Система непосредственного впрыска топлива: Система непосредственного впрыска топлива – устройство, принцип действия

Система непосредственного впрыска топлива – устройство, принцип действия

Система непосредственного впрыска топлива является самой современной системой впрыска топлива бензиновых двигателей. Работа системы основана на впрыске топлива непосредственно в камеру сгорания двигателя.

Впервые система непосредственного впрыска была применена на двигателе GDI (Gasoline Direct Injection – непосредственный впрыск бензина), устанавливаемом на автомобили компании Mitsubishi. В настоящее время система непосредственного впрыска используется в двигателях многих автопроизводителей. Передовики Audi (двигатели TFSI) и Volkswagen (двигатели FSI, TSI), которые практически полностью перешли на бензиновые двигатели с непосредственным впрыском.

Двигатели с непосредственным впрыском имеют в своем активе BMW (двигатели N54, N63), Infiniti (двигатели M56), Ford (двигатели EcoBoost), General Motors (двигатели Ecotec), Hyundai (двигатели Theta), Mazda (двигатели Skyactiv), Mercedes-Benz (двигатели CGI).

Применение системы непосредственного впрыска позволяет достичь до 15% экономии топлива, а также сокращения выброса вредных веществ с отработавшими газами.

Устройство системы непосредственного впрыска топлива

Конструкция системы непосредственного впрыска топлива рассмотрена на примере системы, устанавливаемой на двигатели FSI (Fuel Stratified Injection – послойный впрыск топлива). Система непосредственного впрыска составляет контур высокого давления топливной системы двигателя и включает топливный насос высокого давления, регулятор давления топлива, топливную рампу, предохранительный клапан, датчик высокого давления и форсунки впрыска.

Топливный насос высокого давления служит для подачи топлива к топливной рампе и далее к форсункам впрыска под высоким давлениям (3-11 МПА) в соответствии с потребностями двигателя. Основу конструкции насоса составляет один или несколько плунжеров. Насос приводится в действие от распределительного вала впускных клапанов.

Регулятор давления топлива обеспечивает дозированную подачу топлива насосом в соответствии с впрыском форсунки. Регулятор расположен в топливном насосе высокого давления. Топливная рампа служит для распределения топлива по форсункам впрыска и предотвращения пульсации топлива в контуре. Предохранительный клапан защищает элементы системы впрыска от предельных давлений, возникающих при температурном расширении топлива. Клапан устанавливается на топливной рампе.

Датчик высокого давления предназначен для измерения давления в топливной рампе. В соответствии с сигналами датчика блок управления двигателем может изменять давление в топливной рампе. Форсунка впрыска обеспечивает распыление топлива в камере сгорания для образования топливно-воздушной смеси.

Согласованную работу системы обеспечивает электронная система управления двигателем, которая является дальнейшим развитием объединенной системы впрыска и зажигания. Традиционно система управления двигателем объединяет входные датчики, блок управления и исполнительные механизмы.

Помимо датчика высокого давления топлива в интересах системы непосредственного впрыска работают датчик частоты вращения коленчатого вала, датчик положения распределительного вала, датчик положения педали акселератора, расходомер воздуха, датчик температуры охлаждающей жидкости, датчик температуры воздуха на впуске.

В совокупности датчики обеспечивают необходимой информацией блок управления двигателем, на основании которой блок воздействует на исполнительные механизмы — электромагнитные клапаны форсунок, предохранительный и перепускной клапаны.

Принцип действия системы непосредственного впрыска

Система непосредственного впрыска в результате работы обеспечивает несколько видов смесеобразования:

  • послойное ;
  • стехиометрическое гомогенное ;
  • гомогенное.

Многообразие в смесеобразовании определяет высокую эффективность использования топлива (экономия, качество образования смеси, ее полное сгорание, увеличение мощности, уменьшение вредных выбросов) на всех режимах работы двигателя.

Послойное смесеобразование используется при работе двигателя на малых и средних оборотах и нагрузках. Стехиометрическое (другое наименование – легковоспламеняемое) гомогенное (другое наименование – однородное) смесеобразование применяется при высоких оборотах двигателя и больших нагрузках. На бедной гомогенной смеси двигатель работает в промежуточных режимах.

При послойном смесеобразовании

дроссельная заслонка почти полностью открыта, впускные заслонки закрыты. Воздух поступает в камеры сгорания с большой скоростью, с образованием воздушного вихря. Впрыск топлива производится в зону свечи зажигания в конце такта сжатия. За непродолжительное время до воспламенения в районе свечи зажигания образуется топливно-воздушная смесь с коэффициентом избытка воздуха от 1,5 до 3. При воспламенении смеси вокруг нее остается достаточно много чистого воздуха, выступающего в роли теплоизолятора.

Гомогенное стехиометрическое смесеобразование происходит при открытых впускных заслонках, дроссельная заслонка при этом открывается в соответствии с положением педали газа. Впрыск топлива производится на такте впуска, что способствует образованию однородной смеси. Коэффициент избытка воздуха составляет 1. Смесь воспламеняется и эффективно сгорает во всем объеме камеры сгорания.

Бедная гомогенная смесь образуется при максимально открытой дроссельной заслонке и закрытыми впускными заслонками. При этом создается интенсивное движение воздуха в цилиндрах. Впрыск топлива производится на такте впуска. Коэффициент избытка воздуха поддерживается системой управления двигателем на уровне 1,5. При необходимости в состав смеси добавляются отработавшие газы из выпускной системы, содержание которых может доходить до 25%.

