Лямбда стали: Лямбда в физике (что это такое, как пишется, формула) ℹ️

Содержание

Подробно о лямбда-зондах

Лямбда-зонд необходим для того, чтобы передавать информацию блоку управления двигателем о том, насколько полно сгорает топливовоздушная смесь. Именно лямбда-зонд отвечает за определение количества кислорода в выхлопном газе, и на основании этого определяет состав топливовоздушной смеси.

Теоретически, на кило бензина приходится порядка 14,7 килограмм воздуха. В таком случае, бензин и кислород будут выгорать на 100%, таким образом, не выделяя вредных веществ. Это положительно сказывается и на расходе топлива.

Данная пропорция – 14,7:1 носит название «фактор избыточного количества воздуха», и обозначается буквой греческого алфавита λ (лямбда).

В случае, когда лямбда меньше единицы – ТВС получается обогащенной, в ней увеличенное количество топлива.

Но если данный показатель выше единицы, то топливовоздушная смесь – бедная, в ней не хватает топлива.

 

 

Приобрести б/у лямбда-зонд можно в нашем каталоге.

 

По какому принципу функционирует узкополосный лямбда-зонд?

Под колпачком из металла расположен чувствительный, выполненный из диоксида циркония, элемент. Благодаря чему он является электролитом, проще говоря – пропускает через себя ток, но газ попасть в него не может. Этот элемент имеет газопроницаемое платиновое контактное покрытие, к которому подведены проводки.

В среднем, во время работы температура данного элемента достигает 350 градусов. У первых моделей датчика воздуха не было дополнительного подогрева, за это отвечали выхлопные газы. Но впоследствии их начали оборудовать подогревателем, благодаря чему лямбда-зонд прогревается в разы быстрее.

 

 

Что мы получаем: внутренняя часть керамики работает с воздухом, а внешняя – с отработанными газами. Из-за разницы в концентрации молекул провоцируется перемещение ионов кислорода из области с повышенным содержанием кислорода в область, где его не хватает. Ионы свободно проникают сквозь керамический элемент, являющийся токопроводящим. Как раз благодаря разнице в количестве кислорода и возникает сигнальное электрическое напряжение.

Так, 0,45 Вольт равны единице, т.е. лямбде. Обогащенная ТВС создает максимальное напряжение в 0,9 Вольт, а бедная только 0,1 Вольт. Именно так функционирует узкополосный датчик кислорода. Он фиксирует отклонения от стехиометрии в очень узком диапазоне (14,0 – 15,0 к 1), таким образом замечая отклонения в какую-то из сторон.

К датчику подведены провода, их может быть разное число, но не более 4. 3-4 проводка свидетельствуют о дополнительно обогреве. Белые отвечают за подпитку обогревателя датчика. По черному проводу подается сигнал к блоку управления, а серый – это масса. Если у зонда только два белых и один черный проводки, то в таких случаях зонд соединяется с массой по корпусу.

Чтобы провести диагностику данного датчика кислорода – снимается осцилограмма, либо же придется использовать специальное программное обеспечение. В нормальном состоянии сигнал изменяется минимум раз в секунду, колеблясь в рамках 0,1-0,9 Вольт. В случае, когда сигнал сменяется очень медленно, а сигнальное напряжение не достигает 0,1 Вольт, это говорит о том, что сенсор вышел из строя. Кроме этого исправный датчик кислорода оперативно реагирует на малейшие изменения состава ТВС. Чтобы «обогатить» смесь достаточно «пшикнуть» во впуск пропаном. В таком случае, сенсор сразу выдаст 0,9 Вольт. Чтобы сделать смесь «бедной» достаточно снять вакуумную трубку. На что сразу отреагирует датчик, выдав 0,1 Вольта.

Но куда проще «прогазовать», чтобы сработала дроссельная заслонка. В таком случае сразу же поменяются показания датчика кислорода, сменившись до обогащенной. Если установлена пара зондов, то вышедший из строя будет реагировать с замедлением.

Проверить, как работает обогрев датчика – проще простого. Сначала проверьте, подается ли от аккумулятора питание (9-12 Вольт). После чего проверьте сопротивление нагревательного элемента. В рабочем состоянии будет 2,3-4,3 Ом на 25 градусах.

 

Лямбда-зонд на основе оксида титана

На смену узкополосному лямбда-зонду пришли датчики на оксиде титана. Обычно, в выпускной системе устанавливался всего 1 подобный зонд, с 3-4 проводками, подведенными к нему. Его точность заметно выше, но и цена – кусается. Зонд не сообщается с атмосферой, не создает напряжение, но его измерительный диапазон – лучше. По сути, его функционал напоминает расходомер. Он запитан от блока управления и выдает сигнал в виде напряжения. Сигнал регулярно меняется, диапазон 0,4-4.5 Вольт. Чем больше напряжение – тем беднее ТВС.

 

 

Широкополосный лямбда-зонд

Наиболее современный вариант, который в среде автолюбителей носит простое название «датчик воздух/топливо». Тут уже несколько больше проводов – 5-6. Зонд отвечает за измерение ТВС во всем диапазоне. Широкополосные зонды ставят на современные бензиновые моторы, которые функционируют на обедненной смеси, на моторах с непосредственным впрыском, а кроме этого на дизелях. Рабочая температура – 650 градусов.

 

 

Блок управления, в который поступают все данные с датчиков, отвечает за изменение подачи топлива, в зависимости от поступающего воздуха. Проблема лишь в том, что датчик находится во впускной системе, довольно далеко от камер сгорания, поэтому регулировка оставляет желать лучшего. Но имеем, что имеем.

 

Диагностика широкополосного лямбда-зонда

Мало кто знает, но фиксируемое датчиком напряжение – выдуманное, на самом деле его просто нет. Сигнал заметен исключительно для диагностического оборудования, и получаемый показатель требуется сверить с оптимальными данными, которые указывает завод-изготовитель. Например, напряжение в 1,5 или даже в 3,6 Вольта – может быть оптимальным, тут все напрямую зависит от зонда и марки вашего авто. Главное, чтобы сигнал был постоянным, и не изменялся без коррекции. Сигнал должен меняться исключительно вовремя:

  • Обогащения ТВС.,
  • Обеднения ТВС.

Чтобы это сделать, просто запустите во впуск пропан, или снимите с коллектора любой шланг, чтобы в него попал воздух. Обогащенная топливовоздушная смесь приводит к снижению напряжения, а бедная – увеличивает. Проще говоря, параметры смеси будут отражать топливную коррекцию.

«ЛЯМБДАЗОНД» — ВЗГЛЯД ИЗНУТРИ — Автомастер

На сегодняшний день уже миллионы владельцев автомобилей и тысячи техников наслышаны об этих датчиках и готовы иногда часами обсуждать нюансы их влияния на состояние современного автомобиля. Но автомобили постоянно совершенствуется, и требования к токсичности его выхлопных газов становятся все более жесткими. Поэтому конструкторы современных инжекторных систем вынуждены совершенствовать системы управления и применять более совершенные датчики. И вместо обычных датчиков содержания кислорода, которые по старинке называют “лямбда-зондами”, в настоящее время применяются датчики, которые в состоянии более точно проверять состав выхлопных газов. Конструкция и методики проверки таких датчиков радикально отличаются от общеизвестных. В этой статье описываются типы применяемых датчиков и основы их функционирования

.

На фото 1 слева направо представлены четыре основные причины неисправности этих датчиков.

Первая – неисправность контактов электрических разъемов и проводки автомобиля. Это относительно несложные поломки, так как легко устраняются после проверки соответствующих параметров с помощью сканера или тестера. А также проверки проводки для нахождения обрыва или замыкания.

Вторая неисправность несколько сложнее, так как ее истоки достаточно субъективны и иногда просто неожиданны. Это так называемый “человеческий фактор”. На фотографии показано то, что осталось после поломки датчика, но недобросовестные исполнители посчитали, что, залепив затылок датчика, они смогут обмануть блок управления инжекторной системой этого Matrix 2005 г.в. и заодно владельца автомобиля. Но к счастью это не удалось.

Следующий сабж – пример разгильдяйства владельца. На фото показан результат безответственного отношения к своему автомобилю. Дескать, “ну что, что не гаснет эта идиотская лампочка? Снял клемму на пару минут – она и гаснет!”. Но такой “народный умелец” не хочет понять, что отключение аккумулятора только стирает коды неисправности и не устраняет причину неисправности. Так и хочется такому горе-владельцу напомнить объявление в зоопарке: “Не пугайте страусов! В вольерах бетонный пол!”. При топливной коррекции более 30-40 % выхлопной тракт раскаляется до вишневого цвета минут за 10-15… На фотографии представлен результат термического разрушения (оплавления) металлического защитного колпачка датчика.

Справа на фото показан датчик после заправки автомобиля и покрасневший от стыда за качество жидкости, лишь внешне напоминающей бензин. Избыточное содержание октаноповышающих добавок на основе марганца не только оставило свой “кровавокрасный след” на поверхности, но и полностью “отравило” чувствительный элемент этого датчика состава топливной смеси. И если с первой и последней причиной мы бессильны бороться, то устранение информационного “голода”, невежества и предрассудков – вполне по силам как автовладельцам, так и работникам сервисных станций. Этому и посвящена эта статья.

 

Описание обычных кислородных датчиков

Как известно, для правильной работы бензинового двигателя, необходимо определенное соотношение между объемами топлива и воздуха, которые поступают в цилиндры.

Блок управления (БУ) системой подачей топлива предназначен для поддержания этого соотношения в пропорции, наиболее соответствующей температурным условиям и нагрузке на двигатель. При этом обязательно соблюдение требований экономичности и защиты окружающей среды и достижения определенных технических параметров.

Исторически сложилось характеризовать отношение количества воздуха к количеству топлива, которое поступает в цилиндры двигателя внутреннего сгорания, коэффициентом лямбда (λ ). При стехиометрическом составе топливно-воздушной смеси (отношение количества воздуха к количеству топлива примерно 14.7:1) коэффициент =1 и смесь в цилиндрах двигателя внутреннего сгорания является оптимальной. При отклонении состава смеси происходит изменение состава отработавших газов. На рис. 1 показано изменение содержания вредных веществ в отработавших газах в зависимости от степени обогащения смеси.

Строго говоря, значение коэффициента состава смеси определяется не только содержанием кислорода в отработавших газах. Его величина зависит и от содержания других веществ (CO, CO2, NOx, HC). Кроме этого, обязательно учитываются параметры применяемого топлива. Для расчета точного значения коэффициента обычно используется уравнение Бретшнайдера (Dr. J. Brettschneider).

БУ определяет состав смеси (лямбда-коэффициент) по напряжению кислородного датчика, которое, в свою очередь, зависит от содержания остаточного кислорода в отработавших газах автомобиля. Поэтому для определения этого датчика стали использовать термин “лямбда-зонд”. Остальные названия этого датчика (Lambda-Zonde, 02-sensor, Oxygen Sensor) являются результатом использования дословного перевода, аббревиатуры и т.п.

Этот датчик располагается в выпускном коллекторе двигателя.

В современных системах впрыска топлива часто применяется несколько датчиков содержания кислорода. В одних случаях это определяется конструкцией выпускного коллектора (V-образные двигатели), в других дополнительные датчики располагаются после каталитического нейтрализатора и используются для проверки его состояния и состояния основных датчиков кислорода. На рис. 2 схема расположения кислородных датчиков.

В зависимости от напряжения кислородного датчика, БУ корректирует параметры смеси согласно заложенным в нем алгоритмам (программам) управления. При прогретом двигателе и исправной системе впрыска, система находится в режиме управления с обратной связью по напряжению датчика содержания кислорода (“Closed Mode”). В этом режиме происходит так называемое лямбда-регулирование количеством топлива подаваемого в цилиндры. При этом коэффициент коррекции состава топливно-воздушной смеси составляет от 0.8 до 1.2 (± 20%) относительно расчетного значения. Например, если БУ определяет смесь как бедную (низкое выходное напряжение), то он увеличивает время открытого состояния форсунок, что увеличивает количество топлива, и затем проверяет реакцию двигателя (т.е. вновь “считывает” напряжение на датчике). В зависимости от результата  продолжает увеличивать количество топлива или, если произошло перерегулирование, и смесь слишком обогатилась и выходное напряжение возросло, уменьшает время открытого состояния форсунок (рис. 3).

При неисправном датчике БУ переходит в режим, при котором его напряжение не учитывается для определения параметров смеси, т.е. в режим управления без обратной связи по выходному напряжению кислородного датчика (“Open Loop Mode”). В этом режиме БУ продолжает управлять составом смеси с учетом температуры двигателя, нагрузки и других параметров.

При этом возможно следующие состояния:

обогащение состава топливно-воздушной смеси, следствием чего является:

— увеличение содержания СО и СН;

— неустойчивая частота вращения холостого хода;

— “плавающая” частота вращения коленчатого вала;

— перегрев каталитического нейтрализатора

—увеличение расхода топлива.

При обеднении смеси может происходить:

— увеличение содержания СН и NOx;

— “стремление” двигателя заглохнуть;

— “подергивание” на холостом ходу;

— неустойчивая частота вращения холостого хода;

— “плавающая” частота вращения коленчатого вала;

— пропуски вспышек в цилиндрах;

—ухудшению динамических свойств.

Обычно в режиме разомкнутой обратной связи используется коэффициент коррекции состава смеси равный 1.0.

Кроме этого, режим управления составом смеси без обратной связи реализуется:

— при запуске двигателя,

— в режиме прогрева,

— при резком ускорении (открывании дроссельной заслонки),

— при отключении подачи топлива,

— при полностью открытой дроссельной заслонке,

— при наличии неисправности в системе впрыска.

Обычно используются датчики на основе двуокиси циркония (ZrO2) или двуокиси титана (TiO2) с использованием иттрия (Y), платины (Pt), палладия (Pd), сложных соединений на основе алюминия (Al).

Конструктивно датчик выполнен в виде металлического корпуса, в котором находится чувствительный элемент с платиновыми электродами (рис. 4). Один электрод находится в потоке выхлопных газов, а второй- в атмосфере (рис. 5).

Пористая керамика на основе ZrO2 легированная оксидом иттрия, является твердым электролитом, т.е. проводит ионы кислорода.

После прогрева до рабочей температуры между электродами Pt/ZrO2/Pt возникает напряжение, величина которого определяется разностью содержания кислорода в отработавших газах двигателя (0,1_2 %) и в наружном воздухе (21 %). Чем больше концентрация кислорода в отработавших газах, тем меньше выходное напряжение на кислородном датчике. Диапазон рабочих температур обычных датчиков составляет 300 -4000С. Диапазон выходного напряжения кислородного датчика составляет 0.01-1.2 Вольт и определяется его конструкцией.

При стехиометрическом составе смеси (14.7:1) среднее значение выходного напряжения составляет примерно 0.45 – 0.5 вольт.

Следует отметить, что в зоне оптимального состава смеси (при примерно равным 1) напряжение кислородного датчика характеризуется достаточно высокой крутизной выходной характеристики. Т.е. при таком составе смеси его выходное напряжение резко изменяется даже при незначительных изменениях содержания кислорода в отработавших газах. Фото 2.

Поэтому принято считать, что циркониевый датчик является “переключательным” (см. рис.3). Со временем это свойство обычного циркониевого элемента стало его недостатком. ЕСМ не мог с его помощью получать данные о содержании кислорода в отработавших газах в области обедненных смесей.

На этой фотографии показан внешний вид чувствительных элементов на основе пористой керамики ZrO2, легированной оксидом иттрия.

Механизм возникновения напряжения (э.д.с.) в чувствительном циркониевом элементе кислородного датчика представляет собой сумму достаточно сложных для описания электрохимических реакций на границе Pt|ZrO2|Pt твердого электролита элемента. Его суть заключается в том, что за счет разного парциального давления (вследствие разной концентрации) кислорода в атмосфере и в отработанных газах, его ионы перемещаются и создают разность потенциалов. Подробное описание этих процессов выходит за рамки этого издания.

Необходимо отметить, что платиново-циркониевый элемент находится в одном ряду с другими гальваническими элементами, вырабатывающими напряжение в зависимости от разницы освещенности, давления или температуры. Особо следует отметить то, что процесс является обратимым. То есть если при разной концентрации кислорода у электродов напряжение вырабатывается, то прикладывание напряжения вызывает перемещение ионов кислорода в твердом электролите. Это явление нашло свое применение при дальнейшем совершенствовании датчиков кислорода.

Датчики содержания кислорода различаются конструкцией корпуса и чувствительного элемента, способами крепления (фото). Используется установка с помощью фланца или посредством резьбового соединения. Также возможны различные варианты количества проводов, с помощью которых производится подключение к БУ (от одного до восьми). Фото 3.

Для стабилизации температурного режима при ХХ двигателя (то есть при относительно невысокой температуре отработавших газов) и для уменьшения времени прогрева после запуска холодного двигателя, чувствительный элемент некоторых датчиков имеет встроенный нагреватель. Признаком таких датчиков является большее двух количество контактов и несколько иная конструкция.

Подогреваемые кислородные датчики (Heater Oxygen Sensors) входят в рабочий режим за десятки секунд.

Сокращение времени вхождения в рабочий режим позволяет уменьшить расход топлива, сократить количество выбросов вредных веществ в атмосферу и продлить срок службы каталитического нейтрализатора. Сопротивление нагревательного элемента обычно составляет от 1.2 -15 Ом. Но при этом на таких датчиках появилась и возможность обрыва (перегорания) нагревательного элемента. В современных системах на подогреватель БУ подает на подогреватель напряжение переменной скважности и проверят потребляемый ток (схема подключения датчиков кислорода с встроенным нагревательным элементом).

 

Титановые кислородные датчики

В некоторых системах впрыска нашли применение датчики, в которых используется чувствительный элемент на основе окислов титана (TiO2). Титановые датчики используются в некоторых моделях Nissan: Stanza 4WD (1986 г.в. и позже), Maxima, Stanza 4WD, 300 ZX и Sentra выпуска 1987 и ранее, Mitsubishi (GT 3000), Toyota (4A_GE на Corolla GTS, 3VZ_E в 2WD грузовиках), Chrysler (Jeep Cherokee, Wrangler).

Принцип действия титанового кислородного датчика отличается от принципа работы циркониевого датчика. Чувствительный элемент такого датчика изменяет проводимость (сопротивление) в зависимости от содержания кислорода (рис. 7) скачкообразно: от малого (менее 1 кОм) при богатой смеси, к большому (более 20 кОм) при обедненной смеси.

 

Характеристика титанового датчика

Наличие гистерезиса, т.е. разности порогов срабатывания при переходе от богатой к бедной смеси и наоборот, не установлено. БУ формирует на сигнальном выходе титанового датчика опорное напряжение (обычно 1 Вольт) от высокоомного источника тока (рис.8). Изменение состава смеси вызывает скачкообразное изменение сопротивления титанового датчика и, как следствие, столь же быстро изменяется протекающий через него ток.

Соответственно этому, изменяется падение напряжения на включенном последовательно с датчиком сопротивлении Rc. При богатой смеси сопротивление титанового элемента уменьшается, что приводит к увеличению тока через чувствительный элемент и к увеличению падения напряжения на эталонном сопротивлении (Rc). При бедной смеси его сопротивление увеличивается, протекающий ток уменьшается и, как следствие, напряжение уменьшается.

Титановый измерительный элемент характеризуется значительной температурной зависимостью, поэтому для поддержания необходимой температурной ста

Как почистить лямбда зонд своими руками в домашних условиях: промывка лямбда зонда

Оборудование автомобилей катализаторами — итог внедрения экологических норм. Основная задача — снизить вредное воздействие работы двигателей автомобилей на окружающую среду. Для этого необходимо снизить содержание токсинов, содержащихся в выхлопных газах. Несомненно, катализаторы необходимы, однако для их правильной работы требуются специальные условия и контроль состава воздуха и топлива. В противном случае они не прослужат долго. Поэтому оборудование автомобилей кислородным датчиком или лямбда зондом становится настоящим помощником для контроля состава выхлопных газов.

Устройство, принцип работы

Лямбда зонд предназначен для измерения показателя кислорода в выхлопных газах, поддержки оптимального состава топлива и воздуха, которые поступают в двигатель. Норма для такого соотношения равняется 14.6–14.8 частям воздуха и 1 части топлива.

Расположен перед катализатором в выпускном коллекторе. Некоторые модели автомобилей оснащены двумя устройствами. Если имеются два прибора, то второе устанавливается на выходе из катализатора. Таким образом, достигаются более точные показатели воздушно-топливной смеси, работа катализатора становится более эффективной.

Разливают несколько видов датчика. Одними из самых распространенных считаются циркониевый, титановый и широкополосной. Он состоит из нескольких основных элементов:

  • Корпус, вмещает все элементы
  • Защитная колба, оснащена специальными отверстиями через которые проходят выхлопные газы
  • Электроды: наружный — отвечает за взаимодействие с выхлопными газами, внутренний — с атмосферой. Имеют платиновое напыление
  • Электролит на основе диоксида циркония, который располагается между электродами
  • Нагревательный элемент, необходим для подогрева кислородного датчика. Подогрев нужен для обеспечения проводимости электролита. Необходимая температура около 400 °С

Принцип работы заключается в том, что при достижении нужной температуры электролита, кислород вместо с отработанными газами проходят сквозь него. При этом между чувствительными к ионам кислорода образуется разность потенциалов. Между напряжением, которое возникает на электродах, и концентрацией кислорода в выхлопных газах существует обратная зависимость. Чем больше содержание кислорода тем меньше напряжение.

Титановым устройствам необходима более высокая температура для нагревания, порядка 700 ºС. Их чувствительный элемент состоит из диоксида титана. Они измеряют выходное напряжение, функционируют без воздуха из атмосферы.

Широкополосной датчик кислорода считается более усовершенствованным. Он имеет заканчивающий элемент. Само устройство измеряет количество кислорода, фиксирует напряжение, сравнивает показатели с нормой и, если обнаружено несоответствие, направляет электрический ток. Он провоцирует выделение кислорода из выхлопных газов. Процесс длится до тех пор, пока напряжение не достигнет величины 450 мВ. Чаще используется на входе.

Как проверить

Данный вид датчиков считается одним из часто изнашиваемых. На него постоянно оказывают влияние отработанные газы, немаловажным фактором является качество топлива, с которым приходится работать, а также исправность двигателя. О неисправности и неполадках сообщит соответствующая лампочка на панели приборов. В данном случае выявить проблемы именно с этим датчиком поможет диагностика с помощью сканера. Также о возникших проблемах будет свидетельствовать потеря мощности, «рывки» в работе двигателя в режиме холостого хода, минимальный отклик на педаль газа. Увеличится токсичность выхлопных газов, определить которую можно только при измерении специальным прибором. Произойдет увеличение расхода топлива.

К основным причинам выхода из строя можно отнести: износ (каждый датчик имеет свой ресурс пробега), грязь, влага, механическое воздействие, которое приводят к сколам и трещинам, а также обрыв цепи нагревательного элемента. Более быстрому износу будут способствовать топливо низкого качества, частый перегрев двигателя, попадания масла, попадания моющих средств, добавление присадок в топливо.

Замена или ремонт

Неисправный прибор приводит к быстрому износу других ключевых деталей двигателя, влияет на качество управления автомобилем в целом. При обнаружении неработающего устройства его необходимо заменить на новое. Если же причиной неполадок становятся загрязнения, то есть вероятность вернуть его к жизни. Прежде чем выполнить чистку необходимо знать можно ли почистить лямбда зонд своими руками или лучше довериться профессионалам. В связи со специфической системой работы на приборе часто накапливается копоть, а продукты горения заполняют внутреннюю часть. Это позволяет работать, но с перебоями. Такую работу вполне можно выполнить в домашних условиях.

Прежде чем приступать к очистке необходимо снять датчик. На разных моделях авто эти действия будут выполняться по-разному, но в целом механизм действий один. Для начала стоит обеспечить место для работ, которое будет наиболее удобно для отключения и снятия датчика. Это может быть эстакада или яма. Затем нужно отсоединить клемы проводов, которые идут к самому лямбда зонду. Далее с помощью ключа нужного размера демонтируется сам прибор. Выполнять работы стоит только после полного охлаждения двигателя.

Вариантов очистки несколько:

  • Замачивание в кислоте. Чаще всего используется ортофосфорная. Самый простой и быстрый метод, не требующий больших затрат времени и денег. Наибольшую сложность составляет необходимость доступа к основанию, которое находится за металлическим колпачком. Можно сделать надрез колпачка возле резьбы с помощью токарного станка. Второй вариант — проделать напильником окошки, через которые поступит жидкость. Для полного очищения сердечник лямбда зонда помещают в емкость на 20–25 минут. Его нельзя помещать в химическое вещество полностью. После этого его необходимо тщательно промыть, желательно теплой водой и затем высушить. Если имеются сильные загрязнения можно использовать зубную щетку, смоченную в растворе кислоты. При наличии засоров рекомендуется увеличить время выдержки до 2–3 часов. Выбирая этот метод, не стоит пренебрегать мерами безопасности, поскольку ортофосфорная кислота крайне опасна.
  • С помощью нагревания и кислоты. Понадобится все та же ортофосфорная кислота и газовая горелка. Сердечник необходимо окунуть в кислоту, затем поднести к пламени горелки и нагревать до появления на поверхности зелено-голубой соли и полного выкипания кислоты с поверхности. Затем промыть водой и по необходимости повторить действия. Данный способ более быстрый, занимает не больше 10–15 минут. Однако меры безопасности нужно соблюдать и в этом случае. При нагревании кислота разбрызгивается.

Если колпачок был снят с помощью спила на токарном станке, то на место его можно вернуть с помощью аргоновой сварки. Вместо ортофосфорной кислоты можно использовать любую жидкость для удаления ржавчин, типа WD. Прежде чем производить установку очищенного прибора стоит уделить внимание уплотнительному кольцу. Также необходимо смазать готовый датчик графитовой смазкой. Так он будет защищен от пригорания. Когда знаешь, как почистить лямбда зонд, какие есть действенные способы, работа не покажется сложной, ее вполне под силу выполнить самому.

Видео по теме

Хорошая реклама

 

Лямбда-исчисление — Википедия. Что такое Лямбда-исчисление

Ля́мбда-исчисле́ние (λ-исчисление) — формальная система, разработанная американским математиком Алонзо Чёрчем, для формализации и анализа понятия вычислимости.

Чистое λ{\displaystyle \lambda }-исчисление

Чистое λ-исчисление, термы которого, называемые также объектами («обами»), или λ-термами, построены исключительно из переменных применением аппликации и абстракции. Изначально наличие каких-либо констант не предполагается.

Аппликация и абстракция

В основу λ-исчисления положены две фундаментальные операции:

  • Абстракция или λ-абстракция (лат. abstractio — отвлечение, отделение) в свою очередь строит функции по заданным выражениям. Именно, если t≡t[x]{\displaystyle t\equiv t[x]} — выражение, свободно[en] содержащее x{\displaystyle x}, тогда запись  λx.t[x]{\displaystyle \ \lambda x.t[x]} означает: λ{\displaystyle \lambda } функция от аргумента x{\displaystyle x}, которая имеет вид t[x]{\displaystyle t[x]}, обозначает функцию x↦t[x]{\displaystyle x\mapsto t[x]}. Таким образом, с помощью абстракции можно конструировать новые функции. Требование, чтобы x{\displaystyle x} свободно входило в t{\displaystyle t}, не очень существенно — достаточно предположить, что λx.t≡t{\displaystyle \lambda x.t\equiv t}, если это не так.

α-эквивалентность

Основная форма эквивалентности, определяемая в лямбда-термах, это альфа-эквивалентность. Например, λx.x{\displaystyle \lambda x.x} и λy.y{\displaystyle \lambda y.y}: альфа-эквивалентные лямбда-термы и оба представляют одну и ту же функцию (функцию тождества). Термы x{\displaystyle x} и y{\displaystyle y} не альфа-эквивалентны, так как они не находятся в лямбда абстракции.

β-редукция

Поскольку выражение λx.2⋅x+1{\displaystyle \lambda x.2\cdot x+1} обозначает функцию, ставящую в соответствие каждому x{\displaystyle x} значение 2⋅x+1{\displaystyle 2\cdot x+1}, то для вычисления выражения

(λx.2⋅x+1) 3{\displaystyle (\lambda x.2\cdot x+1)\ 3},

в которое входят и аппликация и абстракция, необходимо выполнить подстановку числа 3 в терм 2⋅x+1{\displaystyle 2\cdot x+1} вместо переменной x{\displaystyle x}. В результате получается 2⋅3+1=7{\displaystyle 2\cdot 3+1=7}. Это соображение в общем виде записывается как

(λx.t) a=t[x:=a],{\displaystyle (\lambda x.t)\ a=t[x:=a],}

и носит название β-редукция. Выражение вида (λx.t) a{\displaystyle (\lambda x.t)\ a}, то есть применение абстракции к некому терму, называется редексом (redex). Несмотря на то, что β-редукция по сути является единственной «существенной» аксиомой λ{\displaystyle \lambda }-исчисления, она приводит к весьма содержательной и сложной теории. Вместе с ней λ{\displaystyle \lambda }-исчисление обладает свойством полноты по Тьюрингу и, следовательно, представляет собой простейший язык программирования.

η-преобразование

η{\displaystyle \eta }-преобразование выражает ту идею, что две функции являются идентичными тогда и только тогда, когда, будучи применёнными к любому аргументу, дают одинаковые результаты. η{\displaystyle \eta }-преобразование переводит друг в друга формулы λx.f x{\displaystyle \lambda x.f\ x} и f{\displaystyle f} (только если x{\displaystyle x} не имеет свободных вхождений в f{\displaystyle f}: иначе, свободная переменная x{\displaystyle x} после преобразования станет связанной внешней абстракцией или наоборот).

Функция двух переменных x{\displaystyle x} и y{\displaystyle y} f(x,y)=x+y{\displaystyle f(x,y)=x+y} может быть рассмотрена как функция одной переменной x{\displaystyle x}, возвращающая функцию одной переменной y{\displaystyle y}, то есть как выражение  λx.λy.x+y{\displaystyle \ \lambda x.\lambda y.x+y}. Такой приём работает точно так же для функций любой арности. Это показывает, что функции многих переменных могут быть выражены в λ{\displaystyle \lambda }-исчислении и являются «синтаксическим сахаром». Описанный процесс превращения функций многих переменных в функцию одной переменной называется карринг (также: каррирование), в честь американского математика Хаскелла Карри, хотя первым его предложил М. Э. Шейнфинкель (1924).

Семантика бестипового λ{\displaystyle \lambda }-исчисления

Тот факт, что термы λ{\displaystyle \lambda }-исчисления действуют как функции, применяемые к термам λ{\displaystyle \lambda }-исчисления (то есть, возможно, к самим себе), приводит к сложностям построения адекватной семантики λ{\displaystyle \lambda }-исчисления. Чтобы придать λ{\displaystyle \lambda }-исчислению какой-либо смысл, необходимо получить множество D{\displaystyle D}, в которое вкладывалось бы его пространство функций D→D{\displaystyle D\to D}. В общем случае такого D{\displaystyle D} не существует по соображениям ограничений на мощности этих двух множеств, D{\displaystyle D} и функций из D{\displaystyle D} в D{\displaystyle D}: второе имеет бо́льшую мощность, чем первое.

Эту трудность в начале 1970-х годов преодолел Дана Скотт, построив понятие области D{\displaystyle D} (изначально на полных решётках[1], в дальнейшем обобщив до полного частично упорядоченного множества со специальной топологией) и урезав D→D{\displaystyle D\to D} до непрерывных в этой топологии функций[2]. На основе этих построений была создана денотационная семантика[en] языков программирования, в частности, благодаря тому, что с помощью них можно придать точный смысл таким двум важным конструкциям языков программирования, как рекурсия и типы данных.

Связь с рекурсивными функциями

Рекурсия — это определение функции через себя; на первый взгляд, лямбда-исчисление не позволяет этого, но это впечатление обманчиво. Например, рассмотрим рекурсивную функцию, вычисляющую факториал:

f(n) = 1, if n = 0; else n × f(n — 1).

В лямбда-исчислении, функция не может непосредственно ссылаться на себя. Тем не менее, функции может быть передан параметр, связанный с ней. Как правило, этот аргумент стоит на первом месте. Связав его с функцией, мы получаем новую, уже рекурсивную функцию. Для этого аргумент, ссылающийся на себя (здесь обозначен как r{\displaystyle r}), обязательно должен быть передан в тело функции.

g := λr. λn.(1, if n = 0; else n × (r r (n-1)))
f := g g

Это решает специфичную проблему вычисления факториала, но решение в общем виде также возможно. Получив лямбда-терм, представляющий тело рекурсивной функции или цикл, передав себя в качестве первого аргумента, комбинатор неподвижной точки возвратит необходимую рекурсивную функцию или цикл. Функции не нуждаются в явной передаче себя каждый раз.

Существует несколько определений комбинаторов неподвижной точки. Самый простой из них:

Y = λg.(λx.g (x x)) (λx.g (x x))В лямбда-исчислении, Y g{\displaystyle \operatorname {Y\ g} } — неподвижная точка g{\displaystyle \operatorname {g} }; продемонстрируем это:
Y g
(λh.(λx.h (x x)) (λx.h (x x))) g
(λx.g (x x)) (λx.g (x x))
g ((λx.g (x x)) (λx.g (x x)))
g (Y g).Теперь, чтобы определить факториал, как рекурсивную функцию, мы можем просто написать g (Y g)⁡n{\displaystyle \operatorname {g\ (Y\ g)} n}, где n{\displaystyle n} — число, для которого вычисляется факториал. Пусть n=4{\displaystyle n=4}, получаем:
g (Y g) 4
   (λfn.(1, if n = 0; and n·(f(n-1)), if n>0)) (Y g) 4
   (λn.(1, if n = 0; and n·((Y g) (n-1)), if n>0)) 4
   1, if 4 = 0; and 4·(g(Y g) (4-1)), if 4>0
   4·(g(Y g) 3)
   4·(λn.(1, if n = 0; and n·((Y g) (n-1)), if n>0) 3)
   4·(1, if 3 = 0; and 3·(g(Y g) (3-1)), if 3>0)
   4·(3·(g(Y g) 2))
   4·(3·(λn.(1, if n = 0; and n·((Y g) (n-1)), if n>0) 2))
   4·(3·(1, if 2 = 0; and 2·(g(Y g) (2-1)), if 2>0))
   4·(3·(2·(g(Y g) 1)))
   4·(3·(2·(λn.(1, if n = 0; and n·((Y g) (n-1)), if n>0) 1)))
   4·(3·(2·(1, if 1 = 0; and 1·((Y g) (1-1)), if 1>0)))
   4·(3·(2·(1·((Y g) 0))))
   4·(3·(2·(1·((λn.(1, if n = 0; and n·((Y g) (n-1)), if n>0) 0))))
   4·(3·(2·(1·(1, if 0 = 0; and 0·((Y g) (0-1)), if 0>0))))
   4·(3·(2·(1·(1))))
   24

Каждое определение рекурсивной функции может быть представлено как неподвижная точка соответствующей функции, следовательно, используя Y{\displaystyle \operatorname {Y} }, каждое рекурсивное определение может быть выражено как лямбда-выражение. В частности, мы можем определить вычитание, умножение, сравнение натуральных чисел рекурсивно.

В языках программирования

В языках программирования под «λ{\displaystyle \lambda }-исчислением» зачастую понимается механизм «анонимных функций» — callback-функций, которые можно определить прямо в том месте, где они используются, и которые имеют доступ к локальным переменным текущей функции.

См. также

Примечания

  1. Scott D.S. The lattice of flow diagrams.— Lecture Notes in Mathematics, 188, Symposium on Semantics of Algorithmic Languages.— Berlin, Heidelberg, New York: Springer-Verlag, 1971, pp. 311—372.
  2. Scott D.S. Lattice-theoretic models for various type-free calculi. — In: Proc. 4th Int. Congress for Logic, Methodology, and the Philosophy of Science, Bucharest, 1972.

Литература

  • Барендрегт X. Ламбда-исчисление. Его синтаксис и семантика: Пер. с англ. — М.: Мир, 1985. — 606 с.

Лямбда-зонд

С конца 80-х годов у большинства автомобилей появилась такая деталь, как датчик содержания кислорода в выхлопных газах. Лямбда-зонд, О-2 датчик, кислородный датчик (Oxygen Sensor) — так по разному могут называть эту небольшую, но важную детальку. С началом выпуска автомобилей с каталитическим нейтрализатором выхлопных газов появилась необходимость и в лямбда-зонде. Для нормальной работы катализатора нужно обеспечить постоянное оптимальное соотношение воздуха и топлива в рабочей смеси, поступающей в камеру сгорания. В противном случае способность катализатора доокислять вредные примеси будет недостаточной и недолгой. 14.7 частей воздуха и 1 часть топлива — именно такой состав обеспечивает максимальное сгорание топливно-воздушной смеси, а лямбда-зонд предназначен как раз для того, что бы помогать мозгам(ECU) поддерживать эту пропорцию. В зависимости от содержания кислорода в выхлопе датчик выдаёт соответствующее напряжение и ECU корректирует состав смеси путем изменения количества подаваемого в цилиндры топлива.

Как взаимосвязаны катализатор и лямбда-зонд?

Учитывая вышесказанное, становится ясно, что катализатору необходимо наличие лямбда-зонда, а вот лямбда-зонду нужен ли катализатор? Будет ли он правильно работать, если катализатор, к примеру, удалён? Попробуем ответить: датчик стоит перед катализатором и меряет содержание кислорода в газах именно перед ним, и после удаления катализатора так и будет продолжать мерять дальше, то есть наличие или отсутствие катализатора никак не влияет на сигналы, которые даёт лямбда-зонд, на них влияет только количество кислорода. Другое дело, когда стоят два кислородных датчика — один до, а другой после катализатора. На основании сигналов от второго датчика происходит дополнительная корректировка состава смеси, а содержание кислорода после прохождения газов через катализатор конечно же меняется, и вот тогда его отсутствие может отрицательно сказаться на процессе образования топливно-воздушной смеси.

Можно отключать лямбда-зонд?

После замены катализатора на пламегаситель, наличие лямбда-зонда, как детали обеспечивающей в числе прочего качественную работу катализатора, становится не важным, поэтому часто возникает вопрос: можно ли эксплуатировать автомобиль совсем без лямбда-зонда? Здесь одного решения для всех нет. Наиболее просто и правильно эта задача решается в том случае, если у данного автомобиля предусмотрена возможность перепрограмировать ECU на режим работы без катализатора, как, например, у большинства BMW с мозгами Бош (Сименс не перепрограмируется). В этом случае после удаления катализатора меняется программа управления и лямбда-зонд просто снимается и всё. У некоторых марок автомобилей перепрограмирование невозможно и если неисправность датчика сильно влияет на работу мотора, тогда выхода нет — должен стоять исправный датчик. Так же у многих автомобилей неисправность или отсутствие л-зонда практически не сказывается ни на динамике, ни на расходе топлива, такой плюс есть, например, у большинства Тойот и Мерседесов начала 90-х годов. В таком случае можно спокойно спокойно эксплуатировать машину и без датчика, но конечно ещё лучше, когда всё в порядке.

Взаимозаменяемы ли датчики от различных автомобилей?

Лямбда-зонды отличаются друг от друга резьбовой частью, наличием подогрева, количеством проводов и соединительным разьёмом. А принцип работы и сам рабочий элемент у всех датчиков практически одинаковые. Поэтому если у вашего датчика три провода и резьба 18х1.5, то можете смело ставить универсальный датчик с такими же параметрами или, например, от ВАЗ 2110. Датчик работать будет правильно, а его надёжность и долговечность будет зависеть уже от производителя. Если не доверяете жигулёвским деталям, а нужного вам датчика нет в наличии, то в магазинах можно найти универсальный датчик практически любого типа. Главное не перепутать при перепаивании провода. Даже различие резьбы не так страшно. На большинстве японских автомобилей резьба лямбда-зонда меньшего диаметра, чем у европейских, и если только датчик стоит не в чугунном коллекторе, то можно просто вварить гайку с нужной резьбой. Единственно нужно помнить о том, что попытка съэкономить небольшую сумму очень часто выливается в ещё большие потери, и прежде чем что-либо переделывать в своей машине, лучше как следует подумать.

Что не любит кислородный датчик

Рабочий элемент датчика очень чувствительный и быстро выходит из строя, если подвергается воздействию различных вредных присадок, содержащихся в некачественном бензине, особенно вреден свинец. Попадающие в камеру сгорания антифриз или масло, перегрев или плохие контакты в электропроводке также отрицательно сказываются на его долговечности. Проверять работоспособность можно как осциллографом, так и лямбда-тестером, но последний редко встречается в отечественных автосервисных предприятиях, хотя и более точен в своих показаниях.

ДАТЧИК СОДЕРЖАНИЯ КИСЛОРОДА В ВЫХЛОПНЫХ ГАЗАХ.

Датчик кислорода — он же лямбда-зонд — устанавливается в выхлопном коллекторе таким образом, чтобы выхлопные газы обтекали рабочую поверхность датчика. Он представляет собой гальванический источник тока, изменяющий напряжение в зависимости от температуры и наличия кислорода выхлопной трубе. Материал его, как правило, керамический элемент на основе двуокиси циркония, покрытый платиной. Конструкция его предполагает, что одна часть соединяется с наружным воздухом, а другая — с выхлопными газами внутри трубы. В зависимости от концентрации кислорода в выхлопных газах, на выходе датчика появляется сигнал. Уровень этого сигнала может быть низким (0,1…0,2В) или высоким (0,8…0,9В). Существуют также датчики сигнал на выходе у которых изменяется от 0,1 до 4,9 В.

Таким образом датчик кислорода — это своеобразный переключатель, сообщающий контроллеру впрыска о концентрации кислорода в отработавших газах. Контроллер принимает сигнал с лямбда-зонда, сравнивает его со значением, прошитым в его памяти и, если сигнал отличается от оптимального для текущего режима, корректирует длительность впрыска топлива в ту или иную сторону. Таким образом осуществляется обратная связь с контроллером впрыска и точная подстройка режимов работы двигателя под текущую ситуацию с достижением максимальной экономии топлива и минимизацией вредных выбросов.

Бензиновому двигателю для работы требуется смесь с определенным соотношением воздух-топливо. Соотношение, при котором топливо максимально полно и эффективно сгорает, называется стехиометрическим и составляет 14,7:1. Это означает, что на одну часть топлива следует взять 14,7 частей воздуха. На практике же соотношение воздух-топливо меняется в зависимости от режимов работы двигателя и смесеобразования. Двигатель становится неэкономичным.

Коэффициент избыточности воздуха — L (лямбда) характеризует — насколько реальная топливно-воздушная смесь далека от оптимальной (14,7:1). Если состав смеси — 14,7:1, то L=1 и смесь оптимальна. Если L 1, значит налицо избыток воздуха, смесь бедная. Мощность при L=1,05 — 1,3 падает, но зато экономичность растет. При L > 1,3 смесь перестает воспламеняться и начинаются пропуски в зажигании. Бензиновые двигатели развивают максимальную мощность при недостатке воздуха в 5-15% (L=0,85 — 0,95), тогда как минимальный расход топлива достигается при избытке воздуха в 10-20%% (L=1,1 — 1,2). Таким образом соотношение L при работе двигателя постоянно меняется и диапазон 0,9 — 1,1 является рабочим диапазоном лямбда-регулирования. В то же время, когда двигатель прогрет до рабочей температуры и не развивает большой мощности (например работает на ХХ), необходимо по возможности более строгое соблюдение равенства L=1 для того, чтобы трехкомпонентный катализатор смог полностью выполнить свое предназначение и сократить объем вредных выбросов до минимума.

Лямбда-зонды бывают одно-, двух-, трех- и четырехпроводные. Однопроводные и двухпроводные датчики применялись в самых первых системах впрыска с обратной связью (лямбда-регулированием). Однопроводный датчик имеет только один провод, который является сигнальным. Земля этго датчика выведена на корпус и приходит на массу двигателя через резьбовое соединение. Двухпроводный датчик отличается от однопроводного наличием отдельного земляного провода сигнальной цепи. Недостатки таких зондов: рабочий диапазон температуры датчика начинается от 300 градусов. До достижения этой температуры датчик не работает и не выдает сигнала. Стало быть необходимо устанавливать этот датчик как можно ближе к цилиндрам двигателя, чтобы он подогревался и обтекался наиболее горячим потоком выхлопных газов. Процесс нагрева датчика затягивается и это вносит задержку в момент включения обратной связи в работу контроллера. Кроме того, использование самой трубы в качестве проводника сигнала (земля) требует нанесения на резьбу специальной токопроводящей смазки при установке датчика в выхлопной трубопровод и увеличивает вероятность сбоя (отсутствия контакта) в цепи обратной связи.

Указанных недостатков лишены трех- и четырехпроводные лямбда зонды. В трехпроводный ЛЗ добавлен специальный нагревательный элемент, который включен как правило всегда при работе двигателя и, тем самым, сокращает время выхода датчика на рабочую температуру. А так же позволяет устанавливать лямбда-зонд на удалении от выхлопного коллектора, рядом с катализатором. Однако остается один недостаток — токопроводящий выхлопной коллектор и необходимость в токопроводящей смазке. Этого недостатка лишен четырехпроводный лямбда-зонд — у него все провода служат для своих целей — два на подогрев, а два — сигнальные. При этом вкручивать его можно так как заблагорассудится.

Несколько слов о взаимозаменяемости датчиков. Лямбда-зонд с подогревом может устанавливаться вместо такого же, но без подогрева. При этом необходимо смонтировать на автомобиль цепь подогрева и подключить ее к цепи, запитываемой при включении зажигания. Самое оптимальное через отдельное реле.. Не допускается обратная замена — установка однопроводного датчика вместо трех- и более- проводных. Ну и конечно необходимо, чтобы резьба датчика совпадала с резьбой, нарезанной в штуцере.

Ресурс датчика содержания кислорода обычно составляет 50 — 100 тыс.км. и в значительной степени зависит от условий эксплуатации, качества топлива и состояния двигателя. Повышенный расход масла, переобогащенная смесь и неправильно отрегулированный угол опережения зажигания сильно сокращают жизнь лямбда-зонду. Дольше служат, как правило, датчики с подогревом. Рабочая температура для них обычно 315-320°C. В конструкцию этих датчиков включен нагревающий элемент, имеющий на разъеме свои контакты. Проверку работоспособности нагревательного элемента таких датчиков можно производить обычным омметром. Сопротивление их обычно составляет от 3 до 15 Ом.

Правильно работающий лямбда-зонд может многое сказать о том в каком состоянии находится двигатель и его системы. На некоторых автомобилях с помощью датчика можно достаточно точно отрегулировать содержание СО в выхлопных газах . Неисправный лямбда-зонд неминуемо вызовет повышенный расход топлива и снижение мощностных характеристик двигателя. Следует отметить, что далеко не все неисправности лямбда-зонда фиксируются блоком управления, а если фиксируются, то блок управления переходит в режим управления впрыском по усредненным параметрам, что тоже приводит к перечисленным выше результам. Поэтому рекомендуется при малейших подозрениях провести диагностику, а при выявлении неисправности заменить лямбда-зонд.

Для диагностики лямбда-зонда подсоедините осциллографический щуп мотортестера к сигнальному выводу датчика. Выберите режим работы мотортестера — лямбда-зонд, развертки У -2 В, Х -3-30 сек., нажмите кнопку пуск.

Внимание! Проверку работы датчика содержания кислорода в выхлопных газах следует проводить на прогретом двигателе и частоте вращения коленвала примерно 2000 об/мин. Длительная работа на минимальных оборотах холостого хода может вызвать остывание лямбда-зонда и как следствие неправильную его работу.

Необходимо проконтролировать следующие параметры: минимальное значение напряжения, максимальное значение напряжения, среднее значение напряжения и длительность фронта импульса. Эти значения должны быть следующими: минимальное значение напряжения — 0.04 — 0.2 В, максимальное значение напряжения — 0.8 — 1.0 В, длительность фронта — не более 150 mc. Выход параметров за эти значения говорит о неисправности лямбда-зонда. Среднее значение напряжение должно быть приблизительно 0.45 В. Отклонение от этого значения говорит о неправильной регулировке СО или о подсосе воздуха или о засоренности форсунок и т.д.

На что менять? Самое лучшее — это менять датчик на такой, какой стоит в списке запчастей для Вашего автомобиля. В таком случае гарантия работоспособности системы после замены будет 100%. Но не всегда по финансовым соображениям выгодно гоняться за оригинальными каталожными датчиками. Ведь тот же Bosch выпускает лямбда-датчики и для других моделей. И они по принципу работы одинаковы, а внешне очень похожи. Ну и что, что каталожный номер будет стоять другой. При правильной установке и грамотном подборе можно съэкономить весьма кругленькую сумму, купив жигулевский датчик от фирмы Bosch за 20-30$ вместо точно такого же по сути, но фирменного за 80-100$ и работать он будет ничуть не хуже.

В заключение необходимо отметить, что датчик содержания кислорода в выхлопных газах устанавливается, как правило, в паре с нейтрализатором. Многие автовладельцы считают, что они взаимосвязаны функционально и могут работать только в паре. Однако это не совсем так. В большинстве автомобилей лямбда-зонд установлен в выхлопном тракте до нейтрализатора. В этом случае нейтрализатор не может влиять на работу датчика, хотя обратная зависимость есть и заключается в том,чтобы система впрыска топлива регулировала топливную смесь не переобогащая ее, таким образом продлевая срок службы нейтрализатора.

Некоторые автовладельцы самостоятельно заменяют вышедший из строя нейтрализаторо на резонатор и отключают лямбда-зонд. В этом случае ECU работает по усредненным значениям и не может обеспечить оптимального приготовления состава топливной смеси. Кроме того, добиться низкого уровня содержания СО в выхлопных газах на таких автомобилях бывает весьма проблематично. Часто в этих случаях после отключения аккумулятора работа двигателя становится неустойчивой и не всегда оптимизируется даже после значительного пробега автомобиля, т.к. не во всех ECU есть система коррекции режимов сохраняемых в оперативной памяти и, при отключении питания, ECU теряет эти значения. Восстановление этих значений порой может дорого стоить.

Если вы решили заменить нейтрализатор на резонатор или просто его удалить, не стоит отключать лямбда-зонд, а если и он вышел из строя, то установите новый датчик.

В автомобилях где лямбда-зонд установлен на нейтрализаторе ,дело обстоит еще сложнее, т.к. лямбда-зонд контролирует уже очищенный выхлоп. В этом случае, если удален нейтрализатор (даже если сохранен лямбда-зонд), добиться оптимальной работы двигателя бывает достаточно трудно, т.к. программа ECU может быть не рассчитана на более грязный выхлоп и часто воспринимает это как неисправность лямбда-зонда.

(с)

ДИАГНОСТИРУЕМ И МЕНЯЕМ ЛЯМБДА-ЗОНД

В современном автомобиле лямбда-зонд и катализатор — неразлучная парочка. Умерший лямбда-зонд вынуждает работать не по правилам катализатор и автомобиль становится не только экологически грязным но и не в меру прожорливым.Что происходит с лямбда-зондом на автомобиле, на что еще влияет лямбда-зонд, как его проверить, когда и как менять — об этом и пойдет речь в данной статье, адресованной тем, кто ездит на современном автомобиле и тем, кто его обслуживает.

Сначала коротко о самом названии зонда. Лямбда-зонд, ? — зонд, датчик О2, датчик концентрации кислорода, датчик кислорода,lambda-sensor — эти все названия в различных источниках информации об одном и том же — предмете нашего разговора. В мировой практике для оценки состава топливо — воздушной смеси используют коэффициент (обозначается буквой греческого алфавита ? (ламбда), равный отношению количества воздуха поступившего в цилиндры к количеству теоретически необходимого воздуха для полного сгорания поступившего туда топлива. Если ?=1 то смесь принято называть стехиометрической и на одну часть топлива (по массе) для его полного сгорания должно приходиться 14,7 частей воздуха (также по массе). Полное сгорание топлива позволяет получить необходимую топливную экономичность двигателя, а каталитический нейтрализатор отработавших газов может максимально эффективно обезвредить наиболее вредные компоненты выхлопных газов (СО,СН,NОx). Если ?1 — избыток кислорода, смесь будет бедной. Из всей этой теории для дальнейшего понимания излагаемых вопросов нужно запомнить два момента — лямбда-зонд выдает максимальный выходной сигнал когда смесь богатая и минимальный когда смесь бедная. Контроллер управления двигателем, получая эту информацию, корректирует время впрыска топлива форсунками для поддержания состава смеси близким к стехиометрическому. Рассматривать будем лямбда — зонды, которые устанавливаются на бензиновые двигатели (инжекторные и карбюраторные) т.к. лямбда-зонды на дизельных двигателях только начинают внедряться и пока не получили широкого распространения.

По принципу действия лямбда-зонды (в дальнейшем по тексту — датчики) бывают двух типов. Первый тип (имеющий наибольшее распространение) имеет чувствительный элемент из керамики на основе диоксида циркония. По сути это твердоэлектролитный источник напряжения, который в зависимости от соотношения кислорода в отработавших газах и атмосферном воздухе создает разность потенциалов между двух платиновых электродов, напыленных на его внутреннюю и внешнюю поверхности. Второй тип — резистивный, где чувствительный элемент из оксида титана. По сути это полупроводниковый элемент, который изменяет свою проводимость в зависимости от количества кислорода в отработавших газах. Внутреннее устройство датчиков рассматривать не будем. Ограничимся внешними конструктивными особенностями к которым придется обращаться в дальнейшем. Датчики бывают одно, двух, трех и четырехпроводные и соответственно с таким же количеством штырьков в разъеме для подключения. В датчике с одним проводом этот же провод и является сигнальным. В качестве второго провода используется масса автомобиля. В датчике с двумя проводами вместо массы используется отдельный провод. В датчике с тремя проводами один провод является сигнальным, в качестве второго используется масса автомобиля, по двум другим подается питание 12 вольт на элемент подогрева датчика. В датчике с четырьмя проводами два провода являются сигнальными, по двум другим подается питание 12 вольт на элемент подогрева. Одно и двухпроводные датчики (без подогрева) всегда устанавливаются в выпускном коллекторе как можно ближе к двигателю. Объясняется это тем, что сигнал на выходе появляется только тогда, когда температура чувствительного элемента станет не менее 350?С и чтобы датчик быстрее вступил в работу он должен быстрее прогреться. Трех и четырехпроводные датчики устанавливаются перед катализатором (на расстоянии 100…150 мм), иногда и в корпусе катализатора, а иногда одновременно перед катализатором и за катализатором. Датчик после катализатора используется в системе бортовой диагностики для контроля исправности катализатора и для более точной коррекции состава смеси. Датчики имеют неразборную конструкцию и не требуют обслуживания в процессе эксплуатации. Ресурс датчика — до 100 000 км. пробега автомобиля при условии, что он не подвергался воздействию нештатных факторов, которые могут вывести его из строя при любом пробеге. Здесь необходимо обратить внимание на два момента. Есть внешние факторы, которые приводят к искажению выходных сигналов за счет необратимых процессов в чувствительном элементе датчика и есть внешние факторы, которые искажают выходные сигналы абсолютно исправных датчиков. На чувствительный элемент датчика влияют компоненты топлива и герметиков, применяемых при ремонте. Отравиться и потерять активность датчик может от одной заправки бензобака этилированным бензином, в котором содержатся соединения свинца (Рb), а также кремнием (Si), входящим в состав силиконовых герметиков различного назначения. В первом случае при богатой смеси выходной сигнал будет заниженного уровня, а время перехода сигнала от минимального значения до максимального завышенным, т.е. датчик становится как бы вялым. Во втором случае при бедной смеси выходной сигнал и время переключения будут завышенными. В обоих случаях коррекция времени впрыска топлива будет идти по ложным сигналам, либо система лямбда-регулирования исключит датчик из работы в контуре обратной связи. Если перед местом установки датчика имеется негерметичность выпускного коллектора (трещина в коллекторе, прогоревшая прокладка), то исправный датчик будет регистрировать либо бедную смесь, либо сигнал вообще будет отсутствовать, и контроллер будет ложно увеличивать подачу топлива. При пропуске воспламенения смеси в цилиндрах (некачественные свечи, забитые форсунки) не вступивший в реакцию горения кислород вместе с топливом поступает в выпускной коллектор где датчик регистрирует бедную смесь и контроллер опять же будет увеличивать подачу топлива. Попадание топлива на датчик как указано выше, а также при многократных и безуспешных пусках двигателя (и особенно при пуске с буксира) не способствует долголетию датчика. Если после этого не произошел перегрев датчика, то может произойти хлопок в выпускном тракте и датчик может получить механические повреждения (трещины в керамике, нарушения контактов).

Работоспособность датчика необходимо регулярно проверять (каждые 30 000 км.), а сам датчик менять (через 100 000 км.). Это рекомендации производителей датчиков. Что происходит на самом деле в реальной жизни? Автору статьи не приходилось встречаться с ситуацией, когда кто-либо в качестве профилактики обращался бы с просьбой проверки датчика и тем более его замены через указанный интервал пробега. У всех возникает вопрос либо тогда, когда после пуска холодного двигателя через 2…2,5 мин. загорается индикатор Check engine, либо на определенных режимах работы двигателя этот индикатор то загорается то гаснет, либо заметно возрастает расход топлива. Нередко встречаются и случаи, когда из выхлопной трубы валит черный дым , электроды свечей покрываются черным лохматым нагаром, расход топлива возрастает до 50 % против 15…20 % в большинстве случаев при отказе датчика. В любом случае отказавший датчик нарушает работу двигателя на холостом ходу, меняется динамика движения автомобиля, ухудшается холодный пуск двигателя за счет шунтирования электродов свечей нагаром. Обильный нагар в цилиндрах закоксовывает компрессионные кольца и они не прилегают к зеркалу цилиндра, что приводит к снижению компрессии. Иногда разница по цилиндрам достигает 5…6 кгссм?. Через образовавшиеся зазоры газы прорываются в картер двигателя и отравляют масло, а при длительном и безуспешном пуске холодного двигателя уровень масла может увеличиться в 1,5..2 раза. и разбираться в причинах неудавшегося пуска двигателя приходится только после замены масла и масляного фильтра. Несгоревшее в цилиндрах топливо смывает масляную пленку с зеркала цилиндра и идет сухое трение и износ пары кольцо-цилиндр, что приводит к сокращению ресурса двигателя. Из всего вышесказанного следует, что датчик не такая простая и безобидная штучка как может показаться на первый взгляд, т.к. его отказ влечет за собой довольно серьезные последствия.

Для объективной оценки состояния датчика необходимо точно знать минимальное, среднее и максимальное значения выходного сигнала, а также время перехода сигнала от минимального до максимального значения (длительность фронта сигнала в миллисекундах). Поэтому гаражные методы диагностики с помощью стрелочного вольтметра, цифрового мультиметра и даже бортовой системы самодиагностики (по кодам вспышек индикатора Check engine) малопригодны для принятия решения о замене датчика по следующим причинам. С помощью стрелочного прибора (из-за инерционности стрелки) можно определить по колебаниям стрелки только то, что сигнал изменяется. Немного больше информации дает цифровой мультиметр, показывающий среднее значение выходного сигнала. Но здесь тоже может быть неоднозначность. Например, если прибор показывает 0,45 вольт, то может быть неисправным датчик, а может и исправный датчик иметь одинаковые амплитуды максимального и минимального сигналов относительно среднего значения (симметричный сигнал). Если показания более 0,55 вольт, то можно говорить о том, что по каким-то причинам смесь богатая (неисправен регулятор давления топлива и давление в системе впрыска завышенное, неисправен расходомер воздуха и др.). Если показания менее 0,35 вольт, то это признак бедной смеси (это может быть из-за отсутствия питания на элементе подогрева датчика, трещины в выпускном коллекторе и др.) хотя фактически смесь может быть богатой. Если применяемый мультиметр имеет режим определения максимального и минимального значений измеряемого сигнала, то результаты измерений будут более информативными и при соответствующем навыке можно более точно определить состояние датчика. Нельзя однозначно положиться и на информацию, полученную по результатам считывания кодов неисправностей с помощью бортовой системы самодиагностики, — можно ошибочно заменить исправный датчик. Допустим, что сосчитан код 13 , который расшифровывается как низкое значение сигнала датчика кислорода. Низкое значение сигнала будет по ряду причин (см. выше), а что на самом деле — бедная смесь, неисправен датчик, не подается питание на элемент подогрева или трещина в коллекторе? Здесь- нужны дополнительные измерения. На многих автомобилях (включая ВАЗ-2110 и его модификации) функция ручного считывания кодов неисправностей не предусмотрена — нужен специализированный сканер. Что же остается для инструментального контроля? Это специальные тестеры для диагностики лямбда-зондов, которые через переходной кабель включаются между датчиком и контроллером управления двигателем, специальные сканеры, которые подключаются к диагностической колодке автомобиля. Процедуру диагностики датчика с помощью этих приборов рассматривать не будем, она подробно изложена в руководствах по эксплуатации на эти приборы. Рассмотрим наиболее доступный и эффективный осциллографический метод с помощью мотор-тестера (который, как правило, имеет режим проверки осциллограм различных напряжений) или с помощью обычного осциллографа. Измерительный щуп прибора нужно подключить к сигнальному проводу датчика (как правило, это черный провод), серый — это масса датчика, а два белых — это питание 12 вольт на элемент подогрева. Для случая исправного датчика на прогретом двигателе в режиме холостого хода на экране прибора будут видны равномерные, близкие к синусоиде колебания с частотой 1…5 Гц. с минимальным значением сигнала 0,1 вольт, максимальным 0,9 вольт, вокруг среднего значения 0,45 вольт с длительностью фронтов сигнала не более 250 миллисекунд. Такой же сигнал (только с большей частотой) должен наблюдаться и при повышенных оборотах двигателя. Все вышесказанное относится к датчику, установленному перед катализатором. Сигнал на датчике, установленном после катализатора, (при исправном катализаторе) будет близок к прямой линии примерно на уровне 0,5…0,6 вольт. Если сигнал переменный и близок по форме к сигналам датчика перед катализатором, то катализатор неисправный. Если диагностируется титановый датчик, установленный перед катализатором, то уровень выходного сигнала будет изменяться в диапазоне 0,2…4,5 вольт. и с более крутыми фронтами. Если у циркониевого датчика фронт сигнала превышает 350 мсек., сигнал низкого уровня более 0,2 вольт, а сигнал высокого уровня менее 0,8 вольт — есть повод задуматься о предстоящей замене датчика. Какие наиболее характерные случаи встречаются при диагностике датчиков? Встречаются случаи (почему-то больше на автомобилях FORD-SCORPIO и FORD-SIERRA) когда выходной сигнал сидит на пьедестале от 1,5 до 3,5…4,5 вольт. Происходит это видимо по причине появления паразитной утечки части напряжения с элемента подогрева на чувствительный элемент датчика. В таком случае (чтобы не менять датчик) можно дополнительным проводом серый провод датчика соединить с массой автомобиля и датчик сможет работать дальше. Встречаются случаи, когда выходной сигнал висит на максимуме или на минимуме, причем в одних случаях отзывается на резкое нажатие на педаль дроссельной заслонки, а в других случаях нет. О некоторых возможных причинах зависания уже говорилось выше. Иногда сигнал можно заставить колебаться регулировкой винта на расходомере воздуха или на дозаторе-распределителе топлива (в системах впрыска K-J и KE-J), а иногда причину можно установить только проверив все датчики, задействованные в управлении двигателем, включая и рабочее давление в системе впрыска топлива.

Процедуре установки нового датчика предшествует снятие старого. Старый датчик необходимо осмотреть. Обычно он покрыт черным налетом. Темно-коричневый налет говорит о том, что в выхлопных газах присутствует масло, белые отложения появляются при отравлении датчика кремнием или антифризом и чтобы продлить жизнь новому датчику, необходимо устранить указанные причины. Что можно ставить взамен снятого датчика? Понятно, что нужно ставить такой же и с таким каталожным номером, указанным на корпусе. Можно установить и другой аналогичный от другой модели автомобиля, имеющий одинаковый разъем для подключения. Можно вместо однопроводного установить 3-х или 4-х проводный датчик, но при этом обязательно нужно организовать подачу питания 12 вольт на элемент подогрева. Для этого потребуется стандартное реле с одной группой контактов на замыкание, наконечники, предохранитель и провода. Большинство датчиков имеет присоединительную резьбу М18 х1,5. Исключение составляют некоторые автомобили японского производства, где датчик имеет фланец для крепления. При замене такого датчика дополнительно потребуется переходной фланец с двумя отверстиями диаметром 9 мм. с межцентровым расстоянием 45 мм. и центральным отверстием М18 х1,5. Если есть желание сэкономить кругленькую сумму, то вместо оригинального датчика можно установить датчик BOSCH 0 258 005 133 (устанавливается на инжекторные автомобили ВАЗ-2110). В этом случае на новый датчик придется переставлять разъем от старого датчика. Здесь есть несколько пожеланий. Провода нужно отрезать не на одном уровне, а ступеньками т.к. это в дальнейшем облегчит изоляцию мест пайки, уменьшит вероятность короткого замыкания между проводами и даст возможность одеть на провода штатный термостойкий чулок. Если меняется 4-х контактный разъем на 4-х контактный то здесь все понятно — нужно соединять провода с одинаковым цветом (обычно это черный, серый и два белых). Если старый разъем был 3-х контактным, без серого провода, то серый провод в четырехпроводном датчике нужно соединить с одним из белых в 3-х контактном разъеме, который выходит на массу автомобиля. Нельзя вместо трех и четырехпроводных датчиков устанавливать однопроводные, а также вместо циркониевого титановый и наоборот. Перед установкой датчика на резьбу необходимо нанести антипригарную смазку, для одно и трехпроводных датчиков — токопроводящую смазку, плотно закрутить и проверить по контролируемым параметрам как было сказано выше.

(с)

Принцип работы лямбда-зонда

Лямбда-зонд. Как он работает и из чего состоит?

С каждым годом вводятся все более жесткие ограничения на количество небезопасных выбросов из автомобилей. Основным параметром контроля принято считать значение СО в выхлопе работающего двигателя. Для уменьшения значения этого параметра в выхлопную систему начали устанавливать каталитический нейтрализатор (сокращенно – катализатор). При этом становится необходимым измерять параметры работы двигателя и нейтрализатора. Для измерения применяется лямбда-зонд. На современных моделях их устанавливают в двух местах: один датчик сразу после соединения выхлопных труб в одну и второй – после катализатора.

Устройство и принцип измерений датчика

Лямбда-зонд состоит из корпуса с отверстиями для движения выхлопных газов, отверстия для доступа наружного воздуха и гальванического элемента с керамическим покрытием. С одной стороны элемента всегда находятся только выхлопные газы, с другой – только атмосферный воздух. Датчик используется для измерения наличия кислорода в выхлопе. При определенном соотношении кислорода в выхлопе и наружном воздухе гальванический элемент начинает вырабатывать ток.

Работает лямбда-зонд только при нагреве до 300-400 градусов, поэтому при пуске холодного двигателя и некоторое время после запуска показания датчика не учитываются. В некоторых двигателях могут быть установлены датчики с принудительным подогревом.

Как лямбда-зонд регулирует режим работы двигателя?

Датчик подает сигналы о наличии несгоревшего кислорода в выхлопе. Фактическое значение не измеряется. Технология позволяет лишь судить о наличии или отсутствии некоторого количества несгоревшего кислорода. Название датчика получилось как раз из названия символа «лямбда», обозначающего в уравнении коэффициент переизбытка кислорода в смеси топлива и воздуха. Идеальным принято считать значение 14,7 частей воздуха к части топлива. При этом оно достижимо лишь в моменте, и не может удерживаться постоянно. График работы датчика похож на синусоиду: при уменьшении количества кислорода в выхлопе дается команда на уменьшение впрыска топлива и, наоборот, при слишком бедной смеси (кислород не полностью сгорает) подача топлива увеличивается.

Работа двигателя зависит от огромного количества параметров и показания лямбда-зонда могут быть не основными факторами влияния. И если даже двигатель работает на постоянных оборотах, а автомобиль стоит на месте, ЭБУ непрерывно регулирует количество впрыскиваемого топлива. На современных моделях, в зависимости от показаний лямбда-зонда, меняется, также, момент включения форсунок с подачей топливно-воздушной смеси для более полного ее сгорания в цилиндрах.

Для чего устанавливают 2 датчика?

На первых версиях двигателей с лямбда-зондами он устанавливался в выхлопной трубе и показания сравнивались с датчиками расхода воздуха и зажигания. В современных моделях устанавливается 2 датчика: один сразу после совмещения всех выхлопных труб в одну, второй – после каталитического нейтрализатора, где происходит «дожигание» несгоревшего в цилиндрах кислорода и СО. Это позволяет контролировать работу катализатора и точнее регулировать работу двигателя.

Что делать, если датчик сломался?

Никто не застрахован от поломок. Датчики также могут сломаться. Либо один из них, либо оба сразу. В среднем лямбда-зонды служат от 40 до 80 тысяч километров. Использовать повторно или отремонтировать их не получится, можно только заменить новыми. Экономить на них и покупать аналоги неизвестного производителя тоже не рекомендуется – от точности показаний зависит плавная и надежная работа двигателя. Если вы разбираетесь в устройстве двигателя и расположении его деталей, располагаете схемой установки датчиков и точно уверены в его неисправности, можете заменить его самостоятельно.

Но лучше обратиться в специализированный сервис. Причиной некорректной работы датчика могут стать один или сразу несколько факторов: обрыв проводки, окисление контактов в колодке, трещины в выхлопной трубе от двигателя до места установки датчика, нарушение в герметичности отверстия, куда вкручен лямбда-зонд. В СЦ мастера проверят и сами показания датчика при подключении диагностического комплекса к ЭБУ двигателя. Также проверят показания вновь установленного элемента.

Можно ли ездить на автомобиле с неисправным датчиком? Иногда пара заправок некачественным топливом могут вывести лямбда-зонд из строя. ЭБУ в таком случае переводит двигатель в аварийный режим работы с усредненными настройками. Вероятнее всего при этом повысится расход топлива, увеличится время разгона, уменьшится мощность двигателя. Все рассчитано на то, что владелец машины сможет без проблем добраться до сервиса, однако, затягивать этот процесс не стоит.

Понравилась статья? Сохраните себе!

Лучшая цена лямбда-стали — Выгодные предложения на лямбда-сталь от мировых продавцов лямбда-стали

Отличные новости !!! Вы попали в нужное место для лямбда-стали. К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене.Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, так как эта лучшая лямбда-сталь в кратчайшие сроки станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели лямбда-сталь на AliExpress. Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в лямбда-стали и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов.Мы поможем вам разобраться, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь. А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе.Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца. Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг, и предыдущие клиенты часто оставляют комментарии, описывающие свой опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет. Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести lambda steel по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы. На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

Обзоры

lambda steel — интернет-магазины и обзоры на lambda steel на AliExpress

Отличные новости !!! Вы попали в нужное место для лямбда-стали.К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, так как эта лучшая лямбда-сталь в кратчайшие сроки станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели лямбда-сталь на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в лямбда-стали и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам разобраться, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг, и предыдущие клиенты часто оставляют комментарии, описывающие свой опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести lambda steel по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

LAMB в STEEL (Lambda в Hands-of-steel)

Предыдущие новости о Lambda

Lambda выросла на 4,09% в понедельник 18 мая 2020 г.

Давайте посмотрим на вчерашние изменения цен. Среднее значение цены Лямбды за конвертацию (или обменный курс) в течение дня составляло $ 0.01567. Мин. Значение лямбда составило 0,01538 доллара США. Максимум. Цена LAMB составила 0,01604 доллара. Цена LAMB выросла на 4,09% с мин. и макс. значение. Если у вас есть валюта, вы, безусловно, счастливы.

Лямбда выросла на 4,49% в воскресенье, 17 мая 2020 г.

Посмотрим, что будет вчера. Цена LAMB выросла на 4,49% с мин. и макс. значение. Мин. Значение лямбда составило 0,01484 доллара. Максимум. Цена LAMB составила 0,01554 доллара. Среднее значение цены Lambda за конвертацию (или обменный курс) в течение дня составило 0,01516 $. Безусловно, это хорошие новости для всех.

В субботу, 16 мая 2020 года, лямбда упала на 3,58%.

Давайте посмотрим на вчерашние изменения цен. Цена LAMB упала на 3,58% с мин. и макс. значение. Мин. Значение лямбда составило 0,01482 доллара. Максимум. Цена LAMB составила 0,01535 доллара. Среднее значение цены Lambda за конвертацию (или обменный курс) в течение дня составило 0,01501 $. Цена была ниже в конце дня. Посмотрим, что принесет сегодня.

Лямбда упала на 2,1% в пятницу, 15 мая 2020 г.

Посмотрим, что будет вчера.Цена LAMB упала на 2,1% с мин. и макс. значение. Мин. Значение лямбда составило 0,01459 доллара. Максимум. Цена LAMB составила 0,01490 доллара. Среднее значение цены Lambda за конвертацию (или обменный курс) в течение дня составило 0,01474 $. Смотрите на следующий день.

Лямбда упала на 5,62% в четверг, 14 мая 2020 года.

Как изменилась валюта вчера? Цена LAMB упала на 5,62% с мин. и макс. значение. Мин. Значение лямбда составило 0,01458 доллара. Максимум. Цена LAMB составила 0,01540 доллара. Среднее значение цены Лямбды за конвертацию (или обменный курс) в течение дня составляло $ 0.01505. Посмотрим, что дальше.

Лямбда выросла на 7,09% в среду, 13 мая 2020 года.

И у нас есть данные за вчерашний день. Среднее значение цены Lambda за конвертацию (или обменный курс) в течение дня составило 0,01526 $. Максимум. Цена LAMB составила 0,01566 доллара. Мин. Значение лямбда составило 0,01455 доллара США. Цена LAMB выросла на 7,09% с мин. и макс. значение. Если у вас есть валюта, вы, безусловно, счастливы.

Лямбда выросла на 9,62% во вторник, 12 мая 2020 года.

Давайте посмотрим на интересные данные за вчерашний день.Среднее значение цены Lambda за конвертацию (или обменный курс) в течение дня составило 0,01405 $. Максимум. Цена LAMB составила 0,01476 доллара. Мин. Значение лямбда составило 0,01334 доллара США. Цена LAMB выросла на 9,62% с мин. и макс. значение. Если у вас есть валюта, вы, безусловно, счастливы.

Лямбда упала на 8,1% в понедельник, 11 мая 2020 года.

И у нас есть данные за вчерашний день. Цена LAMB упала на 8,1% с мин. и макс. значение. Среднее значение цены Лямбды за конвертацию (или обменный курс) в течение дня составляло $ 0.01415. Мин. Значение лямбда составило 0,01348 доллара США. Максимум. Цена LAMB составила 0,01457 доллара. Посмотрим, что дальше.

Лямбда упала на 20,32% в воскресенье, 10 мая 2020 г.

Как изменился курс обмена валюты вчера? Цена LAMB упала на 20,32% с мин. и макс. значение. Среднее значение цены Lambda за конвертацию (или обменный курс) в течение дня составило 0,01477 $. Максимум. Цена LAMB составила 0,01653 доллара. Мин. Значение лямбда составило 0,01374 доллара США. Не грусти и смотри на следующий день.

Лямбда снизилась на 4.22% в субботу 9 мая 2020

Посмотрим вчера. Цена LAMB упала на 4,22% с мин. и макс. значение. Мин. Значение лямбда составило 0,01631 доллара США. Максимум. Цена LAMB составила 0,01700 долларов. Среднее значение цены Lambda за конвертацию (или обменный курс) в течение дня составило 0,01656 $. Посмотрим, что дальше.

Лямбда выросла на 5,13% в пятницу 8 мая 2020 года.

Как изменилась валюта вчера? Среднее значение цены Лямбды за конвертацию (или обменный курс) в течение дня составляло $ 0.01612. Макс. Цена LAMB составила 0,01660 доллара. Мин. Значение лямбда составило 0,01575 доллара. Цена LAMB выросла на 5,13% с мин. и макс. значение. Хорошая работа.

Лямбда упала на 8,32% в четверг, 7 мая 2020 года.

Давайте посмотрим на интересные данные за вчерашний день. Среднее значение цены Lambda за конвертацию (или обменный курс) в течение дня составило 0,01621 $. Мин. Значение лямбда составило 0,01571 доллара США. Максимум. Цена LAMB составила 0,01702 доллара. Цена LAMB упала на 8,32% с мин. и макс. значение. Не грусти и смотри на следующий день.

Лямбда выросла на 5,87% в среду 6 мая 2020 года.

Посмотрим, что будет вчера. Цена LAMB выросла на 5,87% с мин. и макс. значение. Среднее значение цены Lambda за конвертацию (или обменный курс) в течение дня составило 0,01675 $. Максимум. Цена LAMB составила 0,01727 доллара. Мин. Значение лямбда составило 0,01626 доллара США. Безусловно, это хорошие новости для всех.

Лямбда упала на 6,13% во вторник 5 мая 2020 года.

Давайте оценим вчерашние изменения цен. Цена LAMB упала на 6.13% между мин. и макс. значение. Максимум. Цена LAMB составила 0,01732 доллара. Мин. Значение лямбда составило 0,01632 доллара США. Средняя стоимость конвертации (или обменного курса) лямбды в течение дня составила $ 0,01682. Цена была ниже в конце дня. Посмотрим, что принесет сегодня.

Старые новости о Hands-of-Steel

Цена ежедневных новостей в воскресенье 30 августа 2020 года

Давайте посмотрим на интересные данные за вчерашний день. Мин. значение было 0,000000 долларов США. Максимум. цена была 0,000000 $. Средняя стоимость конвертации (или обменного курса) в течение дня составляла 0 долларов.000000. Цена оставалась неизменной между мин. и макс. значение. Посмотрите на следующий день, если будет так же.

Другие преобразования

Lalaworld в Стальные руки, Лаосский Кип в Стальные руки, Лестничная сеть в Стальные руки, Lambdaspace в Стальные руки, Ланакоин в Стальные руки, Linkart в Руки -of-steel, Lambda в Steaks-financial, Lambda в São Tomé и Príncipe Dobra, Lambda в Stakecoin, Lambda в Steem, Lambda в Steepcoin, Lambda в Stemma,

Greek Gold Lambda Steel Shield — WS-112

перейти к содержанию