенциалов между двумя выводами, отрицательные заряды (электроны) должны перемещаться от положительного вывода к отрицательному. Источник ЭДС действует как зарядовый насос, перемещая отрицательные заряды от положительного вывода к отрицательному для поддержания разности потенциалов.Это увеличивает потенциальную энергию зарядов и, следовательно, электрический потенциал зарядов.

Сила электрического поля, действующая на отрицательный заряд, действует в направлении, противоположном электрическому полю, как показано на рисунке \(\PageIndex{2}\). Чтобы отрицательные заряды переместились на отрицательный полюс, над отрицательными зарядами должна быть совершена работа. Для этого требуется энергия, которая возникает в результате химических реакций в аккумуляторе. Потенциал поддерживается высоким на положительной клемме и низким на отрицательной клемме, чтобы поддерживать разность потенциалов между двумя клеммами.ЭДС равна работе, совершаемой над зарядом на единицу заряда \(\left(\epsilon = \frac{dW}{dq}\right)\) при отсутствии тока. Поскольку единицей работы является джоуль, а единицей заряда — кулон, единицей ЭДС является вольт \((1 \, V = 1 \, J/C)\).

Напряжение на клеммах \(V_{terminal}\) батареи — это напряжение, измеренное на клеммах батареи, когда к клемме не подключена нагрузка. Идеальная батарея представляет собой источник ЭДС, который поддерживает постоянное напряжение на клеммах, независимо от тока между двумя клеммами.Идеальная батарея не имеет внутреннего сопротивления, а напряжение на клеммах равно ЭДС батареи. В следующем разделе мы покажем, что реальная батарея имеет внутреннее сопротивление и напряжение на клеммах всегда меньше, чем ЭДС батареи.

Происхождение потенциала батареи

Комбинация химических веществ и состав клемм в батарее определяют ее ЭДС. Свинцово-кислотный аккумулятор , используемый в автомобилях и других транспортных средствах, представляет собой одну из наиболее распространенных комбинаций химических веществ.На рисунке \(\PageIndex{3}\) показан один элемент (один из шести) этой батареи. Катодная (положительная) клемма элемента соединена с пластиной из оксида свинца, тогда как анодная (отрицательная) клемма подключена к свинцовой пластине. Обе пластины погружены в серную кислоту, электролит для системы.

Рисунок \(\PageIndex{3}\): Химические реакции в свинцово-кислотном элементе разделяют заряд, направляя отрицательный заряд на анод, соединенный со свинцовыми пластинами. Пластины оксида свинца соединены с положительным или катодным выводом элемента.Серная кислота проводит заряд, а также участвует в химической реакции.

Знание того, как взаимодействуют химические вещества в свинцово-кислотном аккумуляторе, помогает понять потенциал, создаваемый аккумулятором. На рисунке \(\PageIndex{4}\) показан результат одной химической реакции. Два электрона размещены на аноде , что делает его отрицательным, при условии, что катод поставляет два электрона. Это оставляет катод положительно заряженным, потому что он потерял два электрона.Короче говоря, разделение заряда было вызвано химической реакцией.

Обратите внимание, что реакция не происходит, если нет полной цепи, позволяющей подать два электрона к катоду. Во многих случаях эти электроны исходят от анода, проходят через сопротивление и возвращаются к катоду. Заметим также, что, поскольку в химических реакциях участвуют вещества, обладающие сопротивлением, невозможно создать ЭДС без внутреннего сопротивления.

Рисунок \(\PageIndex{4}\): В свинцово-кислотной батарее два электрона направляются на анод элемента, а два электрона удаляются с катода элемента.Химическая реакция в свинцово-кислотном аккумуляторе помещает два электрона на анод и удаляет два электрона с катода. Для продолжения требуется замкнутая цепь, поскольку два электрона должны быть подведены к катоду.

Внутреннее сопротивление и напряжение на клеммах

Величина сопротивления потоку тока внутри источника напряжения называется внутренним сопротивлением . Внутреннее сопротивление х батареи может вести себя сложным образом. Обычно он увеличивается по мере разрядки аккумулятора из-за окисления пластин или снижения кислотности электролита.Однако внутреннее сопротивление может также зависеть от величины и направления тока через источник напряжения, его температуры и даже его истории. Внутреннее сопротивление перезаряжаемых никель-кадмиевых элементов, например, зависит от того, сколько раз и насколько глубоко они разряжались. Простая модель батареи состоит из идеализированного источника ЭДС \(\эпсилон\) и внутреннего сопротивления r (рисунок \(\PageIndex{5}\)).

Рисунок \(\PageIndex{5}\): Батарея может быть смоделирована как идеализированная ЭДС \((\эпсилон)\) с внутренним сопротивлением ( r ).Напряжение на клеммах батареи равно \(V_{terminal} = \epsilon — Ir\).

Предположим, что внешний резистор, известный как сопротивление нагрузки R , подключен к источнику напряжения, например к батарее, как показано на рисунке \(\PageIndex{6}\). На рисунке показана модель батареи с ЭДС ε, внутренним сопротивлением r и нагрузочным резистором r , подключенным к ее выводам. Используя обычный ток, положительные заряды покидают положительную клемму батареи, проходят через резистор и возвращаются к отрицательной клемме батареи.Напряжение на клеммах батареи зависит от ЭДС, внутреннего сопротивления и тока и равно

.

Примечание

\[V_{терминал} = \эпсилон — Ir\]

При заданных ЭДС и внутреннем сопротивлении напряжение на клеммах уменьшается по мере увеличения тока из-за падения потенциала Ir внутреннего сопротивления.

Рисунок \(\PageIndex{6}\): Схема источника напряжения и его нагрузочного резистора R . Поскольку внутреннее сопротивление r включено последовательно с нагрузкой, оно может существенно повлиять на напряжение на клеммах и ток, подаваемый на нагрузку.

График разности потенциалов на каждом элементе цепи показан на рисунке \(\PageIndex{7}\). По цепи протекает ток I , а падение потенциала на внутреннем резисторе равно Ir . Напряжение на клеммах равно \(\эпсилон — Ir\), что равно падению потенциала на нагрузочном резисторе \(IR = \эпсилон — Ir\). Как и в случае с потенциальной энергией, важно изменение напряжения. Когда используется термин «напряжение», мы предполагаем, что на самом деле это изменение потенциала или \(\Delta V\).Однако \(\Delta\) часто опускается для удобства.

Рисунок \(\PageIndex{7}\): График зависимости напряжения в цепи аккумулятора и сопротивления нагрузки. Электрический потенциал увеличивает ЭДС батареи из-за химических реакций, совершающих работу над зарядами. В аккумуляторе происходит уменьшение электрического потенциала из-за внутреннего сопротивления. Потенциал уменьшается из-за внутреннего сопротивления \(-Ir\), делая напряжение на клеммах батареи равным \((\эпсилон — Ir)\).Затем напряжение уменьшается на ( IR ). Ток равен \(I = \frac{\epsilon}{r + R}\).

Ток через нагрузочный резистор равен \(I = \frac{\epsilon}{r + R}\). Из этого выражения мы видим, что чем меньше внутреннее сопротивление r , тем больший ток источник напряжения отдает на свою нагрузку R . По мере разрядки батарей r увеличивается. Если r становится значительной долей сопротивления нагрузки, то ток значительно снижается, как показано в следующем примере.

Пример \(\PageIndex{1}\): анализ цепи с аккумулятором и нагрузкой

Данная батарея имеет ЭДС 12,00 В и внутреннее сопротивление \(0,100 \, \Омега\). (a) Рассчитайте напряжение на его клеммах при подключении к \(10,00 \, \Омега\) нагрузке. (b) Каково напряжение на клеммах при подключении к нагрузке \(0,500 \, \Омега\)? в) Какую мощность рассеивает нагрузка \(0,500 \, \Омега\)? г) Если внутреннее сопротивление возрастает до \(0,500 Ом, Омега), найти ток, напряжение на клеммах и мощность, рассеиваемую на \(0.500 \, \Омега\) нагрузки.

Стратегия

Приведенный выше анализ дал выражение для тока с учетом внутреннего сопротивления. Как только ток найден, напряжение на клеммах можно рассчитать, используя уравнение \(V_{терминал} = \эпсилон — Ir\). Как только ток найден, мы также можем найти мощность, рассеиваемую резистором.