 

 

Система непосредственного впрыска бензина MED 17.0

Режимы работы:

Ламинарный режим

Прогрев каталитического нейтрализатора
Впрыскивание топлива посредством электромагнитных топливных форсунок
Клапан дозирования топлива на топливном насосе высокого давления
Датчик давления топлива в топливном коллекторе
Датчик уровня моторного масла для определения температуры моторного масла (только EcoBoost – MI4 2. 0L)
Система регулирования фаз газораспределения для впускного и выпускного распределительных валов
система низкого давления топлива, управляемая модулем
Стратегии управления двигателем для соблюдения стандарта выбросов V
Наддув:

Турбокомпрессор, работающий на ОГ, с водяным охлаждением и электропневматическим клапаном с откидным затвором
Нейтрализация (очистка) отработавших газов:

Трехкомпонентный каталитический нейтрализатор с предустановленным и последующим кислородными датчиками HO2S
Предельные показатели токсичности отработавших газов

С введением норм токсичности V предельные показатели выбросов стали еще строже.

Двигатели с впрыском во впускной коллектор

Бензиновые двигатели с впрыском во впускной коллектор, которые уже поставлялись в соответствии со стандартом выбросов IV, будут частично модифицированы до соответствия стандарту выбросов V. Это в основном достигается за счет доработанного программного обеспечения в PCM.

Кроме того , в некоторых вариантах нейтрализация NOX улучшается путем дальнейшей модификации покрытия каталитического нейтрализатора.

У других вариантов мощность каталитического нейтрализатора была уже достаточной. Поскольку стандарт выбросов V все же требует более быстрого достижения рабочей температуры каталитического нейтрализатора, пришлось установить каталитический нейтрализатор ближе к двигателю.

Двигатели с непосредственным впрыском бензина и турбонаддувом

С точки зрения стандарта выбросов V непосредственному впрыску бензина с турбонаддувом придается новое значение.

Первым двигателем этого вида является EcoBoost – MI4 2.0L. Этот двигатель с 02/2010 устанавливается на 2007.5 Mondeo и 2006.5 S-MAX/Galaxy.

Двигатель EcoBoost – Sigma 1.6L доступен с момента ввода продукта 2011 C-MAX.

В будущем последуют другие двигатели с непосредственным впрыском бензина и турбонаддувом.

EGR

Внешняя EGR через клапан EGR для этих двигателей не требуется. Требуемая рециркуляция отработавших газов осуществляется посредством переменного регулируемого газораспределения.

Рассмотрение системы непосредственного впрыска бензина

Система непосредственного впрыска бензина обладает большими резервами экономии топлива. В комбинации с TC достигается сокращение расхода топлива до 20%.

Двигатели с системой непосредственного впрыска бензина образуют топливовоздушную смесь в камере сгорания. Этот тип смесеобразования называют внутренним смесеобразованием.

Через открытый впускной клапан в такте всасывания в камеру сгорания подается только свежий воздух.

Топливо под большим давлением впрыскивается непосредственно в камеру сгорания через специальные форсунки.

Способ сжигания

Способом сжигания в системе непосредственного впрыска бензина называют то, как осуществляется смесеобразование и преобразование энергии.

Иметь влияние

геометрия камеры сгорания и впускного тракта,
момент впрыска и зажигания, а также
применяемый режим работы.
У EcoBoost – MI4 1.6L используется технология управляемого факела. Топливная форсунка расположена по центру в верхней стенке камеры сгорания, посередине между впускным и выпускным клапанами.

У EcoBoost – MI4 2.0L используется способ сжигания с впрыском топлива вдоль стенок камеры. Топливная форсунка расположена сбоку на головке блока цилиндров между впускными клапанами.

Смесеобразование осуществляется посредством углубления в днище поршня.

Режимы работы

Используются следующие режимы работы:

гомогенный режим работы и
режим прогрева каталитического нейтрализатора.
Гомогенный режим работы:

В прогретом двигателе смесеобразование осуществляется исключительно в гомогенном режиме. В этом режиме впрыскиваемое топливо смешивается со свежим воздухом точно в стехиометрическом соотношении 14,7:1. При этом топливо впрыскивается в такте всасывания, чтобы осталось достаточно времени для гомогенизации всей смеси. В гомогенном режиме работы сгорание, в значительной мере соответствует двигателю с впрыском топлива во впускной коллектор.
Режим прогрева каталитического нейтрализатора:

Режим прогрева каталитического нейтрализатора служит для быстрого прогрева трехкомпонентного каталитического нейтрализатора при холодном двигателе и реализуется посредством двойного впрыскивания. При этом первое впрыскивание как и в гомогенном режиме осуществляется в такте всасывания. Второе впрыскивание осуществляется в такте сжатия, непосредственно после закрывания впускных клапанов. За счет этого обеспечивается богатая топливовоздушная смесь вокруг свечи зажигания. Момент зажигания регулируется в направлении запаздывания так, чтобы в систему выпуска и, тем самым, в трехкомпонентный каталитический нейтрализатор могло попасть как можно больше тепла от сгорания.

