Кто придумал электричество и в каком году: Кто изобрел электричество? | New-Science.ru

Содержание

Кто изобрел электричество? | New-Science.ru

Бенджамин Франклин получает все заслуги в открытии электричества, но все, что он сделал, это установил связь между молнией и электричеством. Шарль Франсуа Дюфе, Луиджи Гальвани, Алессандро Вольта, Майкл Фарадей, Томас Алва Эдисон и Никола Тесла внесли значительный вклад в развитие и коммерциализацию электричества.

Электричество повсюду вокруг нас: светильники, вентиляторы, компьютеры, мобильные телефоны и бесчисленное множество других устройств. В современном мире от этого практически невозможно убежать. Даже пытаясь убежать от электричества, вы найдете его по всей природе, от синапсов внутри человеческого тела до молнии во время грозы.

Но знаете ли вы, кто открыл электричество? Вообще-то, это довольно сложный вопрос. Большинство людей отдают должное только одному человеку (Бенджамину Франклину), что вроде как несправедливо.

Многие другие ученые использовали эксперименты Франклина для изучения электричества, и некоторые из них смогли изобрести различные формы электричества. Давайте копнем глубже и выясним, кто были эти ученые и каков их вклад.

Электричество 2600 лет назад

Один из инструментов, обнаруженных в археологических раскопках близ Багдада, напоминает электрохимическую ячейку

Примерно в 600 году до нашей эры греческий математик Фалес Милетский обнаружил, что трение меха о Янтарь вызывает притяжение между ними. Более поздние наблюдения доказали, что это притяжение было вызвано дисбалансом электрических зарядов, который называется статическим электричеством.

Археологи также обнаружили доказательства того, что древние люди могли экспериментировать с электричеством. В 1936 году они нашли глиняный горшок с железным прутом и медной пластиной. Он похож на электрохимический (гальванический) элемент.

Неясно, для чего использовался этот инструмент, но он пролил некоторый свет на тот факт, что древние люди, возможно, изучали ранние формы батарей задолго до того, как мы это знаем.

Томас Браун использовал слово «электричество» в 1646 году

Версориум Гилберта

В 1600 году английский физик Уильям Гилберт написал книгу под названием De Magnete, в которой он объяснил, как статическое электричество генерируется трением янтаря. Однако он не понимал, что электрический заряд универсален для всех материалов.

Поскольку Гилберт изучал статическое электричество с помощью янтаря, а янтарь по-гречески называют «Электрум», он решил назвать его действие электрической силой. Он также изобрел электроскоп (известный как «versorium» Гилберта) для обнаружения присутствия электрического заряда на теле.

Работа Гилберта дала начало английскому слову «electricity», которое впервые появилось во втором выпуске научного журнала Pseudodoxia Epidemica , написанного сэром Томасом Брауном в 1946 году.

Шарль Франсуа Дюфе открыл типы электрических зарядов

Дальнейшие исследования проводились многими учеными. Отто фон Герике, например, изобрел примитивную форму фрикционной электрической машины в 1663 году. Стивен Грей различал проводимость и изоляцию и открыл явление, называемое электростатической индукцией, в 1729 году.

Один из основных вкладов начала 17 века сделал французский химик Шарль Франсуа Дюфе. Он открыл два типа электричества: стекловидное и смолистое (которое в настоящее время известно как положительный и отрицательный заряд соответственно).

Он также обнаружил, что объекты с одинаковым зарядом притягиваются друг к другу, а объекты с противоположным зарядом отталкиваются. Он также прояснил некоторые популярные заблуждения того времени, например, что электрические свойства объекта зависят от его цвета.

Бенджамин Франклин доказал, что молния имеет электрическую природу

В середине XVIII века Бенджамин Франклин широко изучал и проводил многочисленные эксперименты, чтобы понять электричество. В 1748 году он построил электрическую батарею, поместив несколько стеклянных листов, зажатых между свинцовыми пластинами. Он также открыл принцип сохранения заряда.

В июне 1752 года Франклин провел знаменитый эксперимент, чтобы доказать, что молния — это электричество. Он прикрепил металлический ключ к нижней части смоченной веревки воздушного змея и запустил змея во время грозы. Он был осторожен, стоя на изоляторе, чтобы избежать удара током.

Как он и ожидал, змей собрал немного электрического заряда из грозовых облаков, который затем потек по веревке, сотрясая его. Этот эксперимент доказал, что молния действительно была электрической по своей природе.

Луиджи Гальвани открыл биоэлектромагнетизм в 1780-х годах

Итальянский физик и биолог был пионером биоэлектромагнетизма. В 1780 году он провел несколько экспериментов на лягушках и обнаружил, что электричество является средой, через которую нейроны передают сигналы мышцам.

Алессандро Вольта изобрел электрическую батарею в 1800 году

Другой итальянский физик по имени Алессандро Вольта обнаружил, что некоторые химические реакции могут производить постоянный электрический ток. Он построил электрическую батарею, для производства непрерывного потока электрического заряда. Она была сделана из чередующихся слоев меди и цинка.

Вольта также различал электрический потенциал (V) и заряд (Q), описывая, что они пропорциональны для данного объекта. Это то, что мы называем законом емкости Вольта. За эту работу единица измерения электрического потенциала SI (вольт) была названа в его честь.

Исследования, проведенные Вольтом, привлекли большое внимание и побудили других ученых провести аналогичные исследования, что в конечном итоге привело к развитию нового раздела физической химии, называемого электрохимией.

Немецкий физик Георг Симон Ом дополнительно изучил электрохимическую ячейку Вольта и обнаружил, что электрический ток прямо пропорционален напряжению (разности потенциалов), приложенному к проводнику. Эта связь называется законом Ома.

Ханс Кристиан Эрстед обнаружил, что электричество создает магнитные поля

Ханс Кристиан Эрстед

В начале 19 века датский физик Ханс Кристиан Эрстед обнаружил прямую связь между электричеством и магнетизмом. В 1820 году он опубликовал свои открытия, описывая, как стрелка компаса может отклоняться под действием электрического тока.

Работы Эрстеда вдохновили французского физика Андре-Мари Ампера на разработку физико-математической теории, которая могла бы лучше объяснить связь между электричеством и магнетизмом. Он сформировал математическую формулу для представления магнитных сил между объектами, несущими ток. Для этой работы в его честь была названа единица измерения электрического тока (ампер).

В 1820-х годах Ампер изобрел многочисленные приборы, в том числе электромагнит (электромагнит, создающий управляемое магнитное поле) и электрический телеграф (система обмена текстовыми сообщениями «точка-точка»).

Майкл Фарадей сделал электричество практичным для использования в технологиях

Майкл Фарадей, около 70 лет

Майкл Фарадей заложил основы концепции электромагнитного поля. Он обнаружил, что на световые лучи может влиять магнетизм. Он изобрел электромагнитные вращательные устройства, которые легли в основу технологии электродвигателей.

В 1831 году Фарадей разработал электрическую динамомашину-машину, которая могла непрерывно преобразовывать вращательную механическую энергию в электрическую, что сделало возможным производство электричества.

В 1832 году Фарадей провел серию экспериментов по исследованию поведения электричества. Он пришел к выводу, что категоризация различных «типов» электричества была иллюзорной. Вместо этого он предложил, что существует только один «тип» электричества, и изменение таких параметров, как ток и напряжение (количество и интенсивность), приведет к созданию различных групп явлений.

Джеймс Клерк Максвелл сформулировал теорию электромагнитного излучения

В 1873 году шотландский ученый Джеймс Клерк Максвелл начал разрабатывать уравнения, которые могли бы точно описать электромагнитное поле. Он предположил, что электрические и магнитные поля движутся как волны со скоростью света.

Генрих Рудольф Герц окончательно доказал эту теорию, и Гульельмо Маркони использовал эти волны для разработки радио.

Томас Эдисон коммерциализировал электричество

В 1879 году Томас Альва Эдисон изобрел практичную лампочку, которая прослужит долго, прежде чем перегореть. Его следующей задачей была разработка электрической системы, которая могла бы обеспечить людей реальным источником энергии для питания этих ламп.

В 1882 году он построил первую электростанцию в Лондоне, чтобы вырабатывать электроэнергию и переносить ее в дома людей. Несколько месяцев спустя он создал еще одну электростанцию в Нью-Йорке для обеспечения электрическим освещением нижней части острова Манхэттен. Около 85 потребителей получили достаточно энергии, чтобы зажечь 5000 ламп.

На заводе использовались возвратно-поступательные паровые двигатели для включения генераторов постоянного тока. Но так как это было распределение постоянного тока, зона обслуживания была ограничена падением напряжения в фидерах.

Никола Тесла изобрел переменный ток

Поворотный момент в электрической эре наступил через несколько лет, когда Никола Тесла приехал в Нью-Йорк, чтобы работать на Эдисона. Он покинул Edison Machine Works через шесть месяцев из-за невыплаченных бонусов, которые, по его мнению, он заработал.

Вскоре после ухода из компании Тесла обнаружил новый тип двигателя переменного тока и технологию передачи электроэнергии. Он объединился с Джорджем Вестингаузом, чтобы запатентовать систему переменного тока, чтобы обеспечить страну электроэнергией высочайшего качества.

Энергетическая система, изобретенная Теслой, быстро распространилась в США и Европе благодаря своим преимуществам в дальней высоковольтной передаче. Первая гидроэлектростанция Теслы в Ниагарском водопаде могла транспортировать электроэнергию более чем на 200 квадратных миль. В отличие от этого, эдисоновская электростанция постоянного тока могла транспортировать электричество только в пределах одной мили.

Сегодня переменный ток вырабатывается большинством электростанций и используется почти всеми системами распределения электроэнергии. Общее мировое валовое производство электроэнергии в 2019 году составило 27 644 ТВтч.

Генрих Рудольф Герц наблюдал фотоэлектрический эффект в 1887 году

Генрих Рудольф Герц

Пока Тесла был занят изобретением и распределением переменного тока, Генрих Герц проводил серию экспериментов по пониманию электромагнитных волн. В 1887 году он наблюдал фотоэлектрический эффект, явление, при котором электроны испускаются, когда электромагнитное излучение (например, свет) попадает на материал.

В 1905 году Альберт Эйнштейн опубликовал «закон фотоэлектрических эффектов», выдвинув гипотезу о том, что световая энергия переносится дискретными квантованными пакетами. Это был решающий шаг в развитии квантовой механики. За эту работу Эйнштейн был удостоен Нобелевской премии по физике 1921 года.

Фотоэлектрический эффект используется в фотоэлементах, обычно встречающихся в солнечных батареях. Эти фотоэлементы вырабатывают напряжение и подают электрический ток, когда на них светит солнечный свет (или свет с определенной длиной волны).

К концу 2019 года во всем мире было установлено в общей сложности 629 гигаватт солнечной энергии. Это число будет увеличиваться в ближайшие годы, поскольку многие страны и территории переходят на возобновляемые источники энергии, чтобы уменьшить воздействие производства электроэнергии на окружающую среду.

И поэтому было бы неправильно отдать должное только одному человеку за то, что он открыл для себя электричество. В то время как идея электричества существовала тысячи лет, когда пришло время ее научного и коммерческого изучения, несколько великих умов работали над различными подмножествами этой проблемы.

история открытия. Роль электричества в жизни человека (Школьные сочинения) Электрический ток в повседневной жизни человека

Электричество — это прекрасная энергия, можно сказать — волшебная. Это энергия, без которой сейчас практически невозможно жить. За счет неё мы обогреваемся, имеем свет в домах и освещение на улицах. Как прекрасна новогодняя ночь в свете разноцветных фонариков, как прекрасен поющий фонтан в сиянии лампочек.

Представьте только на минутку, что нет электричества. Человек просто возвращается в век первобытного строя, нет заводов и фабрик, нет никаких удобств современного привычного мира.

Быт человека — это техника, бытовые приборы, компьютеры, телевизоры и многое другое, что не работало бы без электричества. Волшебство прекрасно, но и одновременно опасно. Оно несет в себе невидимый страх, который может быть опасен для человека. Что бы этого не произошло нельзя играть с электроприборами и самостоятельно их ремонтировать, трогать оголенные провода голыми и мокрыми руками, играть под линиями электропередач, залезать на электрообъекты, в трансформаторные будки.

Электричество свой необходимый ассистент.

Однако с целью этих, кто именно никак не понимает либо игнорирует инструкциями электробезопасности, никак не может прибегать с домашними устройствами, не соблюдает принципы действия возле энергообъектов, электричество скрывает в себя губительную угроза.

Обновлено: 2017-10-12

Внимание!
Если Вы заметили ошибку или опечатку, выделите текст и нажмите Ctrl+Enter .
Тем самым окажете неоценимую пользу проекту и другим читателям.

Спасибо за внимание.

.

Электроэнергия в жизни современного общества совершенно неотъёмная его часть. Прежде чем вы включите компьютер, или откроете холодильник, или просто позвоните в дверь квартиры — на мгновение попробуйте представить себе, что всё это единовременно стало недоступным. Не работает лифт в подъезде; на перекрёстках заторы из автомобилей, пешеходов — не работают светофоры; на заправках не заправляются автомобили; стоит метрополитен, троллейбусы, трамваи. В автомобилях не работает стартера, генераторы — это — то же электричество. Смесь бензина и воздуха в двигателе внутреннего сгорания загорается от электрического разряда на свече зажигания. Дизельный двигатель так же не заведется: не работает стартерный электродвигатель и не греются калильные свечи. Из транспорта только лошади и паровозы. Коневодство из спортивной отрасли займет важное место в жизни человека: это и автобус, и такси, и перевозка грузов. Авиация без электричества остается на земле. В воздух будет возможно подняться лишь на воздушном шаре, который летит лишь туда, куда несёт его ветер. Причем наполнить его можно лишь горячим воздухом; для промышленного производства водорода или гелия опять же надо электричество. Перелететь океан на таком воздушном шаре, например, из Европы в Америку будет настоящим подвигом.

Морской транспорт сразу потеряет в скорости, и цена перевозок возрастет также, как и уменьшаться масштабы морских перевозок. Паровые судовые машины требуют много угля, качественной воды, имеют меньшую скорость и дальность плавания. Современное производство остановится полностью. Все станки и агрегаты работают от электропривода. Тогда получается, каждый завод, или фабрика будет иметь свои паровые машины, котлы. Пар будет вращать различный привод: молоты, пресса, крупные станки. Каждый цех будет иметь свою сложную механическую передачу от главной паровой машины завода. Такие передачи часто служили причиной травм и увечий рабочих людей в 19 веке.

Вместо электросварки для соединения металлов применят заклепки. Обработка металлов, производство высокого качества сталей, сплавов — современные технологии исчезнут вместе с электричеством просто мгновенно. Интернет, телефон и даже изобретение 19 века — телеграф — тут же исчезнут. Жизнь человека вернется в конец 18 и начало 19 века; расстояние уже в 1000 километров это уже путешествие, которое меняет жизнь человека; получить простое письмо из соседнего удаленного на 50 километров города будет уже событие. При отсутствии электричества темп жизни стремительно упадет; расстояния становятся огромными, мир — необъятным и малоизвестным.

Современное потребление электроэнергии имеет структуру практически одинаковую для всех развитых стран. Россия относится к числу мировых энергетических держав, имеет много электростанций: тепловых, атомных, гидравлических. С начала 20 века, когда электричество было лишь в крупных городах и на больших предприятиях энергетика в нашей стране сильно изменилась. Потребление электроэнергии в России имеет свою выраженную структуру:

Непосредственно на человека используется более 33 % выработанной электроэнергии. Не многим меньше приходится на производство. Потребление электроэнергии непосредственно человеком — более трети.

Современный человек настолько привык к благам цивилизации, что представить ему жизнь без электричества достаточно сложно. Разберем простой пример. Перед нами — современная квартира. Рассмотрим, кто чего стоит. Какое количество электроэнергии потребляют бытовые приборы?

  • 1. Холодильник (300 л): 240-320 кВт·ч в год
  • 2. Стиральная машина (5 кг белья, 60°C): 0,85-1,05 кВт·ч за цикл
  • 3. Электрическая сушилка белья (7 кг белья): 2,4-4,4 кВт·ч за цикл
  • 4. Электроплита с духовкой: конфорка (диаметром 145-180 мм) 1-2,3 кВт·ч за час; духовка (200°C): 0,9-1,1 кВт·ч за час
  • 5. Кофеварка (на приготовление 8-12 чашек): 0,8-1,2 кВт·ч
  • 6. Компьютер: 0,1-0,5 кВт·ч
  • 7. Телевизор (82 см LCD): 0,1-0,2 кВт·ч
  • 8. Лампа накаливания: 60 кВт·ч
  • 9. Энергосберегающая флуоресцентная лампа: 16 кВт·ч.

Каждое государство, общество имеет свою систему производства и распределения электроэнергии. Электроэнергия — это товар, который невозможно хранить. Производство электроэнергии и распределение определяется потреблением. Задачи распределения и транспортировки электроэнергии решаются линиями электропередачи, распределительными устройствами, подстанциями. Линии электрических передач могут быть как кабельными, расположенными обычно под землей, так и воздушными — высокие столбы с проводами. В городе заметны трансформаторные подстанции: небольшие сооружения, где высокое напряжение преобразуется в «домашние» 220 вольт. При этом на каждой подстанции всегда написана её мощность, номер и распределительные устройства высокого напряжения (6 или 10 тысяч вольт) и низкого (0,4 кВ — это значит по каждому из трех проводников идет электрический ток напряжением 220 вольт относительно земли). Как правило, все линии электропередач имеют высокое напряжение. Соответственно, эти линии имеют свою охранную зону, где находиться постороннему человеку не надо.

Электричество делает нашу жизнь комфортней, более интересной. Производство с электричеством представляется эффективным и высокотехнологичным с минимальным присутствием ручного труда; применение компьютерных технологий освобождает человека даже от таких задач как непосредственный контроль технологического процесса. Так, например, автоматизация сборочных конвейеров на заводах БМВ в Германии практически 100 %. Транспорт с применением электричества становится более комфортным и доступным; расстояния в несколько тысяч километров не представляют больших препятствий. Авиация и вся наземная инфраструктура невозможна без электроснабжения и электросвязи, электричества вообще.

Вместе с тем, технические задачи по производству, транспортировке, распределению и потреблению электроэнергии требуют неукоснительного соблюдения правил безопасности, исключение из работы любых неисправных электротехнических устройств, дисциплины и ответственности. При этом необходимо помнить, что блага цивилизации дорогого стоят, и относится к ним нужно бережно.

Понятно, что единовременно и добровольно лишиться «электрического комфорта» вряд ли найдётся охотников, даже в качестве эксперимента. Между тем, производство электроэнергии растёт, и единственная причина этого роста — рост потребления. Возникает важнейший вопрос — экономия ресурсов, и в первую очередь — электроэнергии. Потому как производство электроэнергии включает огромный список решаемых задач, привлекаемых ресурсов, зачастую невосполнимых.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

на тему: «Электричество в современном мире»

  • Содержание
  • 1. Применение электроэнергии
    • 2. Производство электроэнергии
      • 3. Экономия электроэнергии
      • Заключение
      • Список литературы

Введение

История человечества не может рассматриваться нами просто как собрание, каких-либо различных историй, былин и повествований. Важно различать развитие не только социальное, экономическое, политическое; крайне интересным представляется наблюдать эти процессы в тесной связке с развитием науки, техники и производства. К XV в. средневековый человек, используя «энергетику» своего времени — рабочий скот, энергию воды и ветра, дрова и небольшое количество угля — потреблял энергии в 10 раз больше, чем первобытный человек. Сегодня же человек потребляет в 100 раз больше энергии, чем первобытный человек, и живет в 4 раза дольше.

Иоганн Гуттенберг и Майкл Фарадей в истории цивилизации — это личности, совершившие качественный переход развития. Книгопечатание сделало книгу — источник знаний — широкодоступной, что как следствие послужило мощным импульсом развития науки. В 1831 году Майкл Фарадей открыл явление электромагнитной индукции. До этого дня источники электрического тока были лишь в виде батареи; принцип действия которой состоял в электрохимическом окисление металлов или электризация тел посредством трения. Опыты с такими источниками электроэнергии были зачастую весьма далеки от науки, практических целей.

Электромагнитная индукция позволяла путем свершения работы — перемещение замкнутого проводника в магнитном поле производить переменный электрический ток. Ясно, что выпрямление такого рода тока вполне соответствовало технологиям того времени. С той же скоростью что и генератор вращался контактор, размыкая — замыкая контакты. Таким образом, потребители электроэнергии в то время были в массе своей постоянного тока. Таким образом возник электропривод. Совсем не обязательным для производства стало наличие больших рек, где устраивались плотины, и энергия воды использовалась в интересах производства. «Век пара и электричества» — время технологического прорыва человечества. Из салонных забав для узкого круга людей электричество широко шагнуло в жизнь народов.

Очевидно, что сегодня электроэнергетика — основа индустриального развития общества. Уровень её развития один из решающих факторов успешного развития экономики любого государства, общества в целом. Электроэнергия — универсальный вид энергии, применяемый практически во всех отраслях и позволяющий совершать механическую работу, различные электрохимические реакции, генерировать различные излучения и многое другое. Мировое потребление электроэнергии неуклонно растет. Ресурсов органического вида (угля, нефти, газа) очевидно, становиться меньше. Интерес к себе вызывают технологии производства электроэнергии из возобновляемых ресурсов: энергии ветра, воды и солнца.

В 2006 году около 18 % мирового потребления энергии было удовлетворено из возобновляемых источников энергии, при этом 13 % из традиционной биомассы, (древесина, отходы сельского хозяйства). По прогнозам к 2035 году потребление электроэнергии в мире увеличится на 49 %.

Электроэнергия в жизни современного общества совершенно неотъёмная его часть. Прежде чем вы включите компьютер, или откроете холодильник, или просто позвоните в дверь квартиры — на мгновение попробуйте представить себе, что всё это единовременно стало недоступным. Не работает лифт в подъезде; на перекрёстках заторы из автомобилей, пешеходов — не работают светофоры; на заправках не заправляются автомобили; стоит метрополитен, троллейбусы, трамваи. В автомобилях не работает стартера, генераторы — это — то же электричество. Смесь бензина и воздуха в двигателе внутреннего сгорания загорается от электрического разряда на свече зажигания. Дизельный двигатель так же не заведется: не работает стартерный электродвигатель и не греются калильные свечи. Из транспорта только лошади и паровозы. Коневодство из спортивной отрасли займет важное место в жизни человека: это и автобус, и такси, и перевозка грузов. Авиация без электричества остается на земле. В воздух будет возможно подняться лишь на воздушном шаре, который летит лишь туда, куда несёт его ветер. Причем наполнить его можно лишь горячим воздухом; для промышленного производства водорода или гелия опять же надо электричество. Перелететь океан на таком воздушном шаре, например, из Европы в Америку будет настоящим подвигом.

Морской транспорт сразу потеряет в скорости, и цена перевозок возрастет также, как и уменьшаться масштабы морских перевозок. Паровые судовые машины требуют много угля, качественной воды, имеют меньшую скорость и дальность плавания. Современное производство остановится полностью. Все станки и агрегаты работают от электропривода. Тогда получается, каждый завод, или фабрика будет иметь свои паровые машины, котлы. Пар будет вращать различный привод: молоты, пресса, крупные станки. Каждый цех будет иметь свою сложную механическую передачу от главной паровой машины завода. Такие передачи часто служили причиной травм и увечий рабочих людей в 19 веке.

Вместо электросварки для соединения металлов применят заклепки. Обработка металлов, производство высокого качества сталей, сплавов — современные технологии исчезнут вместе с электричеством просто мгновенно. Интернет, телефон и даже изобретение 19 века — телеграф — тут же исчезнут. Жизнь человека вернется в конец 18 и начало 19 века; расстояние уже в 1000 километров это уже путешествие, которое меняет жизнь человека; получить простое письмо из соседнего удаленного на 50 километров города будет уже событие. При отсутствии электричества темп жизни стремительно упадет; расстояния становятся огромными, мир — необъятным и малоизвестным.

Современное потребление электроэнергии имеет структуру практически одинаковую для всех развитых стран. Россия относится к числу мировых энергетических держав, имеет много электростанций: тепловых, атомных, гидравлических. С начала 20 века, когда электричество было лишь в крупных городах и на больших предприятиях энергетика в нашей стране сильно изменилась. Потребление электроэнергии в России имеет свою выраженную структуру:

Непосредственно на человека используется более 33 % выработанной электроэнергии. Не многим меньше приходится на производство. Потребление электроэнергии непосредственно человеком — более трети.

Современный человек настолько привык к благам цивилизации, что представить ему жизнь без электричества достаточно сложно. Разберем простой пример. Перед нами — современная квартира. Рассмотрим, кто чего стоит. Какое количество электроэнергии потребляют бытовые приборы?

1. Холодильник (300 л): 240-320 кВт·ч в год

2. Стиральная машина (5 кг белья, 60°C): 0,85-1,05 кВт·ч за цикл

3. Электрическая сушилка белья (7 кг белья): 2,4-4,4 кВт·ч за цикл

4. Электроплита с духовкой: конфорка (диаметром 145-180 мм) 1-2,3 кВт·ч за час; духовка (200°C): 0,9-1,1 кВт·ч за час

5. Кофеварка (на приготовление 8-12 чашек): 0,8-1,2 кВт·ч

6. Компьютер: 0,1-0,5 кВт·ч

7. Телевизор (82 см LCD): 0,1-0,2 кВт·ч

8. Лампа накаливания: 60 кВт·ч

9. Энергосберегающая флуоресцентная лампа: 16 кВт·ч.

Каждое государство, общество имеет свою систему производства и распределения электроэнергии. Электроэнергия — это товар, который невозможно хранить. Производство электроэнергии и распределение определяется потреблением. Задачи распределения и транспортировки электроэнергии решаются линиями электропередачи, распределительными устройствами, подстанциями. Линии электрических передач могут быть как кабельными, расположенными обычно под землей, так и воздушными — высокие столбы с проводами. В городе заметны трансформаторные подстанции: небольшие сооружения, где высокое напряжение преобразуется в «домашние» 220 вольт. При этом на каждой подстанции всегда написана её мощность, номер и распределительные устройства высокого напряжения (6 или 10 тысяч вольт) и низкого (0,4 кВ — это значит по каждому из трех проводников идет электрический ток напряжением 220 вольт относительно земли). Как правило, все линии электропередач имеют высокое напряжение. Соответственно, эти линии имеют свою охранную зону, где находиться постороннему человеку не надо.

Электричество делает нашу жизнь комфортней, более интересной. Производство с электричеством представляется эффективным и высокотехнологичным с минимальным присутствием ручного труда; применение компьютерных технологий освобождает человека даже от таких задач как непосредственный контроль технологического процесса. Так, например, автоматизация сборочных конвейеров на заводах БМВ в Германии практически 100 %. Транспорт с применением электричества становится более комфортным и доступным; расстояния в несколько тысяч километров не представляют больших препятствий. Авиация и вся наземная инфраструктура невозможна без электроснабжения и электросвязи, электричества вообще.

Вместе с тем, технические задачи по производству, транспортировке, распределению и потреблению электроэнергии требуют неукоснительного соблюдения правил безопасности, исключение из работы любых неисправных электротехнических устройств, дисциплины и ответственности. При этом необходимо помнить, что блага цивилизации дорогого стоят, и относится к ним нужно бережно.

Понятно, что единовременно и добровольно лишиться «электрического комфорта» вряд ли найдётся охотников, даже в качестве эксперимента. Между тем, производство электроэнергии растёт, и единственная причина этого роста — рост потребления. Возникает важнейший вопрос — экономия ресурсов, и в первую очередь — электроэнергии. Потому как производство электроэнергии включает огромный список решаемых задач, привлекаемых ресурсов, зачастую невосполнимых.

2. Производство электроэнергии

Сегодня в мире более 78 % выработки электроэнергии приходится на тепловые станции. Сжигается нефть, уголь, газ что приводит к выбросу в атмосферу диоксида углерода (СО 2). Одна из причин парникового эффекта это свойство СО 2 удерживать отраженное Землей солнечное излучение. Кроме этого, выделяется в атмосферу оксиды азота, сернистый ангидрид, другие вредные вещества; происходит тепловое засорение воздушного и водных бассейнов. потребление электрическая энергия экономия

При этом наблюдается устойчивый рост потребления электроэнергии.

За последние 5 лет энергопотребление выросло:

1. в Китае выросло на 76 %,

2. в Индии — на 31 %,

3. в Бразилии — на 18 %.

Тепловая энергетика наиболее сильно загрязняет окружающую среду.

Альтернатива тепловой энергетике в некоторой мере может служить атомная энергетика и энергетика на возобновляемых ресурсах: энергии ветра, солнца и воды.

Атомная энергетика сегодня представляется как высокотехнологическая энергетическая отрасль. Вместе с тем, имеет самые труднопреодолимые последствия аварий. Рост значимости атомной энергетики в мире не уклонный. Если в 1970 г. все атомные электростанции мира выработали лишь 85 млрд. кВтч электроэнергии, в 1980 г. — около 700 млрд., в 1990 г. — 1800 млрд., а в 2005 г. — почти 2750 млрд. кВт-ч. При этом возрастала и суммарная мощность АЭС мира.

На современном этапе развития в 31 стране на 248 АЭС в эксплуатации находится 441 промышленный атомный энергоблок с суммарной установленной мощностью более 354 млн. кВт. Это составляет 18 % от всей производимой в мире электроэнергии.

Мировая атомная энергетика сосредоточена в регионах: Европе (включая СНГ), Северной Америке и Азиатско-Тихоокеанском регионе. При этом более 2/3 установленной мощности всех АЭС мира и такая же доля выработки электроэнергии приходятся всего на пять ведущих в этой отрасли стран — США, Францию, Японию, Германию и Россию. Самые крупные АЭС мира (мощностью 4 млн. кВт и более), их всего 12, расположены в Канаде, во Франции, в Японии, России, Украине. Самая крупная АЭС Касивадзаки в Японии имеет установленную мощность в 8,2 млн. кВт.

Нетрадиционные или альтернативные источники энергии имеют самые многообещающие перспективы. К таким источникам можно отнести:

1. Энергию приливов и отливов;

2. Энергию малых рек;

3. Энергию ветра;

4. Энергию солнца;

5. Геотермальную энергию;

6. Энергию горючих отходов и выбросов;

7. Энергию вторичных или сбросовых источников тепла и другие.

Нетрадиционные виды электростанций занимают всего несколько процентов в производстве мировой электроэнергии. В последнее время стал заметным рост таких источников в энергетике сран участниц Евросоюза. Европейский союз — лидер в развитии альтернативной энергетики. На долю ЕС приходится почти 42 % мирового потребления возобновляемой энергии, в то время как на долю США — 23 %, Китая — 9 %, Японии — 4 %. К 2020 г.

В России, при ее энергетических ресурсах, на первый взгляд экономической целесообразности в такой энергетике нет. Но около 22-25 млн. человек проживают в районах автономного энергоснабжения или ненадежного централизованного энергоснабжения. Это более 70 % территории России. Экономический потенциал ВИЭ на территории России, весьма велик и позволяет строить автономные сети с достаточно большим потреблением на ВИЭ.

Потенциал развития такой энергетики в России может дать свыше 30 % от объема потребления топливно-энергетических ресурсов в России.

3. Экономия электроэнергии

Экономить ресурсы, электроэнергию необходимо во всех отраслях: на производстве, на транспорте, в сельском хозяйстве, в сфере ЖКХ, в быту. Наиболее доступное и одно из самых эффективных мероприятий по энергосбережению — экономия электроэнергии в быту. Во-первых, это около значительная часть потребляемой электроэнергии, во-вторых человек приучившись экономить электроэнергию у себя дома не пройдёт равнодушно мимо вопиющих фактов халатности и разгильдяйства. Культура потребления прежде всего начинается с весьма полезной привычки к экономии и бережливости. Рассмотрим простые и эффективные правила бережливости и экономии электроэнергии, применимые для любого человека:

1. Использование энергосберегающих ламп в освещении позволит сэкономить за год сумму превосходящую стоимость замены ламп более чем в три раза.

2. При пользовании любой бытовой техникой следуйте прилагаемой к ней инструкции. Например, холодильник не должен стоять рядом с плитой или отопительной системой, при этом затраты электроэнергии возрастут в несколько раз. Своевременная очистка от наледи морозильной камеры позволит сэкономить до 15-20 процентов.

3. Уходя гасите свет. Это простое и эффективное правило — не нужен свет — выключи его.

4. Протрите лампочки. Пыль может «съедать» до 20 процентов света, исходящего от лампы. Кроме того, не стоит забывать и про плафоны.

5. В квартире предпочтительно иметь светлые обои и покрасить потолок в белый цвет. Светлые стены способны возвращать до восьмидесяти процентов лучей. Чем темнее обои, тем меньшей будет светоотдача, например, черный цвет отдает лишь девять процентов света.

6. Отопление электричеством — крайняя мера, и если она неизбежна, то: используйте теплоотражающие экраны из фольги или пенофола, установленные за батареями. Данная мера поможет повысить температуру в комнате на 2-3 градуса и сократить потребление электроэнергии.

8. Используйте бытовые приборы класса «А». Современная энергосберегающая бытовая техника потребляет гораздо меньше энергии, чем любая другая. Экономия может составлять до пятидесяти процентов. Кроме того, существуют приборы класса А+ и А++. Соответственно, их энергосберегающие способности еще выше. 9.

9. Замена старой проводки. Повышенное потребление электричества возникает из-за старости электропроводки; провода греются, электроэнергия уходит. Замена проводки позволит вам быть уверенным в надежности и безопасности.

10. Режим ожидания — в месяц по квартире 15-20 кВт, за ожидание. Телевизоры, компьютеры, музыкальные центры активно эксплуатируются лишь по несколько часов в сутки. Только отключив от сети, вы полностью отделяете от электричества какое-либо устройство.

Заключение

Современную жизнь без электричества представить невозможно. Применение этого вида энергии прочно вошло во все сферы жизни человека. Электричество — универсальный помощник, который применим везде. Вместе с тем, требует к себе внимания, дисциплины и ответственности; экономного применения.

Рост потребления электроэнергии совместно с загрязнением среды так или иначе заставит людей по-другому относится к энергетическим ресурсам, их использованию. Современная цивилизация без электрической энергии существовать не может. Интеллект человека — универсальный инструмент — решит проблемы применения и производства электрической энергии.

Список литературы

1. Аметистов. Год выпуска: 2004; Учебное электронное издание Издательство: МЭИ.

2. Н. Кавешников — к.полит.н., доцент, зав. каф. европейской интеграции МГИМО (У) МИД России, в.н.с. Института Европы РАН Возобновляемая энергетика в ЕС: смена приоритетов.

3. Форбс. Иван Житенев. Будущее: почему умная энергетика произведет революцию.

4. Информационно-аналитический портал Нефть России. Николай Марков. Эксперты МЭА и Ernst & Young.

Размещено на Allbest.ru

Подобные документы

    Основы энергосбережения, энергетические ресурсы, выработка, преобразование, передача и использование различных видов энергии. Традиционные способы получения тепловой и электрической энергии. Структура производства и потребления электрической энергии.

    реферат , добавлен 16.09.2010

    Общие понятия, история открытия электромагнитной индукции. Коэффициент пропорциональности в законе электромагнитной индукции. Изменение магнитного потока на примере прибора Ленца. Индуктивность соленоида, расчет плотности энергии магнитного поля.

    лекция , добавлен 10.10.2011

    Ветроэнергетика, солнечная энергетика и гелиоэнергетика как альтернативные источники энергии. Нефть, уголь и газ как основные источники энергии. Жизненный цикл биотоплива, его влияние на состояние природной среды. Альтернативная история острова Самсо.

    презентация , добавлен 15.09.2013

    География мировых природных ресурсов. Потребление энергии — проблема устойчивого развития. Статистика потребления мировой энергии. Виды нетрадиционных (альтернативных) источников энергии и их характеристика. Хранение отработавшего ядерного топлива.

    презентация , добавлен 28.11.2012

    Экономия электрической энергии. Эффективные способы экономии электричества в быту. Потребление энергии в режиме ожидания. Правила пользования электроприборами. Применение местных светильников. Использование компьютера с пониженным энергопотреблением.

    презентация , добавлен 24.02.2014

    Характеристика возобновляемых источников энергии: основные аспекты использования; преимущества и недостатки в сравнении с традиционными; перспективы использования в России. Способы получения электричества и тепла из энергии солнца, ветра, земли, биомассы.

    курсовая работа , добавлен 30.07.2012

    Классификация возобновляемых источников энергии. Современное состояние и перспективы дальнейшего развития гидро-, гелео- и ветроэнергетики, использование энергии биомассы. Солнечная энергетика в мире и в России. Развитие биоэнергетики в мире и в РФ.

    курсовая работа , добавлен 19.03.2013

    Потребление тепловой и электрической энергии. Характер изменения потребления энергии. Теплосодержание материальных потоков. Расход теплоты на отопление и на вентиляцию. Потери теплоты с дымовыми газам. Тепловой эквивалент электрической энергии.

    реферат , добавлен 22.09.2010

    История открытия явления электромагнитной индукции. Исследование зависимости магнитного потока от магнитной индукции. Практическое применение явления электромагнитной индукции: радиовещание, магнитотерапия, синхрофазотроны, электрические генераторы.

    реферат , добавлен 15.11.2009

    Основные способы получения энергии, их сравнительная характеристика и значение в современной экономике: тепловые, атомные и гидроэлекростанции. Нетрадиционные источники энергии: ветровая, геотермальная, океаническая, энергия приливов и отливов, Солнца.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF

Содержание

    Введение

    Цель работы.

    Что такое электричество?

    Почему электричество называется электричеством?

    Где применяют электричество?

    Электричество — двигатель науки.

    Где в природе есть электричество?

    Какое электричество было у древних людей?

    Проведение опыта.

    Заключение.

    Введение.

Почему я заинтересовалась этой темой?

Мне интересно, что такое электричество и можно ли его получить в походных условиях, там, где нет доступных, привычных нам источников электрического тока.

    Цель работы

    Изучить, что такое электричество.

    Рассказать ребятам, что такое электричество и где оно «живет».

    Провести эксперимент по извлечению электричества из овощей и фруктов, оказавшихся под рукой.

    Что такое электричество?

Сейчас трудно представить человеческую жизнь без использования электроэнергии. Оно вырабатывается, например, в батарейках, но главный его источник — электростанции, откуда оно поступает в наши дома по толстым проводам, или кабелям. Попробуйте представить себе, как течет вода в реке. Точно так же движется по проводам электричество. В реке течет вода, а в проводах проходят маленькие частицы, которые называются электронами. Вот почему электричество называется электрическим током. Электрический ток — это упорядоченное движение потока электронов внутри проводника, например, куска проволоки.

Электрически ток движется по проводам только в том случае, если они соединены в замкнутое кольцо — электрическую цепь. Возьмем, например, фонарик: провода, соединяющие батарейку, лампочку и выключатель, образуют замкнутую цепь. Пока по цепи идет ток, лампочка горит. Если цепь разомкнуть — скажем, отсоединить провод от батарейки, — лампочка погаснет.

  1. Почему электричество называется электричеством?

Древнегреческий философ Фалес Милетский целенаправленно ставил разнообразные опыты с «электроном», что по-гречески и означает «янтарь». Мы знаем об этих незатейливых опытах не слишком много. Более-менее известно, что философ вытачивал из янтаря разнообразные фигурки — палочки, пластины, шарики и кубики, которые затем натирал всяческими тканями, шкурками и шерстью.

Но термин «электричество» появился без малого 500 лет назад. Английский физик Уильям Гильберт исследовал электрические явления и заметил, что многие предметы, подобно янтарю, после натирания притягивают к себе более мелкие частицы. Поэтому в честь ископаемой смолы он назвал это явление электричеством (от. лат. Electricus (электрикус) — янтарный).

Итак, слово «электричество » происходит от греческого названия янтаря — электрон.

  1. Где применяют электричество?

Сегодня нам трудно представить жизнь без электричества, но электричество постепенно раскрывало перед человечеством все свои тайны. Только в 19 веке люди научились использовать электричество в жизни.

Когда была создана первая лампочка, в жизнь людей вошло электрическое освещение. Потом человечество научилось при помощи электричества передавать на расстоянии звук и изображение, так появились телевизор, телефон, радио и так далее. В каждом современном доме имеется различная бытовая техника, и вся она работает за счет электричества.

Люди научились не только использовать, но и добывать электричество. Так появились электростанции, были созданы аккумуляторы и генераторы.

Ко всему прочему, электричество является двигателем науки . Многие приборы, которые используются учеными для изучения окружающего мира, тоже работают от него.

Постепенно электроэнергия завоевывает и космос. Мощные батареи стоят на космических кораблях, а на планете возводятся солнечные батареи и устанавливаются ветряки, которые получают энергию от природы.

Электричество в современном мире используют повсюду: в медицине, строительстве, промышленности и повседневной жизни. Поэтому электричество играет важную роль в жизни человека.

ВНИМАНИЕ! Электричество опасно для жизни. С электроприборами и розетками следует обращаться очень осторожно. Не лазайте по мачтам линии электропередачи, а еще лучше — не подходите к ним вообще!

  1. Где в природе есть электричество?

Электрические заряды есть также в природе, к примеру, молния — мощный разряд электричества.

Между прочим, нервная система человека функционирует за счет электрических импульсов, которые поступают от раздраженного участка в мозг. Внутри нейронов мозга сигналы передаются электрическим путем.

Но не только человек генерирует в себе электрические токи. Многие обитатели морей и океанов способны вырабатывать электричество. Например, электрический угорь способен создать напряжение до 500 вольт, а мощность заряда ската достигает 0,5 киловатт. К тому же отдельные виды рыб используют электрическое поле, которое создают вокруг себя, с помощью чего легко ориентируются в мутной воде и на глубине, куда не проникает солнечный свет.

    Какое электричество было у древних людей?

4000 лет назад у древних людей было электричество. Во время раскопок недалеко от Багдада нашли глиняный горшок времен месопотамского царства. Внутри были медный цилиндр и железный стержень. Зачем? Археологи терялись в догадках.

Горшок в шутку назвали багдадской батарейкой. Современные батарейки устроены похоже — два разных металла и электролит. В такой же горшок налили уксус в качестве электролита, опустили медный цилиндр и железный стержень — пошел электрический ток.

Такие же горшки с металлическими вставками нашли и в Египте. Получается, об электричестве знали много тысяч лет назад. Для того чтобы сделать простейшую батарейку, не нужен даже горшок. Сосуд с уксусом заменит обычный лимон. Роль железного стержня исполнит обычный шуруп. Вместо цилиндра — медная проволока. Если к устройству подключить вольтметр, батарейка заработает.Некоторые исследователи утверждают, что древние египтяне освещали подземные галереи с помощью электричества. На подземных стенах и потолках нет следов копоти, которые непременно остались бы, если мастера работали бы при свете, например, факела.

На барельефах египетских храмов можно разглядеть в руках жрецов продолговатый предмет, напоминающий колбу электрической лампы. Внутри «лампы» вместо спирали извивается змея.

  1. Проведение опыта. Как я зажгла лампочку при помощи овощей и фруктов.

Для изготовления батарейки из овощей и фруктов мне понадобились:

    овощи, фрукты,

    оцинкованные гвозди,

    отрезки медной проволоки,

    провода с зажимами,

    светодиод,

    мультиметр.

В исследуемый плод необходимо воткнуть оцинкованный гвоздь и отрезок толстой медной проволоки (электроды).

Далее следует щупы устройства измерения (мультиметр) присоединить к концам электродов. Мультиметр покажет напряжение в Вольтах, возникающее на концах проводника.Данные измерений сгруппировала. Итак, подопытные овощи и фрукты дают следующее напряжение (В):

Фото

Овощ/фрукт

напряжение (В):

Солёный огурчик

Картошка

Свежий огурчик

В группе моих овощей (фруктов) лидером по полученному напряжению стало яблоко, а свекла очутилась в отстающих. Но напряжения в 1 В оказалось недостаточно, чтобы зажечь светодиодную лампочку. Стала экспериментировать, чтобы это исправить и все-таки получить свет. Я соединила последовательно несколько различных овощей (фруктов) при помощи электродов и проводов. Цепочка из трех яблок дала напряжение 2,93 В. Для примера — две пальчиковые батарейки дают напряжение 3,10 В (см. табл. ниже). Этого достаточно, чтобы засветился маленький светодиод.

Результаты измерений представлены в таблице ниже:

Думаю, если необходимо зажечь настоящую лампочку 220В в светильнике, то для этого понадобится большое количество фруктов, дешевле будет использовать картошку, но и тогда её потребуется целый мешок.

А вот наглядный пример положительного результата моего опыта:

  1. Заключение

В ходе исследования выяснилось, что от данного природного источника питания извлечь много электричества не получится, но для подзарядки батареи мобильного телефона или аккумулятора фотоаппарата и иных приборов, потребляющих небольшой ток, этого будет достаточно.

Источники информации:

    Детская энциклопедия «1001 вопрос и ответ».

    Бескрайний интернет.

    Любимые родители.

в каком году появилось и кто изобрел, история открытия постоянного и переменного тока

В жизни современного человека огромную роль играет электричество. До сих пор многие не понимают, как когда-то люди жили без электрического тока. В наших домах есть свет, вся бытовая техника, начиная от телефона и заканчивая компьютером, работает от электрического напряжения. Кто изобрёл электричество и в каком году это произошло, знают далеко не все. А вместе с тем это открытие положило начало новому периоду в истории человечества.

На пути к появлению электричества

Древнегреческий философ Фалес, живший в 7 веке до нашей эры, выяснил, что если потереть янтарь о шерсть, то к камню начнут притягиваться мелкие предметы. Лишь спустя много лет, в 1600 году, английский физик Уильям Гилберт ввел термин «электричество». С этого момента ученые стали уделять ему внимание и проводить исследования в этой области. В 1729 Стивен Грей доказал, что электричество можно передавать на расстоянии. Важный шаг был сделан после того, как французский ученый Шарль Дюфэ открыл, как он считал, существование двух видов электричества: смоляного и стеклянного.

Первым, кто попробовал объяснить, что такое электричество, был Бенджамин Франклин, портрет которого нынче красуется на стодолларовой купюре. Он считал, что все вещества в природе имели «особую жидкость». В 1785 был открыт закон Кулона. В 1791 году итальянский ученый Гальвани исследовал мышечные сокращения у животных. Он выяснил, проводя опыты на лягушке, что мышцы постоянно возбуждаются мозгом и передают нервные импульсы.

Огромный шаг на пути к изучению электричества был сделан в 1800 году итальянским физиком Алессандром Вольта, который придумал и изобрел гальванический элемент — источник постоянного тока. В 1831 году англичанин Майкл Фарадей изобрел электрический генератор, который работал на основе электромагнитной индукции.

Огромный вклад в развитие электричества внес выдающийся ученый и изобретатель Никола Тесла. Он создал приборы, которые до сих пор используются в быте. Одна из самых известных его работ — двигатель переменного тока, на основе которого был создан генератор переменного тока. Также он проводил работы в области магнитных полей. Они позволяли использовать переменный ток в электродвигателях.

Еще одним ученым внесшим вклад в развитие электричества, был Георг Ом, который экспериментальным путем вывел закон электрической цепи. Другим выдающимся ученым был Андре-Мари Ампер. Он изобрел конструкцию усилителя, которая представляла собой катушку с витками.

Также важную роль в изобретении электричества сыграли:

  • Пьер Кюри.
  • Эрнест Резерфорд.
  • Д. К. Максвелл.
  • Генрих Рудольф Герц.

Первое применение электроэнергии

В 1870-х годах русским ученым А. Н. Лодыгиным была изобретена лампа накаливания. Он, предварительно откачав из сосуда воздух, заставил светиться угольный стержень. Чуть позже он предложил заменить угольный стержень на вольфрамовый. Однако запустить лампочку в массовое производство смог другой ученый — американец Томас Эдисон. Поначалу в качестве нити в лампе он использовал обугленную стружку, полученную из китайского бамбука. Его модель получилась недорогой, качественной и могла прослужить относительно долгое время. Значительно позже Эдисон заменил нить на вольфрамовую.

Никто не знает, в каком году изобрели электричество, но начиная с XIX века оно активно вошло в жизнь человека. Поначалу это было просто освещение, затем электрический ток начали применять и для других сфер жизни (транспорта, средств передачи информации, бытовой техники).

Использование освещения в России

Пытаясь выяснить, в каком году появилось электричество в России, учёные склоняются к мнению, что это случилось в 1879 году. Именно тогда был освещен Литейный мост в Петербурге. 30 января 1880 года был создан электротехнический отдел в Русском техническом обществе. Это общество и занималось развитием электричества в Российской империи. В 1883 году произошло знаковое в истории электричества событие — было выполнено освещение Кремля, когда к власти пришел Александр III. По его указу образовывается специальное общество, которое занимается разработкой генерального плана по электрификации Петербурга и Москвы.

Переменный и постоянный ток

Когда открыли электричество, между Томасом Эдисоном и Никола Теслой разгорелся спор, какой ток использовать в качестве основного, переменный или постоянный. Противостояние между учёными даже было прозвано «Войной токов». В этой борьбе победил переменный ток, так как он:

  • легко передается на большие расстояния;
  • не несет огромных потерь, передаваясь на расстоянии.

Основные области потребления

В повседневной жизни постоянный ток применяется довольно часто. От него работают различные бытовые приборы, генераторы и зарядные устройства. В промышленности его используют в аккумуляторах и двигателях. В некоторых странах им оснащаются линии электропередач.

Переменный ток способен меняться по направлению и величине в течение определенного промежутка времени. Он применяется чаще постоянного. В наших домах его источником служат розетки, к ним подключают различные бытовые приборы под разным напряжением. Переменный ток часто применяется в промышленности и при освещении улиц.

Электроток в жизни и природе

Сейчас электричество в наши дома поступает благодаря электрическим станциям. На них установлены специальные генераторы, которые работают от источника энергии. В основном эта энергия тепловая, которая получается при нагревании воды. Для нагревания воды используют нефть, газ, ядерное топливо или уголь. Пар, образовывающийся при нагревании воды, приводит в действие огромные лопасти турбин, которые, в свою очередь, запускают генератор. В качестве питания генератора можно использовать энергию воды, падающую с высоты (с водопадов или плотин). Реже используется сила ветра или энергия солнца.

Затем генератор при помощи магнита создает поток электрических зарядов, проходящих по медным проводам. Для того чтобы передавать ток на большие расстояния, необходимо повысить напряжение. Для этой роли используется трансформатор, который повышает и понижает напряжение. Потом электричество с большой мощностью передается по кабелям к месту его применения. Но перед попаданием в дом необходимо понизить напряжение с помощью другого трансформатора. Теперь оно готово к использованию.

Когда заводят разговор об электричестве в природе, первыми на ум приходят молнии, но это далеко не единственный его источник. Даже наши с вами тела имеют электрический заряд, он существует в тканях человека и передает нервные импульсы по всему организму. Но не только человек содержит в себе электрический ток. Многие обитатели подводного мира также способны выделять электричество, например, скат содержит в себе заряд мощностью 500 Ватт, а угорь может создать напряжение до 0,5 киловольт.

Кто придумал электричество и какой принцип его действия

Современную жизнь просто невозможно представить без света и электроприборов. Потому открытие электричества – важнейшее событие в истории человечества. Это революционный прорыв, который подарил людям огромные возможности, сделав жизнь комфортной. Электричество – это движение заряженных частиц под действием электромагнитного поля либо в одном направлении (постоянный ток), либо с периодической сменой направления (переменный ток). 

Сам термин возник от греческого слова «электрон», что означает «янтарь». Его родоначальником стал древнегреческий философ Фалес, который ещё в 7 в. до н. э. обнаружил чудесное свойство янтаря притягивать к себе легкие материалы (например, пробковую стружку) и волосы, если его потереть о кусок шерсти. Однако только в середине 17 века нашей эры были досконально изучены наблюдения Фалеса. Этим занялся немецкий физик Отто фон Герике, который создал первый электроприбор. Он представлял собой закреплённый на металлическом штифте вращающийся шар из серы, который также как и янтарь имел силу притяжения и отталкивания.

А вот список главных приборов для которых и придумали электричество:

Наименование: Энергосберегающая лампа EUROLAMP Candle Twisted 9W E14 4100K
Тип лампы: Декоративная
Артикул: CT-09144
Мощность (W): 9
Световой поток (lm): 550
Ширина (мм): 106
Высота (мм): 38
Температура (К): 4100
Тип света: свет нейтральный
Тип цоколя: Е14
Напряжение (V): 180-240
Ресурс, часов: 12000
Срок службы, лет 8
Аналог лампы накаливания (W): 45
Ток (mA): 60
Частота электросети (Hz): 50
Количество в ящике, шт: 50
Класс энергосбережения: А
Штрих код упаковки: 4260232674332
Размер упаковки (мм): 46х46х117
Штрих-код ящика: 4260232674356
Производитель: EUROLAMP
Гарантия: 2 года
—//лучшее предложение//—

(Код: CT-09144)

Тип лампы: Декоративная
Мощность (W): 9
Температура (K): 4100
Тип цоколя: Е14

Наименование:EUROLAMP LED Лампа G45 5W E14 3000K
Тип лампы:Декоративная
Артикул:LED-G45-05143(D)
Мощность (W): 5
Cветовой поток (lm): 500
Ширина (мм): 45
Высота (мм): 78
Температура (К): 3000
Тип света: теплый свет
Тип цоколя: E14
Напряжение (V): 175-250
Ресурс , часов: 50000
Срок службы, лет: 35
Аналог лампы накаливания (W): 50
Ток (mA): Данные не указаны
Частота электросети (Hz): 40/60
Количество в ящике, шт: 50
Класс энергосбережения: A
Штрих код упаковки: 4260410482704
Размер упаковки (мм): Данные не указаны
Штрих код ящика: 4260410483107
Производитель: EUROLAMP
Гарантия: 5

(Код: LED-G45-05143(D))

Тип лампы: Декоративная
Мощность (W): 5
Температура (K): 3000
Тип цоколя: E14

Наименование:EUROLAMP LED Лампа G95 15W E27 4000K
Тип лампы:Декоративная
Артикул:LED-G95-15274(D)
Мощность (W): 15
Cветовой поток (lm): 1300
Ширина (мм): 95
Высота (мм): 128
Температура (К): 4000
Тип света: нейтральный свет
Тип цоколя: E27
Напряжение (V): 175-250
Ресурс , часов: 50000
Срок службы, лет: 35
Аналог лампы накаливания (W): 150
Ток (mA): 90
Частота электросети (Hz): 40/60
Количество в ящике, шт: 25
Класс энергосбережения: A
Штрих код упаковки: 4260410485637
Размер упаковки (мм): 145*100*100
Штрих код ящика: 4260410485651
Производитель: EUROLAMP EUROLAMP
Гарантия: 5

(Код: LED-G95-15274(D))

Тип лампы: Декоративная
Мощность (W): 15
Температура (K): 4000
Тип цоколя: E27

Наименование: EUROLAMP LED Світильник квадратний Downlight NEW 4W 4000K
Тип светильника: Врезной
Артикул: LED-DLS-4/4
Мощность (W): 4
Cветовой поток (lm): 280
Ширина (мм): 105
Высота (мм): 10
Температура (К): 4000
Тип света: нейтральный свет
Напряжение (V): 175-250
Ресурс , часов: 50000
Ток (mA): Данные не указаны
Частота электросети (Hz): 50
Количество в ящике, шт: 40
Класс энергосбережения: A
Штрих код упаковки: 4260410480816
Размер упаковки (мм): 1300*1700*320
Штрих код ящика: 4260410481011
Производитель: EUROLAMP
Гарантия: 2

(Код: LED-DLS-4/4)

Тип светильника: Врезной
Мощность (W): 4
Температура (K): 4000
Размеры (мм): 105*10

В 1729 году учёный Стивен Грей, который изучал свойства движения электричества, обнаружил, что не все материалы могут проводить электрический ток. Вещества, которые проводят ток, получили название «электрики» (проводники), а те, которые не проводят ток, – «диэлектрики» (изоляторы). Не менее важным стало открытие французского учёного Шарля Дюфея, который в 1733 году в результате многочисленных экспериментов с серой и смолой открыл положительный и отрицательный электрический заряд. Хотя он первоначально считал, что это два разных вида электрического тока.

Первый конденсатор, который получил название Лейденская банка, был создан голландским физиком Питером ван Мушенбруком. Это устройство состояло из стеклянной колбы, обшитой листом олова внутри и снаружи. Банка закрывалась деревянной крышкой, и в неё вставлялся металлический штырь. При подаче электроэнергии Лейденская банка могла накапливать довольно мощные заряды. Также с её помощью была получена первая электрическая искра.
В 1747 году американский политик и учёный Бенджамин Франклин представил свой научный трактат, в котором давалось понятие «электричество». Там писалось, что все материалы содержат «жидкое электричество», которое под воздействием трения может перетекать от одного материала к другому и накапливаться в них. Бенджамин Франклин также является изобретателем громоотвода, с помощью которого доказал, что молния имеет электрическое происхождение.

В 1785 году французским учёным Шарлем Кулоном на основе многочисленных экспериментов с металлическими шариками был выеден закон, описывающий электрическое взаимодействие между точечными зарядами (закон Кулона). Суть его в открытии того, что одноимённо заряженные частицы («-» и «-» или «+» и «+») отталкиваются, а разноимённо заряженные («-» и «+») – притягиваются.

В 1800 году было сделано главное открытие в изучении электричества. Итальянский физик Алессандро Вольта изобрёл первый гальванический элемент – химическую батарею. Он состоял из круглых серебряных пластинок, между которыми находились смоченные в солёной воде кусочки бумаги. Химическая батарея позволяла получать постоянный электрический ток благодаря химическим реакциям.

Датский учёный Ханс-Кристиан Эрстед в 1820 году открыл воздействие электрического тока на магнит. Он заметил, что при подаче электрического тока на проводник стрелка компаса, лежащего параллельно, поворачивается в перпендикулярном направлении. Разработки Эрстеда продолжил французский учёный Андре-Мари Ампер, который занялся исследованием электрического магнетизма, дав начало новой науке – электродинамике. Множество таких талантливых учёных, как Омм, Ленц, Гаусс, Джоуль, занимались исследованиями электрического тока. В 1830 году был открыто электростатическое поле.
В 1831 году английский учёный Майкл Фарадей открыл электромагнитную индукцию и на её основании изобрел первый электрогенератор. Также он ввел понятие магнитного и электрического поля и создал элементарный электродвигатель. Он представлял собой электрический проводник, вращающийся вокруг магнита.


Учёным, который сделал громадный вклад в изучение электричества и магнетизма и, что самое главное, использовал свои разработки на практике, был Никола Тесла. Благодаря его изобретениям современные люди пользуются многими бытовыми и электроприборами. Никола Тесла – человек, которого по праву считают одним из величайших изобретателей 20 века.

в каком году, открытие, история, кто изобрёл и придумал, в каком году

Электричество прочно вошло в нашу жизнь, и теперь в случае кратковременного отсутствия электроснабжения наступает “конец света” не только в переносном, но и в прямом смысле. Привыкнув к благам цивилизации, которые стали возможны благодаря применению электрической энергии, современным людям трудно понять, как жили наши предки.

При мысли об этом в голове возникает картина темной пещеры, внутри которой горит костер. Древний человек, одетый в шкуру, задумчиво смотрит на огонь и подбрасывает в него сухие ветки. Рядом сидят дети, внимательно следят за его действиями и слушают рассказы об огненном цветке.

Многие читатели наверняка удивятся, если узнают, что электричество было известно еще в далекой древности. Причем точно ответить на вопрос, кто изобрел электричество, невозможно.

Наши предки уже знали о возможностях некоторых видов рыб испускать электрические разряды, которые обездвиживали жертву. А чего стоит находка “багдадской батарейки” — предположительно первого химического источника тока, работавшего более 2,5 тысячи лет назад? Вперед, читатель, попробуем разобраться в запутанной истории применения электричества.

История открытия

Атмосферное электричество существовало задолго до появления человека. Оно вызывало пожары и представляло непосредственную опасность для древних людей. Увидев приближение грозы, наши предки принимали ее за гнев грозных богов и благоразумно старались не выходить из укрытий.

Неизвестная сила привлекала, поэтому зная об опасности электричества, люди все же старались применять его для своих целей. До нашего времени, к большому сожалению, дошло мало данных. Поэтому ответ на вопрос, кто первым придумал использовать электричество, похоже, навсегда останется скрытым во тьме истории.

Наблюдения в древности

Наши предки знали о необычных свойствах некоторых видов рыб. В древнеегипетских текстах, которые датируются 2750 годом до нашей эры, встречается упоминание о рыбах, способных создавать электрические разряды, — “громовержцах Нила”.

Рисунок 1. Древнеегипетский барельеф из гробницы Ти в Саккаре

На барельефе, созданном древним художником примерно в 2300 году до нашей эры, представлена сцена ловли рыбы. Среди изображений рыб на нижней части барельефа можно увидеть электрического сома.

Рисунок 2. Электрический сом

Древнеримский ученый Плиний Старший описывал необычные возможности электрических сомов и скатов. Он упоминал о способности разрядов, создаваемых этими животными, перемещаться по проводящим ток объектам.

Рисунок 3. Электрический скат

Арабские, древнеримские и древнегреческие врачи использовали способности электрических рыб при устранении подагры и головной боли. Способ лечения заключался в том, что больной прикасался к ним и получал мощный электрический разряд.

Известный древнеримский ученый Гален, живший во 2 веке нашей эры, настолько успешно применял этот метод для терапии, что император Марк Аврелий сделал его своим врачом.

Заслуживают внимания барельефы древнеегипетского храма богини Хатхор, построенного более 4,5 тысячи лет назад. Изображенные на стенах предметы похожи на газоразрядные электрические лампы и дают основания предполагать, что они использовались для освещения храма.

Рисунок 4. Барельеф из храма Хатхор

Большинство египтологов придерживаются противоположной точки зрения. Они опровергают это открытие и утверждают, что для изготовления таких ламп помимо мощного источника тока требовались вакуумные насосы, проводники тока, изоляторы и развитое стеклодувное производство.

Фалес, философ и математик из древнегреческого города Милета, в 600 г. до нашей эры опытным путем установил, что янтарь при натирании мехом животных притягивает к себе разные легкие предметы. Из-за малого количества исследований и низкого уровня развития науки того времени суть явления полностью не была изучена.

Рисунок 5. Фалес Милетский

Необычная особенность янтаря объяснялась воздействием божественных сил. Кстати, корень слова «электричество» связан с греческим названием янтаря — электрон.

Немецкий археолог Вильгельм Кениг в 1936 г. в окрестностях Багдада, столицы современного государства Ирака, обнаружил артефакт возрастом более 2 тысяч лет. Это остатки глиняного сосуда, длина которого составляла 13 см. Верхняя часть сосуда была покрыта битумом. Внутри находился стальной стержень, вставленный в медный цилиндр.

Ученый предположил, что этот сосуд является химическим источником электрического тока при заполнении раствором кислоты или щелочи. Догадку Кенига опытным путем подтвердили многие ученые. Так, в 1947 г. американским ученым-физиком была изготовлена копия сосуда. В качестве электролита он использовал сульфат меди. Напряжение, создаваемое батареей, составило 2 В.

Рисунок 6. Багдадская батарея

Конечно, у теории возможности создания древними людьми источников тока нашлись критики. Они утверждают, что оборудование, которое могло бы работать от электрического тока, не найдено. Устройство батареи, при котором вся верхняя часть покрывалась слоем битума, не предполагает его использования в качестве источника тока, а наоборот, схоже с сосудами для хранения свитков.

Шарль Франсуа Дюфе и типы зарядов

В конце XVI века ученые начали интересоваться античными трудами. Английский придворный врач Елизаветы I и по совместительству ученый-физик Уильям Гилберт ввел в широкое обращение термин “электричество” в 1600 г.

Этим термином ученый описывал силу, создаваемую разными веществами при трении друг о друга. Он также является автором научного трактата. В нем Гилберт предложил рассматривать Землю как большой магнит, полюсы которого совпадают с географическими.

Рисунок 7. Уильям Гилберт

Гилберт был первым ученым, который разделил понятия магнетизма и статического электричества. Он является создателем простейшего прибора, названного “версориум”. Устройство предназначалось для определения присутствия электрического поля.

Рисунок 8. Версориум

С его помощью ученый доказал, что при натирании возможность притягивать к себе предметы небольшого веса свойственна не только янтарю, но и другим материалам. Также он впервые описал изолирующие и экранирующие свойства разных материалов.

В 1663 г. бургомистр немецкого города Магдебурга Отто фон Герике продолжил исследования Уильяма Гилберта и построил электростатическую машину. С ее помощью изучались эффекты притягивания и отталкивания разных тел.

Машина состояла из шара, внутри которого был закреплен стальной стержень. Шар изготавливали, заливая расплавленную серу в стеклянный сосуд. После того как сера застывала, сосуд разбивали.

Шар устанавливался на специальном креплении. Вращение шара производилось при помощи специальной рукоятки. Прислонив к нему сухую руку, можно было наблюдать, как легкие тела под воздействием статического электричества притягиваются или отталкиваются. Также ученый доказал, что статические заряды могут передаваться на небольшие расстояния по льняной нити.

Рисунок 9. Электростатическая машина фон Герике

Опыты фон Герике по передаче электричества на расстояние продолжил английский ученый Стивен Грей. Он наблюдал за тем, как пробка, которая закрывает стеклянную трубку, начинает притягивать легкие предметы, если трубку потереть.

Присоединив к пробке шелковую нить, ученый смог добиться того, что максимальное расстояние, на которое смог быть передан заряд электричества, составило 800 футов.

Причем было установлено, что на расстояние оказывает влияние не толщина веревки, а материал, из которого она изготовлена. Также ученый определил, что электрические заряды могут передаваться путем электростатической индукции без прикосновения стеклянной трубки к веревке. Грей установил, что вещества делятся на проводники электричества и диэлектрики.

Рисунок 10. Опыты Стивена Грея

Французский ученый Шарль Дюфе, изучив опыты предшественников, в 1733 г. выявил, что в природе существует два вида электрических зарядов, или, как он их называл, “смоляное и стеклянное электричество”. Причем электричество разного рода может притягиваться, а одного вида отталкивает себе подобное.

Рисунок 11. Шарль Дюфе

Следующим этапом в изучении электричества стало изобретение конденсатора, устройства для накапливания электрических зарядов, в 1745 г. в голландском городе Лейдене.

История его открытия сообщает о двух ученых, которые обнаружили этот эффект независимо друг от друга. Первым, кто открыл эффект накопления электрических зарядов, стал Эвальд фон Клейст.

Открытие было сделано случайно, когда он заряжал от электрической машины стальной гвоздь. Решив, что гвоздь достаточно заряжен, ученый стал доставать его из банки, которую держал другой рукой. Прикоснувшись к гвоздю, он получил заметный удар электрическим током.

В результате была открыта возможность накопления электричества. Немного позже его опыт повторил профессор Питер фон Мушенбрук. Он использовал налитую в стеклянный сосуд воду и погружал в нее медную проволоку. Когда ученый попытался прикоснуться к заряженному медному проводнику, он получил сильный электрический удар.

Рисунок 12. Опыты с лейденской банкой

Впоследствии фон Мушенбрук доложил об открытии научному сообществу. Полученное устройство стало называться “лейденская банка”.

Рисунок 13. Устройство лейденской банки

Примерно в это же время в России изучением атмосферного электричества занимались такие великие ученые, как Михаил Ломоносов и Георг Рихман. Для исследования явления ими был сконструирован громоотвод. С его помощью ученые заряжали “лейденскую банку”. Также они изобрели прибор для измерения электричества — “электрический указатель”.

К сожалению, в 1753 г. во время одного из экспериментов с атмосферным электричеством Георг Рихман трагически погиб из-за удара молнии.

Рисунок 14. Трагическая гибель Рихмана во время эксперимента

Бенджамин Франклин и воздушный змей

Продолжая исследовать природу того, как появляется электричество, американский ученый и известный политический деятель Бенджамин Франклин ввел определение положительного и отрицательного зарядов.

В Филадельфии в 1752 г. он проводил опыты по изучению электрических явлений в атмосфере. Суть заключалась в запуске воздушного змея в грозовое облако. Он состоял из стальной рамки, обтянутой шелковой тканью. Змей был привязан к шелковой ленте.

На конце ленты находился металлический ключ. Зная о смертельной опасности, возникающей при ударе молнии, Франклин не стал ждать момента удара. Вместо этого он запустил змея в облако и обнаружил, что тот может собрать электрические заряды.

Рисунок 15. Опыт Франклина с воздушным змеем

Также он смог описать принцип действия громоотвода и для повышения его эффективности предложил делать верхнюю часть заостренной. При помощи громоотвода ученому удалось доказать, что молния имеет электрическую природу.

Луиджи Гальвани и Алессандро Вольта — открытия в Италии на рубеже 18-19 веков

Итальянский ученый Луиджи Гальвани в 1771 г. во время проведения опытов по изучению сокращения мышц обнаружил возможность препарированных лапок лягушки сокращаться под действием электричества. Это случайное открытие положило начало новому направлению науки — электрофизиологии.

В опубликованном им в 1791 г. трактате ученый описал наличие в мышцах животных электрического тока. Само явление получило название в его честь — гальванизм. Гальвани предположил, что мышцы животных являются подобием лейденской банки и могут накапливать электрические заряды, которые передаются по нервам.

Рисунок 16. Луиджи Гальвани

Последователь Луиджи Гальвани, его племянник, профессор анатомии Джованни Альдини приобрел известность тем, что сделал из открытия своего дяди жуткое зрелище. Вместо препарированной лягушки для своих опытов он использовал трупы казненных преступников. Зрители могли видеть, как тело двигается, открывает глаза и корчит гримасы. После такого шоу некоторые длительно страдали расстройством психики.

В 1785 г. французский ученый Шарль Кулон сформулировал закон, который описывал силу взаимодействия между электрическими зарядами, зависящую от расстояния между ними. Работа по изучению электрических явлений стала точной наукой.

Опыты с электричеством Луиджи Гальвани вдохновили его соотечественника, ученого Алессандро Вольта, на проведение экспериментов с “животным электричеством”. Вольта пришел к выводу, что такие явления имеют отношение к замкнутой электрической цепи, состоящей из двух разных видов металлов и жидкости.

Рисунок 17. Алессандро Вольта

В 1800 г. он изобретает химический источник тока — “Вольтов столб”. Устройство представляло собой диски из разных металлов, между которыми помещались бумажные диски, пропитанные щелочными растворами.

Рисунок 18. Вольтов столб

Проводя опыты с лягушачьими лапками, ученый пришел к выводу, что величина их сокращений будет зависеть от вида металлов. При прикосновении к ним проводниками из металлов одного типа эффект не наблюдается. Благодаря этому исследованию он пришел к пониманию разницы потенциалов.

Продолжая опыты с электричеством, Вольта пришел к открытию того, что нервы имеют большую возбудимость по сравнению с мышцами. Также ученый определил, что органы зрения и вкуса человека чувствительны к воздействию электрического тока.

Используя открытие Вольта, российский ученый Василий Петров в 1802 г. собрал большую батарею, состоявшую из 2100 пар медных и цинковых дисков, между которыми находились диски из картона, пропитанные нашатырным раствором.

Диски были уложены в деревянные ящики и подключены последовательно. Общая длина батареи составила около 12 метров. Создание такого мощного источника тока позволило открыть электрическую дугу.

На практике была доказана возможность применения дуги для разных целей:

  • Плавки и сварки металлов.
  • Восстановления металлов из руды.
  • Освещения.
Рисунок 19. Василий Владимирович Петров

Петрову принадлежит применение термина “сопротивление”. Он описывал им характеристики вещества, препятствующие движению электрического тока. Проведение опытов по прохождению электрического тока через оксиды металлов и другие вещества позволило описать процессы электролиза.

Магнитное поле — труды Эрстеда, Ампера и Фарадея

В 1820 г. датский ученый-физик Ханс Эрстед смог впервые экспериментально доказать, что электрические и магнитные явления имеют связь. При демонстрации нагрева проволоки током, получаемым при подключении к вольтову столбу, было замечено, что стрелка компаса отклонилась.

Рисунок 20. Ханс Эрстед

Впоследствии ученый смог опытным путем доказать появление магнитных свойств у платины, золота, серебра, латуни, свинца, железа при пропускании электрического тока. Эрстед применял разные материалы для экранирования, но стрелка продолжала отклоняться. Причем она не отклонилась, когда ученый установил проволоку, по которой проходил ток в вертикальное положение.

Рисунок 21. Опыт Эрстеда со стрелкой компаса

Опираясь на открытия Эрстеда, французский ученый Андре Мари Ампер в 1821 г. вывел правило, описывающее действие магнитного поля. Впоследствии его назовут теоремой Ампера. Ученый смог объединить электричество и магнетизм в одну теорию электромагнетизма. Им было установлено, что связь магнитного поля и электричества не наблюдается при статическом электричестве.

В 1822 г. ученый открыл наличие магнитного эффекта у соленоида при протекании по нему электрического тока. Ампер предложил использовать для усиления магнитного поля стальной сердечник, помещаемый внутрь соленоида.

Рисунок 22. Андре Ампер

Открыть взаимосвязь между сопротивлением электрической цепи, силой тока и напряжением удалось в 1826 г. немецкому физику Георгу Ому. Это оказало огромное влияние на развитие науки и известно в наше время как закон Ома.

Рисунок 23. Георг Ом

В 1830 г. немецкий ученый Карл Гаусс сформулировал основную теорему теории электростатического поля.

Английский ученый-физик Майкл Фарадей стал основоположником учения об электромагнитном поле. В 1831 г. им была открыта электромагнитная индукция — появление электрического тока в замкнутом проводнике при изменении магнитного потока, который через него проходит.

На основе своего открытия ученый создал первый электрогенератор и электродвигатель. Ему принадлежит мысль, что электрические силы переносятся атомами материи.

Рисунок 24. Майкл Фарадей

Одним из основоположников электротехники по праву считают российского физика Эмилия Ленца. В 1834 г. он открыл закон индукции, определяющий направление индукционного тока, — “Правило Ленца”. Также ученым был сформулирован закон, определяющий количество тепла, выделяемое проводником при протекании по нему тока, и принцип обратимости электрических машин.

Рисунок 25. Эмилий Ленц

Вклад Максвелла

После открытия электромагнитной индукции в ученом мире появилось два разных взгляда на происхождение электрических и магнитных явлений.

Большая часть ученых поддерживала концепцию дальнодействия, которая считала электромагнитные силы подобием сил гравитационного притяжения. Майкл Фарадей придерживался идеи силовых линий, соединяющих положительные и отрицательные заряды.

Решить задачу построения математической теории, объединяющей концепции силовых линий и дальнодействия, удалось британскому ученому-физику Джеймсу Максвеллу. Он вывел уравнения, определяющие взаимодействие зарядов и токов, в 1873 г.

Согласно полученным уравнениям выяснилось, что изменяющееся со временем электрическое поле приводит к появлению магнитного поля. Последнее, в свою очередь, приводит к появлению электрического поля. В результате такого взаимодействия в пространстве происходит распространение электромагнитных волн со скоростью света.

Рисунок 26. Джеймс Кларк Максвелл

Распространение и становление электротехники в конце 19 – начале 20 века

Становлению электротехники предшествовали исторические открытия в области электродинамики и электромагнитной индукции. Постепенно был сформирован весь арсенал способов расчета электрических цепей постоянного тока.

Ограниченные возможности тепловых двигателей уже не соответствовали растущим потребностям промышленности. Выход из такого кризиса был найден благодаря использованию электрических машин. Их применение позволило за несколько десятилетий совершить революцию в промышленном производстве.

Период с 1821 по 1834 гг. являлся начальным в разработке электродвигателей. Он был тесно связан с разработкой Фарадеем устройств, демонстрирующих возможности преобразования электрической энергии в механическую.

Вторым этапом считается период с 1834 по 1860 гг. В это время появляются электродвигатели с явнополюсным якорем. Созданный в 1834 г. русским изобретателем Борисом Якоби прибор был первым в мире электродвигателем, в котором рабочий вал вращался. Прежние конструкции предполагали только получение колебательного или возвратно-поступательного движения якоря.

Рисунок 27. Двигатель Якоби

Конструкция этого двигателя постоянного тока предполагала наличие двух групп электромагнитов. Подвижные электромагниты (3) были установлены на роторе (2), неподвижные – на статоре (1). Изменение полярности достигалось за счет коммутатора (4). Вал (5) вращался со скоростью 40 об/мин. Мощность первого двигателя составила 15 Вт. Питание осуществлялось постоянным током от гальванической батареи (6).

Третьим этапом развития электродвигателей считается период с 1860 по 1887 гг. В это время разрабатываются конструкции двигателей с кольцевым неявнополюсным якорем и постоянным вращающим моментом.

В 1888 г. ученый и изобретатель сербского происхождения Никола Тесла получает патент на практическое применение системы двухфазного переменного тока и двухфазного электродвигателя.

Рисунок 28. Двухфазный двигатель Тесла

Российский ученый Михаил Доливо-Добровольский, усовершенствовав двухфазную систему тока, в 1889 г. получает патент на асинхронный двигатель, работающий от трехфазной системы передачи переменного тока.

Рисунок 29. Трехфазный двигатель Доливо-Добровольского

Отличительная особенность этой системы – необходимость всего трех проводов для передачи электричества. В 1889 г. ученым был изобретен и запатентован трехфазный трансформатор.

Трехфазная система позволила решить проблему передачи электричества на большие расстояния с наименьшими потерями. В 1891 г. во время проведения международной выставки ученый построил линию электропередачи на 170 км. Это было рекордное расстояние для того времени.

Первые электроприборы

В 1872 году русский ученый Александр Лодыгин подает заявку на патент лампы накаливания с угольным стержнем и получает его в 1874 г.

Рисунок 30. Лампа Лодыгина Рисунок 31. Лодыгин Александр Николаевич

 

Такими лампами было впервые осуществлено электрическое освещение Литейного моста в Санкт-Петербурге в 1879 г.

Рисунок 32. Санкт-Петербург, электрическое освещение Литейного моста

Из-за высокой стоимости и небольшого количества света вместо ламп накаливания стали применяться свечи Яблочкова. Патент на свое изобретение русский ученый Павел Яблочков получил в 1876 г. в Париже.

Рисунок 33. Яблочков Павел Николаевич Рисунок 34. Свеча Яблочкова

Вместо нити накаливания источником света в ней выступала электрическая дуга, которая горела между двумя угольными стержнями. Стержни были разделены изолирующей перегородкой, а на верхней части закреплялась тонкая проволока.

При включении поволока перегорала и зажигалась дуга. Свеча давала ровный и яркий свет в течение 1,5 часа. Для поддержания горения дуги не требовалось применения механических регуляторов.

Позднее Яблочков усовершенствовал конструкцию свечи и смог избавиться от ее главного недостатка — невозможности повторного включения. Для этого он стал добавлять в изолирующий материал соли разных металлов, благодаря чему также смог менять оттенок дуги.

Благодаря простой конструкции свеча Яблочкова имела меньшую стоимость и была более удобной в эксплуатации, чем лампа накаливания. Осветительные приборы со свечами Яблочкова установили сначала в Париже, затем в Лондоне, а впоследствии и в других городах мира.

к содержанию ↑

Когда появилось в домах и где

Идея перехода с газового и керосинового на электрическое освещение овладела массами в конце 19 века. В это время американцам первым удалось осуществить ее.

В 1879 г. Эдисон продемонстрировал систему освещения при помощи электричества, которая включала лампу накаливания с цоколем, имеющим винтовую резьбу, патрон, штепсельные розетку и вилку, выключатель, предохранители и электросчетчик. В 1906 г. Эдисон начал производство ламп накаливания с вольфрамовой нитью.

В 1882 г. в Нью-Йорке была открыта электростанция “Перл Стрит”, на которой электричество вырабатывалось при помощи шести паровых динамо-машин. Электроэнергия использовалась для освещения целого района Нью-Йорка площадью 2,5 км2.

Уже в конце 19 века в продаже появляются первые электрические бытовые приборы: чайник, кофеварка, электродрель, электроплита, бытовой холодильник, вентилятор и т. п.

к содержанию ↑

Развитие электричества в России и ГОЭЛРО

Распространению электрической энергии в России способствовало создание Особого отдела Русского технического общества. В его состав вошли ученые Яблочков, Лодыгин и Чиколев.

Стараниями общества было организовано электрическое освещение улиц Москвы и Санкт-Петербурга. В Петербурге дуговыми лампами освещали Большой театр и Михайловский Манеж. В Москве обеспечили электрическое освещение площади перед Храмом Христа Спасителя.

По причине высокой стоимости и отсутствия рядом электростанций электрическое освещение в основном применялось в производственных зданиях, магазинах и общественных местах. В жилых домах оно считалось редкостью.

Несмотря на то что в стране отсутствовала государственная поддержка, до 1914 г. темпы роста применения электрической энергии были очень высокими. К сожалению, после начала Первой Мировой войны темпы электрификации значительно снизились, а после Революции и Гражданской войны электроэнергетика пришла в полнейший упадок.

В 1920 г. создается комиссия ГОЭРЛО, целью которой являлась разработка плана по электрификации страны. Под председательством Кржижановского к работе привлекли больше 200 человек.

План был перевыполнен к 1931 г. Количество выработанной электроэнергии в 7 раз превысило объемы дореволюционной выработки. Число введенных в работу электростанций составило 40 штук.

к содержанию ↑

Заключение

Выше указаны только наиболее важные этапы развития применения электрической энергии. Всю историю использования электричества уместить в рамках одной статьи невозможно.

Предыдущая

ЭлектрикаУстройство и основные характеристики автоматических выключателей

Следующая

ЭлектрикаКак правильно сделать электрику в ванной комнате

Спасибо, помогло!Не помогло

В каком году появилось электричество в домах

Замечательная экскурсия в наше детство! Шаг за шагом, точь в точь, как в нашей маленькой деревне. Только у нас на первом этапе все и закончилось. Спасибо!
Желаю успехов!
С теплом души, Лариса.

И вам спасибо за то, что детство помните

Портал Проза.ру предоставляет авторам возможность свободной публикации своих литературных произведений в сети Интернет на основании пользовательского договора. Все авторские права на произведения принадлежат авторам и охраняются законом. Перепечатка произведений возможна только с согласия его автора, к которому вы можете обратиться на его авторской странице. Ответственность за тексты произведений авторы несут самостоятельно на основании правил публикации и законодательства Российской Федерации. Вы также можете посмотреть более подробную информацию о портале и связаться с администрацией.

Ежедневная аудитория портала Проза.ру – порядка 100 тысяч посетителей, которые в общей сумме просматривают более полумиллиона страниц по данным счетчика посещаемости, который расположен справа от этого текста. В каждой графе указано по две цифры: количество просмотров и количество посетителей.

© Все права принадлежат авторам, 2000-2019. Портал работает под эгидой Российского союза писателей. 18+

Совершенно невозможно представить жизнь современных людей без электричества. Однако так было далеко не всегда. Активное использование электрического тока началось лишь в 20 веке, а до этого все ограничивалось опытами и исследованиями, проводимыми отдельными учеными из разных стран. Поэтому вопрос, когда появилось электричество не имеет однозначного ответа, поскольку первые понятия о нем возникли еще в 7 веке до нашей эры. Наблюдая за некоторыми физическими явлениями, греческий ученый и философ Фалес Милетский обратил внимание на то, что янтарь способен притягивать легкие мелкие предметы после его трения о шерсть. На этом уровне знания об электричестве приостановились на многие века.

Первые исследования и открытия

Знания в области электричества стали развиваться далее лишь в 15 веке. И если рассматривать электричество, кто создал его и ввел такое понятие, следует в первую очередь отметить английского физика Уильяма Гильберта (1544-1603). Этот ученый-естествоиспытатель и придворный врач по праву считается основоположником учения об электричестве и магнетизме. Благодаря Уильяму появились термины «электричество» и «электрический». В своем научном труде Уильям Гильберт аргументированно доказывает наличие у Земли магнитного поля.

Книга «О магните, магнитных телах и великом магните Земли» подробно описывает опыты, подтверждающие магнитные и электрические свойства тел. Все тела были разделены на электризующиеся с помощью трения и не электризующиеся. Было установлено, что каждый магнит обладает двумя неразделимыми полюсами. То есть, при распиливании магнита на две равные части, на каждой половинке вновь образуется собственная пара полюсов. Разноименные полюса притягиваются друг к другу, а одноименные, наоборот, отталкиваются в противоположные стороны. Во время опытов с металлическим шаром, взаимодействующим с магнитной стрелкой, ученым впервые было выдвинуто предположение о том, что Земля есть не что иное, как огромный магнит, а ее магнитные полюсы могут совпадать с географическими полюсами.

Электрические явления были исследованы ученым с помощью версора, созданного собственноручно, который стал первым своеобразным электроскопом. Понятия магнетизма и электричества разделились, поскольку магнитными свойствами обладают в основном металлические предметы, а электрические присущи многим веществам, входящим в особую категорию. В книге Уильяма Гилберта впервые определены понятия электрического притяжения, электрической силы и магнитных полюсов.

Опыты ученого через много лет решил повторить немецкий физик, инженер и философ из Магдебурга Отто фон Герике (1602-1686). Он изобрел специальные физические приборы, которые помогли не только подтвердить выводы Гилберта, но и подтвердить научные изыскания самого фон Герике. Лучшими доказательствами считаются ряд экспериментальных исследований, затрагивающих статическое электричество, которым до тех пор практически никто не интересовался.

Для подтверждения собственных изысканий и предыдущих опытов Уильяма Гильберта, фон Герике изобрел специальный прибор, позволяющий создавать электрическое состояние. В нем отсутствовал конденсатор для накопления электричества, производимого трением, поэтому данный прибор не в полной мере соответствовал понятию электрической машины. Тем не менее, он сыграл свою роль и благодаря ему история развития электричества получила новый толчок в нужном направлении.

Фон Герике открыл еще и эффект электрического отталкивания, который был ранее неизвестен. Для подтверждения данного эффекта был изготовлен большой шар из серы, сквозь который продевалась ось, приводившая его в движение. В процессе вращения он натирался сухой рукой, что вызывало электризацию шара. В ходе эксперимента было замечено, что тела вначале притягиваются к нему, а затем отталкиваются. Кроме того, было видно, как оттолкнувшуюся пушинку притягивают другие тела. В процессе исследования наблюдались и другие эффекты, подтверждающие общие характеристики и свойства электричества, известные в то время.

В дальнейшем электрическая машина фон Герике была усовершенствована немецкими учеными Бозе, Винклером, английским физиком Хоксби. С ее помощью в 18 и 19 веках удалось сделать массу новых открытий в теории и практике электричества.

Великие открытия 18-19 веков

Исследования в области электричества были успешно продолжены другими учеными. Так в 1707 году французский физик Дю Фей обнаружил разницу между электричеством, получаемым от трения о разные материалы. Для экспериментов использовались круги из стекла и древесной смолы.

В 1729 году английскими учеными Греем и Уилером было установлено, что отдельные виды веществ способны пропускать сквозь себя электричество. Именно с их открытия все тела начали разделяться по типам и называться проводниками и непроводниками электричества. В этом же году голландский физик Мушенбрук из Лейдена сделал грандиозное открытие. В ходе опытов со стеклянной банкой, закрытой с двух сторон листами станиоля, было установлено, что такой сосуд способен накапливать электричество. По месту проведения эксперимента данный прибор был назван лейденской банкой.

Большой вклад в науку внес американский ученый и общественный деятель Бенджамин Франклин. Он доказал теорию совместного существования положительного и отрицательного электричества, объяснил процессы, происходящие во время зарядки и разрядки лейденской банки. Было установлено, что свободная электризация обкладок этого прибора может происходить под действием разных электрических зарядов. Бенджамин Франклин много времени уделял изучению атмосферного электричества и доказал с помощью громоотвода возникновение молнии от разности электрических потенциалов.