Раствор

  1. Ввод заданных значений ЭДС, сопротивления нагрузки и внутреннего сопротивления в приведенное выше выражение дает \[I = \frac{\epsilon}{R + r} = \frac{12.00 \, V}{10,10 \, \Omega} = 1,188 \, A.\] Введите известные значения в уравнение \(V_{terminal} = \epsilon — Ir\), чтобы получить напряжение на клеммах: \[V_{ клемма} = \эпсилон — Ir = 12,00 \, В — (1,188 \, А)(0,100 \, \Омега) = 11,90 \, В.\] Напряжение на клеммах здесь лишь немного ниже, чем ЭДС, из чего следует, что ток тяга от этого легкого груза незначительна.
  2. Аналогично, при \(R_{нагрузка} = 0,500 \, \Omega\) ток равен \[I = \frac{\epsilon}{R + r} = \frac{12,00 \, V}{0.2}{R}\) или \(IV\), где В — напряжение на клеммах (в данном случае 10,0 В).
  3. Здесь внутреннее сопротивление увеличилось, возможно, из-за разрядки батареи, до точки, где оно равно сопротивлению нагрузки. Как и раньше, мы сначала находим ток, вводя известные значения в выражение, что дает \[I = \frac{\epsilon}{R + r} = \frac{12,00 \, V}{1,00 \, \Omega} = 12.00 \, A.\] Теперь напряжение на клеммах \[V_{клемма} = \epsilon — Ir = 12.00 \, V — (12.2(0,500 Ом, Омега) = 72,00 Ом, Вт.\] Мы видим, что увеличение внутреннего сопротивления значительно уменьшило напряжение на клеммах, ток и мощность, подаваемую на нагрузку.

Значение

Внутреннее сопротивление батареи может увеличиться по многим причинам. Например, внутреннее сопротивление перезаряжаемой батареи увеличивается по мере увеличения количества перезарядок батареи. Повышенное внутреннее сопротивление может иметь два последствия для батареи.Во-первых, напряжение на клеммах уменьшится. Во-вторых, батарея может перегреться из-за увеличения мощности, рассеиваемой внутренним сопротивлением.

Упражнение \(\PageIndex{1}\)

Если вы подсоедините провод непосредственно к двум клеммам батареи, эффективно закоротив клеммы, батарея начнет нагреваться. Как вы думаете, почему это происходит?

Раствор

Если к клеммам подсоединен провод, сопротивление нагрузки близко к нулю или, по крайней мере, значительно меньше внутреннего сопротивления батареи.2р)\). Мощность рассеивается в виде тепла.

Тестеры аккумуляторов

Тестеры батарей, такие как те, что показаны на рисунке \(\PageIndex{8}\), используют небольшие нагрузочные резисторы для преднамеренного отбора тока, чтобы определить, падает ли потенциал на клеммах ниже допустимого уровня. Хотя измерить внутреннее сопротивление батареи сложно, тестеры батарей могут обеспечить измерение внутреннего сопротивления батареи. Если внутреннее сопротивление высокое, батарея слабая, о чем свидетельствует низкое напряжение на клеммах.

Рисунок \(\PageIndex{8}\): Тестер батарей измеряет напряжение на клеммах под нагрузкой, чтобы определить состояние батареи. (a) Техник по электронике ВМС США использует тестер батарей для проверки больших батарей на борту авианосца USS Nimitz . Тестер батареи, который она использует, имеет небольшое сопротивление, которое может рассеивать большое количество энергии. (b) Показанное небольшое устройство используется на небольших батареях и имеет цифровой дисплей для индикации допустимого напряжения на клеммах. (кредит а: модификация работы Джейсона А.Джонстон; кредит b: модификация работы Кейта Уильямсона)

Некоторые батареи можно заряжать, пропуская через них ток в направлении, противоположном току, который они подают в прибор. Это обычно делается в автомобилях и в батареях для небольших электроприборов и электронных устройств (рис. \(\PageIndex{9}\)). Выходное напряжение зарядного устройства должно быть больше, чем ЭДС аккумулятора, чтобы ток через него изменил направление. Это приводит к тому, что напряжение на клеммах батареи больше, чем ЭДС, поскольку \(V = \эпсилон — Ir\) и I теперь отрицательно.

Рисунок \(\PageIndex{9}\): Зарядное устройство автомобильного аккумулятора меняет нормальное направление тока через аккумулятор, обращая его химическую реакцию и восстанавливая его химический потенциал.

Важно понимать последствия внутреннего сопротивления источников ЭДС, таких как батареи и солнечные элементы, но часто анализ цепей выполняется с напряжением на клеммах батареи, как мы делали в предыдущих разделах. Напряжение на клеммах обозначается просто как В , без нижнего индекса «клемма».Это связано с тем, что внутреннее сопротивление батареи трудно измерить напрямую, и оно может меняться со временем.

Авторы и авторство

Сэмюэля Дж. Линга (Государственный университет Трумэна), Джеффа Санни (Университет Лойолы Мэримаунт) и Билла Мёбса со многими соавторами. Эта работа находится под лицензией OpenStax University Physics в соответствии с лицензией Creative Commons Attribution License (4.0).

Определение ЭДС батареи простыми словами

Educate EMF поддерживается читателями.Когда вы покупаете по ссылкам на нашем сайте, мы можем бесплатно получать партнерскую комиссию.

ЭМП может означать одна из двух вещей в зависимости от контекста, в котором он используется. При обсуждении излучение всего сущего, ЭМП означает электромагнитное поле. Но когда вы сталкиваетесь с этим термином в контексте аккумуляторов и ячейки, это означает электродвижущие сила.

Невозможно представить жизнь без батареек. В конце концов, эти простые устройства питают ваш мобильный телефон, ноутбук, планшет, карманный калькулятор, фонарик и практически любое существующее мобильное устройство.

Батарейка сама по себе выглядит скучнейшей вещью, с которой вы когда-либо сталкивались. Но в тот момент, когда вы подключаете его к чему-то вроде смартфона, это маленькое устройство превращается в вашу портативную электростанцию ​​и оживляет ваше устройство. Без лишних слов давайте углубимся в определение ЭДС батареи простыми словами.

Размер батареи имеет значение

Что произойдет, если разрядится батарея в пульте дистанционного управления или фонарике? Ты ходил по магазинам, чтобы купить новый, верно? Когда вы делаете это, вы обычно покупаете тот же размер, что и старые, чтобы они могли поместиться внутри корпуса.

Подумай аккумуляторы в виде ящиков. Точно так же, как большая коробка упаковывает больше вещей, аккумулятор хранит больше электроэнергии, чем аккумулятор меньшего размера. Это потому, что они питают больше химических электролитов и большие электроды, которые позволяют им высвобождать больше энергии. Вот вам небольшой урок химии.

Электролиты жидкости, содержащие ионы. Ион – это молекула или атом, несущий электрический заряд из-за потери или приобретения одного или нескольких электронов. Ионы несут чистый положительный заряд или чистый отрицательный заряд в зависимости от того, получили ли они или потерянные электроны.Электрод – это проводник, погруженный в электролит. Он позволяет протекать электрическому току.

Таким образом, вполне логично, что большие батареи имеют большую емкость для хранения большего количества электролитов, что, в свою очередь, соответствует большему количеству ионов (или носителей заряда). Учитывая это увеличенное количество ионов, это означает, что эти батареи могут генерировать больше электроэнергии.

Питание от батареи

Одна вещь Вы заметите, что в батареях с маркировкой AAA, AA, C или D все они имеют тот же «1.Индикация 5V», несмотря на то, что они все разных размеров. Причина этого будет подробно обсуждаться в разделе о внутреннем сопротивлении далее в этом документе. статья.

Если вы хотите узнать, какое количество электроэнергии удерживает батарея, вам нужно посмотреть на измерение мАч. Это означает миллиампер-часы и является мерой заряда батареи. Итак, если вам нужен смартфон, который может оставаться включенным в течение длительного времени, прежде чем вам нужно будет снова его зарядить, вам нужен аккумулятор с высоким значением мАч.Обычно это указано на самом аккумуляторе. В батареях большего размера единицей измерения, используемой для указания количества электроэнергии, которую они держат, является «ватт-час».

Определение ЭДС батареи

Если вы когда-либо забудьте выключить фары в машине, а они всю ночь горели, вы найдите их тусклыми к тому времени, когда наступает утро. Они не мигают внезапно. Вместо этого их интенсивность постепенно ослабевает по мере разрядки батареи. аккумулятор является источником напряжения для фар.

Проще говоря, Вы можете думать о напряжении как о «толчке», придаваемом зарядам (ионам) для их перемещения. через электрический проводник. Источники напряжения включают свинцово-кислотные и никель-гидридные батареи, солнечные фермы, ветряные электростанции и плотины. Источники напряжения имеют потенциал для подачи тока, если они подключены к сопротивлению. Это называют «разницей потенциалов», и она создает электрическое поле которая действует на заряды с силой, проталкивающей их через проводник. Этот поток заряды и есть то, что называют электрическим током.

Электродвижущая сила, сокращенно Е (ЭДС), с другой стороны, представляет собой особый вид разности потенциалов. Он измеряет силу, действующую на заряды, когда ток не течет. Короче говоря, ключевое различие между разностью потенциалов и ЭДС связано с тем, протекает ли ток через цепь. Если ток течет, то вы знаете, что имеете дело с разностью потенциалов, а если нет, то вы сразу знаете, что у вас есть случай ЭДС.

Аналогия с водой

Отличный способ понять концепцию разности потенциалов и ЭДС, чтобы думать о воде стекает по трубчатой ​​водной горке. Вода в данном случае представляет заряды, а водная горка представляет собой схему. Когда вода на самом верху слайда, он содержит определенное количество потенциальной энергии, прежде чем он начнет течет вниз. Эта энергия постепенно уменьшается, чем ближе вода подходит к дно.

Подумайте о потенциальной энергии таким образом.Если вы бросите 2-килограммовый камень с верхнего этажа 20-этажного здания в машину, припаркованную сбоку от квартала ниже, это, вероятно, нанесет больший ущерб, чем если бы вы сбросили его со второго этажа того же здания. Это связано с разницей потенциальной энергии, которая намного выше, когда камень находится на двадцатом этаже, чем когда он находится на втором этаже.

Возвращаясь к аналогии, когда вода достигает дна горки, потенциальная энергия, которой она обладает, становится минимальной.Таким образом, необходимо проделать гораздо больше работы, чтобы снова отправить его вверх и достичь максимальной потенциальной энергии, прежде чем он сможет снова спуститься по слайду.

Именно так работает электрическая цепь, только в этом случае энергия, необходимая для приведения зарядов к более высокой разности потенциалов, называется ЭДС. Единицами измерения ЭДС являются вольты (В).

Связь между ЭДС и источником напряжения

Любое напряжение источник, такой как батарея, имеет ЭДС, непосредственно связанную с ним.Но, как вы видно в приведенной выше аналогии с водой, выходное напряжение устройства будет отличается от ЭДС, когда ток начинает течь по цепи.

Если вы затем измерите напряжение на клеммах батареи, вы обнаружите, что, поскольку она продолжает подавать ток, ее напряжение снижается по мере разрядки батареи. Но если вы измерите выходное напряжение устройства без потребления тока, то полученное значение будет равно его ЭДС даже в тех случаях, когда батарея почти полностью разряжена.

Внутреннее сопротивление источника напряжения

Рассмотрим внутреннее сопротивление батареи. Внутреннее сопротивление в данном случае относится к собственной врожденной способности батареи препятствовать прохождению зарядов через проводящую цепь. Обычно оно возникает из-за изоляторов, таких как пластик, углерод или любой другой материал, который не является проводником, по которому может течь электрический ток. .

Подумай о состав батареи в виде двух колодцев, соединенных узкой трубкой в между ними.Каждая ячейка содержит заряды, причем один из них имеет большую их объем больше, чем у его аналога. Как и следовало ожидать, скважина с больший объем зарядов выталкивал бы лишние через трубку в соседний колодец. Этот процесс будет продолжаться до тех пор, пока обе лунки не будут содержать одинаковые объем сборов.

В идеале сценарий, можно было бы ожидать полной миграции всех избыточных расходов из один колодец к другому. Однако реальность далека от этого. Некоторые сборы будут неизбежно теряются в процессе передачи.Следовательно, невозможно для достижения точности в обеих скважинах.

В батареях эти потерянные заряды выделяются в виде тепловой (тепловой) энергии. Это объясняет, почему батареи часто нагреваются через некоторое время их использования. Чем горячее становится, тем труднее ток течет через батарею. Это то, что приводит к внутреннему сопротивлению батареи, и его собственное присутствие говорит о том, что ни один источник напряжения не является идеальным.

Законы термодинамики

Нет любая существующая батарея, которая полностью эффективна при передаче энергии на внешний контур.Часть из них неизбежно будет рассеяна. Эта концепция напоминающие законы термодинамики, которые подчеркивают, что никакое механическое машина может использовать и преобразовывать вход в выход без затрат предельного количества энергии на себя.

Это обычно выделяется в виде тепла. Законы термодинамики являются одними из самых фундаментальные правила вселенной, независимо от того, применяются ли они к ревущему Lamborghini или литий-ионный аккумулятор в вашем смартфоне.

Связь между ЭДС и внутренним сопротивлением

Как упоминалось ранее вы заметите, что батареи с маркировкой AAA, AA, C или D имеют тот же «1.Этикетка 5V на каждом из них, несмотря на их разные размеры. Средний щелочные батареи обычно имеют электролит из цинка или хлорида аммония, в то время как электроды состоят из цинкового анода и катода из диоксида марганца. Ан анод и катод относятся к положительно и отрицательно заряженному электроду соответственно.

Батареи C и D большего размера содержат больше заряда и энергии. Поэтому они могут обеспечивать больший ток, чем их меньшие аналоги AAA и AA. Но, поскольку все они имеют одинаковый химический состав, логично, что все они будут иметь одинаковую ЭДС.Внутреннее сопротивление батареи в конечном счете зависит от ее размера. Батареи большего размера имеют более низкое внутреннее сопротивление, чем батареи меньшего размера, внутреннее сопротивление которых намного выше.

Любое напряжение источник имеет ЭДС, которая прямо коррелирует с его разностью потенциалов и его внутреннее сопротивление. Чем ниже внутреннее сопротивление для конкретной ЭДС, тем выше количество тока и мощности, которые может обеспечить данный источник напряжения. Выход батареи на ее клеммах равен ЭДС, когда нет текущий течет.

Однако важно отметить, что внутреннее сопротивление батареи не остается постоянным. Он имеет тенденцию увеличиваться по мере разрядки батареи. Он также увеличивается при повышении температуры батареи. Величина и направление тока, протекающего по цепи, также являются основным фактором, определяющим уровень внутреннего сопротивления батареи. У перезаряжаемых величина внутреннего сопротивления их элементов зависит от количества раз, а также от того, насколько глубоко разрядился аккумулятор.

Как работают батареи

Различные комбинации химических веществ, из которых состоит электролит в батарее, наряду с составом ее клемм определяют, какой будет ее ЭДС. Большинство аккумуляторов работают по одному и тому же основному принципу, но для этой иллюстрации будет использоваться автомобильный аккумулятор.

Свинцово-кислотные аккумуляторы, изобретенные в 1859 году французским физиком Гастоном Планте, фактически являются предпочтительным источником напряжения для большинства автомобилей. Он также имеет широкое применение в решениях для бесперебойного питания (UPS), подводных лодках, лодках и практически во всех других приложениях, о которых вы только можете подумать, для которых требуется недорогой перезаряжаемый источник энергии.

Типовое 12 В Автомобильный свинцово-кислотный аккумулятор состоит из шести свинцово-кислотных гальванических элементов. Каждый подключен к другому последовательно и размещен внутри батарейного отсека. В каждом в ячейке два типа электродов – положительный катод из диоксида свинца и отрицательный анод из свинца. Так как чистый свинец довольно мягкий, его армируют такими добавками, как сурьма. или кальций, чтобы повысить его механическую прочность, а также его электрические характеристики.

Кислота часть свинцово-кислотного аккумулятора составляет электролит, который представляет собой разбавленный раствор серной кислоты.Концентрация этого раствора зависит от на конструкцию аккумулятора. Однако, как правило, не превышает 40%. общий вес раствора. Раствор содержит положительно заряженный водород ионы и отрицательно заряженные сульфат-ионы.

Батарея конструкции включают гелеобразующие вещества, такие как кварцевая пыль, для превращения электролита в раствор в густой гель. Пожалуй, одна из сильных сторон гелевого свинцово-кислотного батареями является их неприхотливость в обслуживании и возможность их установки в любом направлении, не мешая выходной мощности.

Свинцово-кальциевые, свинцово-сурьмяные, свинцово-кислотные с клапанным регулированием, залитые свинцово-кислотные, свинцово-кислотные с глубоким циклом и многие другие — все это аккумуляторы, с которыми вы, возможно, сталкивались и которые составляют семейство свинцово-кислотных аккумуляторов. .

Взаимосвязь между химическими реакциями в батарее и ее ЭДС

Химические реакции в батарее не могут происходить, если нет полной цепи, облегчающей подачу электронов к катоду. В большинстве случаев анод поставляет эти электроны, которые проходят через сопротивление, прежде чем они окажутся на катоде.Поскольку в химических реакциях, протекающих в батарее, участвуют элементы и соединения, обладающие некоторым уровнем сопротивления, ЭДС невозможно создать без внутреннего сопротивления.

Do Аккумуляторы излучают электромагнитное излучение

Здесь вступает в действие другое определение ЭМП – излучение электромагнитного поля (ЭМП). Теперь, когда вы понимаете, как батареи производят энергию, возникает вопрос: излучают ли батареи излучение? Короткий ответ на это будет — нет, не делают.

Как у вас видно, батареи полагаются на химические реакции для генерации электрического тока, который, в свою очередь, питает электронное устройство. Химическая реакция такого типа происходит не создавать никаких электромагнитных полей вокруг батареи. Хотя их может и не быть сами являются непосредственным источником радиации, они, безусловно, могут быть его причиной.

Например, если у вас есть пара щелочных батареек типа АА на журнальном столике в гостиной, вам не нужно беспокоиться о том, что они излучают вредные электромагнитные лучи.Однако если вы поместите их в свой беспроводной телефон, сигналы для передачи голосовых данных, то вы подвергаетесь риску радиационного облучения от ваш телефон, но не от самих батарей.

Если у вас есть мобильный телефон, смартфон, планшет или ноутбук, то вы знаете, что все они полагаются на литий-ионные аккумуляторы для работы. Если вынуть литий-ионный аккумулятор устройства и положите его отдельно на стол, вы не рискуете облучение.

Если он находится в вашем устройстве, позволяя ему подключаться к сотовой сети, Wi-Fi, Bluetooth или любой другой беспроводной сети, то вы, безусловно, будете подвергаться определенному уровню радиационного облучения от устройства, но не от самой батареи.

Прощальный снимок

В эпоху цифровых технологий мобильность является синонимом удобства, и вы не можете быть мобильным, если у вас нет мобильного источника питания. Батареи существуют только для этой цели. Хотя люди часто считают само собой разумеющимся, как работают эти маленькие устройства, одно можно сказать наверняка. ЭДС батареи занимает центральное место, когда речь идет о ее роли в качестве источника напряжения.

Читать далее : Излучение при полетах на самолетах – риски облучения и советы по защите

Электродвижущая сила и внутреннее сопротивление

Электродвижущая сила (e) или e.м.ф. это энергия, обеспечиваемая ячейкой или батареей на кулон проходящего через нее заряда, она равна , измеряется в вольтах (В). Он равен разности потенциалов на клеммах ячейки, когда ток не течет.

  • e = электродвижущая сила в вольтах, В
  • E = энергия в джоулях, Дж
  • Q = заряд в кулонах, Кл

Батареи и элементы имеют внутреннее сопротивление   (r) , что составляет единиц измерения в омах (Вт). Когда электричество течет по цепи, внутреннее сопротивление самой ячейки сопротивляется потоку тока, и поэтому тепловая (тепловая) энергия теряется в самой ячейке.

  • e = электродвижущая сила в вольтах, В
  • I = ток в амперах, А
  • R = сопротивление нагрузки в цепи в Ом, Вт
  • r = внутреннее сопротивление элемента в Ом, Вт

Мы можем изменить приведенное выше уравнение;

и затем

В этом уравнении ( V ) появляется разность потенциалов на клеммах , измеренная в вольтах (В). Это разность потенциалов на выводах ячейки при протекании тока в цепи, она всегда меньше э.

Добавить комментарий

Ваш адрес email не будет опубликован.