Непосредственный впрыск топлива

Непосредственный впрыск — разновидность распределенного впрыска топлива, при котором топливо впрыскивается напрямую в цилиндры

Двигатель

В поисках способа усовершенствовать систему распределенного впрыска инженеры пришли к выводу, что для оптимизации сгорания топлива его лучше впрыскивать прямо в цилиндры, а не во впускной коллектор. Эта идея привела к появлению систем впрыска нового поколения.

История создания непосредственного впрыска топлива

Изобретателем системы непосредственного впрыска принято считать французского инженера и автопромышленника Леона Левассора. Он установил первую систему подобного рода на авиационный двигатель V8 в качестве экспериментальной, с целью решить основную проблему самолетных двигателей внутреннего сгорания — нарушения работы впрыска в момент переворота аэроплана. В 1907 году этим двигателем был оснащен моноплан Antoinette VII.

Первую автомобильную систему непосредственного впрыска разработала компания Bosch, а установлена она была впервые на автомобили ныне несуществующих немецких марок Goliath и Gutbrod в 1952 году.

Непосредственный впрыск топлива.

В семидесятые годы, побуждаемая топливным кризисом, американская компания AMC занялась разработкой собственной системы непосредственного впрыска, которой впоследствии оснащали двигатели одноименных автомобилей. Система называлась SCFI. Примерно в те же годы концерн Ford выпустил на рынок собственную разработку под названием ProCo.

В современном автопроме первой активно начала продвигать непосредственный впрыск компания Mitsubishi в 1996 году

Системы обладали рядом недостатков, и после окончания кризиса интерес к непосредсвенному впрыску снизился.

Следующая волна разработок пришлась на середину девяностых.

Первой активно начала продвигать непосредственный впрыск компания Mitsubishi в 1996 году, установив систему GDI на четырехцилиндровый двигатель 4G93 автомобиля Galant.

В 2000 году появилась, вероятно, наиболее известная в наши дни система непосредственного впрыска FSI концерна Volkswagen-Audi group

Toyota выпустила собственную систему D4 на внутренний рынок Японии в 1998 году. В 1999 была представлена система IDE компании Renault.

В 2000 году появилась система FSI (и TFSI в случае установки на двигатель турбины) концерна Volkswagen-Audi group.

В дальнейшем в том или ином виде свои системы представили все крупнейшие мировые производители. Непосредственный впрыск остается крайне актуальной темой в связи с интересом к экономии и жестким экологическим нормам в современном автомобилестроении.

Принцип работы непосредственного впрыска топлива

Непосредственный впрыск топлива — разновидность распределенного впрыска, применяемая в наиболее современных двухтактных и четырехтактных двигателях внутреннего сгорания.

Наиболее широкое распространение система получила в современных дизельных двигателях, так как дизельное топливо тяжелее бензина, и проблема оптимизации сгорания для них более актуальна

В системах непосредственного впрыска топливо сначала аккумулируется в магистрали под высоким давлением (более высоким, чем в обыкновенных инжекторных системах), а затем при помощи форсунок впрыскивается непосредственно в цилиндры, то есть в камеру сгорания, куда заранее уже закачан воздух.

При непосредственном впрыске топливо-воздушная смесь преднамеренно обеднена, что способствует повышению экономичности двигателя. При этом проблема снижения мощности решается за счет более эффективного распрыскивания топлива. Одно и то же количество топлива в зависимости от размера капель при распрыскивании сгорает по разному. Мелкие капли, смешавшись с воздухом, образуют в камере сгорания туман, в котором пламя распространяется равномерно. Топливо при таком распрыскивании сгорает практически без остатка, и продуктов сгорания почти не остается. При таком сгорании меньшая доза топлива отдает столько же тепла, сколько отдает большая доза при распрыскивании относительно крупными каплями. В последнее время исследования по оптимизации сгорания продолжаются. Наиболее перспективным направлением считается развитие послойного впрыска. Топливо при послойном впрыске попадает в камеру сгорания несколькими частями с очень малым интервалом. Этот алгоритм позволил добиться дополнительной оптимизации сгорании топлива.

Единственный недостаток непосредственного впрыска — усложнение конструкции и увеличение себестоимости компонентов. Производителям приходится проводить отладку системы уже после начала продаж

Дополнительная экономия достигается за счет точной дозировки топлива и открытия форсунок в строго определенное время. Благодаря компьютерному управлению момент и период открытия форсунок могут оперативно изменяться в зависимости от текущей нагрузки на двигатель.

В системах непосредственного впрыска основной упор сделан на дозировку топлива, поэтому роль дроссельной заслонки в регулировке состава смеси постепенно сходит на нет.  По сути, в системах, подобных Valvetronic компании BMW, VVEL фирмы Nissan, Valvematic фирмы Toyota или MultiAir производства Fiat, дроссельная заслонка перестала быть главным инструментом, регулирующим поток воздуха, попадающего в камеру сгорания. Помимо системы дозировки топлива, функцию дроссельной заслонки отчасти взяла на себя система интеллектуального контроля фаз газораспределения.

Непосредственный впрыск конструктивно сближает систему впуска бензинового и дизельного двигателей

Благодаря применению непосредственного впрыска топлива появилась возможность заложить в блок управления разные программы управления впрыском и зажиганием, регулирующие работу режима в основных режимах, как правило, в трех — холостые обороты (и близкие к ним), движение под большой нагрузкой, движение при малой нагрузке. В каждом из этих режимов количество топлива в смеси разное. В режиме преднамеренно обедненной смеси достигается наибольшая экономичность, в стехиометрическом (то есть близком к оптимальному) сохраняется уверенная тяга при средней нагрузке, в форсированном — двигатель развивает максимальную мощность. Во время движения автомобиля блок управления двигателем постоянно меняет эти режимы, в зависимости от ситуации.

Режимы работы непосредственного впрыска

Режим обедненной смеси используется, когда нагрузка на двигатель минимальна: при движении на постоянной или снижающейся скорости.

Обычное, так называемое стехиометрическое (оптимальное) соотношение масс воздуха и бензина в камере сгорания, необходимое для успешного зажигания и сгорания топливо-воздушной смеси — 14.7:1. Однако в вышеописанных ситуациях, то есть когда обороты двигателя быстро или постепенно замедляются, его можно без вреда для двигателя менять в пользу меньшего количества топлива. Таким образом, в режиме обедненной смеси количество долей воздуха может достигать 65 (а иногда и более) к одной доле топлива.

В сложной системе непосредственного впрыска повышается вероятность сбоя. Известны случаи отзыва автомобилей, оснащенных системами впрыска этого типа

Стехиометрический режим используется при равномерном движении с постоянной нагрузкой на двигатель. В этом режиме воздух и топливо смешиваются в идеальной пропорции, что способствует полному сгоранию.

В форсированном режиме содержание топлива в смеси слегка превышено. Это способствует развитию максимальной мощности, что целесообразно, к примеру, для нагруженного автомобиля, движущегося в гору.

Volkswagen, Audi Система прямого впрыска топлива – UnderhoodService


За последнее десятилетие почти все автомобили, которые Volkswagen и Audi продали в США, были оснащены системой непосредственного впрыска топлива. Эти системы FSI, TSI и GDI обеспечивают лучшую экономию топлива и мощность. Переход на непосредственный впрыск также позволил Volkswagen уменьшить объем своих двигателей с 2,0 л до 1,4 л на базовых моделях без потери мощности, при этом повысив топливную экономичность.

За счет непосредственного впрыска топлива в цилиндр система позволяет избежать неравномерного разбрызгивания топлива на заднюю часть впускного клапана. Непосредственный впрыск топлива в сочетании с регулируемыми фазами газораспределения и регулируемыми впускными коллекторами позволяет лучше контролировать объем воздуха и топлива, впрыскиваемого в цилиндры.

Форсунки также лучше контролируют размер капель по сравнению с системой, в которой топливо и воздух проходят через впускной клапан. Это не дает большой капле топлива возможности соскользнуть вниз по клапану и попасть в цилиндр. Этот контроль также означает снижение выбросов при холодном пуске, и двигатель переходит в состояние замкнутого цикла раньше, чем с системами впрыска топлива во впускные отверстия.

Как это работает?
Давление является ключом к работе системы прямого впрыска Volkswagen. С более чем 3000 фунтов на квадратный дюйм на задней стороне форсунки при некоторых условиях и давлением сгорания на другой стороне критически важно управлять тем, что происходит на кончике форсунки.

Большинство систем прямого впрыска Volkswagen используют конденсатор и инвертор напряжения для создания напряжения в диапазоне от 40 до 100 вольт. Один из лучших способов просмотра выходного сигнала драйвера и срабатывания инжектора — это использование индуктивных токоизмерительных клещей и осциллографа. Некоторые более поздние системы используют пиковый/удерживающий сигнал для инжектора.

Если модуль ECM обнаружит проблему, он отключит форсунку и драйвер в целях самосохранения. Вот почему в некоторых системах невозможно обнаружить неисправную форсунку в работе. Прямой инжектор находится под большим давлением, поэтому могут возникнуть утечки. Например, утечка может произойти, когда двигатель находится в состоянии покоя, что приведет к сильному нагарообразованию и обогащению топлива.

Когда форсунка не работает, поврежденный цилиндр становится воздушным насосом, который нагнетает большое количество кислорода мимо датчика соотношения воздух/топливо. Это можно посмотреть с помощью прицела. ECM может сопоставить импульс выхлопа с синхронизацией двигателя, чтобы определить неисправный цилиндр.

VW и Audi разместили форсунки непосредственно в камерах сгорания для большей эффективности. Новая платформа B7, A4 и Passat имели топливный насос в баке. У них также был механический топливный насос высокого давления с приводом от распределительного вала, который создавал давление топлива до 3000 фунтов на квадратный дюйм. Насос в баке обеспечивает правильный объем топлива в этой безвозвратной системе. Насос на распределительном валу регулирует давление в топливной рампе.

Коды DTC, СВЯЗАННЫЕ С ТОПЛИВОМ
Модели Audi A4 и Passat были выпущены с непосредственным впрыском в 2006 году. Закалка распределительных валов была недостаточной, и мог произойти чрезмерный износ, что приводило к срабатыванию MIL и сохранению кода неисправности P2293 в памяти двигателя. ЭБУ. Этот код был для работы регулятора давления топлива 2. Иногда также сохранялись коды DTC P0087 (слишком низкое давление топлива) и P1093 (неисправность топливной коррекции, ряд 1).

Затронутые двигатели: Audi 2,0 л с турбонаддувом (BPG) и VW 2,0 л с турбонаддувом (BPY) ( см. Фото 1 ). Самая ранняя информация о проблеме, которую я нашел в TSB, была датирована 18 июня 2007 года. повреждение кулачкового ролика, распределительного вала или даже самого насоса.

1. Снимайте насос для осмотра ведомого колеса только при холодном двигателе и обязательно стравите высокое давление перед отсоединением трубопроводов.

2. Заведите автомобиль и отсоедините штекер регулятора давления топлива в верхней части насоса. Дайте машине поработать на холостом ходу около 10 секунд, и давление упадет со 120 бар до 6 бар.

3. Заглушите двигатель и немедленно отсоедините топливопроводы. Отсоедините датчик низкого давления и снимите три болта, которые удерживают насос на месте ( см. Фото 2 ).

Фото 2

4. Осторожно снимите насос. Толкатель кулачка может остаться в головке блока цилиндров. Осмотрите насос и грундбуксу и определите, есть ли ненормальный износ, который необходимо устранить ( см. рис. 1 ). Насос можно использовать повторно, за исключением случаев полного износа грундбуксы, что приводит к прямому контакту с кулачком ( см. рис. 2 и 3 ).

Рис. 1: Толкатель кулачка на разных стадиях износа: основание с отверстиями (A), чрезмерный износ (B), нормальный износ (C) и новая деталь (D).

 

Рис. 2. Чрезмерный износ кулачка топливного насоса высокого давления на впускном распределительном валу.

 

Рис. 3. Следы чрезмерного износа на кончике плунжера топливного насоса высокого давления.

5. Если толкатель чрезмерно изношен, внимательно осмотрите кулачок, чтобы определить, не требуется ли замена впускного распределительного вала. Если распределительный вал необходимо заменить, имеется новый распределительный вал (P/N 06f109101b), кулачок которого имеет повышенную закалку.

6. При замене распределительного вала также было бы неплохо заменить ремень ГРМ, водяной насос и натяжитель, если только у автомобиля не очень маленький пробег.

7. При повторной установке топливного насоса всегда заменяйте уплотнительное кольцо. Установите новый толкатель в головку блока цилиндров и проверните двигатель, пока толкатель не опустится до упора.

8. Замените уплотнительное кольцо насоса и осторожно вставьте насос в толкатель в головке блока цилиндров. Затяните три болта в диагональной последовательности и затяните их с моментом 10 Нм.

9. Установите линии подачи и возврата и затяните линию подачи с моментом 30 Нм, а линию возврата с моментом 25 Нм. Убедитесь, что на линиях нет напряжения.

10. Подсоедините датчик низкого давления и регулятор давления, затем заведите автомобиль и еще раз проверьте герметичность.

Даже если необходимо заменить впускной распределительный вал, работа несложная и не требует каких-либо специальных инструментов, кроме тех, которые у вас уже есть при замене ремня ГРМ; это просто отнимает время. Устранение нагара и застрявших заслонок на впуске также не составляет труда. Ваша информационная система онлайн-сервиса будет иметь процедуры для диагностики и устранения проблем с ранними автомобилями с непосредственным впрыском.

Спецификации моторного масла и углерод
Масло в картере двигателя Volkswagen с непосредственным впрыском может иметь огромное значение для состояния двигателя. Правильно подобранное масло может уменьшить нагар на впускных клапанах и сохранить двигатель в рабочем состоянии. В последние годы Volkswagen рекомендует для своих двигателей с турбонаддувом и непосредственным впрыском масла специальные марки масел, отвечающие собственным требованиям. Их нельзя игнорировать, если вы меняете масло в двигателе с непосредственным впрыском.

Большинство обычных масел имеют высокие показатели летучести. Если масло имеет высокое число летучести, оно испаряется быстрее при воздействии тепла. Это означает, что масло со временем может стать гуще и перестанет смазывать. Это также означает, что система PCV в двигателе Volkswagen должна обрабатывать больший объем масляных паров. Эти пары могут содержать углеводороды и прилипать к впускным клапанам, вызывая проблемы с отложениями углерода. Синтетические масла имеют гораздо более низкую летучесть масла. Это уменьшает количество паров масла и возможность образования нагара на впускных клапанах.

Трудно избежать Volkswagen с непосредственным впрыском топлива. Сегодня они составляют большую часть автомобилей Volkswagen на дорогах. Ключом к обслуживанию этих автомобилей является сервисная информация и обучение. Они несложны в обслуживании и предлагают новые возможности, которых не было около 15 лет назад, например, обезуглероживание двигателя и обслуживание топливных насосов высокого давления.

ПОРТ, ПРЯМОЙ или ДВОЙНОЙ ВПРЫСК – что лучше? – Engineerine

Источник: вождение 4 ответа / YouTube

Всем известно, что двигатели значительно эволюционировали с течением времени. Системы впрыска топлива для бензиновых двигателей являются одной из таких разработок. Когда дело доходит до метода распределения бензина, прямой и портовый — это два разных варианта.

Прямой впрыск (DI) — это метод впрыска бензина непосредственно в цилиндры двигателя внутреннего сгорания. PFI (Port Fuel Injection) — это метод впрыска бензина, при котором для подачи топлива используется порт вне цилиндра.

Система двойного впрыска — это недавно разработанная система, которая пытается объединить как порт, так и прямой впрыск в новую единую установку с большим количеством преимуществ и меньшим количеством недостатков.

Чтобы помочь вам понять, как работают эти системы, мы рассмотрим преимущества и недостатки прямого впрыска топлива и впрыска через порт, а также то, как двойная система объединяет оба метода.

Содержание

Непосредственный впрыск топлива

Источник: ResearchGate

В отличие от впрыска через порт, при котором бензин впрыскивается в камеру предварительного сгорания или впускной коллектор, при непосредственном впрыске бензин впрыскивается прямо в камеру сгорания двигателя.

Использование этого метода подачи топлива приводит к повышению производительности, поскольку он более эффективен и чище при сжигании. Выбросы также сокращаются, и эта технология повышает эффективность до 10 процентов.

Преимущества прямого впрыска топлива

Источник: topspeed

Более экономичный расход топлива

Когда речь идет об увеличении расхода топлива вашего автомобиля, лучшим решением являются топливные системы с непосредственным впрыском топлива. Эти системы впрыскивают топливо непосредственно в двигатель, что означает меньше потерь энергии и больше миль на галлон. Это более чистый процесс сжигания, который полезен для окружающей среды.

Более высокая производительность

Благодаря тонкому распылению топливно-воздушной смеси система непосредственного впрыска обеспечивает большую мощность, чем другие системы, поскольку позволяет лучше контролировать момент зажигания и соотношение воздух/топливо.

Источник: underhoodservice

Требуется меньше обслуживания

Более эффективно и требует меньше обслуживания использование двигателей с непосредственным впрыском, а не двигателей с распределенным впрыском топлива. В долгосрочной перспективе вы сэкономите деньги, потому что так ваш двигатель прослужит дольше.

Помимо того, что он дешевле в обслуживании, он также проще в использовании. Поскольку прямой впрыск не требует прохождения топлива через клапаны, вам не придется беспокоиться об утечках газа или забитых клапанах.

Без компонентов высокого давления

Это последнее достижение в области впрыска топлива. Он более надежен и эффективен, чем когда-либо прежде, поскольку в нем меньше компонентов высокого давления, которые могут выйти из строя.

Источник: autoguide

Недостатки прямого впрыска топлива

  • Форсунки быстро изнашиваются, поскольку они постоянно используются.
  • Использование насоса высокого давления для подачи газа под высоким давлением к форсункам со временем приведет к его неисправности.
  • Слишком много воздуха в топливной смеси может помешать запуску двигателя.
  • Проблемы с клапаном и поршнем могут быть вызваны скоплением нагара над впускным клапаном из-за отсутствия прохода через него бензина, что приводит к множеству проблем.
  • Более сложная система.
  • Плохое испарение на высоких оборотах.

Чтобы узнать больше о системах прямого впрыска, прочитайте эту статью.

Форсунка впрыска топлива

Источник: предоставлено Robert Bosch Corp.

Топливо впрыскивается непосредственно во впускные каналы двигателя через порт впрыска топлива. Впускной коллектор получает газ и распределяет его по цилиндрам, которым он необходим, через отдельные направляющие или порты.

Хотя концепция впрыска топлива через порт была впервые запатентована в 1927 году, дальнейшие исследования были остановлены во время Второй мировой войны из-за нехватки металлов. Начиная с автомобилей Cadillac и Oldsmobile 1949 года, General Motors использовала собственную версию этой технологии, созданную ими после Второй мировой войны.

Преимущества распределенного впрыска топлива

Воздушно-топливная смесь более стабильна

Распределенный впрыск топлива (PFI) обеспечивает лучшую и более однородную воздушно-топливную смесь при более низких оборотах двигателя. Эти изменения подразумевают, что мощность доступна, когда это необходимо, а не только во время высокоскоростного ускорения.

Источник: Предоставлено Robert Bosch Corp. Двигатели внутреннего сгорания оснащены системой впрыска топлива, которая впрыскивает бензин во впускное отверстие перед корпусом дроссельной заслонки, а не прямо в цилиндры камер сгорания. Улучшенное распыление и смешивание воздуха повышают эффективность и снижают выбросы по сравнению с системами прямого впрыска.

Недорогой

Форсунки с портом — отличный вариант, если вы хотите повысить производительность своего автомобиля, не тратя много денег. Более дешевая альтернатива прямому впрыску. Эта техника инъекции также более надежна и чище, чем альтернативы.

Повышенная эффективность сгорания

По сравнению с непосредственным впрыском, впрыск топлива через порт более эффективен с точки зрения сгорания. Водители, ищущие лучшее из обоих миров, могут сэкономить деньги на топливе, по-прежнему получая удовольствие от вождения.

По сравнению с непосредственным впрыском, его преимущества включают лучший холодный пуск и меньшую опасность затопления и паровых пробок в жаркую погоду.

Недостатки впрыска топлива через порт

  • Повышенная механическая сложность из-за увеличения количества деталей, включая насосы и клапаны.
  • Увеличенный вес из-за добавления дополнительного оборудования на двигатель.
  • Поскольку не весь воздух, поступающий в камеру сгорания, может быть использован, эффективность несколько снижается.
  • Независимо от того, насколько хорошо смазаны или обновлены уплотнения, окружающие шток клапана, они могут пропускать масло.
  • Настройка более сложна, чем системы с непосредственным впрыском, поскольку для работы требуется меньше переменных, таких как время впрыска и время задержки.

Двойной впрыск топлива

Источник: Объяснение техники / YouTube

Поэтому, чтобы бороться с недостатками как портового, так и прямого впрыска, производители автомобилей решили объединить порт и непосредственный впрыск в одну установку, известную как двойной впрыск топлива.

Интересно, что объединение этих двух систем складывает вместе преимущества, но избавляет от всех недостатков.

Единственным недостатком этой системы является увеличение количества движущихся частей и повышение производственных затрат.

Как работает двухтопливная форсунка?

Источник: caranddriver

При низких оборотах система будет полагаться в основном только на входную топливную форсунку, которая обеспечивает лучшую топливно-воздушную смесь. Это означает, что двигатель получит все преимущества впрыска топлива во впускной коллектор.

Однако по мере увеличения оборотов включается прямая форсунка, а портовая форсунка останавливается. Это повышает эффективность сгорания, поскольку система прямого впрыска работает быстрее при более высоких оборотах и ​​может работать лучше.

Когда число оборотов увеличивается все больше и больше, а форсунка с прямым портом больше не способна обеспечить достаточное количество топлива на такой высокой скорости, форсунка с прямым портом придет на помощь. Обе форсунки будут работать вместе на высоких оборотах, чтобы подавать в цилиндр необходимое количество топлива.

Заключение

Как мы уже видели, и портовая, и система прямого впрыска имеют свои преимущества и недостатки; двойная система представляет собой комбинацию обоих.

Система двойного впрыска — это успешная разработка системы впрыска, которая пытается объединить преимущества обеих систем, но в то же время устранить все недостатки.

По этой причине все больше автопроизводителей внедряют системы двойного впрыска топлива в свои новые двигатели.

Что вы думаете об этой системе? Считаете ли вы, что двойной впрыск топлива станет будущим топливных форсунок и заменит как прямую, так и портовую системы? Пожалуйста, поделитесь с нами своими мыслями по теме.

Чем хорош прямой впрыск? (ABCs of Car Tech)

Возможно, вы читали или слышали, как один из ваших любимых редакторов Car Tech говорил о прямом впрыске бензина и о том, что это одна из «больших технологий», которая помогает поддерживать жизнь почти 200-летнему двигателю внутреннего сгорания.

хорошо в 21 веке. В выпуске ABCs of Car Tech за эту неделю я собираюсь объяснить, что такое, черт возьми, прямой впрыск бензина и почему вас должно волновать, будет он в двигателе вашего следующего автомобиля или нет.

Как работал впрыск топлива до прямого впрыска?
Современному бензиновому двигателю внутреннего сгорания (ДВС) для вращения коленчатого вала необходимы три вещи: насыщенный кислородом воздух, топливо и искра, чтобы воздух и топливо взорвались. Воздух всасывается через воздухозаборник, где он измеряется датчиком массового расхода воздуха (MAF) автомобиля, а затем поступает во впускной коллектор, где единственный впускной тракт разделен на четыре-восемь впускных каналов, каждый из которых ведет в один из цилиндрических каналов вашего автомобиля. камеры сгорания. Где-то вдоль линии всасываемый заряд смешивается с топливом, прежде чем свеча зажигания заставляет все это взорваться внутри камеры сгорания. Я уверен, что для большинства из вас это все ICE 101.

Еще в древние времена двигателестроения карбюраторы и системы одноточечного впрыска топлива смешивали воздух и топливо относительно неточно во впускном коллекторе или даже перед ним, добавляя примерно нужное количество топлива для всего ряда цилиндров. По большей части каждая камера сгорания получила то, что ей было нужно. Однако, в зависимости от конструкции впускного коллектора, это приближение может привести к тому, что в цилиндры, расположенные ближе всего к карбюратору или топливной форсунке, будет поступать слишком много топлива (работа на обогащенной смеси), а в самые дальние цилиндры — слишком мало (обеднение). Опытный настройщик карбюратора (или умный компьютер двигателя) мог предотвратить выход из-под контроля, но даже самая лучшая настройка была ограничена конструкцией впускного коллектора.

На этом рисунке (не в масштабе) показано, как одноточечный впрыск может привести к несоответствию количества топлива (зеленый цвет), добавляемого в каждый цилиндр. Антуан Гудвин/CNET

В подавляющем большинстве современных автомобилей используется система многоточечного впрыска топлива (MPFI) (также известная как впрыск через порт). Вот как это работает: вместо того, чтобы использовать одну форсунку, которая распыляет примерно нужное количество топлива, каждый из отдельных впускных каналов имеет свою собственную форсунку (или форсунки), которая добавляет струю аэрозольного топлива во всасываемый воздух из инжектора под давлением. Воздушно-топливная смесь втягивается в открытый порт и в камеру сгорания отступающим поршнем. Затем впускной клапан захлопывается, и в уже загерметизированном цилиндре происходит взрывное сгорание.

Многоточечный впрыск выравнивает подачу топлива, предоставляя каждому цилиндру собственную форсунку. Антуан Гудвин/CNET

По большей части, MPFI просто прекрасен и денди. Это, безусловно, намного эффективнее, чем старые карбюраторные и SPFI-системы, благодаря возможности регулировать количество топлива, подаваемого на впуск для каждого отдельного цилиндра, выравнивая ранее бедные и богатые цилиндры на крайних концах коллектора, улучшая выработку мощности. и сокращение потерь топлива. Итак, зачем чинить то, что фактически не сломано?

Как непосредственный впрыск повышает производительность?
Вы, возможно, заметили, что во время перехода от карбюратора к SPFI и MPFI точка, в которой топливо добавляется во впускной коллектор, смещается от перед дроссельной заслонкой к впускному коллектору и далее к отдельным впускным каналам — все ближе и ближе к камере сгорания. Прямой впрыск выводит эту эволюцию на новый уровень, размещая форсунку внутри камеры сгорания. Благодаря перемещению форсунки в камеру сгорания система непосредственного впрыска бензина (GDI) получает несколько преимуществ по сравнению с ранее обсуждаемыми системами.

Непосредственный впрыск улучшается еще больше за счет перемещения топливных форсунок в камеру сгорания. Более точное управление означает, что можно добавить еще меньше топлива. Антуан Гудвин/CNET

Поместив форсунку внутрь цилиндра, компьютер двигателя получает еще более точный контроль над количеством топлива во время такта впуска, дополнительно оптимизируя воздушно-топливную смесь для создания чистого горящего взрыва с очень небольшим расходом топлива и увеличенной мощностью.

Система GDI также обладает большей гибкостью в отношении , когда в цикле сгорания добавляется топливо. Системы MPFI могут добавлять топливо только во время такта впуска поршня, когда впускной клапан открыт. GDI может добавлять топливо всякий раз, когда это необходимо. Например, некоторые двигатели GDI могут регулировать синхронизацию так, чтобы меньшее количество топлива впрыскивалось во время такта сжатия, создавая гораздо меньший контролируемый взрыв в цилиндре. Этот так называемый режим ультра обедненного горения немного жертвует прямой мощностью, но значительно снижает количество топлива, используемого в периоды, когда транспортному средству требуется очень мало ворчания (холостой ход, движение накатом, замедление и т. д.).

Двигатели GDI также быстрее реагируют на эти изменения времени и количества добавляемого топлива, повышая управляемость. Кроме того, транспортное средство может более быстро регулироваться на основе входных сигналов от датчиков, расположенных ниже по потоку от камеры сгорания, контролируя грязные выбросы, выбрасываемые из выхлопной трубы.

Некоторые автопроизводители даже экспериментировали с использованием GDI для дополнительного выброса топлива в цилиндр, чтобы создать вторичный взрыв во время цикла сгорания, что потенциально привело к еще большей мощности и эффективности.

Вот забавный факт: технология прямого впрыска не на самом деле так нова, как вы можете подумать. Эта технология существует с 1920-х годов для бензиновых двигателей и фактически уже используется в большинстве дизельных двигателей.

Есть ли потенциальные недостатки GDI?
Вы можете спросить: «Если GDI так хорош, почему он не используется в каждой новой машине?»

Частично причина в том, что производство двигателя с непосредственным впрыском дороже из-за сложности компонентов, а это означает, что автомобиль, который в конечном итоге приводит в действие двигатель, также будет дороже купить. Например, форсунки на двигателе GDI должны быть более прочными, чем портовые форсунки, чтобы выдерживать тепло и давление сотен (или даже тысяч) крошечных взрывов в минуту. Кроме того, поскольку система GDI должна иметь возможность впрыскивать топливо в камеру сгорания под давлением, топливопроводы, подающие бензин, должны иметь еще более высокую компрессию. Топливные системы GDI могут работать при давлении в несколько тысяч фунтов на квадратный дюйм по сравнению с 40–60 фунтами на квадратный дюйм систем впрыска через порт.

Цена на эти компоненты падает, но в целом и на данный момент впрыск через порт дешевле и «достаточно хорош» для большинства экономичных автомобилей.

Кроме того, некоторые владельцы и специалисты по техническому обслуживанию двигателей GDI (особенно высокопроизводительных моделей с турбонаддувом) сообщают, что в системах с непосредственным впрыском наблюдается повышенное накопление углерода на задней стороне впускных клапанов, что со временем приводит к снижению потока воздуха и производительности. Быстрый поиск в Google дает страницу за страницей анекдотических сообщений об этой проблеме. Накопление происходит из-за того, что в большинстве автомобилей воздух на впуске, откровенно говоря, немного грязный — даже с установленными воздушными фильтрами, современные системы рециркуляции отработавших газов и системы вентиляции картера могут добавить довольно много грязи во впускной воздух — и без порта. форсунки распыляют бензин (и содержащиеся в нем моющие средства) на клапаны, и в течение многих тысяч миль они могут стать довольно грязными.

Прямой впрыск хорошо сочетается с другими технологиями двигателей
Автопроизводители находят множество новых способов дальнейшего усовершенствования двигателя внутреннего сгорания с помощью технологии прямого впрыска. Например, некоторые автопроизводители (в том числе Ford, Audi и BMW) используют GDI в сочетании с турбонаддувом для создания двигателей с малым рабочим объемом, которые обеспечивают небольшой КПД при большой мощности двигателя.

Система D-4S, используемая в двигателе FR-S/BRZ, сочетает в себе системы прямого и портового впрыска. Антуан Гудвин/CNET

Toyota уже несколько лет предлагает свою систему впрыска топлива D-4S для некоторых моделей своего 3,5-литрового двигателя V-6. В D-4S используется комбинация прямого и портового впрыска, чтобы объединить лучшие черты обеих систем.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *