Принцип работы системы зажигания: виды, устройство и принцип работы

Содержание

виды, устройство и принцип работы

Система зажигания

Система зажигания автомобиля представляет собой комплекс из приборов и устройств, которые работают на обеспечение своевременного появления электрического разряда, воспламеняющего смесь в цилиндре. Она является неотъемлемой деталью электронного оборудования и в своем большинстве завязана на работе механических компонентов мотора. Этот процесс присущ всем моторам, которые не используют для воспламенения сильно нагретый воздух (дизель, компрессионные карбюраторные). Искровое воспламенение смеси применяется и в гибридных моторах, работающих на бензине и газу.

Принцип работы системы зажигания зависит от ее вида, но если обобщать ее работу, можно выделить следующие этапы:

  • процесс накопления высоковольтного импульса;
  • проход заряда через повышающий трансформатор;
  • синхронизация и распределения импульса;
  • возникновение искры на контактах свечи;
  • поджог топливной смеси.


Важным параметром является угол или момент опережения – это время, в которое осуществляется поджог воздушно-топливной смеси. Подбор момента происходит так, чтобы предельное давление возникало при попадании поршня в верхнюю точку. В случае с механическими системами его придется выставлять вручную, а в электронно-управляемых системах настройка происходит автоматически. На оптимальный угол опережения влияет скорость движения, качество бензина, состав смеси и другие параметры.

Общий принцип работы

Наличие контактной системы зажигания в автомобиле подразумевает, что зажигание горючего в цилиндрах осуществляется по факту появления искры от свечи зажигания.

При этом сама искра возникает при поступлении импульса высокого напряжения от катушки зажигания.

Ключевую функцию выполняет катушка зажигания, которая по принципу работы напоминает трансформатор.

Она состоит из двух обмоток (первичной и вторичной), намотанных на сердечник из металла.

Сначала напряжение подводится к первичной обмотке, после чего в катушке создается ток.

Как только происходит кратковременный разрыв первичной цепи, магнитное поле нивелируется, но во вторичной обмотке возникает высокое напряжение (около 25000 Вольт).

В этот момент на первичной обмотке также присутствует напряжение, равное 300 Вольтам.

Причина его появления — токи самоиндукции. Именно из-за появления этого тока возникает обгорание и искрение контактов прерывателя.

Из сказанного выше можно сделать вывод, что вторичное напряжение напрямую зависит от следующих аспектов:

  • Магнитного поля;
  • Уровня интенсивности падения тока в первичной обмотке.

Для роста вторичного напряжения и снижения риска обгорания контактной группы, в цепочку включается конденсатор (устанавливается параллельно). Даже при незначительном размыкании конденсатор заряжается.

Принципиальная схема контактной системы зажигания показана ниже.

Разряд емкости происходит через первичную обмотку, посредством формирования импульсного тока обратного напряжения. Благодаря этой особенности, магнитное поле исчезает, а вторичное напряжение растет.

Оптимальная емкость конденсатора для контактной системы зажигания составляет 0,17-0,35 мкФ. Для примера, в «Жигулях» отечественного производства установлен конденсатор, имеющий емкость в 0,2-0,25 мкФ (при частоте от 50 до 1000 Гц).

Если система зажигания автомобиля работает без сбоев, вторичное напряжение должно постоянно расти. Оно зависит от двух основных параметров — размера зазора между свечными электродами, а также давления в цилиндрах машины.

Для контактной системы зажигания этот параметр (вторичное напряжение) должен находиться на уровне 8-12 Вольт.

Чтобы система работала без сбоев, в момент прерывания упомянутый показатель вырастает до 16-25 кВ. Наличие подобного запаса позволяет избежать неблагоприятных последствий от тех или иных колебаний в системе зажигания.

К упомянутым выше проблемам можно отнести корректировки состава горючей смеси или изменение расстояния между электродами свечи.

К примеру, снижение уровня кислорода в топливно-горючей смеси приводит к росту напряжения до 20 кВ.

Несмотря на ряд проведенных мероприятий, полностью избежать подгорания контактной группы создателям контактной системы зажигания не удалось. Оптимальным способом снижения этого эффекта является четкое выдерживание зазора на минимальном уровне (0,3-0,4 мм).

В качестве примера можно привести отечественные машины ВАЗ, в которых величина зазора в прерывателе равна 0,35-0,45 мм, что соответствует углу в 52-58 градусов (при условии, что контактная группа находится в замкнутом состоянии).

В случае изменения этого угла корректируется и напряжение во вторичной обмотке. В итоге искры появляются не только на контактах, но и на бегунках. По этой причине уменьшается качество искры, и мотор теряет мощность.

Отдельного внимания заслуживает надежность контактной системы зажигания, которая зависит от целого ряда факторов:

  • Формы, энергии и времени появления искры;
  • Количества искр на определенной площади;
  • Вторичного напряжения (одна из наиболее важных характеристик). Чем больше этот параметр, тем меньше зависимость системы от состава горючей смеси и уровня чистоты электродов.

Классификация систем зажигания

Основываясь на методе синхронизации зажигания, различают схемы контактные и бесконтактные. По технологии формирования угла опережения зажигания можно выделить системы с механической регулировкой и полностью автоматические или электронные.

Исходя из типа накопления заряда, для пробития искрового промежутка, рассматривают устройства с накоплением в индуктивности и с накоплением в емкости. По способу коммутации первичной цепи катушки бывают – механические, тиристорные и транзисторные разновидности.

Принцип действия

Для полноценного обслуживания контактной системы зажигания важно понимать ее принцип действия, а также особенности взаимодействия различных элементов.

Пока контур прерывателя замкнут, ток проходит только по первичной обмотке.

Как только происходит разъединение цепи с помощью прерывающего устройства, во второй обмотке формируется высокое напряжение.

В этот же момент созданный импульс направляется по проводам к крышке распределительного устройства, а дальше — к свечам зажигания. При этом распределение производится под определенным углом опережения.

Обороты коленчатого и распределительного валов находятся в полном взаимодействии. Это значит, что при росте оборотов первого, частота вращения второго также возрастает.

Здесь в работу вступает регулятор центробежного типа, грузики которого расходятся и передвигают передвижную пластинку с кулачками.

Немногим раньше производится разъединение цепочки прерывателя, а угол опережения растет.

В случае снижения оборотов коленвала происходит обратный процесс — снижение угла опережения.

Схема работы показана ниже.

Узлы систем зажигания

Все существующие виды систем зажигания различаются способом создания контролирующего импульса, в остальном их устройство практически не отличается. Поэтому можно указать общие элементы, которые являются неотъемлемой частью любой вариации системы.

Питание – первичным, служит аккумулятор (задействуется при пуске), а при работе – эксплуатируется напряжение, которое производит генератор.

Выключатель – устройство, которое необходимо для подачи питания на всю систему или его отключения. Выключателем служит замок зажигания или управляющий блок.

Накопитель заряда – элемент необходимый для концентрации энергии в нужном объеме, для воспламенения смеси. Существует два типа компонентов для накопления:

  • Индуктивный – катушка, внутри которой расположился повышающий трансформатор который создает достаточный импульс для качественного поджога. Первичная обмотка устройства питается от плюса батареи и приходит через прерыватель к ее минусу. При размыкании первичного контура прерывателем на вторичном создается высоковольтный заряд, который и передается на свечу.
  • Емкостный – конденсатор, который заряжается повышенным напряжением. В нужное время накопленный заряд по сигналу передается на катушку.


Схема работы в зависимости от вида накопления энергии

Свечи – изделие, состоящее из изолятора (основа свечи), контактного вывода для подключения высоковольтного провода, металлической оправы для крепления детали и двух электродов, между которыми и образуется искра.

Система распределения – подсистема, предназначенная для направления искры на нужный цилиндр. Состоит из нескольких компонентов:

  • Распределитель или трамблер – устройство, сопоставляющее обороты коленвала и соответственно – рабочее положение цилиндров с кулачковым механизмом. Компонент может быть механическим или электронным. Первый – передает вращение мотора и посредством специального бегунка распределяет напряжение от накопителя. Второй (статический) исключает наличие вращающихся частей, распределение происходит благодаря работе блока управления.
  • Коммутатор – прибор, генерирующий импульсы заряда катушки. Деталь присоединяется к первичной обмотке и разрывает питание, генерируя напряжение самоиндукции.
  • Блок управления – устройство на микропроцессорах, определяющее момент передачи тока в катушку на основании показаний датчиков.

Провод – одножильный высоковольтный проводник в изоляции, соединяющий катушку с распределителем, а также контакты коммутатора со свечами.

Устройство

Принцип работы системы зажигания заключается в накоплении и преобразовании катушкой зажигания низкого напряжения (12В) электрической сети автомобиля в высокое напряжение (до 30000В), распределении и передаче высокого напряжения к соответствующей свече зажигания и образовании в нужный момент искры на свече зажигания. В работе системы зажигания можно выделить следующие этапы: накопление электрической энергии, преобразование энергии, распределение энергии по свечам зажигания, образование искры, воспламенение топливно-воздушной смеси.

Механический прерыватель осуществляет непосредственное управление процессом накопления (первичной цепью) и отвечает за замыкание/размыкание питания первичной обмотки. Контакты прерывателя можно увидеть, заглянув под крышку распределителя. Пластичная пружина подвижного контакта прижимает его к недвижимому контакту. Их размыкание выполняется только на короткий срок, а конкретно, в момент, когда набегающий кулачок валика привода оказывает давление на молоточек подвижного контакта.

К контактам подключен конденсатор, который не даёт им обгорать. Электроразряд поглощается и искрение уменьшается. Параллельно в цепи создаётся низкое напряжение обратного тока, которое положительно сказывается на исчезновении магнитного поля.

Прерыватель находится в корпусе распределителя зажигания, и это части классической системы зажигания.

Ещё один важный узел – центробежный регулятор опережения зажигания, механизм, предназначенный для автоматического изменения угла опережения зажигания в зависимости от числа оборотов коленчатого вала двигателя.

Центробежный регулятор размещён внутри корпуса прерывателя-распределителя. Как правило, он работает совместно с вакуумным регулятором, оба являются составной частью прерывателя-распределителя. Называется он центробежным от вида силы, использующейся для реализации изменения опережения.

На приводном валу прерывателя расположена пластина, на которой размещены два грузика. Грузики свободно сидят на осях и стянуты пружинами. Причём пружины обладают разной жёсткостью, что необходимо для предотвращения резонанса. При этом, кулачок прерывателя и планка с двумя продольными прорезями надеты на верхнюю часть приводного валика. В продольные прорези планки входят штифты грузиков.

Вращение передаётся от приводного валика к кулачку через грузики, штифты и планку с прорезями. Чем быстрее вращается приводной вал, тем больше расходятся грузики, тем на бо́льший угол проворачивается кулачок по ходу вращения относительно контактной группы прерывателя. С увеличением оборотов угол опережения зажигания увеличивается. С уменьшением числа оборотов центробежная сила уменьшается, пружины стягивают грузики, кулачок поворачивается против хода его вращения, контакты прерывателя замыкаются позже и угол опережения зажигания уменьшается.

Если на двигателе применено бесконтактное электронное зажигание — тогда вместо кулачка проворачивается экран бесконтактного датчика момента искрообразования.

Если механический прерыватель оборудован транзисторным коммутатором, то, в этом случае, он управляет только им, а тот, в свою очередь, отвечает за управление процессом накопления энергии. Такая конструкция существенно превосходит аналогичные устройства без транзисторного коммутатора, так как здесь контактный прерыватель более надежный, чему способствует протекание сквозь него тока меньшей силы, а значит, пригорание контактов во время размыкания практически полностью исключается. Соответственно, конденсатор, параллельно подключенный к контактам прерывателя, тут просто не нужен, а в остальном – система полностью идентична классическому варианту. Обе системы, имеющие механический прерыватель, обладают общим названием — «контактные системы зажигания».

Системы с транзисторным коммутатором, оборудованные бесконтактным датчиком (импульсным генератором), могут быть индуктивного типа, основанными на эффекте Холла или относиться к оптическому типу. В данном случае, место механического прерывателя занимает импульсный датчик-генератор с преобразователем сигналов, который, посредством транзисторного коммутатора, осуществляет управление накопителем энергии. Как правило, датчик-генератор расположен внутри распределителя, конструкция которого ничем не отличается от конструкции аналогичной детали в контактной системе, поэтому указанный узел получил название «датчика-распределителя».

Магнето

Одной из первых систем зажигания является – магнето. Она состоит из генератора тока, который создает разряд исключительно для искрообразования. Состоит система из постоянного магнита, который приводится в движение коленчатым валом и катушки индуктивности. Искру, способную пробить искровой промежуток генерирует повышающий трансформатор, одной частью которого служит грубая обмотка катушки индуктивности. Для повышения напряжения используют часть обмотки генератора, которая соединена с электродом свечи.


Система зажигания с магнето

Контроль за подачей искры может быть контактный, выполненный в виде прерывателя или бесконтактный. При бесконтактном методе подачи искры применяются конденсаторы, которые улучшают качество искры. В отличие от представленных далее схем зажигания, магнето не требуется аккумулятор, оно легкое и активно применяется в компактной технике – мотокосах, бензопилах, генераторах и т.д.

История искры

На заре автомобилестроения система зажигания двигателей внутреннего сгорания была настоящей головной болью инженеров.

Рекомендуем: Когда надо менять тормозные колодки и каковы признаки их износа?

Изобретали различные способы воспламенения топлива, и их, порой, трудно было назвать простыми и безопасными. К примеру, один из отцов индустрии, Готлиб Даймлер использовал в своих первых моторах калильную трубку, которую перед началом работы необходимо было разогреть докрасна паяльной лампой.

Первые прообразы современных электрических систем появились в конце ХIХ века.

Довольно большим успехом среди них пользовалось так называемое магнето – небольшой генератор, вырабатывающий необходимое напряжение для образования искры. Его изобретателем считается небезызвестный Роберт Бош.

По сути, магнето стало прародителем всех искровых способов воспламенения смеси, и контактная система зажигания, о которой мы сегодня говорим, не исключение.

Конечно же, она намного совершеннее тех первых устройств, но на сегодняшний день, в мире электроники и инноваций, и она постепенно уходит в историю.

Главным образом, её носителями сейчас являются отечественные авто – ВАЗовская «классика» и им подобные. Что же она из себя представляет?

Контактная система зажигания

Устаревшая, распространенная схема воспламенения топливной смеси. Отличительной особенностью системы является создание высокого напряжения, вплоть до 30 тысяч В на свечи. Создает такое высокое напряжение катушка, которая соединена с распределительным механизмом. Импульс на катушку передается благодаря специальным проводам, соединенным с контактной группой. При размыкании кулачков происходит формирование разряда и искры. Устройство также выполняет роль синхронизатора, так как момент образования искры должен совпадать с нужным моментом такта сжатия. Данный параметр устанавливается посредством механической регулировки и сдвига искры на более раннюю или позднюю точку.


Простейшая схема

Уязвимой частью такого варианта является естественный механический износ. Из-за него меняется момент образования искры, он нестабильный для различных положений бегунка. Ввиду чего появляются вибрации мотора, падает его динамика, ухудшается равномерность работы. Тонкие настройки позволяют избавиться от явных неисправностей, но проблема может возникнуть повторно.

Преимуществом контактного зажигания является его надежность. Даже при серьезном износе деталь будет работать безотказно, позволяя мотору работать. Схема не прихотлива к температурным режимам, практически не боится влаги или воды. Такой вид зажигания распространен на старых автомобилях и по сей день используется на ряде серийных моделей.

Бесконтактный датчик-прерыватель для иномарок

Владельцы иномарок могут приобрести простое приспособление от UltraSpark, Pertronix или AccuSpark, позволяющее быстро «превратить» стандартную систему зажигания в бесконтактную. В комплект поставки такого устройства входят:

  • Индукционный датчик-прерыватель.
  • Триггерное пластиковое кольцо с запрессованными в него неодимовыми магнитами (по количеству цилиндров двигателя).
  • Инструкция по монтажу и схема подключения.

По утверждению производителей монтаж бесконтактного датчика-прерывателя (БДП) занимает не более 30 минут:

  • Снимаем крышку трамблера и бегунок.
  • Демонтируем контактную группу механического прерывателя и искрогасящий конденсатор.
  • Устанавливаем БДП и выводим его провода через отверстие в корпусе.
  • Надеваем на ось ротора триггерное кольцо.

  • Возвращаем на место бегунок и крышку трамблера.
  • Подсоединяем провода от установленного датчика к катушке зажигания в соответствии со схемой.

Важно! Зная модель трамблера можно подобрать бесконтактный модуль-прерыватель, практически, для любой марки транспортного средства иностранного производства.

Несомненными достоинствами БДП являются:

  • Невысокая стоимость.
  • Простота установки.
  • Возможность использования со стоковыми трамблерами и высоковольтными катушками конкретной марки автомобиля.

Бесконтактное зажигание

Принципиальная схема работы бесконтактной системы несколько отличается. Она сохраняет трамблер, как элемент конструкции, но он лишь выполняет функцию синхронизации цилиндров и отсылает импульс на коммутатор. В свою очередь транзисторный элемент, синхронизируется с показателем датчика и определяет угол зажигания, а также другие настройки – автоматически.

Преимущество системы – стабильность качества искрообразования, которое не зависит от ручных настроек или сохранности поверхности контактов. Если рассматривать превосходство данного варианта над контактной схемой, можно выделить:

  • система генерирует искру высокого качества постоянно;
  • устройство системы зажигания исключает ухудшение ее работы вследствие износа или загрязнения;
  • отсутствует необходимость производить тонкие настройки угла зажигания;
  • не приходится следить за состоянием контактов, контролировать их угол замыкания и другие настройки.

В результате использования бесконтактной системы можно наблюдать снижение расхода топлива, улучшение динамических характеристик, отсутствие сильных вибраций мотора, стабильная искра позволяет облегчить холодный пуск.

Подведём итоги

Несмотря на существенные приоритетные стороны бесконтактной системы зажигания, кулачковый механизм до сих пор не утратил свою актуальность, имеет приверженцев среди автовладельцев. Демократичность деталей, простота и надёжность конструкции – это основные преимущества КСЗ. В свою очередь, БСЗ считается модернизированной и улучшенной конструкцией, соответствующей времени, позволяющей минимизировать вероятность поломок, и улучшить работоспособность транспортного средства. Описание особенностей функционирования систем, их существенных отличий, представленных в этой статье, поможет автовладельцам определиться с выбором, отдав предпочтение одной из конструкций.

Электронное зажигание

Современная, наиболее совершенная схема, которая полностью исключает наличие подвижных частей. Для получения необходимых данных о положении коленвала и других применяются специальные датчики. Далее электронный блок управления производит расчеты и посылает соответствующие импульсы на рабочие компоненты. Такой подход позволяет максимально точно определить момент подачи искры, благодаря чему смесь разжигается своевременно. Это позволяет получить больше мощности, улучшить продувку цилиндра и снизить вредные выбросы, благодаря лучшему дожигу топлива.


Схема электронной системы

Электронная система зажигания автомобиля отличается высокой стабильностью работы и устанавливается на большинство современных авто. Такая популярность определена преимуществами данной схемы:

  • Снижение расхода топлива во всех режимах работы мотора.
  • Улучшение динамических показателей – отклик на педаль газа, скорость разгона и т.д.
  • Более плавная работа мотора.
  • Выравнивается график момента и лошадиных сил.
  • Минимизируются потери мощности на низких оборотах.
  • Совместима с газобаллонным оборудованием.
  • Программируемый электронный блок позволяет настроить двигатель на экономию топлива или наоборот, на повышение динамических показателей.

Назначение системы зажигания достаточно простое, она является неотъемлемой частью бензинового двигателя, а также моторов, оснащенных ГБО. Этот компонент постоянно меняется и приобретает новые формы, соответствующие современным требованиям. Несмотря на это даже самые простые модели зажигания все еще используются на различной технике, успешно выполняя свою работу, как и десятки лет назад.

Существует несколько способов распределение высокого напряжения по свечам зажигания в бензиновом двигателе. Ранее самым распространённым и единственным было роторное или высоковольтное распределение. Его основным узлом являлся трамблёр (прерыватель-распределитель или датчик-распределитель). Распределитель состоит из крышки трамблёра и бегунка (ротора).

Со вторичной обмотки катушки зажигания на центральный электрод распределителя подаётся высокое напряжение, которое при помощи бегунка передаётся на боковые электроды распределителя. Скорость вращения бегунка равна скорости вращения распредвала и относится к оборотам коленвала в отношении 1:2.. боковые электроды крышки трамблёра соединены со свечами зажигания по средствам высоковольтных проводов. Основным недостатком этой системы является трудности в обеспечении своевременной подачи напряжения на свечи зажигания при разных оборотах и режимах работы двигателя. Частично эта проблема решалась применением центробежного и вакуумного регулятора угла опережения зажигания, а в последствии применением электронных блоков, но полностью проблему не решало. Кроме того система имеет множество соединений и изнашивающихся контактов, что значительно снижает надёжность.

ᐉ Назначение систем зажигания

Система зажигания предназначена для воспламенения топливовоздушной смеси в цилиндрах бензинового двигателя. Топливовоздушная смесь воспламеняется в камере сгорания двигателя посредством электрического разряда между электродами свечи зажигания, установленной в головке цилиндров. Для создания искры между электродами свечи зажигания применяют системы зажигания от магнето и батарейные системы зажигания, источниками высокого напряжения в которых являются индукционные катушки.

Рис. Схема батарейной системы зажигания

Система зажигания состоит из следующих основных элементов:

  • источник тока ИТ, функцию которого выполняет аккумуляторная батарея или генератор
  • выключатель ВК цепи электроснабжения (выключатель зажигания)
  • датчик Д углового положения коленчатого вала
  • регуляторы момента зажигания РМЗ, которые задают определенный момент подачи высокого напряжения на свечу в зависимости от частоты вращения коленчатого вала, разрежения Δрк во впускном трубопроводе и октанового числа бензина
  • источник высокого напряжения ИВН, содержащий промежуточный накопитель энергии НЭ и преобразователь низкого напряжения в высокое
  • силовое реле СР, в качестве которого могут служить механические контакты прерывателя или электронный ключ (транзистор или тири­стор)
  • распределитель Р импульсов высокого напряжения по свечам
  • помехоподавительные устройства ПП (экранирующие элементы системы зажигания или помехоподавительные резисторы)
  • свечи зажигания СВ, на которые подается высокое вторичное напряжение

В батарейной системе зажигания источником энергии является аккумуляторная батарея или генератор (в зависимости от режима работы двигателя). Система зажигания от магнето принципиально отличается от батарейной тем, что источник электроэнергии в ней — магнитоэлектрический генератор, конструктивно объединенный с индукционной катушкой. Система зажигания от магнето в настоящее время на автомобилях практически не применяется, однако находит применение на пусковых бензиновых двигателях тракторных дизелей.

Система зажигания обеспечивает генерацию импульсов высокого напряжения в нужный момент времени на тактах сжатия в цилиндрах двигателя и их распределение по цилиндрам в соответствии с порядком их работы. Момент зажигания характеризуется углом опережения зажигания УОЗ, который представляет собой угол поворота коленчатого вата от положения в момент подачи искры до положения, когда поршень проходит через верхнюю мертвую точку ВМТ.

Электрическая искра вызывает появление в ограниченном объеме топливовоздушной смеси первых активных центров, от которых на­чинается развитие химической реакции оксидирования топлива, со­провождающейся выделением теплоты. Процесс сгорания рабочей смеси разделяют на три фазы:

  • начальная, в которой формируется пламя, инициированное ис­кровым разрядом в свече
  • основная, в которой пламя распространяется на большую часть камеры сгорания
  • конечная, в которой пламя догорает у стенок цилиндра

Рис. Система зажигания с накоплением энергии:
а — в магнитном поле; б — в электрическом поле

Для бесперебойного искрообразования на свечу зажигания необходимо подать напряжение до 30 кВ.

Высокий уровень напряжения обеспечивает промежуточный источник энергии. По способу накопления энергии в промежуточном источнике различают системы с накоплением энергии в магнитном поле (в индуктивности) или в электрическом поле конденсатора (в емкости). В обоих случаях для получения импульса высокого напряжения используется катушка зажигания, представляющая собой трансформатор (или автотрансформатор), содержащий две обмотки: первичную L1 с малым числом витков и электросопротивле­нием в доли и единицы ома и вторичную обмотку L2 с большим числом витков и сопротивлением в единицы и десятки килоом.

Автотрансформаторная связь обмоток упрощает конструкцию и технологию изготовления катушки, а также несколько увеличивает вторичное напряжение. Коэффициент трансформации катушек зажигания находится в пределах 50—225.

В системах зажигания с накоплением энергии в катушках зажигания (в индуктивности) первичная обмотка L1 катушки подключается к источнику электроснабжения последовательно через механический или электронный прерыватель S2. В системах зажигания с накоплением энергии в электрическом поле конденсатора (в емкости) первичная обмотка катушки периодически подключается к конденсатору управляемым электронным переключателем S2. Конденсатор предварительно за­ряжается от источника электроснабжения на автомобиле через статический преобразователь напряжения.

Схема и принцип действия батарейной системы зажигания

В момент размыкания контактов прерывателя ток, быстро падает до нуля и созданное им магнитное поле исчезает. При этом в результате изменения (уменьшения) магнитного поля во вторичной обмотке катушки зажигания индуктируется э. д. с.

Величина э. д. с. вторичной обмотки будет тем выше, чем больше скорость исчезновения магнитного потока или, что то же, тока. Однако з. д. с. первичной обмотки з момент размыкания контактов прерывателя поддерживает ток, вследствие чего между контактами возникает искра, вызывающая их подгорание (так называемая электрическая эрозия контактов). Для устранения этого явления параллельно контактам прерывателя подключается конденсатор С.

Характер изменения тока в момент размыкания контактов прерывателя при наличии и отсутствии конденсатора С, показан на рис. 59. На этом же графике представлено изменение напряжения в первичной цепи U, при размыкании контактов прерывателя и проскакивания искры в свече. Э. д. с. вторичной обмотки создает между электродами свечи вторичное напряжение U,. Когда напряжение U2 достигнет величины, достаточной для пробоя воздушного зазора, между электродами свечи возникнет искра, которая подожжет горючую смесь в цилиндрах двигателя.

На рис. 1 изображены кривые изменения вторичного напряжения при отсутствии искрового разряда, когда, например, при работающем двигателе провод высокого напряжения отсоединен от свечи и при пробое воздушного зазора в свечей. Такой характер кривых вторичного напряжения можно увидеть на осциллографе диагностических стендов для проверки систем зажигания. Напряжение, необходимое для пробоя воздушного зазора свечи, так называемое пробивное напряжение, не постоянно и зависит от многих факторов. Основными из них являются: величина зазора между электродами свечи, температура электродов свечи и горючей смеси, давление, форма электродов и их полярность. Поэтому пробивное напряжение во многом зависит от режима работы двигателя. У двигателя, работающего на большой частоте вращения с полной нагрузкой, пробивное напряжение минимальное (4—5 тыс. В), а при пуске холодного двигателя — максимальное (9—12 тыс. В). При пуске двигателя катушка зажигания питается от аккумуляторной батареи, напряжение которой понижено из-за потребления стартером большого тока. Пониженное напряжение на катушке зажигания в момент пуска двигателя приводит к снижению тока, и напряжения U2. Для устранения этого явления в некоторых катушках зажигания применяется добавочный резистор, включенный последовательно с первичной обмоткой катушки зажигания. В этом случае первичная обмотка катушки зажигания рассчитывается на напряжение 7—8 В, а остальное напряжение источника питания гасится в добавочном резисторе. При пуске двигателя добавочный резистор Ra закорачивается контактами, установленными на реле включения стартера (или тяговом реле), и, несмотря на снижение напряжения батареи, первичная обмотка катушки зажигания получает необходимое для ее нормальной работы напряжение.

Рис. 1. Схема батарейного зажигания: а— общая, 6 — принципиальная; 1 — выключатель зажигания, 2 — аккумуляторная батарея, 3— катушка зажигания, 4 — свечи зажигания искровые, 5 — прерыватель-распределитель, 6 — ротор, 7 — кулачок, 8 — контакты прерывателя, 9 — конденсатор, 10 — первичная обмотка, 11 — вторичная обмотка, 12 — контакты выключения дополнительного резистора (устанавливаются в реле стартера), Ra—добавочный резистор (вариатор)

При увеличении частоты вращения двигателя число прерываний первичной цепи в единицу времени растет, а время замкнутого состояния контактов прерывателя уменьшается.

Это в свою очередь приводит к снижению тока, так как он не успевает за время замкнутого состояния контактов увеличиться до своего установившегося значения.

На рис. 4 показано изменение сопротивления резистора в зависимости от проходящего по нему тока. Так как резистор включен последовательно с первичной обмоткой катушки зажигания, общее сопротивление первичной цепи будет изменяться в зависимости от силы тока в цепи.

Рис. 2. Графики изменения силы тока и напряжения в обмотках катушки зажигания при замкнутых и разомкнутых контактах прерывателя

Рис. 3. График изменения вторичного напряжения при отсутствии искрового разряда и при пробое воздушного зазора в свече: 1 — искры между электродами свечи нет, 2 — при проскакивании искры

Рис. 4. Зависимость сопротивления добавочного резистора от силы тока первичной цепи: 1 — материал резистора никель НП2, 2 — материал резистора константан МНМц 40—15

Рис. 5. Изменение давления в цилиндре двигателя в зависимости от момента зажигания 1 — раннее зажигание, 2 — нормальное зажигание, 3 — позднее зажигание; а — момент зажигания

При малой частоте вращения коленчатого вала, когда сила тока, успевает достигнуть установившегося значения, вариатор действует эффективно, так как его сопротивление имеет максимальную величину. При большой частоте вращения, когда сила тока, невелика, он ограничивает ее в меньших пределах. Таким образом, резистор (вариатор) несколько уменьшает основной недостаток системы батарейного зажигания — снижение вторичного напряжения U2 с увеличением частоты вращения двигателя.

Момент зажигания рабочей смеси. Сгорание рабочей смеси в цилиндре двигателя происходит не мгновенно, а в течение определенного времени. Мощность, экономичность, нагрев, износ двигателя и токсичность отработавших газов во многом зависят от выбора момента зажигания рабочей смеси. Момент зажигания рабочей смеси определяется по углу поворота коленчатого вала двигателя от момента проскакивания искры до положения, при котором поршень находится в в. м. т. Этот угол называется углом опережения зажигания.

Рис. 6. Катушка зажигания: 1 — клемма высокого напряжения, 2 — крышка, 3—контактная пружина, 4 — уплотнительная прокладка, 5 — первичная обмотка, 6 — вторичная обмотка, 7, 12 — изоляторы, 8 — сердечник, 9 — корпус катушки, 10 — наружный магнитопровод, И — добавочный резистор, 13 — изолирующий наполнитель (рубракс), 14 — контактная пластина высокого напряжения

На рис. 5 показано изменение давления в цилиндре двигателя в зависимости от угла опережения зажигания. При раннем зажигании резко возрастает давление в цилиндре, препятствующее движению поршня. Это ведет к снижению мощности и экономичности двигателя и увеличению токсичности, а также его перегреву и появлению детонационных стуков (зубцы на кривой). Также ухудшается приемистость и наблюдается неустойчивая работа двигателя в режиме холостого хода.

При позднем зажигании горение смеси происходит при движении поршня после в.м.т. Давление газов не сможет достигнуть необходимой величины, мощность и экономичность двигателя снизятся. Наблюдается перегрев двигателя, так как температура выхлопных газов повышается. Оптимальное протекание процесса сгорания смеси в цилиндре двигателя происходит в том случае, когда угол опережения зажигания соответствует кривой.

Из этого следует, что угол опережения зажигания должен регулироваться автоматически с учетом скоростного и нагрузочного режимов двигателя.

Время, отведенное в рабочем цикле двигателя на сгорание рабочей смеси (время движения поршня в районе в. м. т.), с увеличением частоты вращения коленчатого вала двигателя уменьшается, а скорость сгорания смеси изменяется очень мало. Поэтому с увеличением частоты вращения необходимо увеличивать угол опережения зажигания. При постоянной частоте вращения коленчатого вала и увеличении нагрузки двигателя уменьшается количество остаточных газов в рабочей смеси, скорость сгорания рабочей смеси увеличивается, что требует уменьшения угла опережения зажигания.

виды, устройство и принцип работы

Искровое зажигание подготовленной горючей смеси в цилиндрах является основой работы бензинового двигателя. Другие способы воспламенения тут не годятся из-за низкой антидетонационной способности лёгких нефтяных фракций. Надо инициировать горение строго в определённое время и очень надёжно. Для этого разработана и непрерывно совершенствуется система зажигания.

Содержание статьи:

Принцип работы

Двух- и четырёхтактные двигатели требуют воспламенения в конце такта сжатия заранее загруженной смеси паров бензина с воздухом. В определённой концентрации, за соблюдением которой строго следит система питания, смесь воспламеняется достаточно легко, кроме экстремальных случаев предельного режима или сверхбедного состава особо экономичных моторов.

В любом случае, искра должна быть достаточно мощной. Для этого к искровому промежутку подводится очень высокое напряжение, составляющее десятки киловольт. При атмосферном давлении было бы достаточно и меньшего напряжения, но в конце такта сжатия при солидной компрессии двигателя с высоким КПД оно будет превышено на порядок и более.

Это интересно: Как прогреть салон автомобиля в зимний период

Искровой разряд создаёт некоторое количество плазмы, то есть ионизированного газа со сверхвысокой температурой. Подобные условия и инициирует горение, после чего фронт пламени с большой скоростью распространяется по всему объёму камеры сгорания.

Высокое напряжение должно быть создано в точно заданный момент и иметь характеристики импульса, иначе разряд будет поддерживаться постоянно, что неприемлемо. Для этого создаются высоковольтные импульсные источники энергии поджога, которые могут иметь самую различную конфигурацию и принципы построения.

Разновидности систем зажигания

Разные способы построения системы не существуют параллельно, они сменяют одна другую в процессе эволюции. Как должна выглядеть идеальная система инженеры знали всегда, но не сразу в мире появилась необходимая элементная база, материалы и технологии.

Контактные

Контактная система зажигания, иначе называемая батарейной, выглядит наиболее просто.

В её состав входят:

  • контактный прерыватель, представляющий собой пару металлических площадок, соединяющихся между собой в момент прохождения управляющего кулачка;
  • катушка зажигания, это высоковольтный трансформатор, имеющий две обмотки, одну на малой количество витков толстого провода, а вторую многовитковую, соединённую с выходным высоковольтным наконечником;
  • высоковольтные провода с прочной изоляцией, соединяющие выход катушки с распределителем и его выходные контакты со свечами;
  • распределитель зажигания, содержащий ротор, вращающийся в такт с двигателем и указывающий на контакт нужного цилиндра, когда в нём поршень подходит к верхней мёртвой точке такта сжатия;
  • конденсатор, накапливающий энергию паразитных выбросов на обмотках катушки;
  • автоматические корректоры момента зажигания, обычно центробежный и вакуумный.

Система далека от совершенства, значительную мощность разряда обеспечить в ней сложно, а контакты склонны к обгоранию и износу. В настоящее время устарела и не используется.

Бесконтактные

Практически устроена так же, но в ней механические контакты заменены на датчик, управляющий работой мощного импульсного усилителя, нагруженного на первичную обмотку катушки.

Проблем с таким построением значительно меньше, а мощность увеличена. Рабочий ток катушки протекает не через обгорающие контакты, а через силовой транзистор, не подверженный износу или проблемам с регулируемым зазором.

Укрупнённо все бесконтактные системы можно разделить на транзисторные и тиристорные, отличающиеся режимами работы силового ключа.

Если транзистор полностью функционально имитирует контакты с улучшением характеристик, то тиристор открывается для разряда специально установленного высоковольтного конденсатора, который разряжается на катушку, многократно увеличивая напряжение. В

настоящее время тиристоры в зажигании забыты, а транзисторы используются лишь как силовые драйверы контроллеров управления двигателем.

Микропроцессорная

Следующим этапом развития бесконтактных систем стало внедрение быстродействующих микропроцессорных блоков в качестве посредников между датчиками и катушками.

С их помощью стало возможно создание адаптивных систем, учитывающих текущий режим двигателя без применения громоздких и ненадёжных механических регуляторов.

Читайте также: Как самому отремонтировать бескамерную шину

Электронный блок, построенный по структуре микрокомпьютера, собирает информацию от многочисленных датчиков:

  • обороты двигателя;
  • мгновенное угловое положение коленвала;
  • степень открытия дроссельной заслонки;
  • температура охлаждающей жидкости;
  • расход воздуха или абсолютное давление во впускном коллекторе;
  • температура всасываемого воздуха;
  • содержание кислорода в выхлопных газах;
  • появление детонационных процессов.

Более сложные системы учитывают и многое другое, а конечным выходом системы будет точно вычисленный момент подачи искры в каждый цилиндр. Наличие нескольких катушек зажигания избавляет от механического распределителя.

Устройство

Технически система содержит ряд узлов, расположенных в моторном отсеке, на двигателе или в салоне автомобиля.

Источник питания

Питается система зажигания от бортовой сети автомобиля, обычно без предохранителя, чтобы не снижать надёжность. Включение питания происходит от замка с ключом, который управляет мощным реле, поскольку ток потребляется значительный.

Выключатель

В последнее время выключатель зажигания лишь инициирует рабочий режим электронного блока управления двигателем (ЭБУ), который сам подаёт питание на реле отдельных устройств, платы управления, силовые ключи, бензонасос и вентилятор охлаждения. Если зажигание включено, а двигатель не запущен, то потребление тока автоматически сводится к минимуму.

Накопитель энергии

В качестве накопителя сейчас почти повсеместно используется магнитное поле сердечников катушек зажигания. В нужный момент силовой ключ открывается, по первичной цепи трансформатора начинает протекать нарастающий ток, что вызывает увеличение магнитного потока.

После закрывания транзистора вся накопленная энергия через вторичную обмотку расходуется на искровой разряд в свече.

Свечи

Свеча выступает в роли важнейшего элемента, поскольку трудится в очень сложных условиях. Искру надо обеспечит при высоком давлении в точно определённый момент, при этом выступающие в цилиндр части не должны перегреваться или охлаждаться до такой степени, что их забросает смесью, маслом или продуктами горения. Поэтому свечи подбираются по калильному числу под конкретный двигатель.

Для увеличения срока службы в состав электродов вводятся платина или иридий. Такие свечи могут выполняться с заострённым тонким центральным электродом, что повышает напряжённость поля и улучшает искрообразование. Традиционные сплавы при такой конфигурации быстро изнашиваются от электрической и тепловой эрозии.

Система распределения зажигания

Распределение икры по цилиндрам выполняется различными способами, механическими и электронными. Иногда искра с целью упрощения подаётся одновременно в два цилиндра сразу, но поскольку в одном из них в этот момент происходит такт выпуска, то это ни на что не повлияет.

Распределитель (трамблёр)

Самый простой распределитель содержит бегунок с контактом, вращающийся через привод от коленвала. Синхронизация обеспечивает его положение точно напротив нужного выходного высоковольтного наконечника, куда и уходит разряд. Гальванического контакта тут нет, небольшой промежуток легко пробивается мощным выходом катушки.

Коммутатор

Так принято называть транзисторный блок, принимающий сигнал датчика, установленного вместо контактов прерывателя. На самом деле блок ничего не коммутирует, а просто усиливает слабый сигнал до величины, способной запасти нужную энергию в катушке. Состоит из управляющей электронной схемы и силового транзисторного ключа.

Блок управления

В сложных системах все элементы, кроме катушек и датчиков, объединены в управляющем блоке. Он содержит приёмные усилители сигналов датчиков, микропроцессорное устройство обработки информации, обычно совмещающее управление впрыском и зажиганием, а также драйверы – мощные выходные транзисторные ключи.

Высоковольтные провода

В последние десятилетия от высоковольтных проводов, ранее соединявших выходы катушек с наконечниками свечей зажигания, отказываются.

Ненадёжная изоляция и трудности с обеспечением перезаряда паразитных ёмкостей, поэтому на современном автомобиле этих проводов нет, а на каждую свечу надета персональная одноконтактная катушка.

Основные неисправности

Блок управления постоянно отслеживает равномерность вращения вала двигателя. В случае неполадок с зажиганием он выдаёт сигнал о наличии пропусков зажигания в отдельных цилиндрах. При полном отказе двигатель вообще не запускается или работает не на всех цилиндрах.

Причины могут быть разными:

  • отказ свечей из-за брака или несвоевременной замены, о чём не все водители знают;
  • пробой изоляции катушек зажигания, как следствие несвоевременной замены свечей и нештатного увеличения их искрового зазора;
  • выгорание силовых транзисторных ключей в блоке управления по разным причинам, обычно заводской брак;
  • отказ основных датчиков, в современных системах это датчик положения коленвала, в устаревших – датчик Холла в трамблёре;
  • в батарейных системах обгорание контактов и пробой конденсатора;
  • в системах с распределителем зажигания часто пробивает бегунок, крышку с контактами или выгорает помехозащитный резистор;
  • полный отказ наступает при обгорании контактной группы в замке зажигания, вся система остаётся без питания.

Обслуживание системы сводится к плановой замене свечей. Обычные медноникелевые следует менять каждые 10-15 тысяч километров пробега, а с содержанием благородных металлов – примерно через 60 тысяч. Иначе придётся вместе с ними заменить и катушки зажигания, что значительно дороже.

Принцип работы системы зажигания — auto-grupp.ru

Как работает система зажигания автомобиля

Вы эксплуатируете свой автомобиль, однако задумывались ли когда-либо о том, как работает система зажигания? Хотя в этих системах мало что изменилось с момента изобретения, они схожи, несмотря на разные модели автомобилей. Читайте ниже, чтобы узнать об основах системы вашего автомобиля.

Цель


У системы зажигания автомобиля есть одна основная цель – зажигать бензин. Чтобы сделать это, необходимо провести электричество от аккумуляторной батареи, преобразовать его в мощную искру, а искра должна подаваться в определённое время для каждого цилиндра.

Внутреннее сгорание


В автомобиле бензин используется, чтобы привести его в движение. Перемешиваясь с воздухом, бензин подаётся под давлением в камеру сгорания, затем воспламеняется. Эта сила толкает поршень, который приводит в движение колеса машины. Возвращаясь назад, поршень выдавливает выхлопные газы, освобождая камеру для новой порции легковоспламеняющейся смеси.

Двигатель внутреннего сгорания требует, чтобы смесь зажглась в нужный момент, когда поршень находится в верхней мёртвой точке. Бензин воспламеняется только тогда, когда зажигание выставлено правильно.

Катушка зажигания


Катушка зажигания автомобиля берет электричество аккумуляторной батареи и использует его, чтобы создать искру. Эта искра имеет достаточную силу тока, чтобы зажечь бензин. Катушка зажигания имеет две обмотки: первичную и вторичную. Первичная обмотка принимает на себя маленький ток, который затем передаётся во вторичную обмотку. Во вторичной обмотке сила тока возрастает, затем передаётся на распределитель.

Прерыватель-распределитель


Воспламенение в каждом цилиндре двигателя должно произойти в нужный момент. Прерыватель-распределитель выполняет эту задачу. Он приводится во вращение при помощи шестерни распределительного или промежуточного вала двигателя. Вращающийся бегунок поочерёдно замыкает контакты от центрального провода и проводами свечей каждого цилиндра. Крышка и бегунок прерывателя-распределителя ответственны за регулирование скорости подачи искры.
Большинство этих частей обычно заменяется во время сбоя работы двигателя, так как даже маленькие неисправности могут привести к серьезным проблемам.

Другое


Большинство систем зажигания имеет такой принцип работы, как описано выше. Но в некоторых более современных системах зажигания вообще не используется прерыватель-распределитель. Вместо него установлены одна или несколько высоковольтных стационарных катушек зажигания, которыми управляет компьютерная микросхема.

Это имеет два основных преимущества. Во-первых, применяется меньше движущихся и трущихся деталей, и это требует меньшего количества обслуживания и замены. Во-вторых, это позволяет настроить более точную синхронизацию, что положительно влияет на расход топлива двигателя.

Все, что вам нужно знать о системе зажигания

При большом разнообразии автомобильных применений система зажигания играет жизненно важную роль, поскольку она генерирует искру. Он нагревает электрод до высокой температуры, так что топливно-воздушная смесь может воспламениться во всех двигателях внутреннего сгорания с искровым зажиганием. другие автомобили, в том числе стационарные и передвижные, также спроектированы с системой, которая может включать газовый и жидкотопливный котел, ракетные двигатели и т. д.По этой причине существуют различные типы систем зажигания.

Однако искровой бензиновый (бензиновый) двигатель внутреннего сгорания является наиболее зависимой системой как автомобиля, так и двигателя мотоцикла. Сегодня мы рассмотрим определение, функции, приложения, компоненты, схемы, типы и работу системы зажигания в двигателях внутреннего сгорания. Мы также рассмотрим преимущества и недостатки системы зажигания на их различных типах.

Подробнее: Что нужно знать о шатуне

Определение системы зажигания

Система зажигания — это система, используемая в некоторых типах двигателей внутреннего сгорания, часто бензиновых двигателях, для воспламенения топливно-воздушной смеси. Это воспламенение осуществляется специально для того, чтобы мог произойти взрыв в камере сгорания. То есть искра, возникающая в системе зажигания (свеча зажигания), вызывает воспламенение топливно-воздушной смеси.

Как упоминалось ранее, система зажигания используется в двигателях внутреннего сгорания с искровым зажиганием, хотя она также используется в некоторых других механических устройствах.Но он довольно популярен на бензиновом двигателе. ну, в дизельных двигателях с воспламенением от сжатия процесс отличается, поскольку топливно-воздушная смесь воспламеняется теплотой сжатия, что приводит к устранению свечи зажигания. Это еще одна тема обсуждения, с которой вы можете ознакомиться ниже.

Подробнее: Компоненты двигателя внутреннего сгорания

Функция системы зажигания

Ниже приведены функции системы зажигания в двигателях внутреннего сгорания с искровым зажиганием:

· Основной функцией системы зажигания является создание электрической искры в камере сгорания двигателя в нужное время, чтобы смесь бензина и воздуха могла воспламениться.

· Напряжение на свече зажигания составляет 30 000 вольт.

· Искра высокого напряжения подается на каждую свечу зажигания в правильной последовательности.

· Время зажигания различается в зависимости от нагрузки, скорости и других условий.

· Искра рассчитана по времени, поэтому она может возникнуть, когда поршень приближается к верхней мертвой точке.

Подробнее: Все, что вам нужно знать об автомобильном поршне

Применение системы зажигания

Ниже приведены области применения различных типов систем зажигания в автомобильных двигателях:

· Система используется в двухколесных транспортных средствах (двигатели SI.

· Подобно тому, как батарея используется для выработки энергии в аккумуляторной системе зажигания, магнето используется для выработки электроэнергии.

· Наконец, система зажигания широко используется в тракторах, подвесных моторах, стиральных машинах, судовых двигателях, силовых агрегатах и ​​двигателях, работающих на природном газе.

Разница между приводным ремнем и ремнем ГРМ

Типы системы зажигания

Ниже приведены три основных типа систем зажигания, используемых в двигателях внутреннего сгорания с искровым зажиганием:

Система зажигания Магнето:

В магнето типы системы зажигания.Магнето служит основным компонентом, используемым для создания энергии высокого напряжения. Затем это высокое напряжение используется для выработки электроэнергии, которая в дальнейшем используется для управления транспортными средствами. Система представляет собой комбинацию распределителя и генератора, объединенных в единое целое. Это отличает его от обычного распределителя, который создает энергию искры без внешнего напряжения.

Электронная система зажигания:

Электронные типы системы зажигания полностью контролируются электронным способом и питаются от аккумулятора, в отличие от предыдущего, в котором используется магнето.Он имеет отрицательный и положительный выводы; минусовая клемма заземлена, а плюсовая подключена к замку зажигания. Итак, при включенном выключателе по проводам подается питание на электронный модуль зажигания. Затем мощность отправляется на катушку зажигания, которая имеет две обмотки; первичная обмотка и вторичная обмотка. Эти обмотки изолированы, а первичная обмотка толще вторичной. Между обмотками находится стержень, создающий магнитное поле. Наконец,

Аккумуляторная система зажигания:

Батарейные типы систем зажигания широко используются в автомобилях для получения искры с помощью свечи зажигания с помощью батареи.Он часто встречается в четырехколесных транспортных средствах, но теперь используется в двухколесных транспортных средствах, которые получают ток от 6-вольтовой или 12-вольтовой батареи в катушке зажигания. Читайте полную статью ниже!

Подробнее: Знакомство с клапанным механизмом автомобиля

Компоненты системы зажигания

Ниже приведены компоненты различных типов системы зажигания и их функции:

Система зажигания Магнето

Компоненты системы зажигания от магнето включают магнето, распределитель, конденсатор, кулачок, прерыватель контактов и выключатель зажигания.Их функция была объяснена в полной статье.

Аккумуляторная система зажигания

Компоненты аккумуляторной системы зажигания Аккумулятор, замок зажигания, катушка зажигания, балластный резистор. Его компоненты также содержат прерыватель контактов, распределитель, конденсатор и свечу зажигания. Прочтите полную статью, чтобы увидеть их функции. Наконец,

Электронная система зажигания

Компоненты электронной системы зажигания также включают аккумулятор, распределитель, конденсатор, модуль управления зажиганием, якорь, катушку зажигания и свечу зажигания.

Подробнее: Знакомство с автоматической коробкой передач

Схема различных систем зажигания:

Принцип работы

Работа системы зажигания менее сложна и ее легко понять. Очевидно, что с приведенным выше объяснением вышеприведенных разделов вы теперь знакомы с функциональными частями и работой системы. Большинство типов систем зажигания работают от батареи, но лишь немногие из них способны генерировать энергию самостоятельно.Тем не менее, с помощью видео ниже вы узнаете, как работают различные типы систем зажигания.

Видео о работе системы зажигания:

Подробнее: Что нужно знать о масляном поддоне/поддоне двигателя

Преимущества и недостатки системы зажигания

Преимущества:

Ниже приведены преимущества системы зажигания:

· Системы зажигания от магнето требуют меньше обслуживания, они дешевле, занимают меньше места и не требуют батареи.Он имеет высокую эффективность работы из-за искры высокой интенсивности и менее подвержен ошибкам, так как батарея не используется

· Еще одним преимуществом систем зажигания является то, что выбор электронных типов состоит из меньшего количества деталей, а также требует минимального обслуживания. Его эффективность также хороша, и он генерирует меньше выбросов. Еще одним преимуществом электронной системы зажигания является то, что она увеличивает эффективность использования топлива. Наконец,

· Преимущество аккумуляторных систем зажигания заключается в хорошей интенсивности искры.Он также обеспечивает высокую концентрацию искры даже при низких оборотах двигателя или при первом запуске. Он также требует меньше обслуживания, как и другие типы систем зажигания.

Подробнее: Система охлаждения в двигателях внутреннего сгорания

Недостатки:

Несмотря на большие преимущества системы зажигания. некоторые ограничения все еще имеют место. следующие недостатки системы зажигания:

· Недостатком систем зажигания магнето является низкое качество искры при первом запуске малых оборотов.Пропуски зажигания также могут происходить из-за утечки, а стоимость системы высока.

· Недостатком электронных типов систем зажигания является то, что стоимость системы резко высока и может занимать много места, поскольку для питания системы необходимо использовать батарею.

· Недостатки аккумуляторной батареи включают в себя периодическое техническое обслуживание только аккумуляторной батареи, занимает больше места и снижает эффективность при снижении интенсивности искры.

Подробнее: Понимание аккумуляторов, используемых в автомобилях

В заключение, система зажигания популярна на автомобильных устройствах, чтобы помочь свече зажигания в воспламенении топливно-воздушной смеси.Что ж, в этой статье мы многое рассказали о системе. мы раскрываем определение, функции, компоненты и различные типы систем зажигания. мы также рассмотрели его работу, а также преимущества и недостатки типов систем зажигания.

Я надеюсь, вам понравилось чтение, если да, пожалуйста, прокомментируйте вашу любимую часть статьи, и вы можете проверить некоторые другие интересные сообщения здесь, на StudentLesson . Спасибо!

ПЕРВИЧНОЕ ЗАЖИГАНИЕ

Общее описание  
     Система зажигания – это система воспламенения топливовоздушной смеси.Системы зажигания хорошо известны в области двигателей внутреннего сгорания, таких как те, которые используются в бензиновых (бензиновых) двигателях, используемых для питания большинства автомобилей. Система зажигания разделена на две электрические цепи — первичную и вторичную цепи. Первичная цепь имеет низкое напряжение. Эта цепь работает только от тока батареи и управляется точками прерывателя и выключателем зажигания.

Принцип работы первичной цепи зажигания
      Катушка является сердцем системы зажигания.По сути, это не что иное, как трансформатор, который берет 12 вольт от батареи и увеличивает его до точки, при которой свеча зажигания будет зажигать до 40 000 вольт. Термин «катушка», возможно, является неправильным, поскольку на самом деле есть две катушки проволоки, намотанные на железный сердечник. Эти катушки изолированы друг от друга, и вся сборка заключена в маслонаполненный корпус. Первичная катушка, состоящая из относительно небольшого количества витков толстого провода, подключается к двум первичным клеммам, расположенным в верхней части катушки.Вторичная катушка состоит из множества витков тонкой проволоки. Подключается к высоковольтному соединению сверху катушки (башня, в которую втыкается провод катушки от распределителя).

Системы зажигания можно разделить на следующие типы:

  • Распределительная система зажигания
  • Система прямого зажигания (DI)
  • Тип
  • Coil-on-Plug (COP) — отдельная катушка для каждого цилиндра, а пакет катушек устанавливается непосредственно над свечами зажигания.
  • Индивидуальная катушка для каждого цилиндра с отдельными высоковольтными проводами.
  • DIS-Wasted Spark Ignition – отдельная катушка для каждых двух цилиндров.
    Синхронное зажигание с двумя выводами катушки вторичной обмотки.

Распределительная система зажигания  
      Распределительная система зажигания является наиболее распространенной системой зажигания для автомобилей ранних моделей. В распределительных системах зажигания используется одна катушка, которая зажигает одну свечу зажигания только на такте сжатия. Для просмотра первичной картины зажигания необходимо отслеживать сигнал напряжения на отрицательной стороне первичной цепи катушки и идентифицировать триггерный цилиндр с помощью датчика оборотов.
      Классическая или обычная система зажигания состоит из следующих компонентов: катушки зажигания, распределителя, свечей зажигания, высоковольтных проводов и некоторых средств управления первичной цепью зажигания. Первичная цепь катушки зажигания может содержать: точки, точки управления транзистором, транзистором, управляемым каким-либо другим способом (без прерывателя) или электронным зажиганием. В системах зажигания точечного типа ток в первичной цепи регулируется механическим переключателем (или прерывателем).Механические точки могут управлять переключающим транзистором, который открывает и закрывает первичную цепь катушки зажигания. В транзисторах без прерывателя и электронном зажигании для управления переключающим транзистором можно использовать эффект Холла, VRS (датчик переменного сопротивления) или оптический датчик.
      Ток течет от положительной клеммы аккумулятора, через замок зажигания и/или реле, через предохранитель и далее к положительной клемме катушки зажигания. Ток возвращается в аккумуляторную батарею через минусовую клемму катушки зажигания, далее через коммутирующее устройство (точки или транзистор) через шасси автомобиля и на минусовую клемму аккумуляторной батареи.При протекании тока в первичной цепи в катушке зажигания создается магнитное поле. Из-за индуктивности катушки зажигания требуется некоторое время (1-6 мс, в зависимости от конструкции), чтобы первичный ток достиг своего номинального значения. Когда первичный ток прерывается, магнитное поле быстро исчезает (примерно за 20 мкс) и в первичной обмотке индуцируется высокое напряжение (противоэлектродвижущая сила CEMF). Это напряжение преобразуется во вторичной обмотке в очень высокое напряжение.Амплитуда этого напряжения зависит от соотношения витков (обычно 100:1). Таким образом, при первичном напряжении 300 В во вторичной обмотке будет 30 000 В. Напряжение будет расти только до тех пор, пока не будет достигнуто напряжение пробоя искрового промежутка — напряжение зажигания свечи зажигания.

Система прямого зажигания (DI)

     В системах COP используется отдельная катушка для каждой свечи зажигания. Каждая катушка расположена непосредственно над свечой зажигания и не использует никаких внешних проводов свечи зажигания.Каждый блок катушек также имеет независимую первичную цепь, которую необходимо проверять отдельно.
Индивидуальная катушка зажигания за один рабочий цикл двигателя вырабатывает одну искру зажигания. Поэтому в индивидуальных системах зажигания требуется синхронизация работы катушек с положением распределительного вала.
     При подаче напряжения на первичную катушку ток начинает протекать по первичной катушке и из-за этого в сердечнике катушки изменяется значение магнитного потока. Изменение величины магнитного потока в сердечнике катушки приводит к возникновению напряжения положительной полярности на вторичной катушке.Поскольку скорость нарастания тока в первичной обмотке мала, напряжение, возникающее на вторичной обмотке, невелико – соответственно 1…2 кВ. Но в определенных условиях величина напряжения может быть достаточной для несвоевременного возникновения искры между электродами свечи зажигания и, как следствие, слишком раннего воспламенения воздушно-топливной смеси. Во избежание возможных повреждений двигателя из-за несвоевременного возникновения искры следует исключить образование искры между электродами свечи зажигания при подаче напряжения на первичную катушку.В индивидуальных системах зажигания возникновение этой искры предотвращается с помощью встроенного диода ЭФУ на катушку зажигания, включенную последовательно в цепь вторичной катушки.
     В момент закрытия выходного каскада зажигания ток в первичной цепи резко прерывается, и магнитный поток стремительно уменьшается. Такое быстрое изменение величины магнитного потока приводит к возникновению высокого напряжения на вторичной обмотке катушки зажигания (при определенных условиях напряжение на вторичной обмотке катушки зажигания может достигать 40…50 кВ).Когда это напряжение достигает значения, обеспечивающего образование искры между электродами свечи зажигания, происходит воспламенение сжатой в цилиндре воздушно-топливной смеси от искры между электродами свечи зажигания.
В некоторых системах катушки не расположены непосредственно над каждой свечой зажигания, и используются внешние высоковольтные провода свечи зажигания. Каждый блок катушек также имеет независимую первичную цепь, которую необходимо проверять отдельно.

DIS-Дискровое зажигание

     В системах зажигания DIS используется одна катушка на каждые два цилиндра, что также называется системами «отработанной искры».Система с отработанной искрой запускает одну катушку для каждой пары цилиндров, которые находятся в верхней мертвой точке (ВМТ) одновременно. Эти пары цилиндров называются «напарниками». Один цилиндр находится в ВМТ такта сжатия, а другой – в ВМТ такта выпуска. Искра в цилиндре в ВМТ на такте сжатия воспламеняет воздушно-топливную смесь для выработки мощности. Искра в цилиндре в ВМТ на такте выпуска является «бесполезной», отсюда и название «бесполезная искра». Каждая катушка DIS на отработанной искре соединена последовательно со своими двумя свечами зажигания.Когда катушка срабатывает, вторичный ток создает искру высокого напряжения в промежутках обеих свечей. Одна свеча срабатывает с традиционной прямой полярностью системы зажигания: от отрицательного (-) к положительному (+) Другая свеча срабатывает с противоположной полярностью: с положительного (+) к отрицательному (-) Таким образом, одна свеча всегда срабатывает с тем, что всегда было называется «обратной полярностью». Однако емкость катушки DIS достаточно высока, чтобы гарантировать, что доступное напряжение всегда будет достаточно высоким для зажигания свечи с обратной полярностью, когда она находится на такте сжатия.


Рис. 1 Первичная кривая зажигания

1. Внутренний выключатель ECU замыкается. Ток устремляется в катушку и начинает накапливаться, поэтому напряжение падает близко к земле     и практически остается там до зажигания искры.
2. Катушка теперь насыщается электричеством, на что указывает скачок напряжения.
    Катушка больше не заряжается благодаря ЭБУ.
3. Выключатель ЭБУ размыкается, высвобождая весь накопленный ток. Ампер падает как камень, а напряжение стремительно растет.
4. Искровая линия указывает длину искрового разряда на свече.
5. Когда для искры не остается достаточной мощности, прозвенит оставшаяся мощность, и событие начинается сначала.

Процедура проверки работоспособности первичной цепи зажигания

— Измерение омметром и вольтметром первичной обмотки катушки зажигания

  • Измерьте сопротивление первичной обмотки катушки с помощью омметра. Нормальное сопротивление должно быть менее 1 Ом.
  • Включить зажигание, но не запускать двигатель.
  • С помощью вольтметра проверьте, подается ли напряжение батареи на положительную клемму катушки (обычно «2») и на массу шасси.

— Осциллографические измерения

Для выполнения диагностики первичного напряжения систем зажигания необходимо контролировать форму волны заряда первичной обмотки катушек зажигания, подсоединив щуп(ы) к (каждой) отрицательной(ым) клемме(ам) катушки(ей) первичной цепи.Если модуль зажигания (силовой выключатель ЭБУ) не объединен в один блок с первичной обмоткой катушки, то можно наблюдать как первичное напряжение, так и первичный ток.

1. Измерение первичного напряжения
— Подсоедините активный измерительный провод к отрицательной клемме катушки зажигания (обычно «1»), а провод заземления к массе шасси.
    Важное примечание:  Для измерения первичного напряжения диапазон входного напряжения осциллографа должен быть установлен на ± 400 В.

2. Измерение первичного тока
— Подключите токоизмерительные клещи переменного тока к другому каналу осциллографа. Диапазон ±20А.
— Запустите двигатель и оставьте его работать на холостом ходу.
— Сравните результат с осциллограммой на рис. 2.


 Рис.2

Примечание. Первичное напряжение может достигать 380 В, а первичный ток может варьироваться от 8 А до примерно 12 А.

Если модуль зажигания (выключатель питания ЭБУ) объединен в один блок с первичной обмоткой катушки, невозможно провести диагностику первичного напряжения зажигания.В этом случае с помощью токоизмерительных клещей можно наблюдать только первичный ток.

1 . Измерительный     первичный   ток  
— Подсоедините токовые клещи к другому каналу токовых клещей ACoscilloscope. Диапазон ±20А.
— Запустите двигатель и оставьте его работать на холостом ходу.
— Сравните результат с осциллограммой на рис. 3. 
Примечание. Первичный ток может варьироваться от 8 А до примерно 12 А.


Рис.3

Возможные причины выхода из строя первичной цепи зажигания
» Отсутствие напряжения питания на катушке зажигания.
   • Убедитесь, что зажигание включено.
   • Проверьте электрические соединения катушки зажигания.
   • Проверьте наличие перегоревших предохранителей и/или проводов в цепи катушки зажигания.

» Обрыв изоляции между первичной и вторичной обмотками катушки
» Плохая катушка зажигания.

Integrated Publishing — ваш источник военных спецификаций и образовательных публикаций

Integrated Publishing — ваш источник военных спецификаций и образовательных публикаций

Администрация — Навыки, процедуры, обязанности и т. д. военнослужащих.

Продвижение — Военный карьерный рост книги и др.

Аэрограф/метеорология — Метеорология основы, физика атмосферы, атмосферные явления и др.
Руководства по аэрографии и метеорологии военно-морского флота

Автомобилестроение/Механика — Руководства по техническому обслуживанию автомобилей, механика дизельных и бензиновых двигателей, руководства по автомобильным деталям, руководства по деталям дизельных двигателей, руководства по деталям бензиновых двигателей и т. д.
Автомобильные аксессуары | Перевозчик, персонал | Дизельные генераторы | Механика двигателя | Фильтры | Пожарные машины и оборудование | Топливные насосы и хранение | Газотурбинные генераторы | Генераторы | Обогреватели | HMMWV (Хаммер/Хамви) | и т.п…

Авиация — Принципы полета, авиастроение, авиационная техника, авиационные силовые установки, справочники по авиационным частям, справочники по авиационным частям и т. д.
Руководства по авиации ВМФ | Авиационные аксессуары | Общее техническое обслуживание авиации | Руководства по эксплуатации вертолетов AH-Apache | Руководства по эксплуатации вертолетов серии CH | Руководства по эксплуатации вертолетов Chinook | и т.д…

Боевой — Служебная винтовка, пистолет меткая стрельба, боевые маневры, штатное вооружение поддержки и т.д.
Химико-биологические, маски и оборудование | Одежда и индивидуальное снаряжение | Боевая инженерная машина | и т.д…

Строительство — Техническое администрирование, планирование, оценка, планирование, планирование проекта, бетон, кирпичная кладка, тяжелый строительство и др.
Руководства по строительству военно-морского флота | Совокупность | Асфальт | Битумный корпус распределителя | Мосты | Ведро, Раскладушка | Бульдозеры | Компрессоры | Обработчик контейнеров | дробилка | Самосвалы | Землеройные машины | Экскаваторы | и т.п…

Дайвинг — Руководства по водолазным работам и спасению различного снаряжения.

Чертежник — Основы, приемы, составление проекций, эскизов и т. д.

Электроника — Руководства по обслуживанию электроники для базового ремонта и основ. Руководства по компьютерным компонентам, руководства по электронным компонентам, руководства по электрическим компонентам и т. д.
Кондиционер | Усилители | Антенны и мачты | Аудио | Батареи | Компьютерное оборудование | Электротехника (NEETS) (самая популярная) | техник по электронике | Электрооборудование | Электронное общее испытательное оборудование | Электронные счетчики | и т.п…

Машиностроение — Основы и методы черчения, составление проекций и эскизов, деревянное и легкокаркасное строительство и т. д.
Военно-морское машиностроение | Армейская программа исследований прибрежных бухт | так далее…

Еда и кулинария — Руководства по рецептам и оборудованию для приготовления пищи.

Логистика — Логистические данные для миллионов различных деталей.

Математика — Арифметика, элементарная алгебра, предварительное исчисление, введение в вероятность и т. д.

Медицинские книги — Анатомия, физиология, пациент уход, оборудование для оказания первой помощи, фармация, токсикология и т. д.
Медицинские руководства военно-морского флота | Агентство регистрации токсичных веществ и заболеваний

Военные спецификации — Государственные военные спецификации и другие сопутствующие материалы

Музыка — Мажор и минор масштабные действия, диатонические и недиатонические мелодии, паттерны такта, и т.д.

Основы ядерной энергетики — Теории ядерной энергии, химия, физика и т.
Справочники Министерства энергетики США

Фотография и журналистика — Теория света, оптические принципы, светочувствительные материалы, фотофильтры, копирование редактирование, написание публикаций и т.д.
Руководства по фотографии и журналистике военно-морского флота | Руководство по армейской фотографии, печати и журналистике

Религия — Основные религии мира, функции поддержки богослужений, свадьбы в часовне и т. д.

Auto Fundamentals, 12-е издание, стр. 201

Copyright Goodheart-Willcox Co., Inc. 201 Глава 10 Системы зажигания Цели Изучив эту главу, вы сможете: ✓ Объяснить, почему необходимо увеличить напряжение аккумуляторной батареи в системе зажигания. ✓ Опишите первичную цепь системы зажигания. ✓ Опишите вторичную цепь системы зажигания. ✓ Кратко опишите основные функции и принципы работы компонентов системы зажигания. ✓ Объясните, как работают различные типы электронных систем зажигания без распределителя.✓ Объясните концепцию опережения зажигания. В главах 4, 5 и 6 часто упоминается использование искры для воспламенения воздушно-топливной смеси. В этой главе вы найдете четкое и краткое описание различных узлов системы зажигания. Будут обсуждаться теория, дизайн и конструкция деталей. Вы также узнаете, как они комбинируются для производства, контроля и распределения искры. Прежде чем приступить к этой главе, убедитесь, что вы знакомы с материалом главы 8, Основы электрических систем.Это даст вам базовое введение в электричество и электронику. Такие знания необходимы для понимания систем зажигания. Необходимо высокое напряжение. Для шунтирования разрядника свечи зажигания требуются тысячи вольт. Однако электрическая система автомобиля вырабатывает максимум около 14,5 вольт и может упасть ниже 12 вольт при запуске двигателя. Поскольку этого напряжения недостаточно, чтобы прыгнуть через электроды свечи зажигания, необходим способ повышения напряжения.В современных автомобилях напряжение на свечах зажигания может превышать 100 000 вольт. Это значит, что исходные 12–14,5 вольт многократно увеличены. Система зажигания разделена на два отдельных контура: первичный контур и вторичный контур. С середины 1970-х годов во всех системах зажигания автомобилей используются электронные компоненты для создания искры и ее синхронизации. Эти системы называются электронными системами зажигания. Компоненты, используемые в первичных и вторичных цепях электронных систем зажигания различных типов, показаны на рис. 10-1.Первичный контур будет рассмотрен в первую очередь. Первичная цепь Первичная цепь состоит из аккумулятора, выключателя зажигания, резистора (старые распределительные системы), модуля управления зажиганием и первичных обмоток катушки зажигания. Эти части будут покрыты в том порядке, в котором через них проходит электричество. Напряжение первичной цепи низкое, в пределах 12–14,5 вольт. Проводка в этой цепи покрыта тонким слоем изоляции для предотвращения короткого замыкания.Аккумулятор Чтобы лучше понять работу первичных цепей системы зажигания, мы начнем с аккумулятора и проследим поток электричества через систему. Аккумулятор является источником электроэнергии, необходимой для работы системы зажигания. Он хранит и производит электричество посредством химического воздействия. Когда батарея заряжается, она преобразует электричество в химическую энергию. Когда батарея разряжается (производит ток), она преобразует химическую энергию в электричество.

типов систем зажигания: функция, компоненты, работа, конструкция, преимущества и недостатки

Типы системы зажигания

Типы системы зажигания: функция, компоненты, работа, конструкция, преимущества и недостатки:- В основном используется в системах SI и основана на электричестве, система зажигания используется для воспламенения смеси воздуха и топлива. Это воспламенение генерируется для запуска процесса горения в камере сгорания. Следовательно, мы можем сказать, что эта система преобразует химическую энергию в тепло посредством искры, генерируемой в системе зажигания, вызывающей горение топливно-воздушной смеси.

Функция системы зажигания
  • Для создания электрической искры высокого напряжения в камере сгорания в нужное время для воспламенения воздушно-топливной смеси.
  • Это создает разность потенциалов ~25 кВ на свечах зажигания.
  • Подает высокое искровое напряжение на каждую свечу зажигания в правильном порядке.
  • Регулирует момент зажигания в зависимости от скорости и нагрузки автомобиля.
  • Искра отрегулирована таким образом, чтобы ее можно было генерировать, когда поршень находится вблизи верхней мертвой точки.

Компоненты системы зажигания

1. . Аккумулятор: (Компоненты систем зажигания)

Аккумулятор используется для питания системы зажигания. Это, в свою очередь, возбуждает катушку зажигания. Как правило, напряжение батареи составляет 6 В или 12 В.

2. Выключатель зажигания: (Компоненты систем зажигания)

Используется для включения или выключения двигателя. Один конец переключателя соединяется с первичной обмоткой катушки зажигания, а другой конец соединяется с аккумуляторной батареей.

3. Катушка зажигания: (Компоненты систем зажигания)

Является основной частью системы зажигания. Основная цель этого состоит в том, чтобы повысить напряжение батареи, чтобы оно было достаточным для генерации искры. Он работает как повышающий трансформатор и имеет две обмотки: одну первичную с меньшим числом витков, а другую вторичную с большим числом витков.

4. Дистрибьютор: (Компоненты систем зажигания)

Он используется в многоцилиндровом двигателе, и его целью является регулирование искры в каждой свече зажигания в правильной последовательности в зависимости от порядка зажигания.

5. Свеча зажигания: (Компоненты систем зажигания) Свеча зажигания

— еще одна важная часть системы зажигания. Здесь настоящая искра генерируется для сгорания топлива или заряда. Если имеется более одной свечи зажигания, то каждая из них подключается к распределителю отдельно и дает искру в определенной последовательности.

Типы системы зажигания

Они в основном классифицируются по способу подачи тока на первичную обмотку

  1. Система зажигания от аккумуляторов
  2. Система зажигания от магнето

1.Аккумуляторная система зажигания

Принцип: Основан на принципе электромагнитной индукции. В основном используется в легковых и грузовых автомобилях. В этой системе обычно используется батарея на 12 вольт.

Конструкция аккумуляторной системы зажигания

Состоит из двух цепей-первичной и вторичной

Первый контур состоит из-
  • Аккумулятор
  • Первичная обмотка катушки зажигания
  • Конденсатор
  • Размыкатель контактов первичной цепи
Вторая цепь состоит из-

Значение напряжения зависит от количества витков в каждой катушке.Затем высокое напряжение от 10 000 до 20 000 вольт поступает к распределителю.

Работа аккумуляторной системы зажигания

После включения выключателя В аккумуляторной системе зажигания ток течет к-

  • Сначала первичная цепь через балластный регистр
  • Во-вторых, первичная обмотка
  • Наконец, контактный выключатель

 Протекающий ток индуцирует магнитное поле вокруг первичной обмотки. Размыкатель контактов размыкает ток, протекающий через первичную обмотку, что приводит к значительному падению тока в определенной точке.Это внезапное падение тока создает очень высокое напряжение около 300 В в секции первичной обмотки.

Это высокое напряжение полностью заряжает конденсатор. Конденсатор начинает подавать ток к аккумулятору. Это вызывает обратное течение тока. Также в первичной обмотке уже имеется наведенное магнитное поле. В целом это приводит к тому, что во вторичной обмотке генерируется очень высокое напряжение от 15000 В до 30000 В.

Затем этот ток высокого напряжения передается на распределитель.На крышке распределителя установлены металлические сегменты. Поэтому, когда он начинает вращаться, то на определенном этапе он размыкает точку прерывания контакта, что позволяет току высокого напряжения передаваться на свечи зажигания через металлические сегменты. Таким образом, когда ток высокого напряжения достигает свечи зажигания, она генерирует искру высокой интенсивности внутри цилиндра двигателя, что позволяет горючему топливу гореть.

Преимущества аккумуляторной системы зажигания
  1. Начальная стоимость намного меньше.
  2. Дает хорошую искру при запуске двигателя на малых оборотах.
  3. Управление высокооборотным двигателем проще по сравнению с магнетосистемой.
  4. Не требует технического обслуживания. Требуется только замена батареи.
  5. Из-за отсутствия движущихся частей для создания текущих важных элементов можно разместить в доступном месте.

Недостатки аккумуляторной системы зажигания
  1. Система становится громоздкой из-за большой батареи
  2. При низком заряде батареи двигатель не запускается.
  3. Своевременное техническое обслуживание и замена аккумулятора обязательны.
  4. Воздействие механического и электрического износа точки прерывателя вредно для двигателя.

2. Система зажигания от магнето

Принцип : – Принцип тот же, что и у аккумуляторной системы зажигания. При этом батарея не требуется, так как магнето действует как собственный генератор.

Конструкция системы зажигания от магнето

Он состоит либо из вращающихся магнитов в неподвижных катушках, либо из вращающихся катушек в неподвижных магнитах.Магнето производит ток. Поток тока происходит в индукционной катушке.

Работа системы зажигания от магнето

Принцип действия системы зажигания Magneto такой же, как и у аккумуляторной системы зажигания, отличается только способ подачи тока первичной цепи. В этой системе используется магнит и неподвижная катушка (якорь), которая приводится в движение кривошипом двигателя и вырабатывает ток для первичной цепи.

Другие шаги аналогичны системе зажигания от аккумуляторной батареи.

Преимущества системы зажигания от магнето
  1. Аккумулятор не нужен. Это самоподдерживающаяся система.
  2. Компактный.
  3. Хорошая искра на высоких оборотах.
  4. Требует меньше обслуживания из-за отсутствия батареи.

Недостатки системы зажигания от магнето
  1. Плохая искра при запуске.
  2. Регулировка момента зажигания влияет на напряжение зажигания.
  3. Искра высокого напряжения на высокой скорости может повредить электрод.

Источник изображения: Howacarworks, Quora

Обучение системам зажигания | Technical Focus

В нашей последней статье Technical Focus рассматриваются системы зажигания. Дэмиен Коулман начинает с примера использования Fiat Punto с пропуском зажигания, а затем рассматривает технологию, лежащую в основе систем зажигания в современных автомобилях…

Транспортным средством для этого сценария является бензиновый Fiat Punto 1,2 л 2003 года выпуска с кодом двигателя 188.A4.000. У автомобиля горела лампочка управления двигателем, и были пропуски зажигания в двух цилиндрах.

В модуле управления двигателем был сохранен код неисправности, относящийся к первичной цепи управления катушкой зажигания: P0351 — Катушка зажигания «А», первичная цепь управления /обрыв.

Осциллограф является идеальным инструментом для диагностики именно этой неисправности. С помощью осциллографа техник может проверить цепь, отслеживая управляющее напряжение на стороне заземления катушки зажигания и ток, протекающий через первичную обмотку.

В этом автомобиле используется система зажигания с «бесполезной искрой».На автомобиле установлены две отдельные катушки зажигания, каждая из которых при необходимости обеспечивает подачу высоковольтной искры на два цилиндра.

После срабатывания искра присутствует в сопутствующих цилиндрах во время тактов сжатия и выпуска. Наличие искры зажигания во время такта выпуска является причиной того, что система называется «бесполезной искрой».

По моему опыту, на этих конкретных автомобилях с этим конкретным кодом неисправности диагностика обычно связана с неисправностью цепи заземления в модуле управления двигателем.

Тот же диагноз применим к P0352 — Первичная цепь управления катушкой зажигания «B» / обрыв, что иногда может быть кодом неисправности, хранящимся в ECM, в отличие от P0351.

Модуль управления двигателем снят с автомобиля и испытан на стенде. Тестирование проводилось на стендовой установке для приведения в действие катушек зажигания, а для контроля цепи использовался осциллограф.

Приведенная ниже форма сигнала показывает проверку напряжения цепи заземления:

Участок дорожки, обведенный кружком, должен быть «притянут» к земле и удерживаться под потенциалом земли в течение необходимого времени, пока катушка зажигания не будет заряжена.

Это называется периодом ожидания. Высокое сопротивление или плохой контакт в цепи заземления могут ограничивать величину тока, протекающего в первичной обмотке.

Приведенная ниже кривая показывает текущий тест отрисовки:

Из этой кривой видно, что ток значительно уменьшился, а характеристики формы волны отличаются от формы волны, записанной с работающего автомобиля.

На приведенной ниже осциллограмме показан двухканальный тест с напряжением заземления и потребляемым током:

Эти простые тесты подтвердили, что неисправность связана с заземлением в модуле управления двигателем.По результатам этих испытаний на автомобиль был установлен новый модуль.

Для подтверждения диагноза также была проверена первичная цепь управления второй катушкой зажигания.

Приведенная ниже форма сигнала показывает проверку напряжения цепи заземления на работающей цепи:

Часть трассировки, обведенная кружком, показывает, как должна работать система. Первичная обмотка катушки зажигания замыкается на массу примерно на 2 миллисекунды.

Хотя этот сигнал показывает, что соединение для этой цепи также не идеально.Это может быть признаком будущей неудачи.

На графике ниже показан тест потребления тока в работающей цепи:

Из этой трассы видно, что ток более чем в четыре раза больше, чем в цепи с отказом. Однако ток, протекающий через эту цепь, немного ниже, чем ожидалось, но характеристики формы сигнала правильные.

На приведенной ниже осциллограмме показан двухканальный тест с напряжением заземления и потребляемым током в функционирующей цепи:

С помощью этих простых тестов можно легко поставить быстрый и точный диагноз.И самое главное, имея дело с дорогостоящими компонентами, техник уверен, что замененная деталь починит автомобиль и вернет его в правильную работу.

*****

Система зажигания для двигателя внутреннего сгорания практически не изменилась за последние несколько десятилетий. Назначение и принцип работы идентичны, однако за последние годы улучшились контроль системы и обнаружение неисправностей.

Целью системы зажигания является подача высоковольтной искры на свечу зажигания для воспламенения воздушно-топливной смеси.

Эта искра должна иметь достаточную энергию/интенсивность для создания искры в сложных условиях, таких как высокое давление (сжатие) в цилиндре, высокая степень турбулентности воздуха и сравнительно обедненная смесь воздуха и топлива, характерная для современных автомобилей.

Искра должна быть достаточной продолжительности для поддержания горения. Это приводит к стабильному фронту пламени, распространяющемуся от свечи зажигания контролируемым и предсказуемым образом.

Момент зажигания искры также имеет решающее значение.Как только в цилиндре начинается сгорание, создается волна давления.

Это давление воздействует на поршень, толкая его вниз по цилиндру с высокой скоростью и, таким образом, увеличивая крутящую силу на коленчатом валу двигателя.

Модуль управления двигателем рассчитывает оптимальный угол опережения зажигания, чтобы гарантировать, что это повышение давления происходит в правильное время цикла.

Катушка зажигания работает по принципу взаимной индукции. Катушка зажигания состоит из двух обмоток, называемых первичной и вторичной обмоткой.

Вторичная обмотка содержит намного больше витков по сравнению с первичной обмоткой. Это позволяет катушке работать как «повышающее» устройство.

Напряжение в первичной обмотке низкое (системное напряжение), а наведенное напряжение во вторичной обмотке высокое.

На первичную обмотку подается ток, а протекание тока контролируется путем «замыкания и размыкания» заземления катушки зажигания. В упрощенном виде это переключение конечной ступени управляется электронным переключателем, называемым транзистором.

Выключатель конечной ступени первичной обмотки может быть встроен в блок катушки зажигания или может быть расположен в модуле управления двигателем.

Из-за электрических характеристик обмотки при протекании тока в цепи создается сильное магнитное поле.

Однако из-за индуктивности обмотки начальное нарастание магнитного поля происходит сравнительно медленно, поэтому высоковольтная искра создается, когда цепь заземления первичной обмотки отключена, а обмотка изначально разомкнута.

Внезапное изменение этого магнитного поля вызовет наведение напряжения во вторичной обмотке. Результатом является высоковольтная искра на свече зажигания.

Из этой информации мы можем выделить три основных критерия создания высокого напряжения во вторичной цепи:

  • Величина тока, протекающего по первичной обмотке (обычно от 6 до 10 А)
  • Соотношение витков первичной и вторичной обмотки (обычно порядка 1:50)
  • Скорость изменения магнитного потока (схлопывание магнитного поля, когда цепь заземления изначально разомкнута)

А) Автомобильный аккумулятор
Б) Первичная обмотка катушки зажигания
В) Модуль управления двигателем
Г) Вторичная обмотка катушки зажигания
E) Дугогасительный диод активации (подавляет непреднамеренные искры во вторичной обмотке)
Е) Свеча зажигания
G) Искра высокого напряжения

15) Зажигание по напряжению (назначение клемм)

1) Провод управления первичной цепью катушки зажигания (назначение клемм)

Дата публикации: 16 ноября 2015 г.

Понимание систем зажигания для максимальной производительности

Зажги свой огонь

Практически все заводские системы зажигания работают по принципу катушки индуктивности.12-вольтовая электрическая система автомобиля подает ток на одну или несколько катушек зажигания. Катушка использует энергию для создания магнитного поля между первичной и вторичной обмотками. Когда катушка срабатывает, магнитное поле разрушается, и заряд высокого напряжения направляется через вторичную цепь катушки на свечу зажигания. В системах с распределителем эта энергия должна сначала пройти от провода катушки к распределителю, откуда она затем передается по проводу свечи зажигания и, наконец, по свече зажигания.В системах без распределителя или с катушкой на свече каждой свече зажигания назначается собственная катушка, что сокращает расстояние от катушки до свечи, которое должно проходить напряжение. Индуктивные системы зажигания обычно обеспечивают искру низкой и средней интенсивности с большой продолжительностью горения.

Напряжение, необходимое для правильного воспламенения топливно-воздушной смеси в камере сгорания, повышается по мере обеднения смеси и увеличения давления в цилиндре.

Чтобы компенсировать повышенные требования к напряжению, на вторичном рынке предлагается ряд решений для усилителей зажигания, большинство из которых работают по принципу емкостного разряда (CD).Эти системы накапливают энергию искры в конденсаторах, а не в самой катушке зажигания, что позволяет системе зажигания обеспечивать дополнительную энергию искры. Некоторые из этих систем «срабатывают» несколько раз, чтобы обеспечить воспламенение типично обедненных топливно-воздушных смесей на холостом ходу и при крейсерском режиме с низкими оборотами. Это связано с тенденцией системы зажигания компакт-диска производить искры сверхвысокой интенсивности в течение более коротких промежутков времени. Эти типы систем увеличивают частоту воспламенения на рабочий такт, чтобы компенсировать более короткий срок службы искры.

Усилители зажигания дополняют системы зажигания с катушкой на свече, чтобы обеспечить подачу достаточной энергии искры в камеры сгорания.

Если в вашем автомобиле есть распределитель, вы можете использовать любой одноканальный усилитель вторичного рынка в сочетании с выбранной вами катушкой. Если ожидается, что заводская катушка не сможет обеспечить дополнительное напряжение, необходимое для вашего высокого давления в цилиндре или приложения с высоким наддувом, доступен ряд катушек вторичного рынка. В некоторых старых приложениях преобразование внутренней катушки (где катушка установлена ​​внутри корпуса распределителя) во внешнюю установку катушки обеспечивает доступ к более широкому диапазону обновлений катушек.

Для двигателей, которые полагаются на распределитель и штепсельные провода для зажигания, решения, которые преобразуют систему зажигания в катушку на свече, предлагают еще один способ улучшить систему зажигания. Катушка на свече вторичного рынка может заменить заводские катушки или преобразовать зажигание с распределителя в зажигание без распределителя.

Для систем с перерасходом искры, прямого зажигания или катушек на свече вам потребуется многоканальный усилитель зажигания, если вы захотите модернизировать.Кроме того, некоторые производители предлагают отдельные пакеты катушек более высокого качества для этих систем с несколькими катушками.

В последние годы наблюдается небольшое возрождение технологии плазменного зажигания. Плазменная технология обеспечивает профиль искры, отличный от профиля, создаваемого традиционной свечой зажигания. При воспламенении плазмы большая часть энергии загружается в начало искрового события, хранящегося в цепи конденсатора. Результатом является разряд сверхвысокой интенсивности, который имеет такую ​​же общую продолжительность, как и используемая первичная система зажигания (индуктивный или емкостной разряд).

Одна из версий технологии плазменного зажигания размещает плазменную технологию непосредственно в свече, чтобы обеспечить совместимость с любым типом системы зажигания (распределитель, искра напрасно или катушка на свече).

Добавить комментарий

Ваш адрес email не будет опубликован.