В 1785 году французским ученым Шарлем Кулоном был открыт закон, описывающий электрическое взаимодействие между точечными зарядами. Открытие точного физического закона произошло без сложного лабораторного оборудования, с помощью лишь стальных шариков. Для определения расстояния и силы взаимодействия использовались такие же крутильные весы, как и при исследованиях сил тяготения между двумя телами. Ученый не пользовался абсолютной величиной электрических зарядов, он просто брал два одинаковых заряда или неодинаковые, но с заранее известной разницей их величины.

Важное открытие в области электричества было сделано итальянским ученым Алессандро Вольта в 1800 году. Этим изобретением стала химическая батарея, состоящая из круглых серебряных пластинок, переложенных кусками бумаги, предварительно смоченных соленой водой. Химические реакции, возникающие в батарее, способствовали регулярному вырабатыванию электрического тока.

В 1831 году знаменитый английский физик Майкл Фарадей открыл явление электромагнитной индукции, и на ее основе первым в мире изобрел электрический генератор. С именем Майкл Фарадей связаны понятия электрического и магнитного поля, изобретение простейшего электродвигателя.

Вся история электричества была бы неполной без выдающегося изобретателя Николы Тесла, работавшего на рубеже 19-20 веков и значительно обогнавшего свое время. Свои исследования в области магнетизма и электричества он постоянно переводил в практическую плоскость. Приборы, созданные гениальным ученым, до сих пор считаются уникальными и неповторимыми.

В течение всей своей жизни, посвященной изучению возможностей электричества, Тесла зарегистрировал множество патентов, сделал открытия, ставшие прорывом в электротехнике. Большинство изобретений и открытий, так или иначе до сих пор используются в повседневной жизни. Из наиболее известных работ следует отметить вращающееся магнитное поле, позволяющее использовать переменный ток в электродвигателях без преобразования в постоянный ток. Также Тесла создал двигатель переменного тока, на основе которого в дальнейшем был создан генератор переменного тока. Эти и другие открытия успешно использовались во многих технических решениях.

Ученых, сделавших весомый вклад в развитие науки об электричестве, можно перечислять очень долго. В завершение хочется отметить Георга Ома, который в ходе экспериментов вывел основной закон электрической цепи. Благодаря Ому появились такие термины, как электродвижущая сила, проводимость, падение напряжения и другие. Не менее известен Ампер Андре-Мари, придумавший правило правой руки для определения направления тока на магнитную стрелку. Ему принадлежит и конструкция усилителя магнитного поля, представляющего собой катушку с большим количеством витков. Эти и другие ученые много сделали для того, чтобы человечество в полной мере пользовалось теми благами, которые дает электричество.

Задавать вопрос «кто придумал электричество?» не совсем корректно. Более правильно спрашивать, кто открыл электричество? Ответить однозначно невозможно. История электричества уходит своими корнями в глубину веков существования человеческой цивилизации.

Хронология основных открытий и изобретений

В современном мире каждый ребёнок в сознательном возрасте сталкивается в доме с электричеством. Первые упоминания о наблюдениях в природе этого физического явления относятся к IV веку д. н. э. Великий философ Аристотель изучал поведение угрей, которые поражали свои жертвы электрическими разрядами.

Легендарный учёный Фалес Милетский, живший в Древней Греции (V век д.н.э.), упоминал в своих трудах о таком явлении, как электричество. Он наблюдал за тем, как янтарь, натёртый комком шерсти, притягивал к себе различную мелочь. Историки признают время описания опытов периодом открытия электричества.

Важно! Термин «электричество» происходит от слова «электрон», что означает янтарь.

Далее в истории человечества происходит длительный временной промежуток, в котором не осталось сколь-нибудь существенных упоминаний об электричестве.

Лишь, начиная с 17 века, стартует череда открытий и изобретений, касающаяся электроэнергии. Об истории электричества сообщает Википедия достаточно подробно. Вот краткий перечень основных вех развития науки об электрической энергии:

  1. Англичанин Уильям Гилберт в начале XVII века, изучая магнитоэлектрические явления, ввёл впервые такое понятие, как электричество (янтарность).
  2. Через два года в 1663 году бургомистр Магдебурга Отто фон Генрике продемонстрировал электростатический прибор, состоящий из серного шара, насаженного на металлическую ось. На поверхности сферы в результате трения о ладони накапливался статический заряд тока, который своим магнитным полем притягивал или отталкивал мелкие предметы.

  1. Почти через 60 лет (1729 г.) английский физик Стивен Грей опытным путём определил способность проводить ток различных материалов.
  2. Четыре года спустя (1733 г.) французский физик Шарль Дюфе выдвинул сомнительную версию о существовании двух типов электричества, имеющих стеклянное и смоляное происхождение. Он пояснял это тем, что он получал электрический заряд на поверхности стеклянного стержня и комка смолы путём их трения о шёлк и шерсть, соответственно.
  3. В 1745 году была изобретена Лейденская банка – прообраз современного конденсатора. Автором изобретения был голландский исследователь Питер ван Мушенброк.

  1. В это же время выдающиеся русские учёные Рихман и Ломоносов в Санкт-Петербурге добиваются получения искусственного грозового разряда в лабораторных условиях. Во время проведения очередного эксперимента, получив электрический удар, погибает Рихман.
  2. 1785 г. ознаменовался регистрацией в Лондоне закона Кулона, носящего имя его автора. Учёный обосновал величину силы взаимодействия точечных зарядов в зависимости от длины промежутка между ними.
  3. Спустя несколько лет, в 1791 году, Гальвани выпускает в свет трактат, в котором доказывает протекание электрических процессов в мышцах животных.
  4. В этой же стране Вольта в 1800 г. демонстрирует гальванический элемент – источник постоянного тока. Прибор представлял вертикальное сооружение из серебряных и цинковых дисков, переложенных бумагой, вымоченной в соляном растворе.

  1. Через двадцать лет датский физик Эрстед обнаружил существование электромагнитного эффекта. Размыкая контакты электрической цепи, он заметил колебания стрелки рядом положенного компаса.
  2. Спустя год, великий французский учёный Ампер в 1821 г. обнаружил магнитное поле вокруг проводника переменного тока.
  3. 1831 г. – Фарадей создаёт первый в мире генератор тока. Двигая намагниченный сердечник внутри катушки из металлической проволоки, он зафиксировал проявление электрического заряда в её витках. Учёный был одним из тех физиков, кто первый создал электричество в лабораторных условиях. Им же была обоснована теория об электромагнитной индукции.

Обратите внимание! По мере накопления практики в результате многочисленных опытов стала возникать потребность теоретического обоснования явлений и появления науки, связанной с электричеством.

Этапы создания теории

Каждая ступень строительства электрической теории возводилась на основе личных открытий выдающихся учёных физиков. Их фамилии составляют список имён, кому принадлежит изобретение электричества. Теоретическая научная база электричества развивалась постепенно, по мере накопления экспериментального опыта.

Появление термина

Выше уже упоминалось то, что понятие «электричество» впервые было введено в употребление Уильямом Гилбертом в 1600 г. С этого момента отмечают дату, когда появилось электричество.

Первая электростатическая машина

Демонстрируемый прибор в 1663 г. бургомистром Магдебурга Отто фон Генрике считают первой электростатической машиной. Она представляла собой смоляной шар, насаженный на металлический стержень.

Лейденская банка

В 1745 году случилось знаменательное событие – голландский исследователь Питер ван Мушенброк создал электростатический конденсатор. Прибор был назван в честь города, где было сделано изобретение, – Лейденской банкой.

Два вида зарядов

Бенджамин Франклин ввёл понятие о полярности зарядов. С тех пор аксиомой является то, что любой электрический потенциал имеет отрицательный и положительный полюсы.

Бенджамин Франклин

В 1747 году американский научный исследователь Бенджамин Франклин создаёт собственную теорию об электричестве. Он представил природу электричества как нематериальную жидкость в виде неких флюидов.

От теории к точной науке

Теоретическая база, накопленная за несколько последних столетий, позволила в ХХ веке полученные знания переформатировать в точную науку. Основополагающие открытия и изобретения появились, благодаря тем учёным, кто открыл природу электрического тока. Точно установить, в каком году изобрели искусственное электричество, невозможно. Это произошло в основном в течение 18 и 19 веков.

Назвать того, кто первый изобрёл ток, довольно затруднительно. Скорее всего, это можно приписать целому ряду великих учёных, упомянутых выше. К этому приложили руку выдающиеся физики Америки, Англии, Франции, Италии, России и многих других стран Европы.

Несомненную бессмертную славу заслужили такие изобретатели и теоретики электротехники, как Эдисон и Тесла. Последний много приложил усилий по теоретическому обоснованию природы магнетизма, успешно реализовывал его на практике. Тесла является создателем беспроводного электричества.

Закон взаимодействия зарядов

Одной из фундаментальных скрижалей науки об электричестве является закон взаимодействия зарядов, известный как закон Кулона. Он гласит о том, что сила взаимодействия двух точечных зарядов находится в прямой пропорциональной зависимости от произведения количеств зарядов и обратно пропорциональна расстоянию в квадрате между этими точками.

Изобретение батареи

Документальным подтверждением изобретения электрической батареи считается предложенное устройство итальянским учёным Алессандро Вольта. Прибор назвали вольтовым столбом. Он представлял собой своеобразную этажерку, сложенную из медных и цинковых пластинок, переложенных кусками войлока, смоченного раствором серной кислоты.

Вверху и внизу столба создавался электрический потенциал, разряд которого можно было почувствовать, приложив к столбу ладони рук. В результате взаимодействия атомов металлов, возбуждённых электролитом, внутри батареи накапливалась электроэнергия.

Изобретатель гальванического электричества, Алессандро Вольта, положил начало появлению того, что сегодня называют батарейками.

Появление понятие тока

Выражение «ток» возникло одновременно с появлением электричества в лаборатории физика Уильяма Гилберта в 1600 году. Ток характеризует направленность электрической энергии. Он может быть как переменным, так и постоянным.

Закон электрической цепи

Бесценный вклад в развитие теории электричества внёс в XIX веке немецкий физик Кирхгофа. Он был автором терминов таких, как ветвь, узел, контур. Законы Кирхгофа стали основой построения всех электрических цепей радиоэлектронных и радиотехнических приборов и устройств.

Первый закон гласит: «Сумма электрических зарядов, идущих в узел в течение определённого времени, равна сумме зарядов, уходящих из него за это же время».

Второе положение Кирхгофа можно выразить так: «При прохождении токов через все ветви контура падает потенциал. При их возвращении в исходный узел потенциал полностью восстанавливается и достигает своей первоначальной величины. То есть утечка энергии в пределах замкнутого электрического контура равняется нулю».

Электромагнитная индукция

Явление возникновения электрического тока в замкнутом контуре проводника при прохождении через него переменного магнитного поля описал в 1831 году Фарадей. Теория электромагнитной индукции позволила открывать последующие законы электротехники и изобретать различные модели генераторов как постоянного, так и переменного тока. Эти устройства демонстрируют, как появляется и проистекает электричество в результате действия электромагнитной индукции.

Использование электрического освещения в России

Ещё со школьной скамьи люди помнят историю появления электрических лампочек в России. Первый опыт в создании этих приборов был проведён русским учёным Яблочковым. Их устройство было основано на возникновении искры между двумя каолиновыми электродами.

В 1874 г. Яблочков впервые представил прибор освещения с использованием электрической дуги. Этот год можно считать отправной точкой, когда впервые появилось световое электричество в России. Впоследствии свечи Яблочкова использовались как дуговые прожектора на паровозах.

До появления ламп накаливания Эдисона угольные свечи Яблочкова ещё долго использовались как единственный источник электрического освещения в России.

Производство и практическое использование

Со времён появления первого электричества до массового производства электричества и его практического применения должно было произойти много открытий, и внедрено изобретений в сферу генерирования и передачи электрической энергии.

Генерирование и передача электроэнергии

Со временем стали придумывать различные способы генерирования электричества. С появлением мобильных, а впоследствии гигантских электростанций, возникла проблема передачи электричества на большие расстояния.

Позволить решить этот вопрос помогла научно-техническая революция. В результате были построены огромные сети электропередач, охватывающие страны и целые континенты.

Применение

Практически невозможно назвать сферу деятельности человечества, где бы ни было задействовано электричество. Оно является основным источником энергии во многих жизнеобеспечивающих сферах деятельности человека.

Современный виток исследований

Грандиозный рывок в развитии электротехники совершил легендарный учёный, физик и изобретатель Никола Тесла на рубеже XIX, XX веков. Многие изобретения Теслы ещё ждут нового витка исследований в области электротехники для того, чтобы они были внедрены в жизнь.

Сейчас ведутся исследовательские работы по получению новых сверхпроводимых материалов, созданию совершенных компонентов электрических цепей с высоким КПД.

Дополнительная информация. Открытие графена и получение из него новых токопроводящих материалов предрекают грандиозные перемены в сфере использования электричества.

Наука не стоит на месте. С каждым годом человечество становится свидетелем появления более совершенных источников электроэнергии, вместе с этим и создания приборов, машин и различных агрегатов, потребляющих экологически чистую энергию в виде электрического тока.

Видео

История ГОЭЛРО | Министерство энергетики

ГОЭЛРО (Государственная комиссия по электрификации России) — орган, созданный 21 февраля 1920 года для разработки  проекта электрификации России после Октябрьской революции 1917 года. Аббревиатура часто расшифровывается также как Государственный план электрификации России, то есть продукт комиссии ГОЭЛРО, ставший первым перспективным планом развития экономики, принятым и реализованным в России после революции.

Российская энергетика до революции

В 1913 году в России на душу населения вырабатывалось всего 14 кВт.ч, для сравнения, в США этот показатель составлял 236 кВт.ч. Но если по количественным характеристикам разница очевидна, то по качественным дореволюционная Россиия нисколько не уступала передовым зарубежным странам.

Первый в России трамвай на электрической тяге появился еще в 1892 году

Уровень оснащенности российских электростанций и их мощность вполне соответствовали западным и росли одновременно с ними. Интенсивное развитие российской электроэнергетики в начале ХХ века определялось появлением, а затем и внедрением в промышленность электропривода, зарождением электрического транспорта, ростом электрического освещения в городах.

Однако все строившиеся в России электростанции – в Москве, Санкт-Петербурге, Киеве, Баку, Риге и т.д. имели ограниченное (от одного до нескольких десятков) число потребителей и энергетически связаны между собой не были. Мало того: значения величин их тока и частот имели колоссальный разброс, поскольку никакой единой системы при разработке этих станций не существовало.

Электростанция на Раушской набережной в Москве (МОГЭС) функционирует с 1897 года

Между тем отечественная электротехническая школа считалась одной из лучших в мире. Деятельность ее координировалась VI (электротехническим) отделом Русского технического общества, а также всероссийскими электротехническими съездами, которых с 1900 по 1913 год состоялось целых семь. На этих съездах рассматривались как технические, так и сугубо стратегические проблемы. В частности, вопрос о том, где лучше строить тепловые электростанции: непосредственно в промышленных регионах – с тем, чтобы подвозить к ним топливо, или, напротив, – в месте добычи этого топлива, чтобы затем передавать электроэнергию по линиям электропередач. Большинство российских ученых и инженеров-электротехников склонялись ко второму варианту – главным образом потому, что в центральной России имелись крупнейшие запасы бурых углей и особенно торфа, для перевозки непригодного и в качестве топлива практически не применявшегося.

Опыт по созданию таких районных станций, работавших на местном, а не на привезенном издалека топливе и обеспечивавших электроэнергией крупный промышленный регион, был впервые реализован под Москвой в 1914 году. Близ Богородска (впоследствии г. Ногинск) соорудили торфяную электростанцию “Электропередача”, энергия от которой передавалась потребителям в Москве по высоковольтной линии напряжением 70 кВ. Кроме того, впервые в России эту станцию включили параллельно другой. Ею стала работавшая в Москве с 1897 года электростанция на Раушской набережной (ныне 1-я МОГЭС). В 1915 году на совещании по проблемам использования подмосковного угля и торфа выступил с докладом директор станции “Электропередача” Г. М. Кржижановский. В его докладе уже содержались все те главные принципы энергостроительства, которые через пять лет стали основой будущего плана ГОЭЛРО.

Глеб Кржижановский до революции вступил в Общество электрического освещения России

По мере роста энергостроительства в России специалисты все больше убеждались в том, что стране нужна единая общегосударственная программа, которая увязала бы развитие промышленности в регионах с развитием энергетической базы, а также с электрификацией транспорта и жилищно-коммунального хозяйства. На электротехнических съездах неоднократно принимались резолюции о государственном значении электроснабжения, о необходимости сооружения крупных электростанций вблизи топливных месторождений и в бассейнах рек и связывании этих станций между собой при помощи развитой сети электропередач.

Нельзя, однако, сказать, чтобы российские государственные власти хоть как-то реагировали на эти резолюции, тогда как у местной общественности энергостроительство вызывало порой весьма своеобразные реакции. К примеру, разработка Г. М. Кржижановским проблемы использования гидроресурсов Волги в районе Самарской Луки стала причиной следующего письма:

“Конфиденциально. Стол № 4, № 685. Депеша. Италия, Сорренто, провинция Неаполь. Графу Российской Империи его сиятельству Орлову-Давыдову. Ваше сиятельство, призывая на вас Божью благодать, прошу принять архипастырское извещение: на ваших потомственных исконных владениях прожектеры Самарского технического общества совместно с богоотступником инженером Кржижановским проектируют постройку плотины и большой электрической станции. Явите милость своим прибытием сохранить божий мир в Жигулевских владениях и разрушить крамолу в зачатии. С истинным архипастырьским уважением имею честь быть вашего сиятельства защитник и богомолец. Епархиальный архиерей преосвященный Симеон, епископ Самарский и Ставропольский. Июня 9 дня 1913 года”.

Все это вместе взятое не могло не влиять на настроения инженеров-электротехников и, возможно, стало одной из причин того, что многие из них, и в том числе Аллилуев, Красин, Кржижановский, Смидович и другие, были причастны к революционному расшатыванию страны. Тем более, что вожди мирового пролетариата оказались в этом отношении куда прозорливее властей царской России и предвидели ту ключевую роль, которую предстояло сыграть в социальном преобразовании общества электричеству.

История внедрения ГОЭЛРО

Одним из тех политических деятелей, кто верно оценил эту роль, был В.И. Ленин – большой энтузиаст электрификации России. Базируясь на тезисе Маркса о капитализме как эпохе пара, Ленин считал, что эпохой электричества станет социализм. Еще в 1901 году он писал: “…в настоящее время, когда возможна передача электрической энергии на расстояния… нет ровно никаких технических препятствий тому, чтобы сокровищами науки и искусства, веками скопленными, пользовалось все население, размещенное более или менее равномерно по всей стране”. Примечательно, что это сказано за многие десятки лет до появления не только Интернета, но и компьютера и даже телевидения.

Электрификация московских окраин

Как бы то ни было, но при решении возникшей после октября 1917 года проблемы восстановления и развития хозяйства страны по единому государственному плану Ленин поставил во главу угла именно электрификацию. Он стал, по выражению Кржижановского, “великим толкачом дела электрификации”.

К концу 1917 года в стране (особенно в Москве и в Петрограде) сложилось катастрофическое положение с топливом: бакинская нефть и донецкий уголь оказались недоступны. И уже в ноябре Ленин по предложению имевшего 5-летний опыт работы на торфяной электростанции “Электропередача” инженера И.И. Радченко дал указание о строительстве под Москвой Шатурской – тоже торфяной – электростанции. Тогда же он проявил интерес и к работам Г.О. Графтио по проектированию Волховской гидростанции под Петроградом и к возможности использовать военнослужащих на ее строительстве.

А в январе 1918 года состоялась I Всероссийская конференция работников электропромышленности, предложившая создать орган для руководства энергетическим строительством. Такой орган – Электрострой – появился в мае 1918 года, а одновременно с ним был образован ЦЭС (Центральный электротехнический совет) – преемник и продолжатель всероссийских электротехнических съездов. В состав его вошли крупнейшие российские энергетики: И. Г. Александров, А. В. Винтер, Г. О. Графтио, Р. Э. Классон, А. Г. Коган, Т. Р. Макаров, В. Ф. Миткевич, Н. К. Поливанов, М. А. Шателен и другие. Скептически относясь к идеологии новой власти и категорически отвергая ее методы, эти люди, тем не менее, приходили к выводу, что противодействие ей принесло бы России вред.

Другая причина тоже была немаловажной. Технократы, в течение долгих лет не имевшие возможности воплотить свои идеи в жизнь, теперь получили такой шанс. Новая власть в этом вопросе последовательно демонстрировала свою заинтересованность и политическую волю.

И, наконец, не последнюю, по всей видимости, роль играли соображения, сугубо прагматические. В условиях разрухи, отсутствия самых необходимых продуктов и бытовых условий, а также преследований, обысков и конфискаций сотрудничавшие с советской властью энергетики попадали в совсем другой мир. Их обеспечивали жилплощадью, пайками, социальными льготами, а Г.О. Графтио, например, благодаря личному заступничеству Ленина был избавлен от чрезмерно пристального внимания чекистов.

В декабре 1918 года ЦЭС организовал Бюро по разработке общего плана электрификации страны, а примерно через год Кржижановский послал Ленину свою статью “Задачи электрификации промышленности” и получил на нее восторженный отклик. А также просьбу написать об этой проблеме популярно – с целью увлечь ею “массу рабочих и сознательных крестьян”.

Написанная буквально за неделю брошюра была сразу издана, а еще через пару недель Совет рабоче-крестьянской обороны утвердил, а Ленин подписал положение о Комиссии ГОЭЛРО – Государственного плана электрификации России. Комиссия состояла из 19 человек:

Г. М. Кржижановский – председатель,

А. И. Эйсман – заместитель председателя,

А. Г. Коган, Б. И. Угримов – товарищи председателя,

Н. Н. Вашков, Н. С. Синельников – заместители товарищей председателя,

Г. О. Графтио, Л. В. Дрейер, Г. Д. Дубелир, К. А. Круг, М. Я. Лапиров-Скобло, Б. Э. Стюнкель, М. А. Шателен, Е. Я. Шульгин – члены, Д. И. Комаров, Р. А. Ферман, Л. К. Рамзин, А. И. Таиров, А. А. Шварц – заместители членов.

Слева направо-К.А.Круг,Г.М.Кржижановский,Б.И.Угримов,Р.А.Ферман,Н.Н.Вашков,М.А.Смирнов. 1920г. Заседание комиссии по разработке плана ГОЭЛРО

Меньше чем через год – в декабре 1920 года план был разработан и утвержден на расширенном заседании Комиссии ГОЭЛРО.

Павел Флоренский, известный философ и ученый-электротехник, на заседания комиссии по разработке ГОЭЛРО приходил в рясе

СОДЕРЖАНИЕ ПЛАНА

План представлял собой единую программу возрождения и развития страны и ее конкретных отраслей – прежде всего тяжелой индустрии, а главным средством полагал максимально возможный подъем производительности труда. И притом не только за счет интенсификации и рационализации, но и за счет замены мускульных усилий людей и животных механической энергией. А особо подчеркивалась в этой программе перспективная роль электрификации в развитии промышленности, строительства, транспорта и сельского хозяйства. Директивно предлагалось использовать главным образом местное топливо, в том числе малоценные угли, торф, сланцы, газ и древесину.

План электрофикации РСФСР

Восстановление разрушенной экономики рассматривалось в плане лишь как часть программы – основа для последующей реконструкции, реорганизации и развития народного хозяйства страны. Всего он был рассчитан на десять и пятнадцать лет с четким выдерживанием сроков конкретных работ. А разработан – чрезвычайно детально: в нем определялись тенденции, структура и пропорции развития не только для каждой отрасли, но и для каждого региона.

Начало строительства Каширской электростанции (фотомонтаж)

Впервые в России авторы плана ГОЭЛРО предложили экономическое ее районирование исходя при этом из соображений близости источников сырья (в том числе энергетического), сложившегося территориального разделения и специализации труда, а также удобного и хорошо организованного транспорта. В результате было выделено семь основных экономических районов: Северный, Центрально-промышленный, Южный, Приволжский, Уральский, Кавказский, а также Западной Сибири и Туркестана.

С самого начала предполагалось, что план ГОЭЛРО станут вводить в законодательном порядке, а способствовать его успешному выполнению должно было централизованное управление экономикой. По сути дела, он стал в России первым государственным планом и положил начало всей последующей системе планирования в СССР, предвосхитив теорию, методику и проблематику будущих пятилетних планов. А в июне 1921 года Комиссию ГОЭЛРО упразднили, а на ее основе создали Государственную общеплановую комиссию – Госплан, руководивший с этого времени всей экономикой страны в течение долгих десятилетий.

История реализации и судьба авторов и исполнителей

Так называемая программа “А” плана ГОЭЛРО, предусматривавшая восстановление разрушенного энергетического хозяйства страны, оказалась выполненной уже в 1926 году. А к 1931 году – минимальному десятилетнему сроку программы были перевыполнены все плановые показатели по энергостроительству. Вместо запроектированных 1,75 млн кВт новых мощностей ввели в эксплуатацию 2,56 млн кВт, а производство электроэнергии только за один последний год увеличилось почти вдвое. К концу же пятнадцатилетнего срока – к 1935 году советская энергетика вышла на уровень мировых стандартов и заняла третье – после США и Германии – место в мире.

Общий вид президиума торжественного заседания в Доме Союзов в честь 10-летия ГОЭЛРО. Москва, 1930. РГАКФД.

Наиболее ярко успех выполнения плана проявлялся в постепенном исключении импортных поставок оборудования – за счет роста энергомашиностроения в этой отрасли. Если в 1923 году завод “Электросила” изготовил всего четыре первых гидрогенератора мощностью по 7,5 МВт для Волховской ГЭС, то к середине 30-х годов в стране функционировали столь крупные предприятия, как “Электрозавод” (Москва), “Динамо” (Москва), “Красный котельщик” (Таганрог), Турбогенераторный завод имени С. М. Кирова (Харьков). И начиная с 1934 года в импорте для энергомашиностроения СССР уже не нуждался.

Агитационный плакат. Автор В. Б. Корецкий

Само же строительство шло невиданными в истории темпами. И причиной тому был не только энтузиазм народа, но и ряд весьма теневых аспектов реализации плана ГОЭЛРО. Значительную часть строителей составляли не только призванные в так называемые “стройтрудармии” бойцы, но и заключенные. А для финансирования программы широко распродавались сокровища отечественной культуры. А также зерно – и это в тех условиях, когда во многих регионах страны, и в первую очередь в Поволжье и на Украине, свирепствовал голод. Да и вообще в течение долгих лет все социальные секторы экономики финансировались только по остаточному принципу, из-за чего народ в СССР жил трудно.

Волховская ГЭС

Без этого план вряд ли мог быть выполнен в срок.

Что же касается помощи зарубежных специалистов, то это были в основном так называемые шеф-инженеры и консультанты, при помощи которых производились монтаж и наладка поставленного из-за границы оборудования.

Иногда привычки и амбиции представителей западных фирм входили в противоречие с интересами отечественных энергостроителей. Западный педантизм, стремление неукоснительно следовать букве и параграфу соглашений, предписаний, нормативов и инструкций трудно уживались с советским менталитетом, ориентированным на скорейший ввод объектов в эксплуатацию. Иностранцам были непривычны внеурочный и трехсменный труд, игнорирование сна, отдыха, своевременного питания, они жили по своим правилам и своему распорядку. Бывало, что это приводило к сложным и даже аварийным ситуациям.

На строительстве Штеровской ГРЭС в ее новеньком бетонном фундаменте образовались при испытаниях глубокие трещины. Оказалось, что педантичные шеф-монтеры из Англии регулярно и с одинаковыми интервалами устраивали перерывы в работе. И бетон на тех уровнях, на которые он должен был подаваться в эти паузы, успевал подсохнуть, а в результате плохо схватывался и при первой же вибрации дал трещины. После иска, предъявленного английской фирме, работу ей пришлось переделывать.

Но в большинстве своем иностранцы работали честно и качественно и получали помимо зарплаты правительственные благодарности и подарки. А некоторые – такие, как, например, шеф-консультант Днепростроя полковник Купер, – были награждены орденами Трудового Красного Знамени.

К середине 30-х годов необходимость в зарубежной помощи отпала, но ряд иностранных специалистов не пожелал покидать СССР и оставался у нас до самой войны. Были и те, кто уехать не успел, и судьба многих их них оказалась трагической. Одних репрессировали наши власти: сослали в Сибирь, Казахстан, на Дальний Восток, другие были интернированы в Германию и подверглись репрессиям там.

По-разному сложились и судьбы членов Комиссии ГОЭЛРО. Все они принадлежали к энергетической элите страны, а должности, которые они занимали к началу 30-х годов, соответствовали верхним ступенькам в иерархии советской партийно-хозяйственной номенклатуры. И. Г. Александров – главный инженер Днепростроя, а затем член президиума Госплана, А. В. Винтер – директор Днепростроя, а затем – управляющий Главэнерго, Г. М. Кржижановский – председатель Госплана и т. д. Многие из них пользовались в народе большой популярностью

Возможно, именно это и побудило Сталина убрать электрификаторов с руководящей работы и выдвинуть на первый план собственную креатуру: А. А. Андреева, Л. М. Кагановича, В. В. Куйбышева, Г. К. Орджоникидзе и других. И тогда он передал многих главных творцов плана ГОЭЛРО в систему Академии наук: минуя все необходимые промежуточные ступени, академиками стали И. Г. Александров, Б. Е. Ведереев, А. В. Винтер, Г. О. Графтио, Г. М. Кржижановский. Не у всех, однако, судьба сложилась столь благополучно. Из одного только руководящего ядра Комиссии ГОЭЛРО пять человек были репрессированы: Н. Н. Вашков, Г. Д. Дубеллир, Г. К. Ризенкамф, Б. Э. Стюнкель, Б. И. Угримов.

ПРЕДШЕСТВЕННИКИ И ПОСЛЕДОВАТЕЛИ

К числу существующих в отношении плана ГОЭЛРО мифов относится и тот, что он якобы не представляет собой оригинальной разработки, а скалькирован с книги немецкого профессора политической экономии К. Баллода, изданной в Германии в 1898 году и именовавшейся “Государство будущего, производство и потребление в социалистическом государстве”. С этой книгой отечественные электрификаторы были, разумеется, хорошо знакомы и при разработке плана ГОЭЛРО ею пользовались. Но, во-первых, сам этот материал – всего лишь кабинетный проект, в достаточной мере абстрактный, и вопрос о его реализации никогда не стоял и стоять не мог. Во-вторых, российские научные кадры от зарубежных ничуть не отставали, а в некоторых отношениях – в том числе в вопросе строительства экономики с опорой на энергетику – даже опережали их. А, в-третьих, и это самое главное, природа и сырьевые ресурсы России, ее территория, экономика, демография, национальный менталитет и даже денежная система столь уникальны, что исключают саму возможность полного заимствования и тем более копирования каких бы то ни было конкретных программ.

Поэтому можно смело утверждать, что как в теоретическом, так и в практическом аспекте план ГОЭЛРО оригинален и аналогов в мировой практике не имел. Напротив: его уникальность, привлекательность и практическая реальность стали причиной попыток копирования его ведущими странами мира. В период 1923-1931 годов появились программы электрификации США (разработчик Фран Баум), Германии (Оскар Миллер), Англии (так называемая комиссия Вейера), Франции (инженеры Велем, Дюваль, Лаванши, Мативэ и Моляр), а также Польши, Японии и т. д. Но все они закончились неудачей еще на стадии планирования и технико-экономических разработок.

ИТОГИ

План ГОЭЛРО сыграл в жизни нашей страны огромную роль: без него вряд ли удалось бы вывести СССР в столь короткие сроки в число самых развитых в промышленном отношении стран мира. Реализация этого плана сформировала, по сути дела, всю отечественную экономику и до сих пор в значительной мере ее определяет.

Составление и выполнение плана ГОЭЛРО стали возможным и исключительно благодаря сочетанию многих объективных и субъективных факторов: немалого промышленно-экономического потенциала дореволюционной России, высокого уровня российской научно-технической школы, сосредоточения в одних руках всей экономической и политической власти, ее силы и воли, а также традиционного соборно-общинного менталитета народа и его послушно-доверитель ного отношения к верховным правителям.

План ГОЭЛРО и его реализация доказали высокую эффективность системы государственного планирования в условиях жестко централизованной власти и предопределили развитие этой системы на долгие десятилетия.

Жертвы, принесенные советским народом ради реализации плана ГОЭЛРО, были огромны. Забыть о насущном дне ради грядущего – таков был пафос системы, родившей этот план и обеспечившей его выполнение.

При подготовке материала использована информация статьи «ПЛАН ГОЭЛРО. МИФЫ И РЕАЛЬНОСТЬ» автора В. Гвоздецкого, зав. отделом истории техники и технических наук Института истории естествознания и техники имени С. И. Вавилова РАН.

История электричества в США

Тысячи лет люди во всем мире очаровывались молнией. Некоторые задавались вопросом, как люди могут применить такую ​​силу на практике. Но только в 18 веке путь к повседневному использованию электроэнергии начал формироваться.

Бенджамин Франклин


Возможно, вы слышали об известном эксперименте с воздушным змеем, проведенном американским отцом-основателем и изобретателем Бенджамином Франклином. В 1752 году, чтобы доказать, что молния была электрической, он запустил воздушного змея во время грозы.

Он привязал металлический ключ к веревке, и, как он и подозревал, электричество от грозовых облаков потекло по струне, которая была влажной, и он получил удар электрическим током. Франклину очень повезло, что он не получил серьезных травм во время этого эксперимента, но он был взволнован тем, что доказал свою идею.

Томас Эдисон


В течение следующих ста лет многие изобретатели и ученые пытались найти способ использовать электрическую энергию для создания света. В 1879 году американский изобретатель Томас Эдисон наконец смог создать в своей лаборатории надежную и долговечную электрическую лампочку.

Управление долины Теннесси


Президент Франклин Делано Рузвельт подписал акт о создании Управления долины Теннесси (TVA) 18 мая 1933 года.

TVA — это федеральная корпорация в США, созданная в 1933 году для обеспечения навигации, борьбы с наводнениями, производства электроэнергии и производства удобрений. и экономическое развитие в долине реки Теннесси, регионе, который особенно сильно пострадал от Великой депрессии.

Сегодня TVA является крупнейшей государственной энергетической компанией страны, обеспечивающей электроэнергией почти 8 человек.5 миллионов клиентов в долине Теннесси. Он действует в основном как оптовый торговец электроэнергией, продавая его 158 розничным дистрибьюторам электроэнергии и 61 напрямую обслуживающим промышленным или государственным потребителям. Энергия поступает от плотин, обеспечивающих гидроэлектростанции, электростанции, работающие на ископаемом топливе, и атомные электростанции. Подразделение Alcoa Electric является заказчиком TVA.

Вы можете узнать больше о TVA на сайте TVA Kids. Чтобы узнать больше об истории Alcoa Electric, посетите или раздел истории Департамента.

Кто открыл электричество? — Вселенная сегодня

Электричество — это форма энергии, встречающаяся в природе, поэтому она не была «изобретена».Относительно того, кто это открыл, существует множество заблуждений. Некоторые считают, что Бенджамин Франклин открыл электричество, но его эксперименты только помогли установить связь между молнией и электричеством, не более того.

Правда об открытии электричества немного сложнее, чем о человеке, запускающем своего воздушного змея. На самом деле он насчитывает более двух тысяч лет.

Примерно в 600 году до нашей эры древние греки обнаружили, что натирание мехом янтаря (окаменелой древесной смолы) вызывает притяжение между ними, и поэтому греки обнаружили статическое электричество.Вдобавок исследователи и археологи в 1930-х годах обнаружили горшки с листами меди внутри, которые, по их мнению, могли быть древними батареями, предназначенными для освещения древнеримских памятников. Подобные устройства были найдены при археологических раскопках недалеко от Багдада, что означает, что древние персы, возможно, также использовали раннюю форму батарей.

Копия и схема одного из древних электрических элементов (батарей), найденных недалеко от Багдада.

Но к 17 веку было сделано много открытий, связанных с электричеством, таких как изобретение первого электростатического генератора, различие между положительными и отрицательными токами и классификация материалов как проводников или изоляторов.

В 1600 году английский врач Уильям Гилберт использовал латинское слово «electricus» для описания силы, которую некоторые вещества проявляют при трении друг о друга. Несколько лет спустя другой английский ученый, Томас Браун, написал несколько книг, в которых он использовал слово «электричество» для описания своих исследований, основанных на работе Гилберта.

Бенджамин Франклин. Источник изображения: Wikipedia

В 1752 году Бен Франклин провел свой эксперимент с воздушным змеем, ключом и штормом. Это просто доказало, что молния и крошечные электрические искры — одно и то же.

Итальянский физик Алессандро Вольта обнаружил, что определенные химические реакции могут производить электричество, и в 1800 году он построил гальваническую батарею (раннюю электрическую батарею), которая вырабатывала постоянный электрический ток, и поэтому он был первым человеком, который создал устойчивый поток электрического заряда. . Вольта также создал первую передачу электричества, соединив положительно заряженные и отрицательно заряженные соединители и пропустив через них электрический заряд или напряжение.

В 1831 году электричество стало жизнеспособным для использования в технике, когда Майкл Фарадей создал электрическое динамо (грубый генератор энергии), который решал проблему генерации электрического тока постоянным и практическим способом.В довольно примитивном изобретении Фарадея использовался магнит, который перемещался внутри катушки из медной проволоки, создавая крошечный электрический ток, протекающий по проволоке. Это открыло дверь американцу Томасу Эдисону и британскому ученому Джозефу Суону, которые изобрели лампочки накаливания в своих странах примерно в 1878 году. Раньше лампочки изобретали другие, но лампа накаливания была первой практичной лампочкой, которая могла бы свет часами напролет.

Копия первой лампочки Томаса Эдисона.Предоставлено: Служба национальных парков.

Свон и Эдисон позже основали совместную компанию для производства первой практической лампы накаливания, и Эдисон использовал свою систему постоянного тока (DC), чтобы обеспечить мощность для освещения первых нью-йоркских электрических уличных фонарей в сентябре 1882 года.

Позже, в 1800-х и начале 1900-х годов, сербский американский инженер, изобретатель и электротехник Никола Тесла внес важный вклад в зарождение коммерческого электричества. Он работал с Эдисоном, а позже имел много революционных разработок в области электромагнетизма и имел конкурирующие с Маркони патенты на изобретение радио.Он хорошо известен своей работой с двигателями переменного тока (AC), двигателями переменного тока и многофазной системой распределения.

Позже американский изобретатель и промышленник Джордж Вестингауз приобрел и разработал запатентованный двигатель Теслы для генерации переменного тока, и работы Вестингауза, Теслы и других постепенно убедили американское общество в том, что будущее электричества лежит за переменным током, а не за постоянным током.

Другие, кто работал над тем, чтобы использовать электричество там, где оно есть сегодня, включают шотландского изобретателя Джеймса Ватта, французского математика Андре Ампера и немецкого математика и физика Джорджа Ома.

Итак, не один человек открыл электричество. Хотя концепция электричества была известна тысячи лет, когда пришло время развивать ее в коммерческих и научных целях, над проблемой одновременно работали несколько великих умов.

Мы написали много статей об электричестве для «Вселенной сегодня». Вот отдельная статья о статическом электричестве, а вот интересная история о том, как астрономия была частью того, как электричество было представлено на Всемирной выставке в Чикаго в 1933 году.

Более подробную информацию об открытии электричества см. В наших источниках ниже.

Мы также записали целый эпизод Astronomy Cast, посвященный электромагнетизму. Послушайте, Эпизод 103: Электромагнетизм.

Источники:
Википедия: Электричество
Электроэнергетический форум
Краткая история древнего электричества
Мудрый Компьютерщик
Википедия: Алессандро Вольта
Википедия: Майкл Фарадей
Википедия: Томас Эдисон
Википедия: Никола Тесла
UG Wikipedia: GG

Нравится:

Нравится Загрузка…

Кто на самом деле открыл электричество?

Мы не можем представить себе мир сегодня без электричества, так кому же нам выпала честь изобрести это чудо? Во-первых, нельзя изобрести электричество как форму энергии. Что касается того, кто его открыл, то, как и большинство других исследований в области фундаментальных исследований, электричество изучалось рядом ученых на протяжении веков.

Некоторые считают, что Бен Франклин был первым, кто открыл электричество, но, как мы узнаем позже в этой статье, его знаменитый эксперимент с воздушным змеем и ключом на самом деле показал, что молния — это форма электричества.Электричество как физическое явление было определено за тысячи лет до Франклина.

Что такое электричество в первую очередь?

Под электричеством понимается просто движение электронов через проводящий материал, такой как медная проволока.

Сила, приложенная к электронам, чтобы протолкнуть их через проводящий провод, известна как напряжение , а скорость потока электронов известна как ток .

Если вы представите проводящий провод как трубу, по которой может течь вода, напряжение — это давление, прикладываемое для того, чтобы вода текла, а ток — это количество воды, протекающее по трубе каждую секунду.

В металлах электроны могут свободно перемещаться, что делает их отличными проводниками электричества. Однако некоторые материалы не проводят электричество — это изоляторы. Однако бывают случаи, когда изолятор может нести электрический заряд. Если вы потрете два разных изоляционных материала, например воздушный шар и перемычку, электроны перейдут от перемычки к воздушному шару, который заряжается отрицательным зарядом. Это накопление электронов на изоляторе известно как статическое электричество — если вы прикоснетесь к воздушному шару, вы почувствуете эту физику в действии с легким сотрясением.

Электричество в древнем мире: история багдадской «батареи»

Насколько нам известно, греки первыми открыли понятие электрического заряда более 2600 лет назад. Они заметили, что натирание окаменелой древесной смолы или янтаря мехом животных заставляло его притягивать сушеную траву. По сути, греки столкнулись со статическим электричеством.

Мы также знаем из древних текстов, что египтяне знали, что некоторые виды электрических рыб могут вызывать электрические разряды в теле.Фактически, древние египтяне, вероятно, использовали электрического нильского сома для лечения головных и нервных болей — практика, известная как ихтиоэлектроанальгезия, которая использовалась в медицине до конца 1600-х годов.

Мумия сома.

Но, без сомнения, самый удивительный образец электричества в древности — багдадская батарея . Этот необычный инструмент был обнаружен экспедицией во главе с доктором Вильгельмом Кенигом из Иракского музея в Багдаде в 1936 году. Находка представляла собой глиняную вазу, высотой около 14 сантиметров и самым большим диаметром 8 сантиметров.

Датировка предполагает, что артефакту около 2000 лет, он датируется I веком нашей эры, когда регион был оккупирован Парфянской империей.

Хотя его внешний вид не казался необычным, ученые быстро выяснили, что в маленьком глиняном горшочке есть нечто большее, как только они заглянули внутрь.

Ваза содержит полый цилиндр из листа меди высокой чистоты. Нижний конец цилиндра был покрыт куском листовой меди, а внутреннее дно цилиндра было покрыто слоем асфальта толщиной всего 3 миллиметра.Верхний конец цилиндра был забит тяжелым и толстым слоем асфальта. В центре вилки находился прочный кусок железа.

Копия и схема одного из древних электрических элементов (батарей), найденных в Худжут-Рабуа, недалеко от Багдада.

Во время открытия Кенинг понял, что сосуд и его необычная металлическая структура имели конфигурацию, которая предполагала, что он мог функционировать как аккумулятор с жидкими элементами. На самом деле, похоже, он не служил никакой другой цели, кроме генерирования слабого электрического тока.

Эксперименты, проведенные с копиями сосуда с использованием различных кислот, показали, что смесь уксусной кислоты (дистиллированного уксуса) и грейпфрутового сока генерировала 0,5 вольт в течение нескольких дней.

Еще больше таких артефактов было обнаружено в течение многих лет вокруг памятников в современном Ираке, созданных парфянами и сасанидами. Однако какой цели могли служить эти древние батареи, учитывая, что никаких двигателей, фонарей или каких-либо подобных электрических устройств обнаружено не было?

Одно из возможных применений багдадской батареи — это медицинская терапия, поскольку греки и римляне того времени обычно использовали обычные электрические лучи, чтобы поражать пациентов электрическим током для облегчения боли.

Отсутствие какого-либо очевидного использования электрического тока заставило некоторых усомниться в том, действительно ли эти древние кувшины использовались в качестве батарей. Вместо этого их можно было использовать для хранения важных документов, чтобы влага не повредила папирус.

Более того, поскольку нет никаких свидетельств того, что парфяне, да и вообще кто-либо в древнем мире, обладали формальной теорией электричества, открытие батарей, вероятно, было случайностью.

Перенесемся в будущее на 1600 лет.В это время английский физик по имени Вилиам Гилберт опубликовал договор о привлекательной природе янтаря и использовал латинское слово electricus для его описания. Вскоре после этого другой англичанин по имени Томас Браунед издает книгу по физике, в которой он использует слово «электричество» для описания работы Гилберта.

Бен Франклин и его эксперимент с воздушным змеем-молнией

Фотография картины, изображающей знаменитый воздушный змей Франклина и ключевой эксперимент. Предоставлено: Чарльз Э.Миллс, Библиотека Конгресса, Вашингтон, округ Колумбия,

В начальной школе многих учили, что Бенджамин Франклин, отец-основатель и известный изобретатель, открыл электричество, привязав ключ к воздушному змею, стоя во время грозы. Однако это совсем не так. Франклин не был первым ученым, изучавшим заряженные частицы, и при этом он никогда не намеревался открывать электричество — его исследования просто стремились продемонстрировать, что молния является формой статического электричества.

В середине 18 века, задолго до того, как он приступил к своему знаменитому эксперименту, Франклин играл с электрическими трубками, которые ему дал его друг Питер Коллинсон.Следуя этому опыту, Франклин выдвинул гипотезу о том, что освещение представляет собой «мощную электрическую искру», и предложил эксперимент с приподнятым стержнем, чтобы «погасить электрический огонь» из облака. Хорошо зная об опасности, Франклин также упомянул в одном из своих писем Коллинсону, что любой человек, участвующий в таком эксперименте, должен будет наблюдать это явление в ограждении, похожем на солдатскую будку.

Молва о теориях Франклина достигла Европы, где француз Томас Франсуа Д’Алимбар использовал вертикальный стержень длиной 50 футов для притяжения «электрической жидкости» (молнии).Он добился успеха 10 мая 1752 года в Париже. В июле англичанин Джон Кантон успешно повторил эксперимент. Позднее к такому же выводу пришел и русский химик Михаил Ломоносов после собственного эксперимента.

Франклин, по-видимому, не подозревая об этих событиях по ту сторону пруда, провел свою собственную версию эксперимента во время грозы в июне 1752 года в Филадельфии. Он стоял снаружи под укрытием, держась за шелкового воздушного змея с привязанным к нему ключом. Когда ударила молния, электричество проходило по ключу, и его заряд собирался в лейденской банке — старинном электрическом компоненте, который хранит электрический заряд высокого напряжения и может высвободить его позже.

Многие считают, что воздушный змей на самом деле собирал электрический заряд из атмосферы и не был напрямую поражен молнией — иначе Франклин мог бы сказать тост в тот роковой день.

Сам Франклин позже написал в Pennsylvania Gazette 19 октября 1752 года, подробно изложив свои выводы и предложив инструкции по воссозданию эксперимента:

дюймов, как только какое-либо из Грозовых облаков пройдет над воздушным змеем, заостренный провод потянет из них Электрический огонь, и воздушный змей вместе со всей бечевкой будет наэлектризован, а свободные нити шпагата будут выделяться. во всех направлениях, и будьте привлечены приближающимся Пальцем.И когда Дождь намочит воздушный змей и шпагат, чтобы он мог свободно проводить электрический огонь, вы обнаружите, что он обильно вытекает из ключа на подходе вашего сустава. В этом Ключе Фиал может быть заряжен; и от полученного таким образом электрического огня можно зажигать духов и проводить все другие электрические эксперименты, которые обычно проводятся с помощью натертого стеклянного шара или трубки; и тем самым полностью продемонстрировано Тождество Электрической Материи с Молнией ».

При этом Франклин не открыл электричество.Он даже не был первым, кто на самом деле провел эксперимент, показывающий, что освещение — это электричество, и написал о полученных результатах. Тем не менее, он считается первым ученым, который сформулировал гипотезу и условия эксперимента.

Первые практические применения электричества

После разоблачения экспериментов Франклина наука бурно развивалась во всех областях, включая электромагнетизм.

В 1800 году итальянский врач по имени Луиджи Гальвани обнаружил, что, когда лягушка касается двух разных металлов, ее лапа дергается.Основываясь на этих выводах, его коллега Алессандро Вольта пришел к выводу, что между двумя металлическими пластинами существует своего рода электрический потенциал, заставляющий электрический заряд проходить через лапу лягушки.

Volta использовала это понимание, чтобы изобрести первые современные батареи. В его честь мы теперь называем в его честь одно из свойств электричества, электрический потенциал (или напряжение ).

В 1808 году Хамфри Дэви приписывают изобретение первой эффективной «дуговой лампы» — углеродного куска, который генерировал свет при подключении к батарее.Дэви, по сути, изобрел первую лампочку.

В 1820 году Ганс Кристиан Эрстед, А. Ампер, Д.Ф.Г. Араго подтвердил связь между электричеством и магнетизмом. Ампер, французский математик и физик, считается отцом электродинамики. Основная единица измерения электрического тока в Международной системе единиц (СИ), «ампер» или «ампер», названа в его честь. Позже, в 1826 году, Георг Ом определил взаимосвязь между мощностью, напряжением, током и сопротивлением в «Законе Ома».Основная единица измерения сопротивления — ом — носит его имя.

Первые практические применения электричества

В 1831 году Майкл Фарадей изобрел электрическое динамо — по сути грубый генератор энергии — в котором использовался магнит, который двигался внутри катушки из медной проволоки, создавая крошечный электрический ток.

Это подготовило почву для электрической революции во всем мире. В 1878 году американский изобретатель Томас Эдисон представил первую практичную лампу накаливания, которая могла генерировать свет в течение нескольких часов подряд.

Позже, в конце 1800-х годов, сербско-американский изобретатель Никола Тесла первым начал работу с переменным током, асинхронным двигателем и многофазной системой распределения. Тесла также имел конкурирующие с Маркони патенты на изобретение радио.

Электроэнергия сегодня и в будущем

Момент, когда человечество стало использовать электричество, стал важной вехой в истории. Мир никогда не был бы прежним, и большинство изобретений, которые мы сегодня принимаем как должное, были бы просто невозможны без электричества.

Сегодня электричество питает мир. В то же время за весь тот поразительный прогресс и процветание, которое дает электричество, есть скрытая цена.

Даже по сей день большая часть нашей электроэнергии вырабатывается за счет сжигания ископаемого топлива, такого как уголь, в огромных электрогенераторах. Лишь небольшая часть мировых потребностей в энергии удовлетворяется за счет возобновляемых источников энергии, таких как солнечная или ветровая. Это необходимо изменить, если мы хотим предотвратить глобальную катастрофу, вызванную антропогенным глобальным потеплением.

Итог : электричество открыл не один человек.Концепция электричества была известна людям тысячи лет. Когда, наконец, пришло время сформировать теорию электричества и развить ее в коммерческих целях, над проблемой одновременно работали многие великие умы.

Система электрического освещения — Национальный исторический парк Томаса Эдисона (U.S. Служба национальных парков)

Копия первой лампочки Томаса Эдисона.

NPS Photo

Томас Альва Эдисон не изобрел первую лампочку. Удивлен? Еще до рождения Эдисона ученые экспериментировали с изготовлением лампочек. Эти лампочки перегорели через несколько минут.

Эдисон изобрел первую лампу накаливания , которая была практичной, , которая могла светить часами. Ему и его «мусорщикам» также пришлось изобрести сотни других деталей, чтобы лампочки в вашем доме работали.Выключатели света, электросчетчики, проводка — все это тоже нужно было изобрести. На это потребовалось несколько лет экспериментов. Людвиг Бём из Германии тщательно продул стекло, чтобы сделать лампочки. Чарльз Бэтчелор из Великобритании проверял одно за другим, чтобы сделать нить, крошечную нить, которая светится внутри лампочки. Платина, резина, даже черная сажа от керосиновых ламп — Бэтчелор перепробовал тысячи материалов. Фонари все равно не горели достаточно долго. Осенью 1879 года мусорщики испытали небольшую хлопковую нить в качестве нити накала.(В некоторых книгах указана дата 21 октября, но новое исследование доказало, что это неверно.) Сначала они обугляли его, сжигая, чтобы сделать его твердым. Поместили внутрь стакана, осторожно вытеснили воздух специальным вакуумным насосом и запечатали колбу. Все месяцы экспериментов окупились! Лампочка горела не менее 13 часов. (В некоторых книгах говорится, что он горел еще дольше.)

У Эдисона и его гадостей была долговечная лампочка. В течение следующих нескольких лет глушители строили и испытывали различные части электроэнергетической системы.Джон Крузи из Швейцарии разработал динамо-машину, вырабатывающую электроэнергию, «Мэри-Энн с длинной талией». Бэтчелор нашел даже лучшую нить, чем хлопчатобумажную нить, — бамбук из Японии.

В 1882 году Эдисон помог создать компанию Edison Electric Illuminating Company в Нью-Йорке, которая доставляла электрический свет в районы Манхэттена. Но прогресс был медленным. Большинство американцев еще пятьдесят лет освещали свои дома газовыми лампами и свечами. Только в 1925 году половина всех домов в США была электричеством.

Назад к Детскому фонографу

Краткая история электричества

От Бенджамина Франклина до Tesla Motors

Когда мы включаем выключатель, мы мгновенно получаем электричество, и наши огни включаются почти как по волшебству, но за этим повседневным удобством жизни скрывается богатая и разнообразная история. Этот путь длился почти 270 лет, и с тех пор, как Бенджамин Франклин открыл электричество, до современных изобретений, которые мы имеем сегодня, от электромобилей до компьютеров, заряжаемых светом (технология Li-Fi)!

Мы рады познакомить вас с краткой историей электричества, охватывая ключевые события, которые вам нужно знать, чтобы полностью оценить тот товар, без которого мы не можем жить!

Открытие электричества Бенджамином Франклином

В 1752 году Бенджамин Франклин провел свой знаменитый эксперимент с воздушным змеем, который привел к открытию электричества.Как видный американский ученый и один из отцов-основателей Америки, Франклин привязал ключ к веревке воздушного змея во время грозы и доказал, что статическое электричество и молния — одно и то же. После этого исторического результата люди стремились использовать силу электричества для основной цели — дешевым и безопасным способом осветить свои дома вместо горючих и опасных масляных и газовых ламп.

Первый в мире электрический двигатель с током Фарадея

Перенесемся в 1831 г. Майкл Фаради понял, что электрический ток можно получить, пропустив магнит через медную проволоку.Это удивительное открытие легло в основу сегодняшнего электричества и того, как мы его генерируем с помощью магнитов и катушек медных проводов на больших электростанциях. Благодаря этому принципу родились как электродвигатель (где электричество преобразуется в движение), так и генератор (где движение преобразуется в электричество).

Томас Эдисон: изобретение лампочки

Как один из величайших изобретателей, когда-либо живших, Томас Эдисон начал работать над электричеством и в 1879 году создал первую в мире электрическую лампочку накаливания (теплый желтый свет), которая используется до сих пор.В результате этого изобретения вся индустрия газового освещения устарела, и Эдисон начал создавать свою собственную компанию по производству и распространению своего изобретения лампочки во всех уголках Америки.

Первая в мире современная электросеть

Хотя электричество можно было генерировать и транспортировать, его нужно было использовать в момент потребления, поскольку хранение (даже по сей день) очень дорогое и имеет ограниченную полезность. Сэмюэл Инсулл увидел возможность в начале 1900-х годов объединить массовую эффективность производства и потребления.Он объединил все более мелкие генераторы и решил производить электроэнергию более крупными и более эффективными генераторами, производимыми General Electric.

По мере того, как Самуэль начал расширять свою клиентскую базу, он начал создавать новые планы ценообразования на электроэнергию, чтобы удовлетворить растущие потребности своих клиентов. Одной из таких схем была схема пиковой нагрузки, когда потребители, которым требовалось много электроэнергии за короткий промежуток времени, должны были платить фиксированную плату в дополнение к типичной плате за использование.

Переход к альтернативным и возобновляемым источникам энергии

По мере того, как шли десятилетия, большая часть электроэнергии производилась с использованием ископаемых видов топлива, от угля до мазута.Однако эти традиционные методы производства электроэнергии привели к увеличению углеродного следа и выбросов парниковых газов. Мир начал сосредотачиваться на возобновляемых источниках энергии, таких как энергия ветра и гидроэнергетика. Оба из них использовались с начала 1900-х годов, но только в начале 1930-х годов, когда была построена плотина Гувера, гидроэнергетика действительно взлетела, а в 1950-х годах для энергии ветра, когда первая ветровая турбина, подключенная к энергосистеме, стала реальностью. .

Tesla Motors — электромобили и аккумуляторы

По мере того, как мы приближаемся к 2020 году, когда каждый год происходят новые открытия, электроэнергия используется способами, о которых мало кто мог вообразить.Возьмем, к примеру, Tesla: компания произвела революцию в способах вождения, создав серию электромобилей, которые могут похвастаться большими расстояниями, плавной и тихой ездой, а также бесплатной подзарядкой электричества на любой из своих зарядных станций!

Кроме того, Tesla также начинает делать хранение электроэнергии доступным и рентабельным для среднего семейного дома. С их серией Powerwall семьи могут хранить электроэнергию и электроэнергию из сети, которые можно использовать позже во время перебоев в подаче электроэнергии, чтобы поддерживать освещение, кондиционер и охлаждение холодильника.

Хотите обеспечить электроэнергией свой дом, получая при этом отличные льготы и большие скидки?

Тогда нажмите здесь и узнайте о планах, которые помогут вам каждый месяц больше экономить на счетах за электроэнергию!

Оставайтесь на связи и присоединяйтесь к нашему списку рассылки, чтобы получать нашу ежемесячную новостную рассылку!

Бенджамин Франклин — Человек, электричество и Соединенные Штаты

Что общего у исследования электричества, Гольфстрима, публичных библиотек, бифокальных линз и Декларации независимости Соединенных Штатов? Бенджамин Франклин, истинный человек эпохи Возрождения, внес значительный вклад в их развитие.

Бенджамин Франклин родился 17 января 1706 года в городе Бостон в британской колонии Массачусетс.Его отец, Джошуа Франклин, иммигрировал в Америку за двадцать лет до рождения Бенджамина и стал торговцем сальным маслом, производя восковые свечи и мыло для поддержки своей растущей семьи. Как свидетельствует сам Франклин в своей знаменитой автобиографии, Бенджамин был пятнадцатым ребенком в семье из семнадцати детей и «младшим сыном самого младшего сына пять поколений назад».

В большой семье Франклинов отец предназначал каждого из своих детей к определенной профессии, и Бенджамина отправили в школу, чтобы он стал священником.Однако он бросил школу в возрасте десяти лет, по-видимому, из-за финансовых ограничений, и начал помогать своему отцу в производстве свечей и мыла. Франклин описывает, что за время своего недолгого пребывания в школе он довольно хорошо научился писать, но не смог продвинуться по математике. Этот провал в математике в молодом возрасте не помешал ему внести большой вклад в понимание принципов электричества десятилетия спустя.

В возрасте 12 лет Франклин начал работать в типографии, принадлежащей его брату Джеймсу, где он узнал секреты полиграфического дела.Благодаря своей работе в типографии Бенджамин познакомился с книгами и газетами из Европы, которые расширили его кругозор о современных культурных и интеллектуальных событиях, происходивших на континенте. Именно здесь он сначала попробовал свои силы в писательстве, опубликовав серию статей в газете, принадлежащей его брату под псевдонимом Silence Dogood — вымышленной бостонской вдове средних лет.

Время, проведенное в типографии своего брата, научило Франклина силе письменного слова в распространении идей и создании социальных организаций, понимание, которое он будет использовать на протяжении всей своей жизни.


Сила письменного слова обогатила его дух — и банковский счет. Франклин в типографии | Источник: Библиотека научных фотографий.

Филадельфия, раунд первый

В возрасте 16 лет Бенджамин покинул типографию своего брата и переехал в Филадельфию, оставаясь в типографии, где его репутация опередила его. Губернатор Филадельфии был настолько впечатлен способностями Франклина, что отправил его в Лондон, пообещав написать ему рекомендательные письма, которые помогут ему наладить новые коммерческие связи в Лондоне.Однако по прибытии в Лондон 18-летний Франклин обнаружил, что губернатор не сдержал своего обещания, и в английской столице его не ждали теплые рекомендательные письма. Франклин несколько месяцев работал наборщиком в Лондоне, затем вернулся в Филадельфию и в конце концов основал там свою типографию. Его полиграфический бизнес процветал, и он быстро получил ряд государственных контрактов, включая контракт на печать денежных знаков Пенсильвании и близлежащих колоний.Его успех в полиграфическом бизнесе дал Франклину достаточно денег для инвестирования в процентные ссуды, а также в местную недвижимость. В 1740 году, когда ему было всего 34 года, он был одним из самых богатых людей Северной Америки.

Второе место после Библии

Для Франклина полиграфический бизнес был не только отличным источником дохода. В 1729 году он купил газету под названием «Пенсильвания вестник», которая была одной из самых уважаемых газет в американских колониях, и использовал ее для распространения различных идей.В 1754 году, например, в газете была опубликована политическая карикатура с призывом к объединению американских колоний под названием «Присоединяйся или умри». Кроме того, с 1732 года Франклин также публиковал ежегодный журнал под названием «Альманах бедного Ричарда», который представлял собой своего рода календарь, содержащий размышления и некоторые астрологические данные для широкой публики. Напечатанный тиражом 10 000 экземпляров, по одному экземпляру на каждые 50 американцев в то время, Альманах был бестселлером, уступая только Библии. Идеи, изложенные Франклином в «Альманахе», оказали большое влияние на колонистов, и некоторые из опубликованных в нем афоризмов хорошо известны по сей день, например, «Тот, кто ляжет с собаками, восстанет с блохами», «Пенни». спасенный — заработанная копейка »или« Любите своих врагов, потому что они говорят вам о ваших недостатках ».В 1758 году Франклин собрал свои лучшие изречения и советы в книге «Путь к богатству», которая вскоре стала всемирным бестселлером. Книга была напечатана десятками изданий на английском, французском, немецком, испанском и многих других языках.

Книги, дамы и господа, книги!

Наряду с обширной издательской работой Франклин принимал участие в различных социальных инициативах в Филадельфии. В 1727 году он стал соучредителем «Клуба кожаных фартуков» (также известного как Хунто), члены которого собирались по вечерам в пятницу, чтобы обсудить моральные вопросы, политику и науку.Клуб был назван так потому, что его члены были мастерами, например наборщиками, которые носили фартуки. Чтобы расширить доступ членов клуба к книгам, Франклин основал первую в истории кредитную библиотеку. Каждый член должен был заплатить регистрационный взнос в размере 30 шиллингов, за которым следовала ежегодная абонентская плата в размере 10 шиллингов, чтобы иметь возможность брать книги в библиотеке. Другими предприятиями, которые он продвигал в то время, были создание местной полиции и добровольной пожарной команды. Франклин также основал Академию и Колледж Филадельфии, которые позже превратились в Пенсильванский университет, и «Американское философское общество» (1743 г.) — своего рода «Клуб кожаных фартуков», в который также входили члены из других колоний.Политика общества требовала включения представителей определенных профессий, таких как врач, ботаник, математик, химик. «Американское философское общество» существует и продолжает действовать по сей день.


Большой вклад во многих областях. Свидетельство Франклина о членстве в Американской академии искусств и наук | Источник: Библиотека научных фотографий.

Электричество в воздухе

Прекрасное финансовое положение Франклина позволило ему провозгласить себя джентльменом, передать управление своим бизнесом другим и начать задавать вопросы, которые его действительно заинтриговали.Одно из природных явлений, которое было известно, но не до конца изучено в те дни, — электричество.

В 1745 году Франклин получил письмо от лондонского друга Питера Коллинсона. В этом письме Коллинсон описал Франклину, как голландский физик Питер Ван Мушенбрук из Лейденского университета смог хранить электричество в специальном сосуде, который позже стал известен как «Лейденская банка», первоначальная форма конденсатора. Этот сосуд был покрыт как изнутри, так и снаружи тонкими кусками металла, способными проводить электричество.Металлический стержень, который торчал из горловины сосуда и был подключен к устройству, генерирующему статическое электричество, облегчал его зарядку. Базовая структура лейденской банки из двух проводящих материалов, разделенных изоляционным материалом, до сих пор используется при производстве современных конденсаторов — средств хранения электроэнергии.

Франклин понял, что банка Ван Мушенбрука позволит проводить различные эксперименты с электричеством, и быстро заказал несколько таких банок в Европе.

Существовавшие в то время концепции электричества не могли объяснить, как работает лейденская банка, и поэтому Франклин приступил к разработке новой теории. Хотя обычно считалось, что электричество состоит из двух типов жидкостей, Франклин воскликнул, что на самом деле это был только один тип жидкости, который он назвал «Электрический огонь». Он утверждал, что «электрический огонь» может быть как положительным, так и отрицательным, но что отрицательный «огонь» означает просто отсутствие положительного «огня», но сам по себе не является другим типом «огня».Заявление Франклина является ранней версией того, что сегодня известно в физике как закон «сохранения заряда», которое появилось за 150 лет до открытия электрона.

Франклин также создал, казалось бы, из воздуха, новый словарь для описания электрических явлений. Термины «заряд», «положительный», «отрицательный» и «проводник» были придуманы им. Даже знакомые обозначения на батареях, знак (+) на одном конце и (-) на другом, являются изобретением Франклина. Слово «батарея» само по себе также является одним из его нововведений — он использовал его, чтобы описать батарею из лейденских банок, соединенных друг с другом, и все они могут заряжаться или разряжаться одновременно.

Происхождение слова «батарея»: набор емкостей с конденсаторами, которые Франклин установил для изучения электричества | Источник: Библиотека научных фотографий

.

Использование электричества

Достигнув лучшего понимания электричества, Франклин решил выяснить, является ли молния, которая обычно считалась совершенно отдельным явлением от «жидкости» в лейденских банках и считалась формой божественного возмездия. тип электричества.В 1749 году Франклин обобщил свойства, общие для электричества и молнии: они оба быстро перемещаются, излучают свет одинакового цвета и способны убивать людей или животных. Исходя из этого, Франклин предположил, что еще одно свойство, которое, как он знал, существует в электричестве, также будет существовать в молнии: притяжение к острым объектам. Как он описал в письме от 18 марта 1755 г. к Джону Лайнингу: «Электрический флюид притягивается точками. Мы не знаем, присутствует ли это свойство в молнии.Но поскольку они согласны во всех деталях, в которых мы уже можем их сравнивать, не вероятно ли, что они согласны и в этом? Пусть будет проведен эксперимент ».

Сам факт, что Франклин сформулировал гипотезу и задумал экспериментальный метод для ее проверки, был сенсационным.

Его предложение включало строительство высокой башни с выступающим из нее железным прутом на высоту не менее десяти метров. Проводник эксперимента будет держать провод, прикрепленный к земле, и приближать его к железному стержню.Если железный стержень заряжен электричеством в облаках, искра должна пройти от полюса к проводу. Настоящий эксперимент был проведен в городке недалеко от Парижа 10 мая 1752 года демобилизованным солдатом французской королевской армии под руководством физика Томаса-Франсуа Далибара. Когда мужчина подтянул проволоку к железному стержню, от проволоки к стержню начали отскакивать искры, издавая чрезвычайно громкий шум. Встревоженный солдат скрылся с места происшествия, а вместо этого эксперимент был завершен местным священнослужителем, который дал показания, повторив его шесть раз.Таким образом, используя экспериментальный план Франклина, французские экспериментаторы смогли доказать его гипотезу о том, что молния и электричество — одно и то же физическое явление.

Новости об успехе эксперимента Франклина с молнией вскоре широко распространились по Европе, и эксперимент повторялся несколько раз, как учеными, так и домовладельцами.

Сам Франклин не смог провести эксперимент в Филадельфии в его первоначальном формате, и поэтому, чтобы лично проверить наличие электричества в грозовых облаках, он провел другой эксперимент, используя воздушный змей, прикрепленный к небольшому проводу.Франклин выяснил, что как только шелковая нить, прикрепленная к воздушному змею, намокнет, она будет проводить электричество от воздушного змея к земле и, таким образом, подтвердит наличие электричества в облаках, подобно эксперименту с башней. Джозеф Пристли, английский химик, известный своим открытием кислорода, описал эксперимент Франклина с воздушным змеем.

«Когда воздушный змей был поднят, прошло немало времени, прежде чем появилось хоть какое-то впечатление, что он наэлектризован. Одно очень многообещающее облако прошло над ним без всякого эффекта; когда, наконец, когда он уже начинал отчаяться в своем изобретении, он заметил, что некоторые потерянные нити конопляной веревки стояли прямо и избегали друг друга, как если бы они были подвешены на общем проводе.Пораженный таким многообещающим внешним видом, он немедленно поднес свой костяшка к ключу, и (пусть читатель судит о том изысканном удовольствии, которое он, должно быть, испытал в тот момент), открытие было завершено. Он заметил очень очевидную электрическую искру ».

В дополнение к его драматическому вкладу в понимание электричества Франклин также изобрел несколько устройств, знакомых нам сегодня, в том числе бифокальные линзы — линзы, которые позволяют зрителю видеть как на короткие, так и на большие расстояния, используя одни и те же линзы (1784), улучшенную печь. (1741) и одометр (1749).Франклин также нанес на карту Гольфстрим (1764 г.) во время одного из своих путешествий из Европы в Америку.

Научные открытия Франклина и его популярные альманахи сделали его настоящей знаменитостью и, возможно, одним из самых известных американцев в мире того времени. Позже его статус знаменитости стал важным стратегическим активом в борьбе американских колоний за независимость от Британской империи.


Один из самых известных экспериментов в истории. Франклин проверяет электричество в облаках с помощью воздушного змея | Источник: Библиотека научных фотографий.

Присоединяйся или умри!

Впечатляющие писательские навыки Франклина в сочетании с его успехом в качестве бизнесмена и заботой о широкой публике привели его к тому, что на протяжении всей жизни он занимал длинный список государственных должностей.Еще в 1736 году, в возрасте 30 лет, он был назначен секретарем Генеральной ассамблеи Пенсильвании. Год спустя он был также назначен почтмейстером Филадельфии — важная должность в то время, поскольку почта была единственным средством связи между городами. В 1753 году он был назначен заместителем генерального почтмейстера британских колоний в Северной Америке и настолько улучшил почтовую службу, что доставка почты из Бостона в Филадельфию заняла всего два дня. Многие из сегодняшних почтовых компаний могут только пожелать обеспечить уровень обслуживания, достигнутый Франклином почти 300 лет назад.

В 1757 году Франклин намеревался представлять жителей Пенсильвании перед английским правительством в борьбе против потомков Уильяма Пенна, одного из основателей провинции Пенсильвания, за право представлять колонию. Он оставался в Англии до 1775 года, в течение которого представлял не только Пенсильванию, но также Джорджию, Нью-Джерси и Массачусетс. Во время своего длительного пребывания в Англии Франклин встретился со многими европейскими учеными и философами, включая Пристли, шотландского философа Дэвида Юма, французского философа Вольтера и известного шотландского социолога и экономиста Адама Смита.Во время своих многочисленных путешествий по Европе он получил признание за свой важный вклад в науку и был удостоен почетной докторской степени в нескольких учреждениях, наиболее известными из которых были Оксфордский университет в Англии и Сент-Эндрюсский университет в Шотландии.

В 1765 году, узнав о яростном сопротивлении колоний, которые он представлял, новым налоговым законам, установленным британской короной, Франклин приложил все усилия, чтобы отменить указ. Надеясь восстановить отношения между колониями и короной, в 1772 году он слил американцам письма, написанные Томасом Хатчинсоном, губернатором Массачусетса, в котором он пытался возложить ответственность за высокие налоги на губернатора, а не на английское правительство.Этот шаг был полным провалом, приведшим к увольнению Франклина со всех официальных должностей, которые он занимал в Англии. Он вернулся в Филадельфию в 1775 году и начал энергично продвигать независимость колоний.

По возвращении Франклин был избран на должность во Втором Континентальном Конгрессе в качестве делегата от Пенсильвании и был назначен членом «Комитета пяти», который разработал американскую Декларацию независимости. Однако он пробыл на родине недолго: в 1776 году, после подписания Декларации независимости (о которой было официально объявлено 4 июля того же года), Франклин отправился с миссией во Францию ​​от имени колоний, чтобы получить военные и политическая помощь в борьбе против англичан.Имя Франклина предшествовало ему во Франции благодаря его научной и издательской деятельности, а в 1778 году, во многом благодаря его усилиям, французы подписали Договор о союзе и Договор о дружбе и торговле с американскими колониями. В 1783 году Франклин также участвовал в разработке Парижского договора, официально положившего конец американской войне за независимость.

Изобретатель и дипломат вернулся в Пенсильванию в возрасте 77 лет и продолжал активно работать на общественной арене, принимая участие, среди прочего, в разработке Конституции Соединенных Штатов, и был одним из ее подписантов.Одним из его последних публичных акций была публикация петиции против рабства в 1789 году. Бенджамин Франклин скончался 17 апреля 1790 года и был похоронен в Филадельфии.

На протяжении своих 84 лет жизни Бенджамин Франклин нарушал границы и вводил новшества почти во всех возможных областях: СМИ, общественные институты, точные науки и политология. Эти области изменились до неузнаваемости при его жизни, во многом благодаря ему. Что было самым важным изобретением, открытием или общественной деятельностью Франклина? Сложно сказать.Несомненно, его участие в достижениях в изучении электричества и его решающий вклад в создание Соединенных Штатов Америки находятся на вершине списка его вкладов в человечество, которым мы наслаждаемся по сей день.

Песня The Decemberists о Бенджамине Франклине и его жизненных достижениях (содержит явное содержание):

Эту статью перевели: Офир Куперман и Эли Шимшони

Первых изобретателей и новаторов электроэнергии

История электричества начинается с Уильяма Гилберта (1544–1603), врача и естествоиспытателя, который служил королеве Англии Елизавете первой.До Гилберта все, что было известно об электричестве и магнетизме, было то, что магнитный камень (магнетит) обладал магнитными свойствами и что трение янтаря и гагата могло притягивать куски различных материалов, чтобы они начали прилипать.

В 1600 году Гилберт опубликовал свой трактат «De magnete, Magneticisique Corporibus» (О магните). Книга, напечатанная на научной латыни, объясняет годы исследований и экспериментов Гилберта с электричеством и магнетизмом. Гилберт значительно повысил интерес к новой науке.Именно Гилберт придумал выражение «электрика» в своей знаменитой книге.

Первые изобретатели

Вдохновленные и получившие образование у Гилберта, несколько европейских изобретателей, включая Отто фон Герике (1602–1686) из Германии, Шарля Франсуа Дю Фэ (1698–1739) из Франции и Стивена Грея (1666–1736) из Англии, расширили знания.

Отто фон Герике был первым, кто доказал, что вакуум может существовать. Создание вакуума было необходимо для всех видов дальнейших исследований электроники.В 1660 году фон Герике изобрел машину, производящую статическое электричество; это был первый электрогенератор.

В 1729 году Стивен Грей открыл принцип проводимости электричества, а в 1733 году Шарль Франсуа дю Фэ обнаружил, что электричество бывает двух форм, которые он назвал смолистым (-) и стекловидным (+), теперь называемыми отрицательным и положительным.

Лейденская банка

Лейденская банка была оригинальным конденсатором, устройством, которое накапливает и высвобождает электрический заряд.(В то время электричество считалось загадочной жидкостью или силой.) Лейденская банка была изобретена в 1745 году почти одновременно в Голландии академиком Питером ван Мушенбруком (1692–1761) в 1745 году и в Германии немецким священником и ученым Эвальдом Кристианом фон Клейстом. (1715–1759). Когда фон Клейст впервые прикоснулся к своей лейденской банке, он получил мощный удар, который повалил его на пол.

Лейденская банка была названа в честь родного города Мушенбрука и университета Лейден французским ученым и священнослужителем Жан-Антуаном Нолле (1700–1770).Банку также называли клейстианской банкой в ​​честь фон Клейста, но это название не прижилось.

Бен Франклин, Генри Кавендиш и Луиджи Гальвани

Важное открытие отца-основателя США Бена Франклина (1705–1790) заключалось в том, что электричество и молния — одно и то же. Громоотвод Франклина был первым практическим применением электричества. Философ Генри Кавендиш из Англии, Кулон из Франции и Луиджи Гальвани из Италии внесли научный вклад в поиск практического применения электричества.

В 1747 году британский философ Генри Кавендиш (1731–1810) начал измерять проводимость (способность переносить электрический ток) различных материалов и опубликовал свои результаты. Французский военный инженер Шарль-Огюстен де Кулон (1736–1806) открыл в 1779 году то, что позже будет названо «законом Кулона», который описывает электростатическую силу притяжения и отталкивания. А в 1786 году итальянский врач Луиджи Гальвани (1737–1798) продемонстрировал то, что мы теперь понимаем как электрическую основу нервных импульсов.Известно, что Гальвани заставлял мускулы лягушки подергиваться, тряся их искрой от электростатической машины.

Вслед за работой Кавендиша и Гальвани появилась группа важных ученых и изобретателей, в том числе Алессандро Вольта (1745–1827) из Италии, датский физик Ганс Кристиан Эрстед (1777–1851), французский физик Андре-Мари Ампер (1775–1836), Георг Ом (1789–1854) из Германии, Майкл Фарадей (1791–1867) из Англии и Джозеф Генри (1797–1878) из США

Работа с магнитами

Джозеф Генри был исследователем в области электричества, работа которого вдохновляла многих изобретателей.Первым открытием Генри было то, что мощность магнита можно значительно увеличить, намотав его изолированным проводом. Он был первым, кто сделал магнит, который мог поднять вес до 3500 фунтов. Генри показал разницу между «количественными» магнитами, состоящими из коротких отрезков провода, соединенных параллельно и возбуждаемых несколькими большими ячейками, и «интенсивными» магнитами, намотанными одним длинным проводом и возбуждаемыми батареей, состоящей из последовательно соединенных ячеек. Это было оригинальное открытие, значительно увеличившее как непосредственную полезность магнита, так и его возможности для будущих экспериментов.

Восточный самозванец приостановлен

Майкл Фарадей, Уильям Стерджен (1783–1850) и другие изобретатели быстро осознали ценность открытий Генри. Стерджен великодушно сказал: «Профессору Джозефу Генри удалось создать магнитную силу, которая полностью затмевает все остальные во всех анналах магнетизма, и нет никаких параллелей с момента чудесного подвешивания знаменитого восточного самозванца в его железном гробу».

Эта часто используемая фраза — отсылка к малоизвестной истории, над которой подшучивают европейские ученые, о Мухаммеде (571–632 гг. Н. Э.), Основателе ислама.На самом деле эта история была вовсе не о Мухаммеде, а скорее рассказом Плиния Старшего (23–70 гг. Н. Э.) О гробу в Александрии, Египет. По словам Плиния, храм Сераписа в Александрии был построен из мощных магнитных камней, настолько мощных, что железный гроб младшей сестры Клеопатры Арсинои IV (68–41 гг. До н. Э.) Был подвешен в воздухе.

Джозеф Генри также открыл явления самоиндукции и взаимной индукции. В его эксперименте ток, проходящий через провод на втором этаже здания, индуцировал токи через аналогичный провод в подвале двумя этажами ниже.

Телеграф

Телеграф был ранним изобретением, которое передавало сообщения на расстоянии по проводу, используя электричество, которое позже было заменено телефоном. Слово телеграфия происходит от греческих слов tele, что означает далеко, и grapho, что означает писать.

Первые попытки послать сигнал электричеством (телеграфом) предпринимались много раз, прежде чем Генри заинтересовался этой проблемой. Изобретение электромагнита Уильямом Стердженом вдохновило исследователей в Англии на эксперименты с электромагнитом.Эксперименты провалились, и только через несколько сотен футов образовалось течение, которое ослабевало.

Основа электрического телеграфа

Однако Генри натянул милю тонкой проволоки, на одном конце поставил «интенсивную» батарею, а на другом заставил якорь бить в колокол. В этом эксперименте Джозеф Генри открыл основную механику электрического телеграфа.

Это открытие было сделано в 1831 году, за год до того, как Сэмюэл Морс (1791–1872) изобрел телеграф.Нет споров относительно того, кто изобрел первый телеграф. Это было достижением Морса, но открытие, которое мотивировало и позволило Морсу изобрести телеграф, было достижением Джозефа Генри.

По словам Генри: «Это было первое открытие того факта, что гальванический ток может передаваться на большое расстояние с таким незначительным уменьшением силы, чтобы вызывать механические эффекты, и средств, с помощью которых может осуществляться передача. Я увидел, что электрический телеграф теперь можно использовать.Я не имел в виду какой-либо конкретный вид телеграфа, а сослался только на общий факт, что теперь было продемонстрировано, что гальванический ток может передаваться на большие расстояния с достаточной мощностью для создания механических эффектов, адекватных желаемому объекту ».

Магнитный двигатель

Затем Генри обратился к разработке магнитного двигателя и преуспел в создании двигателя с возвратно-поступательным движением, на котором он установил первый автоматический переключатель полюсов или коммутатор, когда-либо использовавшийся с электрической батареей.Ему не удалось произвести прямое вращательное движение. Его перекладина колебалась, как шагающая балка парохода.

Электромобили

Томас Дэвенпорт (1802–1851), кузнец из Брэндона, штат Вермонт, построил в 1835 году достойный дороги электромобиль. Двенадцатью годами позже американский инженер-электрик Мозес Фармер (1820–1893) продемонстрировал электровоз. В 1851 году изобретатель из Массачусетса Чарльз Графтон Пейдж (1712–1868) проехал на электромобиле по рельсам железной дороги Балтимор и Огайо, от Вашингтона до Блейденсбурга, со скоростью девятнадцать миль в час.

Однако в то время стоимость аккумуляторов была слишком высока, и использование электродвигателя на транспорте было еще нецелесообразным.

Электрогенераторы

Принцип, лежащий в основе динамо-машины или электрического генератора, был открыт Майклом Фарадеем и Джозефом Генри, но процесс его превращения в практический генератор энергии занял много лет. Без динамо-машины для выработки энергии разработка электродвигателя застопорилась, и электричество не могло широко использоваться для транспортировки, производства или освещения, как сегодня.

Уличные фонари

Дуговая лампа как практическое осветительное устройство была изобретена в 1878 году инженером из Огайо Чарльзом Брашем (1849–1929). Другие занимались проблемой электрического освещения, но их успеху помешало отсутствие подходящих углеродов. Кисть заставила последовательно загореться несколько ламп от одной динамо-машины. Первые лампы Brush использовались для уличного освещения в Кливленде, штат Огайо.

Другие изобретатели улучшили дуговую лампу, но имели недостатки.Для наружного освещения и для больших залов дуговое освещение хорошо работало, но дуговое освещение нельзя было использовать в маленьких помещениях. Кроме того, они были включены последовательно, то есть ток проходил через каждую лампу по очереди, и авария с одной вывела из строя всю серию. Всю проблему внутреннего освещения должен был решить один из самых известных изобретателей Америки: Томас Алва Эдисон (1847–1931).

Биржевой билет Томаса Эдисона

Первым из многочисленных изобретений Эдисона с электричеством был автоматический регистратор голосов, на который он получил патент в 1868 году, но не смог вызвать никакого интереса к устройству.Затем он изобрел биржевой тикер и запустил тикерный сервис в Бостоне с 30 или 40 подписчиками и работал из комнаты через Золотую биржу. Эту машину Эдисон пытался продать в Нью-Йорке, но вернулся в Бостон, но безуспешно. Затем он изобрел дуплексный телеграф, с помощью которого можно было бы отправлять два сообщения одновременно, но при тестировании аппарат вышел из строя из-за глупости помощника.

В 1869 году Эдисон оказался на месте, когда вышел из строя телеграф в компании Gold Indicator Company, концерне, сообщавшем биржевые цены на золото своим подписчикам.Это привело к его назначению суперинтендантом, но когда смена владельца компании вытеснила его с должности, которую он сформировал вместе с Франклином Л. Поупом, партнерством Поупа, Эдисона и компании, первой фирмы инженеров-электриков в России. Соединенные Штаты.

Улучшенные биржевые тикеры, лампы и динамо

Вскоре после этого Томас Эдисон выпустил изобретение, которое открыло ему путь к успеху. Это был улучшенный биржевой тикер, и компания Gold and Stock Telegraph заплатила ему за это 40 000 долларов.Томас Эдисон немедленно открыл магазин в Ньюарке. Он усовершенствовал систему автоматического телеграфирования, которая использовалась в то время, и ввел ее в Англию. Он экспериментировал с подводными кабелями и разработал систему квадруплексного телеграфирования, с помощью которой один провод выполнял работу четырех.

Эти два изобретения были куплены Джеем Гулдом, владельцем компании Atlantic and Pacific Telegraph. Гулд заплатил 30 000 долларов за систему квадруплекса, но отказался платить за автоматический телеграф.Гулд купил Western Union, своего единственного конкурента. «Когда Гулд получил Western Union, — сказал Эдисон, — я не знал, что дальнейший прогресс в телеграфии невозможен, и перешел на другие линии».

Менло-Парк

Эдисон возобновил свою работу в Western Union Telegraph Company, где он изобрел передатчик углерода и продал его Western Union за 100 000 долларов. На основании этого Эдисон в 1876 году основал лаборатории и фабрики в Менло-Парке, штат Нью-Джерси, и именно там он изобрел фонограф, запатентованный в 1878 году, и начал серию экспериментов, в результате которых была получена его лампа накаливания.

Томас Эдисон посвятил себя производству электрической лампы для внутреннего использования. Его первое исследование было связано с прочной нитью накала, которая горела бы в вакууме. Серия экспериментов с платиновой проволокой и различными тугоплавкими металлами дала неудовлетворительные результаты, как и многие другие вещества, включая человеческие волосы. Эдисон пришел к выводу, что раствором был углерод, а не металл — английский изобретатель Джозеф Свон (1828–1914) пришел к такому же выводу в 1850 году.

В октябре 1879 года, после четырнадцати месяцев упорной работы и затрат в размере 40 000 долларов, обугленная хлопковая нить, запечатанная в одном из глобусов Эдисона, была испытана и прослужила сорок часов.«Если он будет гореть сейчас сорок часов, — сказал Эдисон, — я знаю, что смогу заставить его гореть сотню». Так он и сделал. Нужна была лучшая нить. Эдисон нашел его в обугленных полосках бамбука.

Эдисон Динамо

Эдисон также разработал свой собственный тип динамо-машины, самую большую из когда-либо созданных до того времени. Наряду с лампами накаливания Эдисона он был одним из чудес Парижской выставки электротехники 1881 года.

Вскоре последовала установка в Европе и Америке электрических установок.Первая большая центральная станция Эдисона, снабжающая энергией три тысячи ламп, была построена на Холборн-Виадуке в Лондоне в 1882 году, а в сентябре того же года была сдана в эксплуатацию станция Перл-Стрит в Нью-Йорке, первая центральная станция в Америке. .

Источники и дополнительная литература

  • Beauchamp, Кеннет Г. «История телеграфии». Стивенидж Великобритания: Институт инженерии и технологий, 2001.
  • Бриттен, Дж. Э. «Поворотные моменты в американской истории электротехники».»Нью-Йорк: Издательство инженеров по электротехнике и электронике, 1977.
  • Кляйн, Мори.» Создатели энергии: пар, электричество и люди, которые изобрели современную Америку «. Нью-Йорк: Bloomsbury Press, 2008.
  • Шектман, Джонатан.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *