Регулятор напряжения генератора принцип работы: Принцип работы регуляторов напряжения автомобильных генераторов и их типовые схемы

Содержание

Регуляторы напряжения.


Регулятор напряжения




Для чего генератору нужен регулятор?

Генераторная установка предназначена для обеспечения питанием потребителей, входящих в систему электрооборудования автомобиля, и зарядки аккумуляторной батареи при работающем двигателе. Выходные параметры генератора должны быть таковы, чтобы в любых режимах движения автомобиля и работы двигателя не происходил прогрессивный разряд аккумуляторной батареи или ее перезаряд, а питание потребителей осуществлялось напряжением и током требуемой величины.
Кроме того, напряжение в бортовой сети автомобиля, питаемой генераторной установкой, должно быть стабильно в широком диапазоне изменения частоты вращения и нагрузок.

ЭДС индукции в соответствии с законом Фарадея, зависит от скорости перемещения проводника в магнитном поле и величины магнитного потока:

Е = с×Ф×ω,

где с — постоянный коэффициент, зависящий от конструкции генератора;
ω — угловая скорость ротора (якоря) генератора:
Ф — магнитный поток возбуждения.

Поэтому напряжение, вырабатываемое генератором, зависит от частоты вращения его ротора и интенсивности магнитного потока, создаваемого обмоткой возбуждения. В свою очередь мощность магнитного потока зависит от величины тока возбуждения, который изменяется пропорционально частоте вращения ротора, поскольку ротор выполнен в виде вращающегося электромагнита.
Кроме того, ток, поступающий в обмотку возбуждения, зависит от величины нагрузки, отдаваемой в данный момент потребителям бортовой сети автомобиля. Чем больше частота вращения ротора и ток возбуждения, тем большее напряжение вырабатывает генератор, чем больше ток нагрузки, тем меньше генерируемое напряжение.

Пульсация напряжения на выходе из генератора недопустима, поскольку это может привести к выходу из строя потребителей бортовой электрической сети, а также перезаряду или недозаряду аккумулятора. Поэтому использование на автомобилях в качестве источника электроэнергии генераторных установок обусловило использование специальных устройств, поддерживающих генерируемое напряжение в приемлемом для работы потребителей диапазоне. Такие устройства называются реле-регуляторы напряжения.

Функцией регулятора напряжения является стабилизация вырабатываемого генератором напряжения при изменении частоты вращения коленчатого вала двигателя и нагрузки в бортовой электросети.

Наиболее просто контролировать величину вырабатываемого генератором напряжения изменением величины тока в обмотке возбуждения, регулируя тем самым мощность создаваемого обмоткой магнитного поля. Можно было бы использовать в качестве ротора постоянный магнит, но управлять магнитным полем такого магнита сложно, поэтому в генераторных установках современных автомобилей применяются роторы с электромагнитами в виде обмотки возбуждения.

На автомобилях для регулирования напряжения генератора применяются регуляторы напряжения дискретного типа, в основу работы которых положен принцип действия различного рода реле. По мере развития электротехники и электроники, регуляторы генерируемого напряжения претерпели существенную эволюцию, от простых электромеханических реле, называемых вибрационными регуляторами напряжения, до бесконтактных интегральных регуляторов, в которых полностью отсутствуют подвижные механические элементы.

***



Вибрационный регулятор напряжения

Рассмотрим работу регулятора на примере простейшего вибрационного (электромагнитного) регулятора напряжения.
Вибрационный регулятор напряжения (рис. 1) имеет добавочный резистор Rо, который включается последовательно в обмотку возбуждения ОВ. Величина сопротивления резистора рассчитана так, чтобы обеспечить необходимое напряжение генератора при максимальной частоте вращения. Обмотка регулятора ОР, намотанная на сердечнике 4, включена на полное напряжение генератора.

При неработающем генераторе пружина 1 оттягивает якорь

2 вверх, удерживая контакты 3 в замкнутом состоянии. При этом обмотка возбуждения ОВ через контакты 3 и якорь 2 подключена к генератору, минуя резистор Rо.

С увеличением частоты вращения ток возбуждения работающего генератора и его напряжение растут. При этом увеличивается сила тока в обмотке регулятора и намагничивание сердечника. Пока напряжение генератора меньше установленного значения, силы магнитного притяжения якоря 2 к сердечнику 4 недостаточно для преодоления силы натяжения пружины 1 и контакты 3 регулятора остаются замкнутыми, а ток в обмотку возбуждения проходит, минуя добавочный резистор.

При достижении напряжения генератора значения размыкания Uр сила магнитноо притяжения якорька к сердечнику преодолевает силу натяжения пружины и контакты регулятора напряжения размыкаются. При этом в цепь обмотки возбуждения включится добавочный резистор, и ток возбуждения, достигший к моменту срабатывания реле значения

Iр, начнет падать.
Уменьшение тока возбуждения влечет за собой уменьшение напряжения генератора, а это, в свою очередь, приводит к уменьшению тока в обмотке ОР. Когда напряжение уменьшится до значения замыкания Uз, сила натяжения пружины преодолеет силу магнитного притяжения якоря к сердечнику, контакты вновь замкнутся, и ток возбуждения увеличится. При работающем двигателе и генераторе этот процесс периодически повторяется с большой частотой.
В результате происходит пульсация напряжения генератора и тока возбуждения. Среднее значение напряжения Uср определяет напряжение генератора. Очевидно, что это напряжение зависит от силы натяжения пружины реле, поэтому изменяя натяжение пружины можно регулировать напряжение генератора.

В конструкцию вибрационных регуляторов (рис. 1, а) входит ряд дополнительных узлов и элементов, назначение которых — обеспечить повышение частоты колебания якоря с целью уменьшения пульсации напряжения (ускоряющие обмотки или резисторы), уменьшение влияния температуры на величину регулируемого напряжения (добавочные резисторы из тугоплавких металлов, биметаллические пластины, магнитные шунты), стабилизацию напряжения (выравнивающие обмотки).

Недостатком вибрационных регуляторов напряжения является наличие подвижных элементов, вибрирующих контактов, которые подвержены износу, и пружины, характеристики которой в процессе эксплуатации меняются.
Особенно сильно эти недостатки проявились в генераторах переменного тока, у которых ток возбуждения почти в два раза больше, чем в генераторах постоянного тока. Использование раздельных ветвей питания обмотки возбуждения и двухступенчатых регуляторов напряжения с двумя парами контактов не решали проблему полностью и приводили к усложнению конструкции регулятора, поэтому дальнейшее совершенствование шло, прежде всего, по пути широкого использования полупроводниковых приборов.
Сначала появились контактно-транзисторные конструкции, а затем и бесконтактные.

Контактно-транзисторные регуляторы напряжения являются переходной конструкцией от механических регуляторов к полупроводниковым. При этом транзистор выполнял функцию элемента, прерывающего ток в обмотку возбуждения, а электромеханическое реле с контактами управляло работой транзистора. В таких регуляторах напряжения сохранялись электромагнитные реле с подвижными контактами, однако, благодаря использованию транзистора ток, протекающий через эти контакты, удалось значительно уменьшить, увеличив тем самым срок службы контактов и надежность работы регулятора.

В полупроводниковых регуляторах ток возбуждения регулируется с помощью транзистора, эмиттерно-коллекторная цепь которого включена последовательно в обмотку возбуждения.
Транзистор работает аналогично контактам вибрационного регулятора. При повышении напряжения генератора выше заданного уровня транзистор запирает цепь обмотки возбуждения, а при снижении уровня регулируемого напряжения транзистор переключается в открытое состояние.

Электронные регуляторы изменяют ток возбуждения путем включения и отключения обмотки возбуждения от питающей сети (дополнительных диодов).
С увеличением частоты вращения ротора напряжение генератора повышается. Когда оно начинает превышать уровень 13,5…14,2 В, выходной транзистор в регуляторе напряжения запирается, и ток через обмотку возбуждения прерывается.
Напряжение генератора падает, транзистор в регуляторе отпирается и снова пропускает ток через обмотку возбуждения.

Чем выше частота вращения ротора генератора, тем больше время запертого состояния транзистора в регуляторе, следовательно, тем сильнее снижается напряжение генератора.
Этот процесс запирания и отпирания регулятора происходит с высокой частотой. Поэтому колебания напряжения на выходе генератора незначительны, и практически можно считать его постоянным, поддерживаемым на уровне

13,5…14,2 В.

Конструктивно регуляторы напряжения могут выполняться в виде отдельного прибора, устанавливаемого раздельно с генератором, или интегральными (интегрированными), устанавливаемыми в корпусе генератора. Интегральные регуляторы напряжения обычно объединяются с щеточным узлом генератора.

Ниже приведены принципиальные схемы подключения и работы полупроводниковых регуляторов напряжения различных типов и конструкций.

***

Определение неисправностей генератора и регулятора напряжения


Главная страница


Дистанционное образование

Специальности

Учебные дисциплины

Олимпиады и тесты

Автоматические регуляторы напряжения генераторов | Информация об оборудовании ЛитЭнерго

Автоматические регуляторы напряжения (AVR) – устройства, предназначенные для обеспечения стабильных показателей выходного напряжения при изменяющихся нагрузках и условиях эксплуатации. Они надежно защищают потребителей электроэнергии от скачков напряжения, которые происходят при изменении частоты вращения ротора генератора, температуры окружающей среды, количества потребителей. Регуляторы напряжения всегда присутствуют в конструкциях бесщеточных генераторов.

Назначение

Щеточные генераторы отличаются сложной конструкцией, в которой имеются статор, ротор, угольные щетки. В мощных генераторных установках в основном используются бесщеточные синхронные генераторы (СГ), в которых для запитывания обмотки возбуждения (ОВ) и стабилизации вырабатываемого напряжения ранее применялись различные устройства. Сегодня наиболее популярны электронные автоматические регуляторы. Автоматический регулятор адаптивно регулирует ток, направляемый в обмотку возбуждения синхронного генератора, благодаря чему на выходе генераторной установки (ГУ) выдается напряжение со стабильными параметрами. Регуляторы AVR также защищают генераторы от перегрузок и минимально допустимого снижения частоты. Электронные регуляторы позволяют совместно эксплуатировать несколько СГ сходной мощности, соединяемых между собой параллельно. Автоматический регулятор напряжения AVR в бесщеточных генераторах является одним из наиболее важных компонентов, от качества функционирования которого зависит качество работы всей системы.

Принцип действия AVR

AVR – конструктивно сложный блок, подключаемый к обмотке возбуждения и основной обмотке статора, который обеспечивает качественное функционирование ГУ и запитанных от нее электроприборов, благодаря:
  • контролю частоты выходного тока;
  • при критически низкой частоте – снижению или полному выключению подачи напряжения на обмотку возбуждения;
  • при плановой или аварийной остановке генератора – обесточиванию ОВ.
Критически низким порогом частоты, при котором прекращается питание обмотки возбуждения, в заводских настройках обычно устанавливается значение в 45 Гц. Нормальное отклонение выходного напряжения от номинального значения – до 5 %. Автоматический регулятор работает следующим образом – он адаптивно изменяет значение тока (увеличивает его или уменьшает) в обмотке возбуждения, что позволяет:
  • стабилизировать величину напряжения на выходе до требуемой величины;
  • свести к минимуму колебания параметров тока, вырабатываемого генераторной установкой в рабочем режиме;
  • оперативно достигнуть требуемых характеристик тока после запуска генератора;
  • перевести генераторную установку с одного рабочего режима на другой с плавным изменением напряжения;
  • корректно отключить генератор в нештатной ситуации;
  • подключить параллельно к генератору другое энергетическое оборудование.
При сходном принципе работы автоматические регуляторы напряжения, выпущенные разными производителями, существенно отличаются друг от друга внешним и схемотехническим решением. AVR производят для работы с определенными моделями генераторов или они могут иметь универсальное исполнение. Ранее регуляторы представляли собой автономные устройства, помещаемые в корпус. Сегодня чаще всего их выпускают в виде платы, которая устанавливается в блок возбуждения генератора. Вся электросхема на регуляторе при этом заливается специальной смолой – компаундом, что защищает АРН от выхода из строя от вибрации, а так же защищает его детали от воздействий повышенной влажности и пыли. Техническая реализация По своей конструкции AVR разделяют на следующие типы:
  • Аналоговые
  • Цифровые

Параметры выбора AVR

От правильности выбора модели AVR зависит сохранность электрооборудования, запитанного от генератора, и самой ГУ. При покупке подходящего автоматического регулятора напряжения для конкретной области применения учитывают:
  • по числу контролируемых фаз – однофазные и трехфазные.
  • максимальное значение тока.
  • эксплуатационные условия.
  • По напряжению на входе питания.
  • По напряжению на выходе возбуждения.

Популярные модели AVR и области их применения

Производители предлагают широкий перечень моделей AVR и их модификаций, используемых в различных областях. Наиболее популярные: — SX460 — SX440 — R438 — R450 — M16FA655A — DSR — BL4U И  другие

Принцип работы и применения регуляторов напряжения для повышения эффективности функционирования электротехнических устройств. Реле-регулятор напряжения генератора: схема, принцип действия

В электрических сетях очень часто используется автоматическое включение и отключение генератора. Для этого существует реле-регулятор напряжения. С его помощью осуществляется защита генератора от перегрузок, позволяет автоматически регулировать напряжение и силу тока в установленных пределах. Этот прибор, в основном, используется в электрических сетях всех автомобилей и устанавливается в моторном отсеке.

Назначение и устройство реле-регулятора

Данное устройство является трехэлементным, состоящим из трех независимых автоматов. Это реле обратного тока, ограничитель тока и регулятор напряжения. Эти составные части смонтированы на общем основании и закрываются общей крышкой. Для подключения проводов на основании установлены три клеммы.

Автоматическое включение генератора в сеть осуществляется с помощью реле обратного тока при условии его превышения напряжения аккумулятора на определенное значение. При понижении напряжения, происходит автоматическое отключение генератора. В его состав входит катушка и сердечник с двумя обмотками — шунтовой и сериесной с различным количеством витков проволоки, а также ярмо и якорь с системой контактов.

Заранее заданные пределы напряжения генератора поддерживаются с помощью регулятора. В него входят катушка и сердечник с обмоткой, якорь с системой контактов, ярмо, магнитный шунт, а также цилиндрическая пружина.

Один конец обмотки катушки соединен с массой, а другой — с клеммой генератора, проходя через ярмо, сопротивление и обмотки. Таким образом, значение тока и магнитного потока находится в зависимости от напряжения, которое развивает . Регулятор напряжения позволяет автоматически регулировать силу зарядного тока, получаемую за счет разницы напряжений между аккумулятором и генератором.

Использование ограничителя тока

Для защиты генератора от перегрузок применяется ограничитель тока. В состав входит катушка и сердечник с обмоткой, а также обмотка сопротивления, ярмо и якорь с контактами, как и в других составляющих устройствах. Принцип работы устройства совпадает с регулятором напряжения, когда вся нагрузка генератора пропускается через обмотку ограничителя.

Общую нормальную работу реле-регулятора можно определить с помощью , расположенного на щитке приборов и по состоянию самого аккумулятора. Если на амперметре постоянно видно большое значение зарядного тока, несмотря на то, что аккумулятор находится в хорошем состоянии, это означает, что реле-регулятор напряжения работает при повышенном напряжении.

Данное устройство является достаточно сложным прибором, требующим точных регулировок и грамотного обращения. Регулировка должна осуществляться только с применением точных контрольных приборов.

Реле регулятор выпрямитель напряжения

В настоящее время задачи регулирования напряжения получили материальную основу в виде регулирующих и компенсирующих устройств. Постоянство напряжения в каждой точке сети можно обеспечить применением локальных регуляторов в электрических цепях. Таким образом возникает вопрос о создании локальных систем автоматического регулирования напряжения в электрической сети.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск

ВВЕДЕНИЕ 3

Описание прибора 4

Основное назначение и область применения 5

Виды регуляторов напряжений 6

регуляторы переменного напряжения на основе тиристоров 7

регуляторы переменного напряжения на основе магнитных усилителей 8

регуляторы переменного напряжения на основе транзисторов 9

синхронный компенсатор: назначение, принцип работы 10

Принцип работы регулятора напряжения 1 3

Заключение 1 4

Список литературы 1 5

Введение: Регулирование напряжения позволяет не только повысить качество электроэнергии, но и улучшить ход производственных процессов на промышленных предприятиях: снизить брак продукции, повысить ее качество, увеличить производительность труда людей и производительность механизмов, а также в отдельных случаях сократить потери энергии. В настоящее время задачи регулирования напряжения получили материальную основу в виде регулирующих и компенсирующих устройств. Расчеты показывают, что как правило, дополнительные затраты, связанные с применением регулирующих устройств и их автоматизацией, окупаются той экономией, которая достигается при улучшении режимов напряжений в электрических сетях и системах. Постоянство напряжения в каждой точке сети можно обеспечить применением локальных регуляторов в электрических цепях. Таким образом, возникает вопрос о создании локальных систем автоматического регулирования напряжения в электрической сети. Представляется целесообразным построение локальной системы автоматического регулирования с применением транзисторов.

Цель исследования : Изучить принцип работы и применения регуляторов напряжения для повышения эффективности функционирования электротехнических устройств.

Задачи исследования:

  1. Узнать область назначения и применения регулятора напряжения.
  2. Определить виды регуляторов напряжения.
  3. Изучить принцип работы регуляторов напряжения.
  4. Сделать выводы о проделанной работе.

1. Описание прибора:

Регулятор напряжения представляет собой электрический прибор, который регулирует электрическое напряжение, вырабатываемое генератором переменного тока или генератором постоянного тока в интервале от 14 до 14,4 В при номинальном напряжении сети 12 В и от 7 до 7,2 В при номинальном напряжении сети 6 В.

Регулируемое в указанном интервале напряжение обеспечивает правильную работу батареи и защиту приборов от разрушения. Предпосылкой правильной работы является недопущение возможности перегрузки электрической мощности регулятора. Например: Регулятор имеет максимальную электрическую мощность 200 Вт. Это значит, что мощность генератора переменного тока должна быть P alt При перегрузке может наступить разрушение регулятора, либо разряд и разрушение батареи.

Регулятор напряжения переменного тока обеспечивает среднее значение напряжения в указанном интервале. Это означает, что, например, измеряемое осциллоскопом напряжение меняется периодически на большую величину, чем номинальное напряжение. Например, от +- 20 до 30 В. Это среднее значение гарантирует, что приборы типа электрических лампочек не разрушатся. Однако действует такое правило, по которому сумма электропотребления приборов должна быть Ps[Вт]

2. Основное назначение и область применения:

Регулирование напряжения позволяет не только повысить качество электроэнергии, но и улучшить ход производственных процессов на промышленных предприятиях: снизить брак продукции, повысить ее качество, увеличить производительность труда людей и производительность механизмов, а также в отдельных случаях сократить потери энергии. Существуют различные способы регулирования напряжения. Разнообразие решений обусловлено требованиями по устойчивости, необходимой точности регулирования, параметрами нагрузок, экономическими и другими факторами.

Регулирование в источниках вторичного электропитания

Величину выпрямленного напряжения в ряде случаев нужно изменять. Такая необходимость может возникнуть при включении мощных двигателей, накала генераторных ламп, для уменьшения бросков тока при включении. Регулирование выпрямленного напряжения можно осуществлять на стороне переменного тока (входе), на стороне постоянного тока (выходе) и в самом выпрямителе применением регулируемых вентилей.

В качестве регуляторов напряжения на стороне переменного тока применяются:

регулируемые трансформаторы или автотрансформаторы.

регулирующие дроссели (магнитные усилители).

В регулируемом трансформаторе или автотрансформаторе первичная или вторичная обмотка выполняются с несколькими выводами. С помощью переключателя изменяется число витков обмотки и, следовательно выходное напряжение трансформатора или автотрансформатора. При коммутации обмоток часть витков может оказаться замкнутой накоротко движком переключателя, что приведет к созданию в замкнутых витках чрезмерно больших токов и к выходу трансформатора из строя. Поэтому такую коммутацию рекомендуется производить после отключения трансформатора из сети. Это является большим недостатком .

3. Виды регуляторов напряжений.

1. По количеству узлов в одном корпусе:

  • только регулятор напряжения
  • регулятор напряжения вместе с выпрямителем электрического тока
  • комбинированный регулятор для напряжения переменного тока и напряжения постоянного тока с выпрямителем

2. По номинальному напряжению в сети транспортного средства и изменению напряжения:

  • номинальное напряжение 6 или 12 В
  • напряжение переменного тока или напряжение постоянного тока

3. По электрической мощности (нагрузке) регулятора

4. По числу фаз на 1-фазные и 3-фазные

5. По типу регулируемого генератора постоянного тока – для генераторов с независимым возбуждением и генераторов с постоянными магнитами.

3.1. Регуляторы переменного напряжения на основе тиристоров:

Тиристорные регуляторы позволяют значительно уменьшить физические размеры устройства, снизить его стоимость и сократить потери электроэнергии, но они обладают существенными недостатками, ограничивающими их возможности. Во-первых, они вносят достаточно заметные помехи в электрическую сеть, что нередко отрицательно сказывается на работе телевизоров, радиоприемников, магнитофонов. Тиристорные регуляторы переменного напряжения широко применяются в электроприводе, также для питания электротермических установок. Применение тиристоров для коммутации статорных цепей асинхронных двигателей с короткозамкнутым ротором позволяет решить задачу создания простого и надежного бесконтактного асинхронного электропривода. Можно эффективно воздействовать на процессы разгона, замедления, осуществлять интенсивное торможение и точную остановку. Безыскровая коммутация, отсутствие подвижных частей, высокая степень надежности позволяют применять тиристорные регуляторы во взрывоопасных и агрессивных средах.

Обобщенная схема тиристорного регулятора переменного напряжения приведена на рис. 1:

3.2. Регуляторы переменного напряжения на основе магнитных усилителей:

Рассмотрим регуляторы переменного напряжения на основе магнитных усилителей, тиристоров и транзисторов. Магнитный усилитель (МУ) представляет собой статический электромагнитный аппарат, позволяющий при помощи управляющего сигнала постоянного тока небольшой мощности управлять значительными мощностями в цепи переменного тока . Регулирующий дроссель (или магнитный усилитель) включается на входе выпрямителя. Если обмотки переменного тока магнитного усилителя включить последовательно с нагрузкой и изменить ток в обмотке управления, то будет изменяться индуктивное сопротивление обмоток дросселя и падение напряжения на этих обмотках. Следовательно, будет изменяться. При увеличении, уменьшается, уменьшается, уменьшается и растет.

Регуляторы напряжения, построенные на основе магнитных усилителей, обладают рядом достоинств: практически неограниченный срок службы, простота эксплуатации, высокая температурная и временная стабильность характеристик, высокий КПД. Несмотря на ряд достоинств, регуляторы, построенные на базе магнитных усилителей, редко применяются в современных системах управления, так как существенным недостатком таких устройств являются их большие габариты и масса, вызванные конструктивными особенностями магнитных усилителей.

3.3. Регуляторы переменного напряжения на основе транзисторов:

Транзисторный регулятор напряжения не вносит помех в электрическую сеть и его можно применять для управления нагрузкой, как с активным, так и индуктивным сопротивлением. Регулятор можно использовать для регулировки яркости свечения люстры или настольной лампы, температуры нагрева паяльника или электроплитки, скорости вращения электродвигателя вентилятора или дрели, напряжения на обмотке трансформатора.

Обобщенная схема транзисторных регуляторов переменного напряжения приведена на рисунке 2:

3.4. Синхронный компенсатор назначение, принцип работы:

Понимание того, насколько важно качество электроэнергии (соотношение ее активной и реактивной составляющих – коэффициент мощности), постоянно растет, и вместе с ним будет расти и применение компенсации коэффициента мощности (ККМ). Улучшение качества электроэнергии путем увеличения ее коэффициента мощности уменьшает расходы и гарантирует быстрое возвращение затраченных капиталов. В распределении мощности в сетях с малым и средним напряжением ККМ уделяет основное внимание соотношению активной и реактивной составляющих мощности (cosφ) и оптимизации стабильности напряжения, путем генерации реактивной мощности с целью увеличения качества и стабильности напряжения на распределительном уровне.

Компенсатор синхронный, синхронный электродвигатель, работающий без активной нагрузки, предназначенный для улучшения коэффициента мощности и регулирования напряжения в линиях электропередачи и в электрических сетях В зависимости от изменений величины и характера нагрузки (индуктивная или емкостная) электрической сети меняется напряжение у потребителя (на приемных концах линии электропередачи). Если нагрузка электрической сети велика и носит индуктивный характер, к сети подключают К. с., работающий в перевозбужденном режиме, что эквивалентно подключению емкостной нагрузки. При передаче электроэнергии по линии большой протяженности с малой нагрузкой на режим работы сети заметно влияет распределенная емкость в линии. В этом случае для компенсации емкостного тока в сети к линии подключают К. с., работающий в недовозбужденном режиме. Постоянство напряжения в линии поддерживается регулированием тока возбуждения от напряжения регулятора. Пуск К. с. осуществляется также, как и обычных синхронных двигателей; сила пускового тока К. с. составляет 30–100% его номинального значения. К. с. изготовляют мощностью до 100 ква и более; мощные К. с. имеют водородное или водяное охлаждение. Применяются главным образом на электрических подстанциях.

Любое электрооборудование, использующее магнитные поля (двигатели, дроссели, трансформаторы, оборудование индукционного нагрева, генераторы для дуговой сварки) подвержено определенному запаздыванию при изменении тока, которое называется индуктивностью. Это запаздывание электрооборудования сохраняет направление тока на определенное время, не смотря на то, что отрицательное напряжение пытается его переменить. Пока этот фазовый сдвиг сохраняется, ток и напряжение имеют противоположные знаки. Производящаяся все это время отрицательная мощность отдается обратно в сеть. Когда ток и напряжение по знаку снова уравниваются, необходима такая же энергия, чтобы восстановить магнитные поля индукционного оборудования. Эта магнитная реверсионная энергия называется реактивной мощностью. В сетях с напряжением переменного тока (50/60 Hz) такой процесс повторяется 50–60 раз в секунду. Очевидным выходом из данной ситуации является накопление реверсионной магнитной энергии в конденсаторах с целью освобождения сети (линии питания). Именно поэтому автоматические системы компенсации реактивной мощности (расстроенные / стандартные) устанавливаются на мощную нагрузку, например, на заводах. Такие системы состоят из нескольких конденсаторных блоков, которые могут быть подключены и отключены по мере надобности, и управляются контролером ККМ на основании данных трансформатора тока.

Низкий коэффициент мощности (cosφ) приводит: к повышению затрат и потребления энергии,уменьшению мощности, передающейся по сети, потерям мощности в сети, повышению потерь трансформатора, повышенному падению напряжения в распределенных сетях питания. Увеличение коэффициента мощности может быть достигнуто путем: компенсации реактивной мощности конденсаторами, активной компенсации – использование полупроводников, перевозбуждением синхронных машин (двигатель / генератор)

В системе электроснабжения потери в сетях составляют 8–12% от объема производства. Для уменьшения этих потерь необходимо: правильно о п ределять электрические нагрузки; рационально передавать и распределять электрическую энергию; обеспечивать необходимую степень надежности; обеспечивать необходимое качество электроэнергии; обеспечивать электр о магнитную совместимость приемника с сетью; экономить электроэнергию. Мероприятия, могущие обеспечить вышеперечисленные задачи это – созд а ние быстродействующих средств компенсации реактивной мощности, улу ч шающей качество; сокращение потерь достигается компенсацией реактивной мощности, увеличением загрузки трансформаторов, уменьшением потерь в них, приближением трансформаторов к нагрузкам, использование экономи ч ного оборудования и оптимизация его режимов работы. Режим работы энергосистемы характеризуется тремя параметрами: напряжением, током и активной мощностью. Вспомогательный параметр – реактивная мощность. Реактивная мощность и энергия ухудшают показатели работы энергосист и чивает расход топлива; увеличиваются потери в подводящих сетях и приемниках; увеличивается падение напряжения в сетях. Реактивную мо щ ность потребляют такие элементы питающей сети как трансформаторы эле к тростанций; главные понизительные электростанции, линии электропередач – на это приходится 42% реактивной мощности генератора, из них 22% на п о вышающие трансформаторы; 6,5% на линии электропередач районной си с темы; 12,5% на понижающие трансформаторы. Основные же потребители реактивной мощности – асинхронные электр о двигатели, которые потребляют 40% всей мощности совместно с бытовыми и собственными нуждами. Говоря иначе, существуют приемники электроэнергии, нуждающиеся в реактивной мощности. Одной реактивной мощности, выдаваемой генератором явно недостаточно. Увел и чивать реактивную мощность, выдаваемую генератором нецелесообразно из-за вышеперечисленных причин, т.е. нужно выдавать реактивную мо щ ность именно там, где она больше всего нужна.

4. Принцип работы регулятора напряжения:

В настоящее время все генераторные установки оснащаются полупроводниковыми электронными регуляторами напряжения, как правило встроенными внутрь генератора. Схемы их исполнения и конструктивное оформление могут быть различны, но принцип работы у всех регуляторов одинаков. При подключении регулятора к электросети не допускается менять полюса + и – батареи. Регулятор может разрушиться.

Напряжение генератора без регулятора зависит от частоты вращения его ротора, магнитного потока, создаваемого обмоткой возбуждения, а, следовательно, от силы тока в этой обмотке и величины тока, отдаваемого генератором потребителям. Чем больше частота вращения и сила тока возбуждения, тем больше напряжение генератора, чем больше сила тока его нагрузки — тем меньше это напряжение.

Функцией регулятора напряжения является стабилизация напряжения при изменении частоты вращения и нагрузки за счет воздействия на ток возбуждения. Конечно можно изменять ток в цепи возбуждения введением в эту цепь дополнительного резистора, как это делалось в прежних вибрационных регуляторах напряжения, но этот способ связан с потерей мощности в этом резисторе и в электронных регуляторах не применяется. Электронные регуляторы изменяют ток возбуждения путем включения и отключения обмотки возбуждения от питающей сети, при этом меняется относительная продолжительность времени включения обмотки возбуждения. Если для стабилизации напряжения требуется уменьшить силу тока возбуждения, время включения обмотки возбуждения уменьшается, если нужно увеличить — увеличивается.

Заключение:

Регулирование напряжения позволяет не только повысить качество электроэнергии, но и улучшить ход производственных процессов на промышленных предприятиях: снизить брак продукции, повысить ее качество, увеличить производительность труда людей и производительность механизмов, а также в отдельных случаях сократить потери энергии. Сделав выводы об устройстве и применении регулятора напряжения переменного тока можно с уверенностью сказать, что данное устройство может достаточно облегчить работу как радиотехника так и обычного человека в его использовании для улучшения качество потребляемой электроэнергии.

Список литературы:

  1. Бутов А. „Устройство защиты маломощных ламп накаливания“, Журнал „Радио“ №2, 2004г.
  2. Чекаров А. „Беспомеховый регулятор напряжения“ Журнал „Радио“, №11, 1999г.
  3. Основы радиотехники [Текст] / Н. М. Изюмов, Д. П. Линде. — 4-е изд., перераб. и доп. — М. : Радио и связь, 1983. — 376 с. : ил. — (Массовая радиобиблиотека; вып. 1059). — Б. ц.
  4. Радиотехника [Текст] : к изучению дисциплины / И. П. Жеребцов. — 4-е изд., перераб. и доп. — М. : [б. и.], 1958. — 495 с. — Б. ц.
  5. Практикум по электротехнике и радиотехнике [Текст] : пособие для студ. пед. ин-тов / Под ред. Н.Н. Малова. — М. : Учпедгиз, 1958. — 166 с. — Б. ц.
  6. Курс электротехники и радиотехники [Текст] : учебное пособие: для пед. ин-тов / Н.Н. Малов. — М. : Госфизмат, 1959. — 424 с. — Б. ц.

PAGE \* MERGEFORMAT 2

Другие похожие работы, которые могут вас заинтересовать.вшм>

11466. Стратегический менеджмент как основа повышения эффективности функционирования предприятия в кризисной ситуации 32.6 KB
В прошлом предприятия могли успешно функционировать обращая внимание в основном на ежедневную работу на внутренние проблемы связанные с повышением эффективности использования ресурсов в текущей деятельности. Сейчас же хотя не снимается задача рационального использования потенциала в текущей деятельности исключительно важным становиться осуществление такого управления которое обеспечивает адаптацию предприятия к быстро меняющимся условиям окружающей среды. Стратегическими являются те решения и действия которые имеют…
16837. Проблема применения коэффициента замещения как основного индикатора эффективности функционирования пенсионной системы в России 8.8 KB
Главным образом с позиции застрахованного лица судить об эффективности функционирования схем пенсионного страхования в которых финансирование выплат осуществляется за счет уплаты страховых взносов можно по уровню замещения пенсией утраченного заработка работника. Такой показатель в теории пенсионного страхования называется коэффициентом замещения. Так в проекте Стратегии долгосрочного развития пенсионной системы РФ сказано что задачами развития пенсионной системы являются обеспечение коэффициента замещения трудовой пенсией по старости…
2542. Знакомство с практическими схемами автоматических регуляторов напряжения СГ 306.51 KB
Принципиальная схема АРН генераторов серии ТМВ Автоматическое регулирование напряжения СГ серии ТМВ обеспечивается с точностью 57 системой АФК. Кроме того регулятор имеет корректор напряжения который доводит точность стабилизации напряжения до 12. В качестве компаундирующего сопротивления используется трехфазный дроссель Др включенный в каждую фазу обмотки напряжения возбудительного трансформатора.
948. Пути повышения эффективности коммерческой работы в розничной торговой организации 100.41 KB
Теоретические основы исследования эффективности коммерческой деятельности торгового предприятия. Функции цели задачи коммерческой деятельности розничной торговой организации. Коммерческая деятельность является одной из важнейших областей человеческой деятельности возникших в результате разделения труда. Однако такое широкое толкование коммерческой деятельности не согласуется с ранее изложенным подходом к коммерции как торговым процессам по осуществлению актов куплипродажи товаров.
5380. Разработка учебного стенда Устройство и принцип работы принтера как средство повышения качества подготовки учащихся специальности Техническое обслуживание средств вычислительной техники и компьютерных сетей 243.46 KB
Классифицируются принтеры по пяти основным позициям: принципу работы печатающего механизма, максимальному формату листа бумаги, использованию цветной печати, наличию или отсутствию аппаратной поддержки языка PostScript, а также по рекомендуемой месячной нагрузке.
19917. Направления совершенствования обучения персонала и повышения эффективности работы АО ДБ «Банк Китая в Казахстане» 146.22 KB
Роль обучения персонала в стратегии развития организации. Процесс профессионального обучения и оценка его эффективности. Управление процессом обучения и формирования эффективного персонала организации. Методики совершенствования обучения персонала.
15626. Пути повышения эффективности организации социально-педагогической работы с педагогически запущенными подростками в общеобразовательном учреждении 68.85 KB
Анализ социально-педагогической работы с педагогически запущенными подростками как проблема исследования. Исследование зарубежного и отечественного опыта в изучении проблемы педагогической запущенности. Состояние организации социально-педагогической работы с педагогически запущенными подростками в общеобразовательном учреждении. Обоснование модели социально-педагогической работы с педагогически запущенными подростками в общеобразовательной школе.
598. Понятие защитного заземления и принцип его действия. Виды заземляющих устройств 8.92 KB
Понятие защитного заземления и принцип его действия. Назначение заземления – устранение опасности поражения электротоком в случае соприкосновения к корпусу. Расчет заземления производится по допустимым напряжениям прикосновения и шага или допустимому сопротивлению растекания тока заземлителя. Расчет заземления имеет целью установить главные параметры заземления – число вертикальных заземлителей и их размеров порядок размещения заземлителей длины заземляющих проводников и их сечения.
6655. Полевые транзисторы, принцип их работы 48.85 KB
При увеличении отрицательного значения напряжения U происходит увеличение ширины pn перехода за счет уменьшения ширины nканала см. Таким образом управление потоком рабочих носителей заряда в полевом транзисторе осуществляется за счет изменения сопротивления канала при изменении напряжения затвористок. Очевидно степень уменьшения ширины канала а следовательно его сопротивление будет увеличиваться при увеличении напряжения U. При малых значениях напряжения U обусловленное этим напряжением уменьшение ширины канала не существенно и…
14245. Назначение, устройство и принцип работы магнитолы 68.26 KB
Основными функциональными узлами магнитофона являются лентопротяжный механизм ЛПМ блок магнитных головок БМГ БВГ для записи воспроизведения и стирания сигналов и электронные устройства обеспечивающие работу БМГ. Характеристики ЛПМ в наибольшей степени влияют на качество звуковоспроизведения аппарата в целом потому что искажения которые неидеальный ЛПМ вносит в сигнал невозможно исправить никакой коррекцией в аналоговом электронном тракте…

Создано реле регулятор напряжения генератора для корректировки выдаваемого в бортовую сеть и на клеммы аккумулятора «вольтажа» в заданном диапазоне 13,8 – 14,5 В (реже до 14,8 В). Кроме того, регулятор корректирует напряжение на обмотке самовозбуждения генератора.

Назначение реле регулятора напряжения

Независимо от стажа и стиля вождения владелец авто не может обеспечить одинаковые обороты двигателя в разные моменты времени. То есть, коленвал ДВС, передающий крутящий момент генератору, вращается с разной скоростью. Соответственно, генератор вырабатывает разное напряжение, что крайне опасно для АКБ и прочих потребителей бортовой сети.

Поэтому замена реле регулятора генератора должна производится при недозаряде и перезаряде аккумулятора, горящей лампочке, мигании фар и прочих перебоях электроснабжения бортовой сети.

Взаимосвязь источников тока авто

В транспортном средстве находится минимум два источника электроэнергии:

  • аккумулятор – необходим в момент запуска ДВС и первичного возбуждения обмотки генератора, энергию не создает, а только расходует и накапливает в момент подзарядки
  • генератор – питает бортовую сеть на любых оборотах и подпитывает АКБ только на высоких оборотах

В бортовую сеть необходимо подключение обоих указанных источников для корректной работы двигателя и прочих потребителей электричества. При поломке генератора АКБ «протянет» максимум 2 часа, а без аккумулятора не заведется двигатель, приводящий в движение ротор генератора.

Существуют исключения – например, а счет остаточной намагниченности обмотки возбуждения штатный генератор ГАЗ-21 запускается самостоятельно при условии постоянной эксплуатации машины. Можно завести авто « с толкача», если в нем установлен генератор постоянного тока, с прибором переменного тока такой трюк невозможен.

Задачи регулятора напряжения

Из школьного курса физики каждый автолюбитель должен помнить принцип работы генератора:

  • при взаимном перемещении рамки и окружающего ее магнитного поля в ней возникает электродвижущая сила
  • электромагнитом генераторов постоянного тока служат статоры, ЭДС, соответственно возникает в якоре, ток снимается с коллекторных колец
  • в генераторе переменного тока намагничивается якорь, электроэнергия возникает в обмотках статора

Упрощенно можно представить, что на величину выходящего с генератора напряжения влияет значение магнитной силы и скорость вращения поля. Основная проблема генераторов постоянного тока – пригорание и залипание щеток при съеме с якоря токов большой величины – решена переходом на генераторы переменного тока. Ток возбуждения, подающийся на ротор для возбуждения магнитной индукции, на порядок ниже, снимать электроэнергию с неподвижного статора гораздо легче.

Однако вместо постоянно расположенных в пространстве клемм «–» и «+» производители авто получили постоянное изменение плюса и минуса. Подзарядка аккумулятора переменным током не возможна в принципе, поэтому диодным мостиком его предварительно выпрямляют.

Из этих нюансов плавно вытекают задачи, решаемые реле генератора:

  • подстройка тока в обмотке возбуждения
  • выдерживание диапазона 13,5 – 14,5 В в бортовой сети и на клеммах аккумулятора
  • отсечение питания обмотки возбуждения от АКБ при заглушенном двигателе

Поэтому называют регулятор напряжения еще и реле зарядки, а на панель выведена сигнальная лампа процесса подзарядки АКБ. В конструкцию генераторов переменного тока функция отсечения обратного тока заложена по умолчанию.

Разновидности реле регуляторов

Прежде, чем произвести самостоятельный ремонт устройства регулирования напряжения, необходимо учесть, что существует несколько типов регуляторов:

  • внешние – повышают ремонтопригодность генератора
  • встраиваемые – в пластину выпрямителя или щеточный узел
  • регулирующие по минусу – появляется дополнительный провод
  • регулирующие по плюсу – экономичная схема подключения
  • для генераторов переменного тока – нет функции ограничения напряжения на обмотку возбуждения, так как она заложена в самом генераторе
  • для генераторов постоянного тока – дополнительная опция отсечения АКБ при неработающем ДВС
  • двухуровневые – морально устарели, применяются редко, регулировка пружинами и небольшим рычагом
  • трехуровневые – дополнены специальной платой сравнивающего устройства и сигнализатором согласования
  • многоуровневые – в схеме имеются 3 – 5 добавочных резисторов и система слежения
  • транзисторные – в современных авто не используются
  • релейные – улучшенная обратная связь
  • релейно-транзисторные – универсальная схема
  • микропроцессорные – небольшие габариты, плавные регулировки нижнего/верхнего порога срабатывания
  • интегральные – встраиваются в щеткодержатели, поэтому заменяются после истирания щеток

Внимание: Без доработки схемы «плюсовой» и «минусовой» регулятор напряжения являются не взаимозаменяемыми приборами.

Реле генераторов постоянного тока

Таким образом, схема подключения регулятора напряжения при эксплуатации генератора постоянного тока сложнее. Поскольку в стояночном режиме авто, когда ДВС заглушен, необходимо отключить генератор от АКБ.

При диагностике проверка реле происходит на выполнение трех его функций:

  • отсечка аккумулятора во время стоянки машины
  • ограничение максимального тока на выходе генератора
  • регулировка напряжения для обмотки возбуждения

При любой неисправности требуется ремонт.

Реле генераторов переменного тока

В отличие от предыдущего случая диагностика своими руками регулятора генератора переменного тока немного проще. В конструкцию «автомобильной электростанции» уже заложена функция отсечки питания во время стоянки от АКБ. Остается проверить лишь напряжение на обмотке возбуждения и на выходе с генератора.

Если в машине стоит генератор тока переменного, его невозможно завести разгоном с горки. Так как остаточного намагничивания на возбуждающей обмотке здесь нет по умолчанию.

Встроенные и внешние регуляторы

Для автолюбителя важно знать, что измеряют и начинают регулировать напряжение реле в конкретном месте их установки. Поэтому встроенные модификации воздействуют непосредственно на генератор, а выносные «не знают» о его наличии в машине.

Например, если выносное реле подключено к катушке зажигания, его работа будет направлена на регулировку напряжения лишь на этом участке бортовой сети. Поэтому, прежде чем узнать, как проверить реле выносного типа, следует убедиться, что оно подключено правильно.

Управление по «+» и «–»

В принципе схемы управления по «минусу» и «плюсу» отличаются лишь схемой подключения:

  • при монтаже реле в разрыв «+» одна щетка подключается к «массе», другая к клемме регулятора
  • если же подключить реле в разрыв «–», то одну щетку нужно подключить к «плюсу», другую к регулятору

Однако в последнем случае появится еще один провод, поскольку реле напряжения является устройством активного типа. Для него необходимо индивидуальное питание, поэтому «+» нужно подвести отдельно.

Двухуровневые

На начальном этапе в машинах устанавливались механические двухуровневые регуляторы напряжения с простым принципом действия:

  • через реле проходит электрический ток
  • возникающее магнитное поле притягивает рычаг
  • сравнивающим устройством служит пружина с заданным усилием
  • при увеличении напряжения контакты размыкаются
  • на возбуждающую обмотку поступает меньший ток

Использовались механические двухуровневые реле в автомобилях ВАЗ 21099. Основным минусом являлась работа с повышенным износом механических элементов. Поэтому на смену этим приборам пришли электронные (бесконтактные) реле напряжения:

  • делитель напряжения собран из резисторов
  • стабилитрон является задающим устройством

Сложная схема соединения и недостаточно эффективный контроль напряжения привели к снижению спроса на эти приборы.

Трехуровневые

Однако двухуровневые регуляторы, в свою очередь, так же уступили позиции более совершенным трехуровневым и многоуровневым приборам:

  • напряжение выходит с генератора на специальную схему через делитель
  • информация обрабатывается, действительное напряжение сравнивается с минимальным и максимальным пороговым значением
  • сигнал рассогласования регулирует силу тока, поступающего на возбуждающую обмотку

Более совершенными считаются реле с частотной модуляцией – в них нет привычных сопротивлений, зато увеличена частота срабатывания ключа электронного. Управление осуществляется логическими схемами.

Принцип работы реле регулятора

Благодаря встроенным резисторам и специальным схемам реле получает возможность сравнивать величину вырабатываемого генератором напряжения. После чего, слишком высокое значение приводит к отключению реле, чтобы не перезарядить аккумулятор и не испортить электроприборы, подключенные в бортовую сеть.

Любые неисправности приводят именно к этим последствиям, приходит в неисправность батарея АКБ или резко увеличивается эксплуатационный бюджет.

Переключатель лето/зима

Вне зависимости от сезона и температуры воздуха работа генератора всегда стабильна. Как только его шкив начинает вращаться, электроток вырабатывается по умолчанию. Однако зимой внутренности аккумулятора замерзают, он восполняет заряд значительно хуже, чем летом.

Переключатели лето/зима находятся либо на корпусе регулятора напряжения, либо этим обозначением подписаны соответствующие разъемы, которые нужно найти и подсоединить к ним проводку в зависимости от сезона.

Ничего необычного в этом переключателе нет, это лишь грубые настройки реле регулятора, позволяющие повысить до 15 В напряжение на клеммах аккумулятора.

Подключение в бортовую сеть генератора

Если при замене генератора вы подключаете новый прибор самостоятельно, необходимо учесть нюансы:

  • вначале следует проверить целостность и надежность контакта провода от кузова машины к корпусу генератора
  • затем можно подсоединять клемму Б реле регулятора с «+» генератора
  • вместо «скруток», начинающих греться через 1 – 2 года эксплуатации, лучше использовать пайку проводов
  • заводской провод нужно заменить кабелем сечения 6 мм2 минимум, если вместо штатного генератора монтируется электроприбор, рассчитанный на ток больше 60 А
  • амперметр в цепи генератор/аккумулятор показывает, мощность какого источника электроснабжения в данный момент выше в бортовой сети

Амперметры – нужные приборы, с помощью которых можно определить заряд АКБ и работоспособность генератора. Без особых причин не рекомендуется убирать их из схемы.

Схемы подключения регулятора выносного

Монтируется выносное реле регулятора напряжения генератора только после выяснения, в разрыв какого провода оно должно быть подключено. Например:

  • на старых РАФ, Газелях и «Бычках» используются реле 13.3702 в полимерном или стальном корпусе с двумя контактами и двумя щетками, монтируются в «–» разрыв цепи, клеммы всегда промаркированы, «+» обычно берется с катушки зажигания (Б-ВК клемма), контакт Ш регулятора соединяется со свободной клеммой щеточного узла
  • в «жигулях» применяются реле регуляторы 121.3702 белого и черного цвета, существуют двойные модификации, в которых при выходе из строя одного прибора работа второго устройства продолжается простым переключением на него, монтируется в разрыв «+» клеммой 15 к выводу катушки зажигания Б-ВК, к щеточному узлу крепится проводом клемма 67

Встраиваемые реле-регуляторы автолюбители называют «шоколадками», маркированными Я112. Они монтируются в специальные щеткодержатели, прижимаются винтами и защищаются дополнительно крышкой.

На автомобилях ВАЗ реле обычно встроены в щеточный узел, полная маркировка Я212А11, подключаются к замку зажигания.
Если владелец меняет штатный генератор на старом отечественном ВАЗ на устройство переменного тока от иномарки или современной Лады, подключение производится по другой схеме:

  • вопрос крепления корпуса автолюбитель решает самостоятельно
  • аналогом клеммы «плюс» здесь служит контакт В или В+, его включают в бортовую сеть через амперметр
  • выносные реле регуляторы здесь обычно не используются, а встраиваемые уже интегрированы в щеточный узел, из них выходит единственный провод с маркировкой D либо D+, который подсоединяется к замку зажигания (к клемме катушки Б-ВК)

Для дизельных ДВС в генераторах может присутствовать клемма W, которая присоединяется к тахометру, ее игнорируют при установке на авто с бензиновым мотором.

Проверка подключения

После установки трехуровневого или иного реле-регулятора необходима проверка работоспособности:

  • двигатель заводится
  • напряжение в бортовой сети контролируется на разных оборотах

После установки генератора переменного тока и подключения его по вышеприведенной схеме владельца может ожидать «сюрприз»:

  • при включении ДВС запускается генератор, измеряется напряжение на средних, больших и малых оборотах
  • после выключения зажигания ключом …. двигатель продолжает работать

В этом случае заглушить ДВС можно либо сняв провод возбуждения, либо отпустив сцепление с одновременным нажатием тормоза. Все дело в наличии остаточной намагниченности и постоянном самовозбуждении обмотки генератора. Проблема решается установкой в разрыв возбуждающего провода лампочки:

  • она горит при незапущенном генераторе
  • гаснет после его запуска
  • проходящий через лампу ток недостаточен, чтобы возбудить обмотку генератора

Эта лампа автоматически становится индикатором наличия зарядки АКБ.

Диагностика реле регулятора

Определить поломки регулятора напряжения можно по признакам косвенным. Прежде всего, это некорректная зарядка АКБ:

  • перезаряд – выкипает электролит, раствор кислоты попадает на детали кузова
  • недозаряд – ДВС не запускается, лампы горят в пол накала

Однако предпочтительнее диагностика приборами – вольтметром или тестером. Любое отклонение от максимального значения напряжения 14,5 В (в некоторых авто бортовая сеть рассчитана на 14,8 В) на больших оборотах или минимального значения 12,8 В на малых оборотах становится причиной замены/ремонта реле регулятора.

Встроенного

Чаще всего регулятор напряжения интегрирован в щетки генератора, поэтому необходимо уровневое обследование этого узла:

  • после снятия защитной крышки и ослабления винтов щеточный узел извлекается наружу
  • при износе щеток (осталось меньше 5 мм их длины) замена должна производится в обязательном порядке
  • диагностика генератора мультиметром производится в комплекте с аккумулятором или зарядным устройством
  • «минусовой» провод от источника тока замыкается на соответствующую пластину регулятора
  • «плюсовой» провод от ЗУ или АКБ подключается к аналогичному разъему реле
  • тестер устанавливается в режим вольтметра 0 – 20 В, щупы накладываются на щетки
  • в диапазоне 12,8 – 14,5 В между щетками должно быть напряжение
  • при увеличении напряжения больше 14,5 В стрелка вольтметра должна быть на нуле

В данном случае вместо вольтметра можно использовать лампу, которая должна гореть в указанном интервале напряжения, гаснуть при увеличении этой характеристики больше этого значения.

Провод, управляющий тахометром (маркировка W только на реле для дизелей) прозванивается мультиметром в режиме тестера. На нем должно быть сопротивление около 10 Ом. При снижении этого значения провод «пробит», его следует заменить новым.

Выносного

Никаких отличий в диагностике для выносного реле не существует, зато его не нужно демонтировать из корпуса генератора. Проверить реле регулятор напряжения генератора можно при работающем двигателе, изменяя обороты с низких на средние, затем высокие. Одновременно с увеличением оборотов нужно включить дальний свет (как минимум), кондиционер, монитор и прочие потребители (как максимум).

Таким образом, при необходимости владелец транспортного средства может заменить штатное реле регулятор напряжения на более современную модификацию встраиваемого или выносного типа. Диагностика работоспособности доступна собственными силами при наличии обычной автомобильной лампы.

Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Содержание:

Напряжение – это фактически и есть электричество. Оно существует как первородная сила, воздействие которой на любые объекты влечет за собой последствия, обусловленные их свойствами. Поэтому возможность управлять напряжением, его величиной означает влиять на ход множества процессов в электрических цепях. А это самое главное в прикладной электротехнике. Далее расскажем о том, как управлять электричеством, пользуясь тиристором.

Такие разные напряжения

Напряжение может быть с разными свойствами. Поэтому даже законы, описывающие те или иные явления, связанные с электричеством, ограничены в применении. Например, закон Ома для участка цепи. И таких примеров множество. Поэтому, оговаривая свойства электрического регулятора, необходимо точно указывать, какое именно напряжение подразумевается, В общем рассматриваются две главные его разновидности – постоянное и переменное.

Они, как начало и конец некоего интервала, внутри которого расположены в огромном разнообразии импульсные сигналы. И ранее, и сейчас, и, скорее всего, в будущем регулировать величину их всех может лишь один элемент – резистор. То есть регулируемый резистор – реостат. Он всегда обеспечивает один и тот же эффект, независимо от вида напряжения. Причем в любой момент времени. А момент времени применительно к переменному или импульсному сигналу, – это основа его определения.

Какое напряжение регулирует тиристор

Ведь в зависимости от него величина напряжения меняется. Резистором можно управлять сигналом в любой момент времени. А вот тиристором такой результат невозможно получить, потому что он ключ. У него только два состояния:

  • с минимальным сопротивлением, когда ключ замкнут;
  • с максимальным сопротивлением, когда ключ разомкнут.

Следовательно, тиристор для мгновенного значения напряжения не может рассматриваться как его регулятор. Только в пределах достаточно большого интервала времени, при котором учитываются многие мгновенные значения сигнала, тиристор может рассматриваться как регулятор напряжения. Поскольку такая величина именуется как действующее значение, будет правильным уточнить определение регулятора как

  • тиристорный регулятор действующего напряжения.

Как соединить ключ и нагрузку

Наиболее привлекательной характеристикой тиристоров с самого начала их появления была стойкость к силе тока большой величины. Как следствие, эти полупроводниковые приборы нашли широкое применение во множестве мощных устройств. Однако в любом случае, когда рассматривается электрический регулятор, существует электрическая цепь с нагрузкой. В эквиваленте нагрузка представляется как резистор с некоторым импедансом.

Чтобы напряжение на этом резисторе изменилось, необходимы дополнительные элементы, которые соединены с ним либо последовательно, либо параллельно. Первые тиристоры были незапираемыми. Их можно было открыть (включить) в любой момент. Но для выключения необходимо было уменьшить силу тока до некоторого минимального значения. По этой причине незапираемые тиристоры применяются и по сей день лишь в электрических цепях переменного или выпрямленного тока.

На постоянном напряжении они тоже использовались, но весьма ограниченно. Например, в первых фотовспышках с управляемой силой света. Свет лампы фотовспышки, который путем управления тиристором формирует необходимое освещение объекта, дает наглядное представление о тиристоре как об электрическом регуляторе для лампы – нагрузки. Энергию для этого обеспечивал конденсатор, который разряжался через специальную лампу. И в этом случае получалась вспышка наибольшей силы.

Но для того чтобы лампа давала меньше света, параллельно с ней включался тиристор. Лампа включалась и освещала объект. А специальный оптический датчик со схемой управления следил за его характеристиками. И в нужный момент включал тиристор. Он шунтировал лампу, которая выключалась со скоростью срабатывания тиристора. При этом часть энергии конденсатора просто исчезала в виде тепла, не принося никакой пользы. Но в то время иначе и не могло быть – запираемых тиристоров еще не было.

Типы тиристоров и отличия схем для их использования

Тиристор запирался, поскольку зарядный ток конденсатора был подобран с учетом этого. Безусловно, схема с последовательным соединением тиристора и нагрузки существенно эффективнее. И она широко применяется. Все диммеры, которыми пользуются для управления освещением и электробытовыми приборами, работают по такой схеме. Но в них могут быть существенные отличия в связи с типом используемого тиристора. Схема с симметричным тиристором, который работоспособен на переменном напряжении при непосредственном соединении с нагрузкой, получается более простой.

Но если сравнивать симметричные тиристоры с обычными, пропускающими ток в одном направлении, сразу обращает на себя внимание заметно более широкий модельный ряд последних. К тому же предельные электрические параметры у них заметно больше. Но при этом обязательно наличие выпрямителя. Если регулируется сеть 220 В, необходим выпрямительный мост, в котором 4 мощных диода. Но каждый полупроводниковый прибор, независимо от того, транзистор это, тиристор или диод, характеризуется остаточным напряжением.

Оно мало изменяется в соответствии с силой тока, протекающего через него. И при этом на каждом из полупроводниковых приборов рассеивается тепло. Если токи достигают единиц ампер, тепловая мощность составит единицы ватт. Потребуются охлаждающие радиаторы. А это – ухудшение конструктивных показателей. Поэтому симисторные регуляторы более компактны и экономичны. Чтобы отказаться от выпрямительного моста, применяют схему из двух одинаковых тиристоров, соединенных параллельно и встречно.

Безусловно, это более экономичное решение относительно потерь. Однако у ключей должны быть соответствующие предельные обратные напряжения. А это значительно ограничивает число их моделей, пригодных для этой схемы. К тому же, получить симметричные полуволны, управляя двумя ключами, сложнее, чем при одном тиристоре. Но при большой силе тока, которая в промышленных установках может составлять сотни ампер и более на включенном тиристоре, рассеивается мощность в сотни ватт. Динамические потери еще больше разогревают ключи.

По этой причине уменьшение числа полупроводниковых приборов в мощных электрических регуляторах – это важнейшая задача. Далее на изображениях показаны промышленные тиристорные регуляторы напряжения. В современном ассортименте тиристоров среди моделей, выпускаемых серийно, присутствуют запираемые ключи. Они могут быть использованы в цепях постоянного тока.

Поэтому задачи регулирования напряжения в тысячи вольт при мощностях, величина которых измеряется мегаваттами, сегодня успешно решаются различными моделями тиристоров.

Регулятор напряжения для авто – это прибор, функцией которого является поддержание напряжения в бортовой сети машины в установленных рамках, независимо от частоты вращения ротора генератора, внешней температуры, нагрузки и пр.

Регулятор напряжения для авто


Выполняет данное устройство и некоторые дополнительные функции: защита генератора и его элементов от перегрузок и работы в аварийных режимах, автоматическое включение системы сигнализации аварийной работы генератора или цепи обмотки возбуждения.

На напряжение генератора оказывают влияние три основных фактора: частота вращения его ротора, магнитный поток, который создается током обмотки возбуждения, а также сила тока, которая отдается генератором в нагрузку.

Напряжение генератора возрастает с ростом числа оборотов, а также со снижением нагрузки. Кроме того, увеличение напряжения вызывает возрастание силы тока в обмотке возбуждения.

Регулятор же напряжениястабилизирует напряжение путем корректировки тока возбуждения. В случае возрастания напряжения и выхода за требуемые пределы, регулятор увеличивает или уменьшает ток возбуждения, что приводит к стабилизации напряжения.

Регулятор напряжения для авто подключается к обмотке возбуждения генератора, а также к нему подводится напряжение с генератора или аккумулятора. Конечно, регуляторы с расширенным перечнем функций требуют большего числа подключений.

Регулятор напряжения для авто состоит из нескольких основных элементов:

{typography list_number_bullet_blue}1. Измерительный элемент;||2. Элемент, проводящий сравнение;||3. Регулирующий элемент.{/typography}
Очень чувствительной и уязвимой частью регулятора является его входной делитель напряжения. От него напряжение поступает к элементу сравнения. В данном случае эталонной величиной выступает напряжение стабилизации стабилитрона.

В случае если показатель напряжения ниже уровня стабилизации, то стабилитрон не пропускает ток через себя. В случае же превышения напряжением допустимых пределов, стабилитрон начинает пропускать через себя ток. На самом стабилитроне напряжение практически не изменяется.

Проходящий через стабилитрон ток активирует реле, коммутирующее цепь возбуждения так, что в обмотке возбуждения происходит корректировка тока в необходимом направлении. Автомобильные регуляторы напряжения осуществляют дискретное регулирование. Это возможно благодаря включению или выключению обмотки возбуждения в цепь питания. Такой принцип заложен в транзисторных регуляторах напряжения.

В вибрационных же или контактно-транзисторных регуляторах осуществляется включение обмотки возбуждения последовательно с обмоткой дополнительного резистора. Стоит отметить, что сегодня применяются лишь транзисторные регуляторы напряжения для авто, а вибрационные и контактно-транзисторные уже отошли в историю.

Регулятор напряжения для авто

Как работает реле регулятор напряжения

На чтение 21 мин Просмотров 63 Опубликовано

Реле-регулятор напряжения генератора — это неотъемлемая часть системы электрооборудования любого автомобиля. С его помощью производится поддержка напряжения в определенном диапазоне значений. В данной статье вы узнаете о том, какие конструкции регуляторов существуют на данный момент, в том числе будут рассмотрены механизмы, давно не используемые.

Основные процессы автоматического регулирования

Совершенно неважно, какой тип генераторной установки используется в автомобиле. В любом случае он имеет в своей конструкции регулятор. Система автоматического регулирования напряжения позволяет поддерживать определенное значение параметра, независимо от того, с какой частотой вращается ротор генератора. На рисунке представлен реле-регулятор напряжения генератора, схема его и внешний вид.

Анализируя физические основы, с использованием которых работает генераторная установка, можно прийти к выводу, что напряжение на выходе увеличивается, если скорость вращения ротора становится выше. Также можно сделать вывод о том, что регулирование напряжения осуществляется путем уменьшения силы тока, подаваемого на обмотку ротора, при повышении скорости вращения.

Что такое генератор

Любой автомобильный генератор состоит из нескольких частей:

1. Ротор с обмоткой возбуждения, вокруг которой при работе создается электромагнитное поле.

2. Статор с тремя обмотками, соединенными по схеме «звезда» (с них снимается переменное напряжение в интервале от 12 до 30 Вольт).

3. Кроме того, в конструкции присутствует трехфазный выпрямитель, состоящий из шести полупроводниковых диодов. Стоит заметить, что реле-регулятор напряжения генератора ВАЗ 2107 (инжектор или карбюратор в системе впрыска) одинаков.

Но работать генератор без устройства регулирования напряжения не сможет. Причина тому — изменение напряжения в очень большом диапазоне. Поэтому необходимо использовать систему автоматического регулирования. Она состоит из устройства сравнения, управления, исполнительного, задающего и специального датчика. Основной элемент — это орган регулирования. Он может быть как электрическим, так и механическим.

Работа генератора

Когда начинается вращение ротора, на выходе генератора появляется некоторое напряжение. А подается оно на обмотку возбуждения посредством органа регулировки. Стоит также отметить, что выход генераторной установки соединен напрямую с аккумуляторной батареей. Поэтому на обмотке возбуждения напряжение присутствует постоянно. Когда увеличивается скорость ротора, начинает изменяться напряжение на выходе генераторной установки. Подключается реле-регулятор напряжения генератора Valeo или любого другого производителя к выходу генератора.

При этом датчик улавливает изменение, подает сигнал на сравнивающее устройство, которое анализирует его, сопоставляя с заданным параметром. Далее сигнал идет к устройству управления, от которого производится подача на исполнительный механизм. Регулирующий орган способен уменьшить значение силы тока, который поступает к обмотке ротора. Вследствие этого на выходе генераторной установки производится уменьшение напряжения. Аналогичным образом производится повышение упомянутого параметра в случае снижения скорости ротора.

Двухуровневые регуляторы

Двухуровневая система автоматического регулирования состоит из генератора, выпрямительного элемента, аккумуляторной батареи. В основе лежит электрический магнит, его обмотка соединена с датчиком. Задающие устройства в таких типах механизмов очень простые. Это обычные пружины. В качестве сравнивающего устройства применяется небольшой рычаг. Он подвижен и производит коммутацию. Исполнительным устройством является контактная группа. Орган регулировки — это постоянное сопротивление. Такой реле-регулятор напряжения генератора, схема которого приведена в статье, очень часто используется в технике, хоть и является морально устаревшим.

Работа двухуровневого регулятора

При работе генератора на выходе появляется напряжение, которое поступает на обмотку электромагнитного реле. При этом возникает магнитное поле, с его помощью притягивается плечо рычага. На последний действует пружина, она используется как сравнивающее устройство. Если напряжение становится выше, чем положено, контакты электромагнитного реле размыкаются. При этом в цепь включается постоянное сопротивление. На обмотку возбуждения подается меньший ток. По подобному принципу работает реле-регулятор напряжения генератора ВАЗ 21099 и других автомобилей отечественного и импортного производства. Если же на выходе уменьшается напряжение, то производится замыкание контактов, при этом изменяется сила тока в большую сторону.

Электронный регулятор

У двухуровневых механических регуляторов напряжения имеется большой недостаток — чрезмерный износ элементов. По этой причине вместо электромагнитного реле стали использовать полупроводниковые элементы, работающие в ключевом режиме. Принцип работы аналогичен, только механические элементы заменены электронными. Чувствительный элемент выполнен на делителе напряжения, который состоит из постоянных резисторов. В качестве задающего устройства используется стабилитрон.

Современный реле-регулятор напряжения генератора ВАЗ 21099 является более совершенным устройством, надежным и долговечным. На транзисторах функционирует исполнительная часть устройства управления. По мере того как изменяется напряжение на выходе генератора, электронный ключ замыкает или размыкает цепь, при необходимости подключают добавочное сопротивление. Стоит отметить, что двухуровневые регуляторы являются несовершенными устройствами. Вместо них лучше использовать более современные разработки.

Трехуровневая система регулирования

Качество регулирования у таких конструкций намного выше, нежели у рассмотренных ранее. Ранее использовались механические конструкции, но сегодня чаще встречаются бесконтактные устройства. Все элементы, используемые в данной системе, такие же, как и у рассмотренных выше. Но отличается немного принцип работы. Сначала подается напряжение посредством делителя на специальную схему, в которой происходит обработка информации. Установить такой реле-регулятор напряжения генератора («Форд Сиерра» также может оснащаться подобным оборудованием) допустимо на любой автомобиль, если знать устройство и схему подключения.

Здесь происходит сравнение действительного значения с минимальным и максимальным. Если напряжение отклоняется от того значения, которое задано, то появляется определенный сигнал. Называется он сигналом рассогласования. С его помощью производится регулирование силы тока, поступающего на обмотку возбуждения. Отличие от двухуровневой системы в том, что имеется несколько добавочных сопротивлений.

Современные системы регулирования напряжения

Если реле-регулятор напряжения генератора китайского скутера двухуровневый, то на дорогих автомобилях используются более совершенные устройства. Многоуровневые системы управления могут содержать 3, 4, 5 и более добавочных сопротивлений. Существуют также следящие системы автоматического регулирования. В некоторых конструкциях можно отказаться от использования добавочных сопротивлений.

Вместо них увеличивается частота срабатывания электронного ключа. Использовать схемы с электромагнитным реле попросту невозможно в следящих системах управления. Одна из последних разработок — это многоуровневая система управления, которая использует частотную модуляцию. В таких конструкциях необходимы добавочные сопротивления, которые служат для управления логическими элементами.

Как снимать реле-регулятор

Снять реле-регулятор напряжения генератора («Ланос» или отечественная «девятка» у вас – не суть важно) довольно просто. Стоит заметить, что при замене регулятора напряжения потребуется всего один инструмент — плоская или крестовая отвертка. Снимать генератор или ремень и его привод не нужно. Большинство устройств находится на задней крышке генератора, причем объединены в единый узел с щеточным механизмом. Наиболее частые поломки происходят в нескольких случаях.

Во-первых, при полном стирании графитовых щёток. Во-вторых, при пробое полупроводникового элемента. О том, как провести проверку регулятора, будет рассказано ниже. При снятии вам потребуется отключить аккумуляторную батарею. Отсоедините провод, который соединяет регулятор напряжения с выходом генератора. Выкрутив оба крепежных болта, можно вытянуть корпус устройства. А вот реле-регулятор напряжения генератора ВАЗ 2101 имеет устаревшую конструкцию – он монтируется в подкапотном пространстве, отдельно от щеточного узла.

Проверка устройства

Проверяется реле-регулятор напряжения генератора ВАЗ 2106, «копеек», иномарок одинаково. Как только произведете снятие, посмотрите на щетки – у них должна быть длина более 5 миллиметров. В том случае, если этот параметр отличается, нужно проводить замену устройства. Чтобы осуществить диагностику, потребуется источник постоянного напряжения. Желательно, чтобы можно было изменить выходную характеристику. В качестве источника питания можно использовать аккумулятор и пару пальчиковых батареек. Еще вам необходима лампа, она должна работать от 12 Вольт. Вместо нее можно использовать вольтметр. Подключаете плюс от питания к разъему регулятора напряжения.

Соответственно, минусовой контакт соединяете с общей пластиной устройства. Лампочку или вольтметр соединяете со щетками. В таком состоянии между щетками должно присутствовать напряжение, если на вход подается 12-13 Вольт. Но если вы будете подавать на вход больше, чем 15 Вольт, между щетками напряжения не должно быть. Это признак исправности устройства. И совершенно не имеет значения, диагностируется реле-регулятор напряжения генератора ВАЗ 2107 или другого автомобиля. Если же контрольная лампа горит при любом значении напряжения или вовсе не загорается, значит, присутствует неисправность узла.

Выводы

В системе электрооборудования автомобиля реле-регулятор напряжения генератора «Бош» (как, впрочем, и любой иной фирмы) играет очень большую роль. Как можно чаще следите за его состоянием, проверяйте на наличие повреждений и дефектов. Случаи выхода из строя такого устройства нередки. При этом в лучшем случае разрядится аккумуляторная батарея. А в худшем может повыситься напряжение питания в бортовой сети. Это приведет к выходу из строя большей части потребителей электроэнергии. Кроме того, может выйти из строя и сам генератор. А его ремонт обойдется в кругленькую сумму, а если учесть, что АКБ очень быстро выйдет из строя, расходы и вовсе космические. Стоит также отметить, что реле-регулятор напряжения генератора Bosch является одним из лидеров по продажам. У него высокая надежность и долговечность, а характеристики максимально стабильны.

В электрических сетях очень часто используется автоматическое включение и отключение генератора. Для этого существует реле-регулятор напряжения. С его помощью осуществляется защита генератора от перегрузок, позволяет автоматически регулировать напряжение и силу тока в установленных пределах. Этот прибор, в основном, используется в электрических сетях всех автомобилей и устанавливается в моторном отсеке.

Назначение и устройство реле-регулятора

Данное устройство является трехэлементным, состоящим из трех независимых автоматов. Это реле обратного тока, ограничитель тока и регулятор напряжения. Эти составные части смонтированы на общем основании и закрываются общей крышкой. Для подключения проводов на основании установлены три клеммы.

Автоматическое включение генератора в сеть осуществляется с помощью реле обратного тока при условии его превышения напряжения аккумулятора на определенное значение. При понижении напряжения, происходит автоматическое отключение генератора. В его состав входит катушка и сердечник с двумя обмотками – шунтовой и сериесной с различным количеством витков проволоки, а также ярмо и якорь с системой контактов.

Заранее заданные пределы напряжения генератора поддерживаются с помощью регулятора. В него входят катушка и сердечник с обмоткой, якорь с системой контактов, ярмо, магнитный шунт, а также цилиндрическая пружина.

Один конец обмотки катушки соединен с массой, а другой – с клеммой генератора, проходя через ярмо, сопротивление и обмотки. Таким образом, значение тока и магнитного потока находится в зависимости от напряжения, которое развивает генератор. Регулятор напряжения позволяет автоматически регулировать силу зарядного тока, получаемую за счет разницы напряжений между аккумулятором и генератором.

Использование ограничителя тока

Для защиты генератора от перегрузок применяется ограничитель тока. В состав входит катушка и сердечник с обмоткой, а также обмотка сопротивления, ярмо и якорь с контактами, как и в других составляющих устройствах. Принцип работы устройства совпадает с регулятором напряжения, когда вся нагрузка генератора пропускается через обмотку ограничителя.

Общую нормальную работу реле-регулятора можно определить с помощью амперметра, расположенного на щитке приборов и по состоянию самого аккумулятора. Если на амперметре постоянно видно большое значение зарядного тока, несмотря на то, что аккумулятор находится в хорошем состоянии, это означает, что реле-регулятор напряжения работает при повышенном напряжении.

Данное устройство является достаточно сложным прибором, требующим точных регулировок и грамотного обращения. Регулировка должна осуществляться только с применением точных контрольных приборов.

Реле регулятор выпрямитель напряжения

Создано реле регулятор напряжения генератора для корректировки выдаваемого в бортовую сеть и на клеммы аккумулятора «вольтажа» в заданном диапазоне 13,8 – 14,5 В (реже до 14,8 В). Кроме того, регулятор корректирует напряжение на обмотке самовозбуждения генератора.

Назначение реле регулятора напряжения

Независимо от стажа и стиля вождения владелец авто не может обеспечить одинаковые обороты двигателя в разные моменты времени. То есть, коленвал ДВС, передающий крутящий момент генератору, вращается с разной скоростью. Соответственно, генератор вырабатывает разное напряжение, что крайне опасно для АКБ и прочих потребителей бортовой сети.

Поэтому замена реле регулятора генератора должна производится при недозаряде и перезаряде аккумулятора, горящей лампочке, мигании фар и прочих перебоях электроснабжения бортовой сети.

Взаимосвязь источников тока авто

В транспортном средстве находится минимум два источника электроэнергии:

  • аккумулятор – необходим в момент запуска ДВС и первичного возбуждения обмотки генератора, энергию не создает, а только расходует и накапливает в момент подзарядки
  • генератор – питает бортовую сеть на любых оборотах и подпитывает АКБ только на высоких оборотах

В бортовую сеть необходимо подключение обоих указанных источников для корректной работы двигателя и прочих потребителей электричества. При поломке генератора АКБ «протянет» максимум 2 часа, а без аккумулятора не заведется двигатель, приводящий в движение ротор генератора.

Существуют исключения – например, а счет остаточной намагниченности обмотки возбуждения штатный генератор ГАЗ-21 запускается самостоятельно при условии постоянной эксплуатации машины. Можно завести авто « с толкача», если в нем установлен генератор постоянного тока, с прибором переменного тока такой трюк невозможен.

Задачи регулятора напряжения

Из школьного курса физики каждый автолюбитель должен помнить принцип работы генератора:

  • при взаимном перемещении рамки и окружающего ее магнитного поля в ней возникает электродвижущая сила
  • электромагнитом генераторов постоянного тока служат статоры, ЭДС, соответственно возникает в якоре, ток снимается с коллекторных колец
  • в генераторе переменного тока намагничивается якорь, электроэнергия возникает в обмотках статора

Упрощенно можно представить, что на величину выходящего с генератора напряжения влияет значение магнитной силы и скорость вращения поля. Основная проблема генераторов постоянного тока – пригорание и залипание щеток при съеме с якоря токов большой величины – решена переходом на генераторы переменного тока. Ток возбуждения, подающийся на ротор для возбуждения магнитной индукции, на порядок ниже, снимать электроэнергию с неподвижного статора гораздо легче.

Однако вместо постоянно расположенных в пространстве клемм «–» и «+» производители авто получили постоянное изменение плюса и минуса. Подзарядка аккумулятора переменным током не возможна в принципе, поэтому диодным мостиком его предварительно выпрямляют.

Из этих нюансов плавно вытекают задачи, решаемые реле генератора:

  • подстройка тока в обмотке возбуждения
  • выдерживание диапазона 13,5 – 14,5 В в бортовой сети и на клеммах аккумулятора
  • отсечение питания обмотки возбуждения от АКБ при заглушенном двигателе

Поэтому называют регулятор напряжения еще и реле зарядки, а на панель выведена сигнальная лампа процесса подзарядки АКБ. В конструкцию генераторов переменного тока функция отсечения обратного тока заложена по умолчанию.

Разновидности реле регуляторов

Прежде, чем произвести самостоятельный ремонт устройства регулирования напряжения, необходимо учесть, что существует несколько типов регуляторов:

  • внешние – повышают ремонтопригодность генератора
  • встраиваемые – в пластину выпрямителя или щеточный узел
  • регулирующие по минусу – появляется дополнительный провод
  • регулирующие по плюсу – экономичная схема подключения
  • для генераторов переменного тока – нет функции ограничения напряжения на обмотку возбуждения, так как она заложена в самом генераторе
  • для генераторов постоянного тока – дополнительная опция отсечения АКБ при неработающем ДВС
  • двухуровневые – морально устарели, применяются редко, регулировка пружинами и небольшим рычагом
  • трехуровневые – дополнены специальной платой сравнивающего устройства и сигнализатором согласования
  • многоуровневые – в схеме имеются 3 – 5 добавочных резисторов и система слежения
  • транзисторные – в современных авто не используются
  • релейные – улучшенная обратная связь
  • релейно-транзисторные – универсальная схема
  • микропроцессорные – небольшие габариты, плавные регулировки нижнего/верхнего порога срабатывания
  • интегральные – встраиваются в щеткодержатели, поэтому заменяются после истирания щеток

Внимание: Без доработки схемы «плюсовой» и «минусовой» регулятор напряжения являются не взаимозаменяемыми приборами.

Реле генераторов постоянного тока

Таким образом, схема подключения регулятора напряжения при эксплуатации генератора постоянного тока сложнее. Поскольку в стояночном режиме авто, когда ДВС заглушен, необходимо отключить генератор от АКБ.

При диагностике проверка реле происходит на выполнение трех его функций:

  • отсечка аккумулятора во время стоянки машины
  • ограничение максимального тока на выходе генератора
  • регулировка напряжения для обмотки возбуждения

При любой неисправности требуется ремонт.

Реле генераторов переменного тока

В отличие от предыдущего случая диагностика своими руками регулятора генератора переменного тока немного проще. В конструкцию «автомобильной электростанции» уже заложена функция отсечки питания во время стоянки от АКБ. Остается проверить лишь напряжение на обмотке возбуждения и на выходе с генератора.

Если в машине стоит генератор тока переменного, его невозможно завести разгоном с горки. Так как остаточного намагничивания на возбуждающей обмотке здесь нет по умолчанию.

Встроенные и внешние регуляторы

Для автолюбителя важно знать, что измеряют и начинают регулировать напряжение реле в конкретном месте их установки. Поэтому встроенные модификации воздействуют непосредственно на генератор, а выносные «не знают» о его наличии в машине.

Например, если выносное реле подключено к катушке зажигания, его работа будет направлена на регулировку напряжения лишь на этом участке бортовой сети. Поэтому, прежде чем узнать, как проверить реле выносного типа, следует убедиться, что оно подключено правильно.

Управление по «+» и «–»

В принципе схемы управления по «минусу» и «плюсу» отличаются лишь схемой подключения:

  • при монтаже реле в разрыв «+» одна щетка подключается к «массе», другая к клемме регулятора
  • если же подключить реле в разрыв «–», то одну щетку нужно подключить к «плюсу», другую к регулятору

Однако в последнем случае появится еще один провод, поскольку реле напряжения является устройством активного типа. Для него необходимо индивидуальное питание, поэтому «+» нужно подвести отдельно.

Двухуровневые

На начальном этапе в машинах устанавливались механические двухуровневые регуляторы напряжения с простым принципом действия:

  • через реле проходит электрический ток
  • возникающее магнитное поле притягивает рычаг
  • сравнивающим устройством служит пружина с заданным усилием
  • при увеличении напряжения контакты размыкаются
  • на возбуждающую обмотку поступает меньший ток

Использовались механические двухуровневые реле в автомобилях ВАЗ 21099. Основным минусом являлась работа с повышенным износом механических элементов. Поэтому на смену этим приборам пришли электронные (бесконтактные) реле напряжения:

  • делитель напряжения собран из резисторов
  • стабилитрон является задающим устройством

Сложная схема соединения и недостаточно эффективный контроль напряжения привели к снижению спроса на эти приборы.

Трехуровневые

Однако двухуровневые регуляторы, в свою очередь, так же уступили позиции более совершенным трехуровневым и многоуровневым приборам:

  • напряжение выходит с генератора на специальную схему через делитель
  • информация обрабатывается, действительное напряжение сравнивается с минимальным и максимальным пороговым значением
  • сигнал рассогласования регулирует силу тока, поступающего на возбуждающую обмотку

Более совершенными считаются реле с частотной модуляцией – в них нет привычных сопротивлений, зато увеличена частота срабатывания ключа электронного. Управление осуществляется логическими схемами.

Принцип работы реле регулятора

Благодаря встроенным резисторам и специальным схемам реле получает возможность сравнивать величину вырабатываемого генератором напряжения. После чего, слишком высокое значение приводит к отключению реле, чтобы не перезарядить аккумулятор и не испортить электроприборы, подключенные в бортовую сеть.

Любые неисправности приводят именно к этим последствиям, приходит в неисправность батарея АКБ или резко увеличивается эксплуатационный бюджет.

Переключатель лето/зима

Вне зависимости от сезона и температуры воздуха работа генератора всегда стабильна. Как только его шкив начинает вращаться, электроток вырабатывается по умолчанию. Однако зимой внутренности аккумулятора замерзают, он восполняет заряд значительно хуже, чем летом.

Переключатели лето/зима находятся либо на корпусе регулятора напряжения, либо этим обозначением подписаны соответствующие разъемы, которые нужно найти и подсоединить к ним проводку в зависимости от сезона.

Ничего необычного в этом переключателе нет, это лишь грубые настройки реле регулятора, позволяющие повысить до 15 В напряжение на клеммах аккумулятора.

Подключение в бортовую сеть генератора

Если при замене генератора вы подключаете новый прибор самостоятельно, необходимо учесть нюансы:

  • вначале следует проверить целостность и надежность контакта провода от кузова машины к корпусу генератора
  • затем можно подсоединять клемму Б реле регулятора с «+» генератора
  • вместо «скруток», начинающих греться через 1 – 2 года эксплуатации, лучше использовать пайку проводов
  • заводской провод нужно заменить кабелем сечения 6 мм2 минимум, если вместо штатного генератора монтируется электроприбор, рассчитанный на ток больше 60 А
  • амперметр в цепи генератор/аккумулятор показывает, мощность какого источника электроснабжения в данный момент выше в бортовой сети

Амперметры – нужные приборы, с помощью которых можно определить заряд АКБ и работоспособность генератора. Без особых причин не рекомендуется убирать их из схемы.

Схемы подключения регулятора выносного

Монтируется выносное реле регулятора напряжения генератора только после выяснения, в разрыв какого провода оно должно быть подключено. Например:

  • на старых РАФ, Газелях и «Бычках» используются реле 13.3702 в полимерном или стальном корпусе с двумя контактами и двумя щетками, монтируются в «–» разрыв цепи, клеммы всегда промаркированы, «+» обычно берется с катушки зажигания (Б-ВК клемма), контакт Ш регулятора соединяется со свободной клеммой щеточного узла
  • в «жигулях» применяются реле регуляторы 121.3702 белого и черного цвета, существуют двойные модификации, в которых при выходе из строя одного прибора работа второго устройства продолжается простым переключением на него, монтируется в разрыв «+» клеммой 15 к выводу катушки зажигания Б-ВК, к щеточному узлу крепится проводом клемма 67

Встраиваемые реле-регуляторы автолюбители называют «шоколадками», маркированными Я112. Они монтируются в специальные щеткодержатели, прижимаются винтами и защищаются дополнительно крышкой.

На автомобилях ВАЗ реле обычно встроены в щеточный узел, полная маркировка Я212А11, подключаются к замку зажигания.
Если владелец меняет штатный генератор на старом отечественном ВАЗ на устройство переменного тока от иномарки или современной Лады, подключение производится по другой схеме:

  • вопрос крепления корпуса автолюбитель решает самостоятельно
  • аналогом клеммы «плюс» здесь служит контакт В или В+, его включают в бортовую сеть через амперметр
  • выносные реле регуляторы здесь обычно не используются, а встраиваемые уже интегрированы в щеточный узел, из них выходит единственный провод с маркировкой D либо D+, который подсоединяется к замку зажигания (к клемме катушки Б-ВК)

Для дизельных ДВС в генераторах может присутствовать клемма W, которая присоединяется к тахометру, ее игнорируют при установке на авто с бензиновым мотором.

Проверка подключения

После установки трехуровневого или иного реле-регулятора необходима проверка работоспособности:

  • двигатель заводится
  • напряжение в бортовой сети контролируется на разных оборотах

После установки генератора переменного тока и подключения его по вышеприведенной схеме владельца может ожидать «сюрприз»:

  • при включении ДВС запускается генератор, измеряется напряжение на средних, больших и малых оборотах
  • после выключения зажигания ключом …. двигатель продолжает работать

В этом случае заглушить ДВС можно либо сняв провод возбуждения, либо отпустив сцепление с одновременным нажатием тормоза. Все дело в наличии остаточной намагниченности и постоянном самовозбуждении обмотки генератора. Проблема решается установкой в разрыв возбуждающего провода лампочки:

  • она горит при незапущенном генераторе
  • гаснет после его запуска
  • проходящий через лампу ток недостаточен, чтобы возбудить обмотку генератора

Эта лампа автоматически становится индикатором наличия зарядки АКБ.

Диагностика реле регулятора

Определить поломки регулятора напряжения можно по признакам косвенным. Прежде всего, это некорректная зарядка АКБ:

  • перезаряд – выкипает электролит, раствор кислоты попадает на детали кузова
  • недозаряд – ДВС не запускается, лампы горят в пол накала

Однако предпочтительнее диагностика приборами – вольтметром или тестером. Любое отклонение от максимального значения напряжения 14,5 В (в некоторых авто бортовая сеть рассчитана на 14,8 В) на больших оборотах или минимального значения 12,8 В на малых оборотах становится причиной замены/ремонта реле регулятора.

Встроенного

Чаще всего регулятор напряжения интегрирован в щетки генератора, поэтому необходимо уровневое обследование этого узла:

  • после снятия защитной крышки и ослабления винтов щеточный узел извлекается наружу
  • при износе щеток (осталось меньше 5 мм их длины) замена должна производится в обязательном порядке
  • диагностика генератора мультиметром производится в комплекте с аккумулятором или зарядным устройством
  • «минусовой» провод от источника тока замыкается на соответствующую пластину регулятора
  • «плюсовой» провод от ЗУ или АКБ подключается к аналогичному разъему реле
  • тестер устанавливается в режим вольтметра 0 – 20 В, щупы накладываются на щетки
  • в диапазоне 12,8 – 14,5 В между щетками должно быть напряжение
  • при увеличении напряжения больше 14,5 В стрелка вольтметра должна быть на нуле

В данном случае вместо вольтметра можно использовать лампу, которая должна гореть в указанном интервале напряжения, гаснуть при увеличении этой характеристики больше этого значения.

Провод, управляющий тахометром (маркировка W только на реле для дизелей) прозванивается мультиметром в режиме тестера. На нем должно быть сопротивление около 10 Ом. При снижении этого значения провод «пробит», его следует заменить новым.

Выносного

Никаких отличий в диагностике для выносного реле не существует, зато его не нужно демонтировать из корпуса генератора. Проверить реле регулятор напряжения генератора можно при работающем двигателе, изменяя обороты с низких на средние, затем высокие. Одновременно с увеличением оборотов нужно включить дальний свет (как минимум), кондиционер, монитор и прочие потребители (как максимум).

Таким образом, при необходимости владелец транспортного средства может заменить штатное реле регулятор напряжения на более современную модификацию встраиваемого или выносного типа. Диагностика работоспособности доступна собственными силами при наличии обычной автомобильной лампы.

Автоматические регуляторы напряжения генераторов | БЛОГ ЭЛЕКТРОМЕХАНИКА

Одним из наиболее важных условий, обеспечивающих правильную работу электрических установок, является постоянство напряжения питающих генераторов.

В установках постоянного тока достаточная степень постоянства напряжения обеспечивается компаундными генераторами. В установках переменного тока для сохранения постоянства напряжения приходится прибегать к автоматическим регуляторам напряжения.


При сохранении постоянства скорости вращения генератора (для сохранения постоянства частоты) регулировка напряжения возможна только за счет изменения магнитного потока, т. е. тока возбуждения. На сегодняшний день наименее распространенным автоматическим регулятором напряжения является угольный. Основная часть угольного регулятора — столбик угольных шайб, включенный в обмотку возбуждения возбудителя генератора.

Работа регулятора основана на том, что в столбике угольных шайб, подвергающихся давлению, электрическое сопротивление изменяется в зависимости от силы сжатия. Чем больше сила сжатия угольного столбика, тем меньше его сопротивление; с уменьшением силы сжатия сопротивление столбика возрастает.

Рис. 1. Принципиальная схема включения угольного автоматического регулятора напряжения


На рис. 1 изображена принципиальная схема включения угольного автоматического регулятора напряжения. В состав схемы входят: угольный реостат 1, электромагнит с двумя обмотками 2 и 3 и пружина 5, создающая усилие, противодействующее электромагниту.

Обмотка 2 электромагнита включена на напряжение генератора Г между фазами А и С через выпрямитель 6.

Обмотка 3 электромагнита включена на вторичную обмотку трансформатора 4, первичная обмотка которого питается от возбудителя генератора В.

При нормальном напряжении генератора втягивающая сила электромагнита уравновешивается силой натяжения пружины. С повышением напряжения генератора сила электромагнита преодолевает натяжение пружины, якорь притягивается к сердечнику электромагнита, и поворачиваясь вокруг своей неподвижной оси, через вертикальный стержень передает растягивающее усилие на угольный столбик.

Сила натяжения на угольные шайбы уменьшается, сопротивление столбика возрастает, напряжение возбудителя уменьшается, в связи с чем уменьшается и напряжение генератора Г.

С уменьшением напряжения генератора Г втягивающая сила электромагнита уменьшается, под действием натяжения пружины якорь поворачивается и увеличивается сжатие угольного реостата.

Сопротивление реостата уменьшается, ток возбуждения увеличивается и напряжение генератора возрастает.

Если бы на электромагните была только обмотка 2, описанный процесс регулирования никогда бы не прекращался и напряжение генератора, изменившись один раз под действием какой-либо внешней причины, в дальнейшем колебалось бы под влиянием работы регулятора вокруг своего номинального значения.

Назначение обмотки 3 — сделать эти колебания затухающими и прекратить их после нескольких циклов с уменьшающейся амплитудой.

Магнитный поток обмотки 3 направлен навстречу потоку обмотки 2 и ослабляет действие обмотки 2 по мере подхода напряжения к номинальному значению, чем способствует быстрейшему прекращению колебаний напряжения.

Сопротивление 1C в цепи питания выпрямителя 6 служит для изменения пределов регулирования. Обычно его выбирают так, чтобы регулятор поддерживал напряжение в пределах от 95 до 105% номинального.

Назначение сопротивления 2С, питаемого от трансформатора тока ТТ, включенного в третью фазу, — создавать на своих зажимах падение напряжения. Падение напряжения на зажимах сопротивления 2С, складываясь геометрически с напряжением между фазами А и С, изменяет выходное напряжение выпрямителя в зависимости от реактивной нагрузки генератора. Это обусловливает постоянное распределение реактивной нагрузки между генераторами при их параллельной работе.

При работе одиночного генератора это устройство (так называемый компенсатор реактивной мощности) следует исключать из схемы регулятора, так как его наличие вызывает увеличение провала напряжения при пуске мощных асинхронных двигателей.

Изменяя величину сопротивления 3С, можно усилить или ослабить действие обмотки 3, т. е. в конечном итоге изменить время, в течение которого генератор достигает номинального напряжения.

Угольные регуляторы имеют ряд недостатков. Одним из наиболее существенных является малый срок службы угольных реостатов. В процессе эксплуатации угольные шайбы, из которых набирается реостат, «стареют», происходит их усадка и износ. Вследствие неравномерности этого явления равенство электрических сопротивлений отдельных угольных столбов нарушается, ток в столбах, имеющих минимальное сопротивление, увеличивается выше допустимого. При этом отдельные шайбы перегреваются, становятся хрупкими и при переменном сжатии их или вследствие вибрации и тряски судна дают трещины или рассыпаются. Иногда часть столба, работающего с перегрузкой, полностью выгорает.

Кроме того, угольным регуляторам свойственна небольшая скорость действия из-за наличия подвижных частей, имеющих определенную инерцию.

Более совершенным методом регулирования напряжения синхронных генераторов является компаундирование возбуждения.

Рис. 2. Принципиальная схема компаундирования возбудителя синхронного генератора


На рис. 2 изображена принципиальная схема компаундирования возбудителя синхронного генератора. Возбудитель В генератора Г, кроме основной обмотки возбуждения ООВ, имеет дополнительную ДОВ. Дополнительная обмотка возбуждения питается током, пропорциональным току нагрузки генератора, получаемому от трансформатора тока ТТ через разделительный трансформатор напряжения РТ и выпрямитель В.

С увеличением тока нагрузки напряжение генератора Г падает. Одновременно увеличивается ток возбуждения в обмотке ДОВ возбудителя, его напряжение возрастает, ток возбуждения генератора Г усиливается и напряжение генератора поднимается.

Схема компаундирования регулируется таким образом, чтобы напряжение генератора сохранялось постоянным при изменении нагрузки от холостого хода до номинальной. Однако напряжение синхронных генераторов, кроме тока нагрузки, зависит также и от коэффициента мощности последней. Чтобы избежать влияние изменяющегося коэффициента мощности, в схему компаундирования вводят электромагнитный корректор.

Наилучшие результаты в части поддержания постоянства напряжения дают синхронные генераторы с самовозбуждением и саморегулированием напряжения.

Рис. 3. Принципиальная схема системы самовозбуждения и саморегулирования синхронного генератора


На рис. 3 дана принципиальная схема системы самовозбуждения и саморегулирования синхронного генератора.

Существенной частью этой системы является специальный трехобмоточный трансформатор Т. Обмотка I (обмотка напряжения) этого трансформатора подключена к клеммам статора генератора и в ней течет ток Iн, пропорциональный напряжению генератора: Iн = K1U. Действие этой обмотки аналогично действию параллельной обмотки возбуждения генераторов постоянного тока со смешанным возбуждением.

Обмотка II (токовая) включена на трансформатор тока главной цепи генератора, через нее проходит ток Iт = K2I, пропорциональный току нагрузки генератора. Назначение этой обмотки аналогично назначению последовательной обмотки генератора со смешанным возбуждением.

Обмотка III является вторичной обмоткой трансформатора, ток в ней Iв равен геометрической сумме токов Iн и Iт. Этот ток, выпрямленный полупроводниковым выпрямителем В, питает обмотку возбуждения генератора ОВ.

Рассмотрим, как работает эта система. При вращении ротора генератора вследствие наличия в стали ротора остаточного магнетизма, генератор разовьет некоторую начальную э. д. с. При этом через обмотку I трансформатора Т пройдет ток. Образовавшееся в сердечнике трансформатора магнитное поле индуктирует вторичную э. д. с. в обмотке III и в ее цепи, а следовательно, и в обмотке ротора генератора потечет ток. Ток ротора усилит магнитное поле генератора, э. д. с. последнего возрастет, что в свою очередь вызовет увеличение тока в обмотке I трансформатора. Этот процесс продолжается до тех пор, пока напряжение на клеммах генератора достигнет номинальной величины. В дальнейшем, при холостом ходе генератора и при сохранении неизменной скорости его вращения, напряжение генератора будет сохраняться постоянным.

Если в статорной обмотке генератора появится ток нагрузки, то он создаст магнитный поток реакции якоря, который ослабит магнитный поток ротора, вследствие чего напряжение на клеммах генератора должно было бы уменьшиться. Однако этому будет противодействовать обмотка II трансформатора. При появлении в ней тока, пропорционального току нагрузки, магнитный поток, создаваемый этим током в сердечнике трансформатора, вызовет увеличение э. д. с. вторичной обмотки и тем самым увеличение тока в обмотке возбуждения генератора. Напряжение на клеммах последнего возрастет до прежней величины.

Таким образом, принцип действия синхронного генератора с самовозбуждением и саморегулированием напряжения подобен принципу действия генератора смешанного возбуждения постоянного тока.

Однако следует учесть, что напряжение, развиваемое синхронным генератором, зависит не только от его нагрузки, но и от величины коэффициента мощности. При уменьшении коэффициента мощности, т, е. при возрастании угла ψ, напряжение генератора уменьшается и для его восстановления до прежней величины необходимо увеличить ток возбуждения.

Для того чтобы получить увеличение тока возбуждения, пропорциональное увеличению угла ψ, обмотку напряжения трансформатора Т подключают к клеммам генератора не непосредственно, а через дроссель Д. Величина индуктивного сопротивления дросселя выбирается такой, чтобы угол сдвига фаз между напряжением генератора и током в обмотке I трансформатора был бы равен почти 90°.

В этом случае диаграмма геометрического сложения токов в обмотках трансформатора Т будет иметь вид, изображенный на рис. 4.

Рис. 4. Диаграмма геометрического сложения токов в обмотках трансформатора


Легко убедиться, что при увеличении угла ψ1 до величины ψ2 результирующий ток возбуждения генератора также возрастает, как это показано на рис. 4, а пунктиром.
Если бы фаза тока в обмотке I трансформатора Т совпадала бы с фазой напряжения генератора (как это изображено на рис. 4, б), то в этом случае, при увеличении угла ψ, величина результирующего тока возбуждения будет уменьшаться.

Уместно отметить еще одну особенность синхронных генераторов описываемой системы по сравнению с генераторами, получающими возбуждение от машинного возбудителя и оборудованными автоматическими регуляторами напряжения.

У генераторов с возбудителем и автоматическим регулятором напряжения неизбежно имеет место некоторое запаздывание восстановления напряжения.

Это запаздывание объясняется следующими причинами.

1. Автоматический регулятор начинает действовать только после того, как на регулятор поступит уже изменившееся напряжение.
2. После поступления на регулятор сигнала об изменении напряжения необходимо некоторое время на срабатывание самого регулятора.
3. Возбудитель генератора вследствие наличия у него электромагнитной инерции изменяет свое напряжение, а следовательно, и напряжение генератора с некоторым замедлением.

У синхронных генераторов с самовозбуждением процесс регулирования напряжения начинается не после изменения напряжения, а одновременно с изменением тока статора, которое должно вызвать изменение напряжения.

Вследствие этой особенности системы как абсолютное значение величины изменения напряжения генератора при резких колебаниях его нагрузки, так и время восстановления напряжения значительно меньше, чем у генераторов с возбудителем и автоматическим регулятором напряжения.

Иногда в схемах самовозбуждения, для облегчения начала процесса самовозбуждения, предусматривают установку конденсаторов, включаемых в цепь дросселя, как указано на рис. 3 пунктиром. Емкость конденсаторов подбирается так, чтобы в их цепи возник резонанс напряжения, тогда начальное напряжение на обмотке III трансформатора Т резко возрастает и генератор уверенно возбуждается. Кроме установки конденсаторов, для тех же целей применяются и другие методы.

В качестве примера конкретных генераторов, выпускаемых промышленностью рассмотрим схему самовозбуждения и саморегулирования отечественных синхронных генераторов серии МСС (рис. 5).

Рис.5. Схема самовозбуждения и саморегулирования синхронных генераторов серии МСС


У этих генераторов, так же как и в описанной выше принципиальной схеме, применен трансформатор с тремя обмотками: напряжения I, токовой II и результирующей III. Необходимый сдвиг фазы тока в обмотке I относительно напряжения генератора осуществляется с помощью магнитного шунта, находящегося в трансформаторе, вследствие чего отпадает необходимость в отдельном дросселе. Новым элементом в этой схеме является дроссель Д. Этот дроссель служит для подрегулировки вручную напряжения генератора в пределах ±5% от номинального напряжения. На дросселе, помимо основных обмоток, помещены две дополнительные а и б. Обмотка а питается постоянным током от выпрямителя В3, подключенного к обмотке напряжения трансформатора Т.

С помощью регулировочного реостата Р1 можно менять величину тока в обмотке а. Изменение тока в этой обмотке вызывает изменение магнитного потока в сердечнике дросселя и, как следствие изменение его реактивного сопротивления. При изменении тока в дросселе одновременно изменяется ток, поступающий на выпрямитель B1, а следовательно, и ток возбуждения генератора.

Обмотка б используется при параллельной работе генераторов с разной мощностью, а также для поддержания постоянства напряжения генератора при колебании его частоты.

Для обеспечения начального самовозбуждения у генераторов серии МСС предусмотрен небольшой встроенный, вспомогательный генератор переменного тока с постоянными магнитами. Этот генератор включен на обмотку возбуждения главного генератора через свой выпрямитель В2. Начальный ток возбуждения обмотки ротора генератора получают через этот выпрямитель. В дальнейшем, когда вступит в действие основной выпрямитель B1, вспомогательный генератор возбуждения автоматически исключается из схемы, так как его выпрямитель В2 окажется запертым более высоким напряжением выпрямителя B1.

Элементы системы самовозбуждения и саморегулирования генераторов серии МСС выполняются в виде самостоятельных блоков размещаемых отдельно от генератора.

Следует отметить, что возможно создать очень большое число различных систем самовозбуждения и саморегулирования, отличающихся по числу, типу и способу включения входящих в них элементов. Почти каждая зарубежная фирма выпускает синхронные генераторы со своей системой самовозбуждения и саморегулирования. Изложенные в настоящей статье общие принципы помогут разобраться в особенностях различных систем, могущих встретиться на морских судах.

Принцип работы регулятора напряжения генератора

Генератор

Напряжение возбуждения и вместе с ним ток возбуждения определяют ток отдачи генератора.
Транзистор T подает с частотой около 150 Гц напряжение, приходящее на клемму B+, на обмотку возбуждения. Регулируемый ток возбуждения Iвозб. или Iвозб._эффект., от 0 A до макс. 8 A, прямо пропорционален току отдачи генератора.

Контрольная лампа генератора указывает на неисправность генератора или электрооборудования автомобиля. Через бит-синхронный интерфейс (BSS) информация о состоянии генератора передается в блок управления системы регулирования энергопотребления J644. На основе этих сообщений происходит управление контрольной лампой.

Интересное: Оригинальный способ подзарядки мобильных устройств разработан американскими учеными: этот приборпреобразовывает энергию тела человека в электрический ток. Об этом вы сможете прочесть в блоге http://obrs.ru/, посвященном всякого рода технологическим новинкам, а также заработкам в интернете.

Информация, необходимая для управления контрольной лампой, передается блоком управления системы регулирования энергопотребления J644 на шину CAN<комфорт и через диагностический интерфейс шин данных J533— на шину CAN комбинации приборов. Блок управления комбинации приборов J285 считывает информацию с шины CAN комбинации приборов и включает контрольную лампу.

Контрольная лампа включается при следующих неисправностях:

– Механическая неисправность генератора при работающем двигателе продолжительностью не менее 10 секунд.

– Электрическая неисправность генератора или BSS продолжительностью не менее 10 секунд.Обе неисправности приводят к записям в память неисправностей блока управления системы регулирования энергопотребления J644.

Контрольная лампа не включается:

– При отсутствии связи между блоком управления системы регулирования энергопотребления J644 и блоком управления комбинации приборов J285.

Генератор или регулятор генератора может передать через бит-синхронный интерфейс блоку управления системы регулирования энергопотребления информацию о трех типах неисправностей:

– механической неисправности;
– электрической неисправности;
– неисправности, вызвавшей повышение температуры.

Неисправность регулятора не всегда приводит к включению контрольной лампы генератора. Это происходит тогда, когда регулятор имеет дефект препятствующий передаче информации на BSS. Блок управления системы регулирования энергопотребления J644 не получает информации и не включает контрольную лампу.

Полезное: Если вы решили создать интернет-проект, но не определились, какую CMS выбрать, прочтите о движке drupal php на сайте amgrade.net, компании AMgrade, разработчике качественных веб-ресурсов.

Принцип работы регуляторов напряжения — Энциклопедия по машиностроению XXL

ПРИНЦИП РАБОТЫ РЕГУЛЯТОРОВ НАПРЯЖЕНИЯ  [c.84]

Каковы назначение, устройство и принцип работы регуляторов напряжения, возможные неисправности и способы их устранения  [c.318]

Отличием схемы регулятора 201.3702 является то, что стабилитрон расположен не в базовой, а в эмиттерной цепи входного транзистора VTI. Поскольку транзистор VTI открывается током перехода эмиттер — база, то на принцип работы регулятора перенос стабилитрона из базовой цепи в эмиттерную влияния не оказывает. Однако, поскольку сила тока в эмиттерной цепи больше, чем в базовой, этот перенос способствует более стабильной работе регулятора напряжения по уровню поддерживаемого им напряжения.  [c.36]


Реле-регулятор содержит в себе регулирующий транзистор ГЗ, работающий в режиме усиления входной транзистор Т1, выполняющий функции усиления и формирования импульсов усилительный контур на транзисторе Т2 и измерительную цепь, включающую входной делитель напряжения и стабилитрон Д/, причем одно плечо делителя имеет, помимо омического сопротивления, и индуктивное — дроссель Др для уменьшения влияния пульсаций выпрямленного напряжения генератора на работу регулятора. Для уяснения принципа работы регулятора рассмотрим два предельных режима его работы.  [c.57]

На фиг. 215 приведена схема регулятора уровня электролита. Принцип работы регулятора заключается в следующем. В ванне, на расстоянии, соответствующем минимальному и максимальному уровню электролита, закрепляют два контактных стержня, к которым прикладывается напряжение. Над ванной смонтирован  [c.340]

На автомобилях ГАЗ-51 установлен реле-регулятор РР-24, а на автомобилях ГАЗ-66—РР-130, которые также состоят из трех приборов реле обратного тока, ограничителя тока и регулятора напряжения. Их электрическая схема, устройство и принцип работы такие же, как у реле-регулятора РР-105.  [c.134]

На автомобилях для регулирования напряжения генераторов применяются регуляторы напряжения дискретного типа. В основу работы этих регуляторов положен принцип действия различного рода реле. Рассмотрим работу регулятора на примере простейшего вибрационного (электромагнитного) регулятора напряжения (рис. 2.8).  [c.43]

Ограничитель тока предохраняет генератор от перегрузки, препятствуя увеличению силы отдаваемого генератором тока сверх 17—19 а. Он работает по тому же принципу, что и регулятор напряжения, включая в цепь обмотки возбуждения генератора и выключая сопротивление при превышении указанной выше силы тока.  [c.340]

Принцип работы подобных приборов заключается в том, что при изменении плотности тока на ванне одновременно изменяется ток, проходящий через датчик и цепь управления прибора. При этом включается электродвигатель, который изменяет положение контакта реостата, включенного последовательно в цепь гальванической ванны или в цепь возбуждения генератора. При питании от выпрямителя электродвигатель воздействует иа регулятор направления. Установка работает следующим образом изменение тока в ванне через датчик подается на регулирующий прибор. При уменьшении плотности тока на приборе включаются контакты реле прибора для вращения электродвигателя в сторону повышения подводимого напряжения, в результате чего ток увеличивается и при достижении заданной величины контактная система реле прибора выключит систему регулирования. При повышении плотности тока включаются другие контактные реле, и  [c.55]


Применяемые на тепловозах полупроводниковые регуляторы содержат в своей структуре тиристорный усилитель. Свойства таких регуляторов зависят от свойств тиристорных усилителей и особенностей системы управления ими. Полагая, что физические принципы работы тиристоров известны из литературы [1,2], поясним принцип действия релейного элемента на тиристорах (рис. 136,а). Пусть последовательно с тиристором включена нагрузка и источник напряжения питания Е ток нагрузки /д определится точкой пересечения вольт-ам-перных характеристик тиристора и сопротивления (рис. 136,6).  [c.159]

Принцип работы реле-регулятора состоит в следующем. При увеличении частоты вращения ротора напряжение генератора повышается и может превысить 13,5—14,7 В. Для ограничения его в цепь обмотки возбуждения ротора с помощью реле-регулятора вклю-  [c.40]

Для поддержания в цепи электрооборудования постоянного значения напряжения на автомобилях устанавливают контактно-транзисторные (ГАЗ-24, ГАЗ-53А) или бесконтактно-транзисторные (ЗИЛ, КамАЗ) регуляторы напряжения, принцип работы которых состоит в следующем. При увеличении частоты вращения ротора напряжение генератора повышается и может превысить допустимое. Для его ограничения в цепь обмотки возбуждения ротора включают дополнительное сопротивление (резистор) или прекращают поступление тока (в зависимости от типа регулятора). При этом напряжение генератора падает, регулятор снова пропускает ток в обмотку возбуждения или выключает резистор и процесс повторяется. Таким образом, напряжение на выходе генератора остается практически постоянным в пределах  [c.57]

Регулятор напряжения типа БРН-ЗВ (PH). Регулятор поддерживает постоянным напряжение вспомогательного генератора, частота вращения якоря и нагрузка которого изменяются в широких пределах. Принцип работы тепловозных регуляторов напряжения основан на изменении тока возбуждения вспомогательных генераторов. Точность поддержания напряжения рассматриваемого регулятора 75 1 В. Регулятор состоит из измерительного и регулирующего органов.  [c.174]

Тиристорные регуляторы напряжения получили наибольшее распространение вследствие высокого КПД, простоты в обслуживании, легкости автоматизации работы электропривода. Рассмотрим принцип действия ТРН и основанную на его использовании систему электропривода ТРН—АД.  [c.191]

Ограничитель тока предохраняет генератор от перегрузок большим током, который может привести к сгоранию обмоток. Он состоит из тех же основных частей, что и регулятор напряжения, и работа его основана на том же принципе, то есть при увеличении силы тока в цепь обмотки возбуждения включается дополнительное сопротивление. При отключении тока и нормальной силе тока контакты 5 блокируют добавочное сопротивление 14. Обмотка на сердечнике регулятора включена в цепь генератора последовательно, и поэтому сила магнитного воздействия в регуляторе находится в зависимости от силы тока в цепи.  [c.291]

Принцип работы обоих регуляторов такой же, как и регулятора для генераторов с минусом на массе (см. рис. 21). Регулятор на транзисторах типа р-п-р (рис. 33) имеет диапазон регулирования тока возбуждения 0,015—1,7 А при напряжении сети С/с—14 В и сопротивлении обмотки возбуждения 7 Ом. Падение напряжения на транзисторе Tt в отпертом состоянии t/i 9==1.4 В.  [c.41]

По принципу действия регулятор является электродинамическим аппаратом вибрационного типа. Его работа основана на взаимодействии неподвижной и подвижной катушек. Напряжение 75 в поддерживается в результате того, что регулятором устанавливается необходимая величина сопротивления в цепи  [c.176]

Вспомогательные генераторы, обеспечивающие заряд аккумуляторных батарей и питание всех электрических цепей тепловоза, кроме силовых, в процессе работы постоянно связаны с коленчатым валом дизеля частота их вращения находится в переменном режиме. Для поддержания напряжения вспомогательных генераторов постоянным применяют регуляторы напряжения. Принцип их работы основан на изменении тока возбуждения генераторов. На рис. 12.23 представлен регулятор напряжения ТРН-1. Магнитная система регулятора состоит из сердечника 19, наконечника 16, корпуса 32, стальной плиты 26 и стакана 18.  [c.302]


Регуляторы напряжения. На тепловозах питание цепей управления и освещения и по дз а ряд аккумуляторных батарей осуществляются от вспомогательных генераторов, частота вращения якоря и нагрузка которых изменяются в широких пределах. Для поддержания напряжения этих машин постоянным применяют регуляторы напряжения, принцип работы которых основан на изменении тока возбуждения генераторов.  [c.252]

Замечание по поводу статического расчета систем, работающих по принципу компенсации упругих перемещений за счет изменения размера статической настройки. Из структурной схемы рис. 7.50 видно, что регулятор такой САУ представляет собой как бы автономную следящую систему. Входом на эту систему является упругое перемещение, замеряемое каким-либо датчиком, выходом — компенсирующее изменение размера статической настройки АЛ ., также измеряемое датчиком и сопоставляемое с величиной упругого перемещения. Сам объект управления (процесс резания) не оказывает никакого влияния на точность работы следящей системы, которая в основном определяется величиной зоны нечувствительности, так как наличие интегрирующего звена сводит в идеальном случае статическую ошибку к нулю. Величина зоны нечувствительности определяется видом применяемых элементов, например, гистерезисом поляризованного реле, напряжением трогания серводвигателя и т. п. Более подробно см. [46].  [c.515]

Принцип работы регулятора аналогичен работе регулятора РР350А. При напряжении на клеммах генератора меньше предельного транзистор, включенный последовательно с обмоткой возбуждения генератора, открыт и пропускает ток возбуждения. Если на-  [c.83]

Для уяснения принципа работы регулятора воспользуемся упрощенной схемой регулировочного органа, приведенной на рис 18,а. Пусть управляемый вентиль ВКУ1 включен и ток от плюса батареи протекает по обмотке возбуждения О В и вентилю к минусу батареи. При этом через резистор R1 заряжается конденсатор так, что его правая (по схеме) обкладка положительна, а левая отрицательна. По мере заряда конденсатора увеличивается потенциал точки а, к которой подключен стабилитрон Ст. Когда напряженно иа конденсаторе достигнет пробивного напряжения стабилитрона,  [c.34]

Работа автоматического регулятора силы сварочного тока в изделии. Принцип работы регулятора заключается в том, что сила сварочного тока в изделии преобразуется в пропорциональное ей напряжение, которое при помощи высокочувствительного поляризованного реле сравнивается с другим напряжением, подавашым через потенциометр от стабилизатора. В случае, если напряжение, пропорциональное силе тока в изделии (регулируемая величина), меньше заранее заданного потенциометром (заданная величина), поляризованное реле включает через промежуточное реле двигатель регулятора так, чтобы расстояние между электродами увеличилось, а следовательно, увеличились бы и сила тока в изделии и соответствующее ему напряжение, подаваемое на чувствительное реле.  [c.66]

Чувствительным элементом регулятора (рис. 28) является Т-образный мост, состоящий из активных сопротивлений, изготовленных из константана или манганина, подстроечного сопротивления и конденсаторов j, С2, Сз типа МПГТ, погрешность которых при различного рода влияниях (в том числе температуры, старения и т. п.) не выходит за пределы 0,1%. Питание моста осуществляется от вторичной обмотки трансформатора Тр1, выход моста подается на первую входную обмотку суммирующего трансформатора Тр4. На рис. 50,6 показан принцип работы моста. Обозначения на векторной диаграмме соответствуют рис. 50,а. Из диаграммы видно, что выходное напряжение моста в зоне небольших отклонений частоты сдвинуто на угол, близкий к 90° по отношению к питающему напряжению. Соответствующим выбором параметров Т-образного моста добиваются, чтобы составляющая выходного напряжения, сдвинутая относительно питающего напряжения на 90°, была равна нулю при частоте сети 50 гц. Тогда при отклонении частоты в обе стороны от 50 гц это напряжение будет возрастать по амплитуде, а его фаза в зависимости от знака отклонения частоты будет изменяться на 180°. Как показывают расчеты и лабораторные исследо-  [c.94]

Реле-регулятор РР-127 на автомобилях МАЗ и КрАЗ устанавливается для совместной работы с генератором переменного тока Г-270А. Он служит для поддержания напряжения генератора в пределах 27,4—30,2 В. Это электромагнитный прибор контактно-вибрационного типа. Электрическая схема реле-регулятора приведена на рис. 60. Принцип работы реле-регулятора папряже1 пя аналогичен работе такого же прибора в реле-регуляторах, работающих с генераторами постоянного тока. Напряжение генератора регулируется путега автоматического включения и выключения в обмотку возбуждения ротора дополнительного сопротивления.  [c.136]

Загрязнение, эрозия и коррозия контактов регулятора напряжения вызывают повышение переходного сопротивления, приводящее к нестабильности регулируемого напряжения. Значительное повышение переходного сопротивления контактов вызывает отказ в работе регулятора. Характер отказа зависит от устройства и принципа действия регулятора. У одноступенчатых вибрационных, а также у первой ступени двухступенчатых регуляторов напряжения в случае, когда вследствие сильной эрозии или других причин ток не проходит через контакты, добавочный резистор остается постоянно включенным в цепь обмотки возбуждения генератора. Следствием этого является прекращение заряда батареи. У контакт-но-транзисторного регулятора РР362 с нормально разомкнутыми контактами и у регулятора РР380 на второй ступени регулирования аналогичная неисправность вызывает противоположные последствия прекращается регулирование напряжения, которое неограниченно возрастает по мере увеличения частоты вращения ротора генератора. Следствием является перезаряд батареи и перегорание дамп. Зачистка, а при необходимости замена контактов являются средством устранения такого рода неисправностей.  [c.177]


Бесконтактный транзисторный регулятор напряжения 121.3702 (рис. 4,6) применяется с генератором Г221А взамен вибрационного регулятора напряжения РР380. Схема регулятора достаточна проста и типична, что позволяет использовать ее для иллюстрации принципа работы транзисторных регуляторов.  [c.89]

Рассмотрим схему генераторной установки с бесконтактным транзисторным регулятором напряжения 121.3702 и генератором Г221А, применяемым вместо вибрационного регулятора напряжения РР380 (рис. 14). Схема регулятора достаточно проста и типична, что позволяет использовать ее для иллюстрации принципа работы транзисторных регуляторов.  [c.27]

Из формулы видно, что изменяя момент замыкания Кг от 4 =Т/2 до 4=0, можно изменять среднее напряжение на нагрузке от О до максимального, равного Е 2. Такой режим является рабочим для магнитно-полупроводникового регулятора возбуждения тягового генератора тепловоза 2ТЭ116, подробное описание которого, так же как и процессы, происходящие в нем, см. в гл. 8. Изложенные принципы работы тиристорного релейного усилителя проследим на полупроводниковых регуляторах напряжения.  [c.160]

В основу принципа работы тиристорных регуляторов напряжения положено использование диодов в качестве нелинейных разрядных сопротивлений, встречно шунтирующих цени с индуктивностью (обмотки возбуждения). Как известно, при размыкании такой цепи возникает э.д.с. самоиндукции, препятствующая уменьшению тока. Полярность этой э.д.с. такова, что диод откроется и по нему будет проходить ток, убывающий постепенно от перзо 1ачаль-ного значения до нуля. В регуляторе напряжения управление таким контуром осуществляется с по лошыо тиристоров.  [c.33]

Для регулирования работы двухщеточных генераторов Г-21, Г-20 и Г-15Б с 1950 г. применяют унифицированные реле-регуляторы типа соответственно РР-12А, РР-12Б и РР-12В, имеющие одинаковую схему н принцип действия и отличающиеся один от другого ли иь пределами напряжения, поддерживаемого регулятором напряжения (см. табл. 110).  [c.328]

Схема управления автоматами выполнена на полупроводниковых элементах. Работа автоматов основана на принципе зависимости скорости подачи электродной проволоки от напряжения дуги. Схема позволяет устанавливать необходимые вьщержки времени для продувки защитного газа, растягивания дуги для заварки кратера и обдува шва защитным газом по окончании сварки. Все управление автоматами осуществляется с пульта, размещенного на сварочном тракторе. На пульте управления установлены приборы для контроля режима, регуляторы напряжения дуги и скоростей сварки и подачи электродной проволоки, а также кнопки управления. На дополнительном пульте управления, укрепленном на сварочном вьш-рямителе, расположены элементы управления подачей защитного газа. Токоподвод в зоне сварки защищен водоохлаждаемым соплом, в которое поступает углекислый газ. Сварочная головка трактора показана на рис. 9.9.  [c.166]

В книге изложены принципы работы электромеханических и элек-тронных регуляторов напряжения, ограничителей тока и реле обратного тока. Приводятся практические схемы устройств для легковых и грузовых автомобилей. Первое издание книги вышло в 1971 году.  [c.2]

Любой регулятор напряжения совместно с генератором пред- ставляет собой замкнутую систему автоматического регулнрова-, ния. Как правило, такие регуляторы работают по принципу компенсационного регулирования, основанному на использовании отклонения регулируемой величины от заданного значения.  [c.12]

Принцип работы транзисторного регулятора состоит в следующем. На вход транзистора УТ1 подаются два встречно включенных напряжения одно эталонное, открывающее транзистор ( i/o -f ), и второе — закрывающее его иуо21- Первое напряжение постоянное, второе имеет постоянную составляющую и огибающую, соответствующую заряду и разряду С13 на сопротивление цепи из R6, R9 и R7 (рис. П.З, б).  [c.362]

Стабилизация тока нагрева. В игнитронном регуляторе имеется узел стабилизации тока нагрева, который работает по принципу автоматического изменения угла зажигания игнитронов при изменении напряжения. В отличие от игнитронных прерывателей для контактной электросварки в программном регуляторе в автоматическом и полуавтоматическом режимах изменение чувствительности достигается переключением (рис. 63) сопротивлений цифрового потенциометра 27R(1—XIII)—28R(I—XIII). Одновременно с переключением сопротивлений фазосмещающего моста реле разрядов нагрева переключают и сопротивления чувствительности схемы стабилизации. Схема стабилизации обеспечивает точность стабилизации нагрева +5% при изменении напряжения питающей сети 10%. Однако с увеличением диапазона регулирования возможна погрешность при максимальных или минимальных токах до 7%.  [c.157]


Что такое автоматический регулятор напряжения?

Что такое автоматический регулятор напряжения (АРН)?

Автоматический регулятор напряжения (АРН) — это устройство, используемое в генераторах с целью автоматического регулирования напряжения, что означает преобразование колеблющихся уровней напряжения в постоянные уровни напряжения. Автоматические регуляторы напряжения (АРН) работают, стабилизируя выходное напряжение генераторов при переменных нагрузках, но также могут делить реактивную нагрузку между генераторами, работающими параллельно (падение напряжения), и помогают генератору реагировать на перегрузки.

Проще говоря, автоматические регуляторы напряжения (АРН) непрерывно берут входные переменные диапазоны напряжения и поддерживают постоянное выходное напряжение при фиксированном напряжении.

Просмотреть бывшие в употреблении генераторы

Почему автоматические регуляторы напряжения (АРН) важны для генераторов?

Нерегулируемые генераторы, т. е. генераторы без автоматического регулятора напряжения (АРН), как правило, не в состоянии в достаточной мере удовлетворить потребности и потребности в электроэнергии для каждого элемента оборудования или устройства, подключенного к генератору.Это связано с тем, что некоторые нерегулируемые генераторы не могут контролировать или регулировать напряжение, поэтому напряжение на клеммах всегда будет продолжать снижаться по мере увеличения требований к нагрузке.

Если напряжение генератора не поддерживается на постоянном фиксированном уровне, это может отрицательно сказаться на общей производительности генератора, а нерегулируемый генератор также может негативно повлиять на любые коммунальные услуги, оборудование или механизмы, которые питаются от генератора. .

Автоматический регулятор напряжения (АРН) напрямую связан с производительностью и долговечностью вашего генератора, а также с элементами, на которые генератор подает питание, и гарантирует, что выходное напряжение будет соответствовать току нагрузки, даже если колебания были происходить на заднем плане. Это помогает смягчить и даже устранить ущерб, который любые колебания могут нанести приборам, машинам, устройствам и оборудованию.

Каковы функции автоматического регулятора напряжения (АРН)?

Наиболее важной функцией автоматических регуляторов напряжения (АРН) является автоматическое управление напряжением генератора и поддержание постоянной выходной мощности в соответствующем диапазоне уровней напряжения для вашего генератора независимо от тока, потребляемого нагрузкой.

АРН

не только помогают отрегулировать напряжение до безопасного уровня, но также могут обеспечить защиту от скачков напряжения, скачков напряжения и перегрузки генератора. Как уже упоминалось, автоматические регуляторы напряжения (АРН) также помогают генератору реагировать на перегрузки и справляться с ними, чтобы предотвратить короткое замыкание, а также могут распределять реактивную нагрузку между генераторами, работающими параллельно.

Если вы ищете генератор для вашего бизнеса, промышленного применения, таких объектов, как центры обработки данных, больницы, коммерческая недвижимость, промышленная недвижимость или бизнес-недвижимость, обратитесь к нам в Woodstock Power Company!

Позвоните нам или отправьте электронное письмо: 610-658-3242 или на адрес [email protected]ком

Кроме того, вы можете заполнить нашу контактную форму с любыми вопросами или запросами, и наши представители свяжутся с вами.

Опыт энергетической компании Вудстока

У нас есть отраслевые эксперты, специализирующиеся на коммерческих генераторных установках резервного питания, обладающие глубокими отраслевыми знаниями, которые помогут вам выбрать правильный генератор, соответствующий вашим потребностям. Мы поставляем генераторы в объекты коммерческой недвижимости, объекты промышленной недвижимости, центры обработки данных, больницы, коммерческие объекты и многое другое!

Наши специалисты готовы помочь вам ответить на любые ваши вопросы о генераторных установках, чтобы помочь вам найти лучший выбор в нашем ассортименте на основе:

  • Требования к пиковой и средней мощности
  • Предпочтительное топливо (природный газ или дизельное топливо)
  • Портативный и стационарный источник питания
  • Требования к основному и резервному генератору
  • Доступное пространство и ограничения по выхлопу

Наши специалисты также могут помочь вам обучить вас основным, постоянным и резервным генераторам электроэнергии, а также найти наилучший избыточный, новый или подержанный генератор, который наилучшим образом соответствует вашим требованиям.

Мы продаем только самые лучшие новые, подержанные и избыточные генераторные установки для продажи, предоставляя вам отличный генератор, который будет соответствовать вашему бюджету.

Наши генераторы прошли тщательную проверку, обслуживание и проверку, что гарантирует, что вы приобретете качественный генератор, на который можно положиться. Если генератор не соответствует отраслевым стандартам, мы производим все необходимые ремонтные работы или модификации и полностью тестируем каждый генератор перед продажей.Это гарантирует полный генератор «под ключ», готовый к запуску и работе!

Благодаря широкому выбору генераторных установок мы уверены, что сможем найти модель, которая наилучшим образом соответствует вашим эксплуатационным потребностям.

Мы также покупаем бывшие в употреблении генераторы хорошего качества, если вы уже модернизировали и хотите продать свою старую модель.

Не стесняйтесь обращаться к нам с любыми вопросами, проблемами или запросами, чтобы узнать больше об опыте Woodstock Power Company и уровне качества продуктов и услуг, которые мы предоставляем.

Подпишитесь на нас в LinkedIn, YouTube, Facebook и Twitter, чтобы узнать больше о коммерческих генераторах!

Что такое автоматический регулятор напряжения? Значение, принцип работы и применение

Автоматический регулятор напряжения используется для регулирования напряжения. Он принимает флуктуации напряжения и превращает их в постоянное напряжение. Колебания напряжения в основном происходят из-за изменения нагрузки на систему питания. Перепады напряжения повреждают оборудование энергосистемы.Изменением напряжения можно управлять, установив оборудование контроля напряжения в нескольких местах, например, рядом с трансформаторами, генератором, фидерами и т. д. Регулятор напряжения предусмотрен более чем в одной точке энергосистемы для контроля изменений напряжения.

В системе питания постоянного тока напряжение можно регулировать с помощью дополнительных генераторов в случае фидеров одинаковой длины, но в случае фидеров разной длины напряжение на конце каждого фидера поддерживается постоянным с помощью усилителя фидера.В системе переменного тока напряжение можно контролировать с помощью различных методов, таких как повышающие трансформаторы, индукционные регуляторы, шунтирующие конденсаторы и т. д.,

Принцип работы регулятора напряжения

Работает по принципу обнаружения ошибок. Выходное напряжение генератора переменного тока получают через трансформатор напряжения, а затем выпрямляют, фильтруют и сравнивают с эталоном. Разница между фактическим напряжением и эталонным напряжением известна как напряжение ошибки .Это напряжение ошибки усиливается усилителем и затем подается на основной возбудитель или вспомогательный возбудитель.

Таким образом, усиленные сигналы ошибки управляют возбуждением основного или вспомогательного возбудителя посредством понижающего или повышающего действия (т. е. управляют колебаниями напряжения). Управление выходом возбудителя ведет к контролю напряжения на клеммах основного генератора.

Применение автоматического регулятора напряжения

Основные функции AVR следующие.

  1. Он контролирует напряжение системы и приближает работу машины к стабильному состоянию.
  2. Он распределяет реактивную нагрузку между генераторами, работающими параллельно.
  3. Автоматические регуляторы напряжения снижают перенапряжения, возникающие из-за внезапной потери нагрузки в системе.
  4. Увеличивает возбуждение системы в условиях неисправности, так что максимальная синхронизирующая мощность существует во время устранения неисправности.

При внезапном изменении нагрузки на генератор переменного тока необходимо изменить систему возбуждения, чтобы обеспечить такое же напряжение при новых условиях нагрузки. Это можно сделать с помощью автоматического регулятора напряжения. Аппаратура автоматического регулятора напряжения работает в поле возбудителя и изменяет выходное напряжение возбудителя и ток возбуждения. Во время бурных колебаний АРВТ не дает быстрого ответа.

Для получения быстрого срабатывания используются быстродействующие регуляторы напряжения по принципу с превышением отметки .В принципе перерегулирования, когда нагрузка увеличивается, возбуждение системы также увеличивается. Перед повышением напряжения до значения, соответствующего повышенному возбуждению, регулятор снижает возбуждение до надлежащего значения.

Что такое автоматический регулятор напряжения (AVR) для генератора? – PortablePowerGuides

Генераторы часто сильно повреждаются во время скачков напряжения и перегрузок. Кроме того, они подают на автоматические выключатели напряжение, превышающее желаемое, что иногда приводит к повреждению любого используемого оборудования и приборов.Чтобы контролировать такие условия и обеспечить защиту от любых электрических или пожарных опасностей, вам необходимо убедиться, что автоматический регулятор напряжения (АРН) вашего генератора находится в хорошем рабочем состоянии.

AVR — это электронное устройство, которое присутствует в нескольких приборах для предотвращения скачков напряжения. Он также присутствует в генераторе переменного тока. Будучи твердотельным устройством, он регулирует выходное напряжение. Он устанавливает напряжение на выходных клеммах на фиксированном уровне. АРН срабатывает при изменении нагрузки на генератор и влияет на выходное напряжение.

Каковы функции AVR?

Интересно, что АРН генератора не только регулирует напряжение, но и выполняет различные другие функции.

Генератор переменного тока преобразует механическую энергию в электрическую. Он работает по принципу электромагнитной индукции. Поскольку он производит переменный ток, электрическая энергия не является фиксированной. Таким образом, это может привести к помехам и повреждению проводов, электроприборов и генератора.

Вот где на помощь приходит автоматический регулятор напряжения (АРН)! Он устанавливает выходное напряжение на фиксированное значение, чтобы не было такого повреждения. Вот основные функции AVR в генераторе переменного тока:

Регулирует выходное напряжение

Как уже говорилось, АРН помогает регулировать выходное напряжение, принимая статическое значение, чтобы исключить влияние перегрузки на выходное напряжение. Таким образом, ваш генератор, проводка и электрическое оборудование остаются в безопасности и защищены от любых электрических или пожарных опасностей.

Регулирует падение напряжения в параллельных генераторах

Помимо регулирования выходного напряжения, АРН также отвечает за поддержание падения напряжения, когда речь идет о параллельных/синхронных генераторах.

Обычно параллельно работающий генератор имеет одинаковое напряжение между его параллельными генераторами. Если есть скачок напряжения, может произойти падение выходного напряжения генератора. Это приводит к тому, что один генератор несет большую нагрузку, чем другой.

В результате возникает дисбаланс нагрузки. Генератор, который несет большой ток, скорее всего, отключится.

При наличии АРН вероятность и риск перегрузки сведены к минимуму. Поскольку AVR определяет падение напряжения, это помогает поддерживать выходное напряжение каждого генератора. Таким образом, несмотря на скачки напряжения или внезапные нагрузки, каждый генератор будет оставаться стабильным и выдавать оптимальное напряжение.

Для обнаружения падения напряжения АРН оснащен комплектом для определения падения напряжения, который известен как ТТ с падением напряжения.Комплект дропа не обязательно имеет фиксированную точку крепления — вы можете прикрепить его к датчику нагрузки, выходному кабелю или амперметру, проходящему через основной кабельный барабан.

Если вы ищете свой комплект дропа, убедитесь, что вы проверили его во всех возможных местах.


Действует как система безопасности от напряжения, перегрузки и перегрузки по току 

Поскольку это электрическое устройство, ваш генератор может испытывать некоторые помехи, такие как высокое напряжение, перегрузка или перегрузка по току.

К счастью, АРН поставляется с защитным возбудителем максимального тока . Когда мощность нагрузки превышает предел генератора, АРН посылает дополнительное напряжение на эту катушку возбудителя перегрузки по току.

Если ток, подаваемый на возбудитель, превышает фиксированную величину АРН, это приводит к разрыву между электрической цепью АРН и катушкой возбудителя. Таким образом, генератор не будет создавать избыточное напряжение, и вы будете защищены от серьезных повреждений.

Как отрегулировать напряжение генератора с помощью AVR?

Как упоминалось выше, с помощью АРН можно регулировать напряжение генератора, чтобы получать необходимое напряжение питания.АРН регулирует выходное напряжение, управляя генератором возбуждения, вырабатываемым в катушке возбудителя.

АРН можно использовать для средней частоты 60/50 Гц для одиночных или параллельных генераторов, а также генераторов, работающих на более высокой частоте 400 Гц. Это позволяет вам регулировать напряжение, но вы должны следовать правильным шагам:

  1. Осторожно снимите крышку генератора.
  2. В направлении на 7 часов вы увидите устройство в форме почки; это АВР.Он должен быть закреплен на месте с помощью болтов, поэтому вам нужно будет удалить болты.
  3. Не прикасайтесь к проводке и не отсоединяйте ее при откручивании болтов. Переверните ресивер задней стороной к себе.
  4. Скорее всего, оторвется круглый элемент, известный как конденсатор. Вы сможете найти небольшую прямоугольную коробку, удерживаемую ювелирным винтом; это винт регулировки напряжения AVR.
  5. Возьмите отвертку с плоской головкой. Поверните винт по часовой стрелке, чтобы уменьшить выходное напряжение.Продолжайте смотреть на вольтметр, чтобы узнать, когда вы достигнете желаемого выходного напряжения.
  6. Если у вас генератор большей мощности, скажем, 5000 Вт+, отрегулируйте винт на 250 вольт. Однако для небольших блоков напряжение должно быть установлено на 120 вольт.

Если вы по-прежнему не можете отрегулировать выходное напряжение, это, скорее всего, связано с отсутствием опыта с вашей стороны или неисправен ваш AVR. В этом случае вам нужно нанять специалиста, который разберется в этом вопросе.

Меры предосторожности 

Помните, что регулировка напряжения несложная, но необходимо соблюдать меры предосторожности, такие как:

  • Прочтите руководство по эксплуатации, чтобы узнать, где находится AVR и как получить к нему доступ.
  • Всегда останавливайте двигатель и отсоединяйте провод свечи зажигания перед выполнением каких-либо регулировок.
  • Убедитесь, что двигатель полностью остыл, чтобы не обжечься.
  • Держите подальше любые горящие предметы, например, сигареты.

Каков принцип работы AVR?

Принцип работы АРН зависит от типа системы возбуждения генератора.

Обычно существует два типа систем возбуждения:

  1. С самовозбуждением
  2. С возбуждением от PMG (генератор на постоянных магнитах)

Единственная разница между обеими системами возбуждения заключается в том, что система генератора с возбуждением от PMG оснащена постоянными магнитами, а система с самовозбуждением — нет.

Генераторная система с возбуждением от PMG лучше, чем система с самовозбуждением, поскольку обеспечивает относительно стабильное напряжение на катушке возбудителя.

Генераторная система с самовозбуждением 

Принцип работы АРН для генераторной системы с самовозбуждением описан ниже:

  • АРН получает выходное напряжение от основной катушки и посылает его на катушку возбудителя в качестве источника питания. В то же время АРН также получает напряжение от основного валка и использует его в качестве датчика того, какое напряжение нужно генерировать.
  • Величина напряжения на валке возбудителя затем регулируется в соответствии с выходным напряжением, которое генератор AVR получает от основного вала.
  • Если выходное напряжение меньше требуемого напряжения, АРН подает большее напряжение на катушку возбудителя. Когда напряжение в основной катушке достигает требуемой величины, АРН ограничивает подачу напряжения на вал возбудителя.

Таким образом, чем выше напряжение в катушке возбудителя, тем выше мощность генератора .

Генераторная система с возбуждением от PMG

Генераторная система с возбуждением от PMG работает по тому же принципу, что и генераторная система с самовозбуждением. Единственное отличие состоит в том, что система с возбуждением от PMG состоит из двух частей:

.
  1. Ротор ГПМ
  2. Статор ГПМ 

Итак, вот как это работает:

  • Напряжение от ГПМ поступает на АРН, а затем поступает на катушку возбудителя. Здесь величина напряжения либо фиксирована, либо зависит от скорости вращения генератора.
  • В то время как генератор с самовозбуждением вырабатывает собственное электричество с помощью катушки возбудителя для подачи на ротор, генераторы с возбуждением от PMG используют PMG для подачи напряжения.

Чаще всего генераторы переменного тока оснащены защитой от сбоя возбуждения. При отказе АРН срабатывает эта защита, и генератор отключается, не вызывая повреждений.

Если АРН выходит из строя или отключается, генератор продолжает получать реактивную мощность и продолжает работать, хотя и на более высокой скорости, чем его синхронная скорость — это может привести к серьезному повреждению.

В данном случае двухкратные задержки:

  • Если неспособность генерировать напряжение вызвана меньшей подачей полученного напряжения, АРН не может поддерживать напряжение, и поэтому генератор сразу отключается.
  • Если АРН неисправен и нет пониженного или повышенного напряжения, будет задержка от 1 до 2 секунд. В большинстве случаев AVR восстанавливается после сбоя.

Как обнаружить неисправный AVR в генераторе?

Все АРН поставляются с регулировочным винтом, который можно использовать для установки предела напряжения и регулировки выходного напряжения.

Эксперты используют процесс исключения, чтобы выяснить, не виноват ли AVR. Вот как это происходит:

  1. Проверьте главный автоматический выключатель генератора
  2. Если выключатели работают нормально, проверьте проводку в электрической панели и ту, которая соединяет выключатель со статором.
  3. Если провода исправны, следует заглянуть в регулировочный винт АРН. Убедитесь, что он установлен в правильном положении/пределе.
  4. Если установлен правильный выход, перейти к роторным щеткам.Они должны соприкасаться с ротором и нормально работать.
  5. Далее проверьте статор. Если статор не производит энергию, ваш AVR не неисправен. Однако, если он производит питание, возможно, ваш AVR вышел из строя и, следовательно, нуждается в замене.

Как заменить АРН генератора?

Замена АРН генератора — единственное решение, если он выйдет из строя. Это небольшое устройство, расположенное рядом с угольными щетками в левом нижнем углу головки вашего генератора.

Чтобы заменить АРН вашего генератора, выполните следующие действия:

Найдите угольные щетки

Осторожно снимите крышку.В центре этого отсека вы найдете держатель угольной щетки. Отсоедините положительный и отрицательный провода от клемм. Вы также можете удалить винты, чтобы выяснить, связана ли проблема с угольными щетками или регулятором.

Если угольные щетки подверглись коррозии и застряли в одном и том же положении (вероятно, вниз), то, вероятно, проблема связана с угольными щетками. Однако, если они в хорошем рабочем состоянии, переходите к следующему шагу.

Отвинтить регулятор напряжения

Найдя регулятор напряжения, открутите его винты.Отсоедините быстроразъемный разъем с правой стороны, чтобы освободить регулятор.

Прикрепите новый регулятор

На следующем шаге прикрепите новый регулятор к быстроразъемному разъему. Прикрутите его на место и соедините положительный и отрицательный провода угольных щеток. Помните, позитив всегда идет налево. Следуйте за ним, завинчивая головку крышки.

Готово!

Заменить АРН вашего генератора очень просто. Тем не менее, убедитесь, что вы делаете правильные шаги.Обычно все генераторы, независимо от их формы и размера, имеют одинаковый процесс сборки. Все же лучше заглянуть в руководство пользователя, чтобы ознакомиться с нужным расположением.

Предлагаем посмотреть обучающее видео, чтобы лучше понять, где находится регулятор, как отсоединить быстроразъемный разъем и вставить новый регулятор.

Что ж, не о чем беспокоиться, если ваш AVR выйдет из строя. Это устройство не стоит много. Вы можете получить новый AVR всего за 10 долларов.

Но чтобы убедиться, что вы покупаете оригинальную деталь, которая не выйдет из строя в ближайшее время, мы рекомендуем покупать ее у производителя вашего генератора. Это может быть немного дорого, скажем, около 100 долларов, но оно того стоит. Ваш генератор будет работать правильно и выдавать желаемое выходное напряжение.

Почти все электрические устройства и оборудование включают АРН. Он помогает регулировать подачу напряжения и предотвращает повреждение оборудования.

В случае генератора переменного тока АРН поддерживает подачу напряжения, регулирует падение напряжения и действует как система безопасности. Если он выйдет из строя, вы можете легко заменить его на новый.

Надеемся, что наша информация оказалась полезной.

Принцип работы регулятора напряжения для оптовиков дизельных генераторов

АРН лежит в основе устройств, часто называемых стабилизаторами напряжения или стабилизаторами напряжения. Типичный стабилизатор напряжения представляет собой автоматический регулятор напряжения в сочетании с одной или несколькими другими функциями обеспечения качества электроэнергии, такими как:

1) Подавление скачков напряжения

2) Защита от короткого замыкания (автоматический выключатель)

3) Снижение помех в линии

4 ) Межфазная балансировка напряжения

5) Фильтрация гармоник и т.д.

 

Стабилизаторы напряжения обычно используются в устройствах с низким напряжением (<600 В) и мощностью менее 2000 кВА.

 

В целом, автоматический регулятор напряжения переменного тока (АРН) представляет собой устройство, предназначенное для автоматического регулирования напряжения в дизель-генераторной установке , то есть для преобразования уровня колеблющегося напряжения в постоянный уровень напряжения.

 

Принцип работы АРН

Регулятор напряжения представляет собой регулирующее устройство, которое регулирует выходное напряжение генератора в заданном диапазоне.Его функция заключается в автоматическом управлении напряжением генератора и поддержании его постоянным при изменении скорости вращения генератора, чтобы предотвратить слишком высокое напряжение генератора, которое могло бы привести к перегоранию электрооборудования и перезарядке аккумулятора. В то же время он также предотвращает слишком низкое напряжение генератора, приводящее к сбоям в работе электрооборудования и недостаточному заряду аккумуляторной батареи.

 

Поскольку передаточное отношение генератора к двигателю фиксировано, скорость генератора будет изменяться при изменении скорости двигателя.Питание генератора от электрооборудования и зарядка аккумулятора требуют, чтобы его напряжение было стабильным, поэтому необходимо регулировать выходное напряжение генератора, если напряжение в основном поддерживается на определенном уровне.

 

Регулятор синхронного генератора, который поддерживает напряжение синхронного генератора на заданном уровне или изменяет напряжение на клеммах согласно плану.

 

При изменении напряжения на клеммах и реактивной мощности синхронного двигателя выходной ток возбудителя автоматически регулируется в соответствии с соответствующим сигналом обратной связи для достижения цели автоматического регулирования напряжения на клеммах или реактивной мощности синхронного двигателя.

 

В соответствии с принципом работы регулятор напряжения генератора делится на:

1. Регулятор напряжения контактного типа

Регулятор напряжения контактного типа применялся ранее, частота вибрации контакта регулятора низкая, имеется механическая инерция и электромагнитная инерция, точность регулирования напряжения низкая, контакт легко генерирует искры, большие радиопомехи, низкая надежность, короткий срок службы, теперь устранены.

 

2.Транзисторный регулятор

 

С развитием полупроводниковой технологии применяется транзисторный регулятор. Преимуществами являются высокая частота переключения триода, отсутствие искр, высокая точность регулировки, легкий вес, небольшой объем, длительный срок службы, высокая надежность, небольшие радиопомехи и так далее. Теперь он широко используется в моделях автомобилей среднего и низкого класса.

 

3. IC регулятор (интегральный регулятор)

 

Помимо преимуществ транзисторного регулятора, интегральный регулятор имеет сверхмалые размеры и устанавливается внутри генератора (также известного как встроенный регулятор). в регуляторе), что уменьшает количество внешних проводов и улучшает охлаждающий эффект.Сейчас он широко используется в Santana, Audi и других моделях автомобилей.

 

4. Регулятор, управляемый компьютером

 

После измерения общей нагрузки системы детектором электрической нагрузки сигнал отправляется на компьютер генератора, а затем регулятор напряжения генератора управляется компьютером двигателя, и цепь магнитного поля своевременно включается и выключается, тем самым надежно обеспечивая нормальную работу электрической системы, аккумулятор полностью заряжен, и может снизить нагрузку на двигатель и улучшить экономию топлива.Такие регуляторы используются на автомобильных генераторах, таких как Shanghai Buick и Guangzhou Honda.

 

Вышеуказанная информация является принципом работы регулятора напряжения в генераторной установке. Это важная часть генераторной установки . Генераторы Dingbo Power оснащены АРН. Если вы заинтересованы, свяжитесь с нами по электронной почте [email protected], и мы поможем вам выбрать наиболее подходящий для вас генератор.

Принцип действия автоматического регулятора напряжения

Автоматический регулятор напряжения (АРН):  

Автоматический регулятор напряжения — это устройство, которое поддерживает напряжение на выходных клеммах генератора.Чтобы быть более точным, AVR — это контроллер, который всегда сравнивает выходное напряжение генератора V t с установленным опорным напряжением V ref и в соответствии с сигналом ошибки, т.е. (V ref — V t ) возбуждение генератора для поддержания постоянного напряжения на клеммах V t .

Принцип автоматического регулятора напряжения:

Для лучшего понимания принципа работы автоматического регулятора напряжения i.е. AVR, сначала мы кратко рассмотрим систему возбуждения генератора. Я здесь беру статическую систему возбуждения, например. Как известно, в статической системе возбуждения выход генератора подается на тиристорный мостовой выпрямитель. Этот тиристорный мостовой выпрямитель преобразует переменный ток в постоянный. Обратите внимание, что выход постоянного тока тиристорного моста можно контролировать, контролируя угол открытия тиристора. Выход постоянного тока тиристорного моста затем подается на обмотку генератора, как показано на рисунке ниже.

Предположим, что ток возбуждения в любой момент равен I f . Тогда поток в воздушном зазоре Генератора можно записать как Ø = KI f , где K – некоторая константа.

Но мы заинтересованы в поддержании выходного напряжения генератора V t , которое задается как

V t = 1,414 π fNØ , где символы имеют обычное значение.

Из вышеизложенного совершенно очевидно, что изменение I f изменит напряжение на клеммах V t .

Таким образом, регулирование напряжения может быть достигнуто за счет управления током возбуждения. Автоматический регулятор напряжения AVR выполняет это действие, изменяя угол открытия. На рисунке ниже показана упрощенная схема AVR.

АРН

принимает три входа, а именно опорное напряжение V ref , напряжение на клеммах V t и ограничивающие сигналы. Для простоты предположим только два входа V ref и V t . Опорное напряжение Vref устанавливается вручную в AVR. Это опорное напряжение также динамически изменяется вокруг установленного вручную V ref с помощью стабилизатора системы питания (PSS).Но для этого обсуждения мы устраним влияние PSS и предположим, что V ref является постоянным. Сигнал ошибки (V ref -V t ) подается на контроллер. Контроллер на схеме обозначен его передаточной функцией. Выход передаточной функции подается на тиристорный мостовой выпрямитель для изменения угла включения и, следовательно, возбуждения поля.

Допустим, V ref = 21 кВ и по какой-то причине напряжение на клеммах V t = 25 кВ. Таким образом, АРН уменьшит ток возбуждения I f , чтобы уменьшить величину потока в воздушном зазоре.Это, в свою очередь, снизит напряжение на клеммах и попытается сделать его стабильным на уровне 21 кВ.

АВТОМАТИЧЕСКИЙ РЕГУЛЯТОР НАПРЯЖЕНИЯ | Морской почтовый ящик

Внезапные скачки тока нагрузки (например, из-за запуска двигателя) на генераторе вызывают соответствующее изменение его выходного напряжения. Это происходит из-за внутреннего падения напряжения в обмотка генератора и эффект называется провалом напряжения. Точно так же сброс нагрузки вызовет перенапряжение на шине.

AVR необходим для регулирования/быстрой коррекции таких изменений напряжения.АРН определяет выходное напряжение генератора и изменяет ток возбуждения для поддержания заданного значения напряжения.

АВР поддерживает выходное напряжение генератора + или – 2,5% от его набора значение в диапазоне нагрузки. AVR определяет и изменяет ток возбуждения. Ручной/ручной триммер Регулятор установлен на панели управления генератора для установки уровня напряжения. схема управления современным АРН состоит из трансформаторов, выпрямители, стабилитроны, транзисторы и тиристоры. Они установлены в одной или нескольких цепях либо на распределительном щите, либо на панели генератора.

датчик напряжения преобразует вниз, выпрямляет и сглаживает выходное напряжение генератора. Это создает низкое напряжение постоянного тока. сигнализировать о том, что пропорциональна а.с. напряжение генератора Это фактическое напряжение постоянного тока. сигнал сравнивается с заданным значением постоянного тока. значение, полученное по ссылке схема стабилитрона и резисторов.

Затем сигнал ошибки, выдаваемый компаратором, усиливается и становится пригодным для управления тиристорами, регулирующими ток возбуждения. Тиристоры — это устройства, которые выпрямляют и регулируют ток возбуждения генератора.

Статический автоматический регулятор напряжения

  • Наличие трансформируемого а выпрямленное питание от выхода генератора позволяет сопоставление его непосредственно с электронным эталоном в статическом AVR.
  • Постоянный ток, полученный от выход генератора подается на мост, который имеет фиксированное сопротивление на двух плечах и переменные сопротивления на двух других.
  • Стабилитрон работает в обратном направлении режим пробоя, изготовленный с напряжением пробоя стабилитрона очень низкое значение.Напряжение остается постоянным после того, как произошел пробой, независимо от изменение тока.
  • Это подразумевает изменение применяемого напряжение, хотя и не влияет на напряжение на диоде, вызовет изменение сопротивление, допускающее изменение тока.
  • Дисбаланс сопротивлений в Мост Уитстона изменяет схему потока и создает в напряжении измерительный мост сигнал ошибки.
  • Сигнал ошибки может быть усилен и используется для управления возбуждением генератора несколькими способами.
  • Может управлять углом стрельбы тиристоров через схему запуска, чтобы дать желаемое напряжение в бесщеточный генератор.
  • Может использоваться в статических возбужденный генератор для подключения малых ошибок через магнитный усилитель договоренность. Сигнал ошибки также может быть усилен транзисторами в серии, для контроля возбуждения.

Системы безопасности AVR   

  1. Предохранитель в цепи диода для предотвращения короткого замыкания между фазами при выходе из строя диода.
  2. Шунтирующий резистор между катушками возбуждения для предотвращения обратного тока.
  3. Некоторые средства отключения автоматического выключателя в случае короткого замыкания трехфазной конденсаторной батареи.

Назначение АРН

  1. Лучшее распределение нагрузки стабильность при параллельной работе.
  2. Быстрое время отклика с стабильность напряжения.
  3. Повышенное/пониженное напряжение срабатывает сигнализация напряжения.
  4. АВР определяет выходное напряжение генератора и действует изменить возбуждение так что напряжение генератора поддерживается в пределах + или – 2.5% от его заявленной стоимости.
  5. Переходный период падение напряжения должно быть в пределах 15% и должно быть восстанавливается в течение 1,5 сек.
  6. Тип AVR — Ошибка эксплуатируемый

                   Функциональный тип

Процесс нарастания напряжения (самостоятельный возбуждаемый шунтирующий генератор)

Напряжение нарастание – постепенное повышение напряжения генератора до его макс. значение после запуска генератора от отдыха.

Шунтовой генератор работает по принципу самовозбуждения.Если система поля имеет остаточный магнетизм, то вращение якоря будет генерировать небольшую ЭДС. Эта ЭДС вызовет ток возбуждения, который создаст больший поток, который, в свою очередь, вызовет большую ЭДС. Следовательно, больший ток возбуждения, больший поток и ЭДС обеспечивают условия непрерывного нарастания. Напряжение непрерывно растет и становится устойчивым, когда возникает падение напряжения, когда поле становится равным напряжению на клеммах.

Ток возбуждения должен проходить через катушку возбуждения в правильном направлении, чтобы способствовать нарастанию напряжения против остаточного потока.

Состояние необходимое для себя возбуждение

Остаточный магнетизм должен быть достаточным для создания небольшой ЭДС когда якорь вращался с правильной скоростью.

Шунт Цепь возбуждения должна быть непрерывной и подсоединена таким образом, чтобы ток вызывают накопление потока, чтобы помочь первоначальному остаточному потоку.

Сопротивление цепи шунтирующего возбуждения должно быть меньше критического сопротивления, определяемого по характеристикам разомкнутой цепи, когда машина работает на определенной скорости.

Автоматические регуляторы напряжения (АРН) | Блицтек

Что такое AVR?

Автоматический регулятор напряжения (АРН) — устройство, предназначенное для автоматического регулирования напряжения. Он принимает флуктуации напряжения и превращает их в постоянное напряжение. Колебания напряжения в основном происходят из-за изменения нагрузки на систему питания. Перепады напряжения повреждают оборудование энергосистемы. Изменением напряжения можно управлять, установив оборудование для контроля напряжения в нескольких местах, например рядом с трансформаторами, генератором, фидерами и т. д., Регулятор напряжения предусмотрен более чем в одной точке энергосистемы для управления колебаниями напряжения.

АРН – для преобразования уровня флуктуирующего напряжения в постоянный уровень напряжения.

Какова функция AVR?

Функция автоматического регулятора напряжения (AVR) заключается в поддержании постоянного напряжения и согласовании линии электропередачи с нагрузкой оборудования в самых разных условиях, даже когда входное напряжение сети, частота или нагрузка системы сильно различаются.

Что подразумевается под регулированием напряжения?

Регулировка напряжения представляет собой процент разницы между напряжениями без нагрузки и полной нагрузкой трансформатора по отношению к его напряжению полной нагрузки. Объяснение регулирования напряжения трансформатора: Скажем, силовой трансформатор разомкнут, это означает, что нагрузка не подключена к вторичным клеммам.

  Как работает AVR?

Автоматический регулятор напряжения (АРН) представляет собой электронное устройство для автоматического поддержания заданного значения выходного напряжения генератора при изменении нагрузки и рабочей температуры.Он управляет выходным сигналом, измеряя напряжение V-out на катушке, вырабатывающей энергию, и сравнивая его со стабильным опорным значением.

Зачем нужна регулировка напряжения?

Регулятор напряжения необходим для поддержания напряжения в заданном диапазоне, который может быть допущен электрооборудованием, использующим это напряжение.

Добавить комментарий

Ваш адрес email не будет опубликован.