Устройство и принцип работы аккумулятора: устройство, виды и принцип работы АКБ, а также срок службы и характеристики батареи

Содержание

Принцип работы и устройство аккумулятора автомобиля

В автомобилях одним из главных источников электропитания является аккумуляторная батарея. От её характеристик зависит качественный запуск двигателя при любых условиях. Чтобы обеспечить для АКБ надёжную и длительную эксплуатацию, необходимо знать её устройство изнутри, а также разбираться в её работе.

Назначение аккумулятора в автомобиле

Аккумулятор включён в цепь с бортовым компьютером и иными потребителями электроэнергии автомобиля. Подпитывается он от генератора во время работающего двигателя внутреннего сгорания. Инженеры обеспечили следующий функционал для батареи:

  1. Простой и быстрый пуск двигателя внутреннего сгорания. Ток поступает на стартер, начинающий вращать коленвал.
  2. Подаётся напряжение на потребителей. Если мотор заглушён, то вместо генератора напряжение отбирается от АКБ.
  3. Обеспечивается помощь генератору, если нагрузка от потребителей в бортовой сети оказывается высокой, например, в вечернее время, когда включён лобовой свет, работают дворники, обогрев кресел, стёкла, запущен вентилятор печки и пр.

Не каждый генератор способен выдавать стабильные параметры по току, поэтому аккумуляторную батарею используют для сглаживания пиковых значений.

В основном батарея в легковом автомобиле, закреплённая хомутами, располагается радом с двигателем в подкапотном пространстве. Это позволяет минимизировать длину проводки между источником тока и потребителями. В грузовиках блок обязательно надёжно зафиксирован с рамой, чтобы содержащийся внутри кислотный раствор не смог выплеснуться наружу. С этим прибором необходимо соблюдать максимальную осторожность.

Параметры АКБ

Для среднестатистического легкового автомобиля с ДВС промышленность выпускает аккумуляторы с рабочим напряжением 12 В. Такого значения вполне хватает для питания сети в машине. Бортовая сеть большинства грузовиков рассчитана на 24 В. Иногда в ней используется пара обычных двенадцативольтовых источников питания, подсоединённых последовательно.

Для мототехники характерным является использование питания на 6 В. Это позволяет снизить габариты ИП и обеспечить оптимальность работы ненагруженной бортовой сети.

Важным значением для АКБ является её ёмкость. Этот параметр измеряется в ампер-часах и может варьироваться у разных моделей от 45 до 130 Ач. В большинстве легковых машин используются агрегаты на 55–65 Ач. Дизельные ДВС более «прожорливые» по энергии, поэтому в них при прочих равных условиях будет стоять батарея на 5–10 Ач мощней, чем в аналогичном авто на бензине.

Пусковой ток для автомобильных аккумуляторов может быть в пределах 300–1300 А.

Основные требования, которые предъявляются к автомобильным источникам питания, могут быть такими:

  • наибольший пусковой ток;
  • минимальный саморазряд;
  • небольшие габариты;
  • необслуживаемость (либо минимальное вмешательство).

Одним из конструкционных значений является полярность. Это расположение клемм на внешней стороне корпуса. Для азиатских, европейских и американских моделей встречается несколько вариантов установки контактов.

Устройство аккумулятора

Конструкция большинства источников постоянного тока в легковой машине оказывается идентичной. Чаще всего попадаются свинцово-кислотные батареи с жидким электролитом внутри. Устройство такой АКБ у автомобиля можно описать схематично.

Блок двенадцативольтового прибора состоит из шести независимых банок, соединённых последовательно. Они все заключены в единый пластиковый корпус, изолирующий внутреннее устройство вашего автомобильного кислотного аккумулятора от внешней среды. Прочный каркас является стойким к механическим повреждениям снаружи и длительно противостоит возможному воздействию раствора кислоты.

Так как устроен прибор внутри в виде комплекта банок, выдающих по 2 В, то его называют батареей. Для каждой банки есть комплект положительных и отрицательных электродов, чередующихся внутри и не касающихся друг друга. Они изготовлены из токопроводящей свинцовой решётки, обработанной снаружи активной смазкой.

Пластины не должны контактировать между собой, чтобы не образовалось короткое замыкание. Для надёжности производители отделяют их сепараторами.

Электроды изготовлены из свинцовых сплавов, в состав которых могут входить вещества, обеспечивающие качественную проводимость тока и повышающие длительность эксплуатации устройства.

Дополнительными химическими элементами в свинцовых пластинах, кроме металла, выступают сурьма или кальций. Легирующие добавки снижают саморазряд и расход воды в процессе работы. Чаще всего на прилавках можно найти такие аккумуляторы:

  1. Малосурьмянистые. Они относятся к малообслуживаемым конструкциям. В составе электродов используется сурьма до 6%.
  2. Кальциевые. В них корпус и крышка лишены пробок, так как это необслуживаемые конструкции, а в электродах используется также кальций.
  3. Гибридные. Модели АКБ, в которых минусовой электрод изготовлен из сплава свинец + кальций, а плюсовой изготовлен из сплава свинец + сурьма.

Встроенная внутрь решётка может быть изготовлена по различным технологиям, например, просечкой или литьём. Крупные производители патентуют свою конструкцию, защищая её. Для улучшения прочности разработчики могут усиливать решётки направляющими либо опорными рамами. Внутри расположение бывает вертикальное или в шахматном порядке.

Подготовленная жидкость, располагающаяся между электродами, представляет собой водяной раствор серной кислоты с плотностью около 1,28 г/мл. Она называется электролитом. В более прогрессивных моделях используется не жидкость, а гелеобразная масса. Для сгущения применяется оксид кремния.

Принцип работы

Основные процессы, проходящие внутри, скрыты от глаз автомобилистов. Даже не все автовладельцы знают принцип работы у аккумулятора легкового автомобиля. Однако даже при наличии школьных знаний химии можно понять суть проходящих внутри манипуляций как все работает.

Во время зарядки на отрицательном электроде идёт простая химическая реакция, во время которой высвобождаются два электрода, и из иона кислотного остатка плюс атом свинца образуется сульфид свинца. На положительном электроде два высвободившихся электрона добавляются к оксиду свинца, ионам водорода и ионам кислотного остатка. В результате формируются вода и сульфид свинца. Принцип основной работы вашего автомобильного аккумулятора подразумевает, что при разрядке идут обратные процессы.

Накопление заряда может происходить как от генератора, так и от внешнего источника. Саморазряд происходит постепенно. Необходимо учитывать, что при понижении окружающей температуры химические процессы существенно замедляются. Электролит в разряженном состоянии на морозе может даже замёрзнуть, поэтому не стоит доводить АКБ зимой до глубокой разрядки.

Принцип работы аккумулятора физика

Автор Почемучка На чтение 23 мин. Просмотров 294

Работа аккумулятора при заряде

В широком смысле слова в технике под термином «Аккумулятор» понимается устройство, которое позволяет при одних условиях эксплуатации накапливать определенный вид энергии, а при других — расходовать ее для нужд человека.

Их применяют там, где необходимо собрать энергию за определенное время, а затем использовать ее для совершения больших трудоемких процессов. Например, гидравлические аккумуляторы, используемые в шлюзах, позволяют поднимать корабли на новый уровень русла реки.

Электрические аккумуляторы работают с электроэнергией по этому же принципу: вначале накапливают (аккумулируют) электричество от внешнего источника заряда, а затем отдают его подключенным потребителям для совершения работы. По своей природе они относятся к химическим источникам тока, способным совершать много раз периодические циклы разряда и заряда.

Во время работы постоянно происходят химические реакции между компонентами электродных пластин с заполняющим их веществом — электролитом.

Принципиальную схему устройства аккумулятора можно представить рисунком упрощенного вида, когда в корпус сосуда вставлены две пластины из разнородных металлов с выводами для обеспечения электрических контактов. Между пластинами залит электролит.

Работа аккумулятора при разряде

Когда к электродам подключена нагрузка, например, лампочка, то создается замкнутая электрическая цепь, через которую протекает ток разряда. Он формируется движением электронов в металлических частях и анионов с катионами в электролите.

Этот процесс условно показан на схеме с никель-кадмиевой конструкцией электродов.

Здесь в качестве материала положительного электрода используют окислы никеля с добавками графита, которые повышают электрическую проводимость. Металлом отрицательного электрода работает губчатый кадмий.

Во время разряда частицы активного кислорода из окислов никеля выделяются в электролит и направляются на отрицательные пластины, где окисляют кадмий.

Работа аккумулятора при заряде

При отключенной нагрузке на клеммы пластин подается постоянное (в определенных ситуациях пульсирующее) напряжение большей величины, чем у заряжаемого аккумулятора с той же полярностью, когда плюсовые и минусовые клеммы источника и потребителя совпадают.

Зарядное устройство всегда обладает большей мощностью, которая «подавляет» оставшуюся в аккумуляторе энергию и создает электрический ток с направлением, противоположным разряду. В результате внутренние химические процессы между электродами и электролитом изменяются. Например, на банке с никель кадмиевыми пластинами положительный электрод обогащается кислородом, а отрицательный — восстанавливается до состояния чистого кадмия.

При разряде и заряде аккумулятора происходит изменение химического состава материала пластин (электродов), а электролита не меняется.

Способы соединения аккумуляторов

Величина тока разряда, которую может выдержать одна банка, зависит от многих факторов, но в первую очередь от конструкции, примененных материалов и их габаритов. Чем значительнее площадь пластин у электродов, тем больший ток они могут выдерживать.

Этот принцип используется для параллельного подключения однотипных банок у аккумуляторов при необходимости увеличения тока на нагрузку. Но для заряда такой конструкции потребуется поднимать мощность источника. Этот способ используется редко для готовых конструкций, ведь сейчас намного проще сразу приобрести необходимый аккумулятор. Но им пользуются производители кислотных АКБ, соединяя различные пластины в единые блоки.

В зависимости от применяемых материалов, между двумя электродными пластинами распространенных в быту аккумуляторов может быть выработано напряжение 1,2/1,5 или 2,0 вольта. (На самом деле этот диапазон значительно шире.) Для многих электрических приборов его явно недостаточно. Поэтому однотипные аккумуляторы подключают последовательно, причем это часто делают в едином корпусе.

Примером подобной конструкции служит широко распространенная автомобильная разработка на основе серной кислоты и свинцовых пластин-электродов.

Обычно в народе, особенно среди водителей транспорта, принято называть аккумулятором любое устройство, независимо от количества его составных элементов — банок. Однако, это не совсем правильно. Собранная из нескольких последовательно подключенных банок конструкция является уже батареей, за которой закрепилось сокращенное название «АКБ» . Ее внутреннее устройство показано на рисунке.

Любая из банок состоит из двух блоков с набором пластин для положительного и отрицательного электродов. Блоки входят друг в друга без металлического контакта с возможностью надежной гальванической связи через электролит.

При этом контактные пластины имеют дополнительную решетку и отдалены между собой разделительной пластиной — сепаратором.

Соединение пластин в блоки увеличивает их рабочую площадь, снижает общее удельное сопротивление всей конструкции, позволяет повышать мощность подключаемой нагрузки.

С внешней стороны корпуса такая АКБ имеет элементы, показанные на рисунке ниже.

Из него видно, что прочный пластмассовый корпус закрыт герметично крышкой и сверху оборудован двумя клеммами (обычно конусной формы) для подключения к электрической схеме автомобиля. На их выводах выбита маркировка полярности: «+» и «-». Как правило, для блокировки ошибок при подключении диаметр положительной клеммы немного больше, чем у отрицательной.

У обслуживаемых аккумуляторных батарей сверху каждой банки размещена заливная горловина для контроля уровня электролита или доливки дистиллированной воды при эксплуатации. В нее вворачиваются пробка, которая предохраняет внутренние полости банки от попадания загрязнений и одновременно не дает выливаться электролиту при наклонах АКБ.

Поскольку при мощном заряде возможно бурное выделение газов из электролита (а этот процесс возможен при интенсивной езде), то в пробках делаются отверстия для предотвращения повышения давления внутри банки. Через них выходят кислород и водород, а также пары электролита. Подобные ситуации, связанные с чрезмерными токами заряда, желательно избегать.

На этом же рисунке показано соединение элементов между банками и расположение пластин-электродов.

Стартерные автомобильные АКБ (свинцово-кислотные) работают по принципу двойной сульфатации. На них во время разряда/заряда происходит электрохимический процесс, сопровождающийся изменением химического состава активной массы электродов с выделением/поглощением в электролит (серную кислоту) воды.

Этим объясняется повышение удельной плотности электролита при заряде и снижение при разряде батареи. Другими словами, величина плотности позволяет оценивать электрическое состояние АКБ. Для ее замера используют специальный прибор — автомобильный ареометр.

Входящая в состав электролита кислотных батарей дистиллированная вода при отрицательной температуре переходит в твердое состояние — лед. Поэтому, чтобы автомобильные аккумуляторы не замерзали в холодное время, необходимо применять специальные меры, предусмотренные правилами эксплуатации.

Какие существуют типы аккумуляторов

Современное производство для различных целей выпускает более трех десятков разнообразных по составу электродов и электролиту изделий. Только на основе лития работает 12 известных моделей.

В качестве металла электродов могут встретиться:

Принцип действия аккумулятора основан на образовании разности потенциалов между двумя электродами, погруженными электролит. При подключении нагрузки (электротехнических устройств) к клеммам аккумулятора в реакцию вступают электролит и активные элементы электродов. Происходит процесс перемещения электронов, который, по сути, и является электротоком.

Принцип действия аккумуляторов

Принцип действия аккумулятора основан на образовании разности потенциалов между двумя электродами, погруженными электролит. При подключении нагрузки (электротехнических устройств) к клеммам аккумулятора в реакцию вступают электролит и активные элементы электродов. Происходит процесс перемещения электронов, который, по сути, и является электротоком.

При разряде аккумулятора (подключении нагрузки) губчатый свинец анода выделяет положительные двухвалентные ионы свинца в электролит. Избыточные электроны перемещаются по внешней замкнутой электрической цепи к катоду, где происходит восстановление четырехвалентных ионов свинца до двухвалентных.

При их соединении с отрицательными ионами серного остатка электролита, образуется сульфат свинца на обоих электродах.

Ионы кислорода от диоксида свинца катода и ионы водорода из электролита соединяются, образуя молекулы воды. Поэтому плотность электролита понижается.

При заряде происходят обратные реакции. Под воздействием внешнего напряжения ионы двухвалентного свинца положительного электрода отдают по два электрона и окисляются в четырехвалентные. Эти электроны движутся к аноду и нейтрализуют ионы двухвалентного свинца, восстанавливая губчатый свинец. На катоде, путем промежуточных реакций, снова образуется двуокись свинца.

Химические реакции в одной ячейке вырабатывают напряжение 2 В, поэтому на клеммах аккумулятора из 6 ячеек и получается 12 В.

Из видео Вы сможете более подробно узнать, как работает аккумулятор:

Аккумуляторные батареи, как и любая другая техника, имеют свое оригинальное устройство, структуру. В современных аккумуляторах используются определенные материалы, внедряются системы, основанные на физических и химических свойствах конкретных веществ и металлов. Рассмотрим принцип работы аккумуляторной батареи на примере свинцово-кислотных.

История аккумуляторов

Первый аккумулятор по официальным данным изобрел в 1798 году Алессандро Вольт – итальянский ученый, разработавший первый химический источник тока.

С 1820 ряд мировых ученых (Ампер, Фарадей, Дэниэл и другие) разрабатывал новые концепции, физические и химические законы, связанные с аккумуляторами.

1899 – Вальдмар Юнгнер разрабатывает батарею, где электродами выступали пластины из кадмия и никеля.

1901 – известный ученый Томас Эдисон изобретает бюджетную по стоимости модель железно-никелевого аккумулятора.

1947 – благодаря ученому Нойману батарея стала полностью герметичной.

1970-е – разработаны первые модели популярных свинцово-кислотных аккумуляторов.

В 1990-х начинается разработка и производство новых моделей аккумуляторов на основе металлгидрида и никеля.

Первый аккумулятор, то есть гальванический элемент многоразового использования, появился, по официальным данным, в 1803 году. Его создал немецкий физик и химик Иоганн Вильгельм Риттер. Друг Эрстеда, Риттер, не будучи ученым, изучал химическое действие света, проводил эксперименты с электролизом, ему, кстати, принадлежит открытие ультрафиолетовой части электромагнитного спектра.

Электрическим аккумулятором называют химический источник тока многоразового действия. Химические процессы внутри аккумулятора, в отличие от оных в одноразовых гальванических элементах, таких как щелочные или солевые батарейки, обратимы. Циклы заряда-разряда, накопления и отдачи электрической энергии, могут многократно повторяться.

Так, сам принцип действия аккумулятора позволяет циклически использовать его для автономного электроснабжения разнообразных устройств, портативных приборов, транспортных средств, медицинского оборудования и т. д. в совершенно различных сферах.

Произнося слово «аккумулятор», имеют ввиду или сам аккумулятор или аккумуляторную ячейку. Несколько последовательно или параллельно соединенных друг с другом аккумуляторных ячеек образуют аккумуляторную батарею, как и несколько соединенных аккумуляторов.

Первый аккумулятор, то есть гальванический элемент многоразового использования, появился, по официальным данным, в 1803 году. Его создал немецкий физик и химик Иоганн Вильгельм Риттер. Друг Эрстеда, Риттер, не будучи ученым, изучал химическое действие света, проводил эксперименты с электролизом, ему, кстати, принадлежит открытие ультрафиолетовой части электромагнитного спектра.

Однажды экспериментируя с вольтовым столбом, Риттер взял пятьдесят кружков из меди, куски влажного сукна, и составил столб из пятидесяти таких кружков и влажного сукна между ними. Пропустив через конструкцию ток от вольтова столба, Риттер обнаружил, что его столб зарядился и сам стал источником электричества. Это и был первый аккумулятор.

Обратимость химической реакции в электролите и на электродах аккумулятора позволяет восстанавливать работоспособность аккумулятора — заряжать его после разряда. Ток в процессе заряда пропускается через аккумулятор в направлении, противоположном разряду.

Так например, свинцово-кислотный аккумулятор работает благодаря электрохимическим реакциям свинца и диоксида свинца в серной кислоте. Формулы ниже отражают обратимые реакции, протекающие на аноде и на катоде: слева направо — реакция при разряде, справа налево — заряд.

Рассмотрим теперь устройство аккумулятора на примере автомобильной стартерной батареи. Ее напряжение 12 вольт. Состоит батарея из шести соединенных последовательно гальванических элементов, разделенных перегородками.

Последовательное соединение в данном случае обозначает, что отрицательный вывод одной ячейки подключен к положительному выводу следующей ячейки.

Каждый элемент включает в себя пару решетчатых электродов из свинцово-сурьмянистого сплава, погруженных в электролит, представляющий собой 38% водный раствор серной кислоты. Пористый сепаратор изолирует электроды друг от друга, предотвращая замыкания между ними, но свободно пропускает через себя электролит. То есть жидкость заполняет как ячейки свинцовых пластин, так и поры сепараторов.

Одноименные пластины соединены между собой свинцовыми перемычками, как и разделенные перегородками пакеты пластин, составляющие отдельные элементы, и выводы аккумулятора — тоже изготовлены из свинца.

Выводы автомобильного аккумулятора всегда немного отличаются в размере друг от друга — плюсовая клемма больше в диаметре чем минусовая, чтобы не ошибиться при подключении.

Корпус аккумулятора изготавливается из диэлектрического материала устойчивого к агрессивным средам, к перепадам температур и к вибрациям. Сегодня корпусы стартерных АКБ делают из полипропилена.

Корпус представляет собой герметично закрытую емкость с крышкой, оснащенную отбортовками для прочного крепления. В корпусах старых аккумуляторов всегда предусматривались пробки над каждым из гальванических элементов, составляющих батарею, чтобы можно было при необходимости доливать в них дистиллированную воду. Современные необслуживаемые аккумуляторы пробок на корпусах не имеют.

Другие статьи про аккумумляторы и их использование:

1. Принцип действия

Главная > Доклад >Физика

Принцип действия и использование аккумуляторов

1. Принцип действия

2. Промышленные аккумуляторы

Итальянский ученый Луиджи Гальвани (1737–1798) открыл возможность получения электрического тока иным, чем электризация трением, способом. Однажды, когда он проводил исследование лягушек, он заметил, что при прикосновении стальным скальпелем к нерву лапка мёртвой лягушки пришла в движение. В дальнейшем Гальвани поставил несколько опытов по обнаружению причины возникновения электрического тока

Аккумулятор – прибор для накопления электрической энергии с целью её дальнейшего использования.

1. Принцип действия

Принцип действия аккумуляторов основан на явлении электролиза.

Электролиз заключается в изменение химического состава раствора при прохождении через него электрического тока, обусловленное потерей или присоединением электронов ионами. Важным свойством электролиза является его обратимость

Аналогично гальваническому элементу можно изготовить и аккумулятор. Для этого используют две свинцовые пластины, погруженные в раствор, содержащий одну часть серной кислоты и пять частей воды. Чтобы зарядить аккумулятор, его соединяют последовательно с амперметром и пропускают через цепь ток

Процесс зарядки состоит в том, что две идентичные пластины аккумулятора вследствие электролиза становятся различными; одна из них, отрицательная, по-прежнему остаётся свинцовой, а материал другой (положительной), превращается в перекись свинца

В аккумуляторе протекают следующие химические реакции (в процессе зарядки реакции идут слева направо, при разрядке – в обратном направлении):

4 + 2H 2 O PbO 2 + Pb + H 2 SO 4

2. Промышленные аккумуляторы

Положительные пластины при производстве промышленных аккумуляторов покрывают толстым слоем перекиси свинца. Отрицательные пластины изготавливаются из пористого губчатого свинца

У обычной аккумуляторной батареи, состоящей из трех последовательно соединенных аккумуляторных элементов, напряжение составляет немногим более 6 вольт. Коэффициент полезного действия аккумуляторной батареи – примерно 75%. На аккумуляторной батарее ставят число, которое показывает количество запасенной в аккумуляторе электроэнергии, выраженной в ампер-часах

Например, 120 ампер-часов означает, что при полной разрядке аккумулятор сможет давать ток в 1 ампер в течение 120 часов, или ток в 2 ампера в течение 60 часов

Необходимо постоянно поддерживать аккумулятор в заряженном состоянии. Даже если батарея не находится в эксплуатации, ее следует регулярно подзаряжать. Необходимо содержать зажимы батареи в чистоте и предохранять от возникновения коррозии. Ни следует допускать замерзания батарей

В основном аккумуляторные батареи используются для запуска двигателей автомобилей и других машин. Возможно так же и применение в качестве временных источников электроэнергии в местах, удаленных от населенных пунктов. Необходимо помнить, что аккумуляторы следует поддерживать в заряженном состоянии, применяя для этого, к примеру, солнечную энергию

В будущем аккумуляторы рассчитывают применять для питания экологически чистых электромоторов

1. Кабардин О. Физика: справочные материалы. М.: Просвещение, 1991, 164 с.

2. Трофимова Т.И. Курс физики: Учебное пособие для вузов. М.: Высш. шк., 1999. 542 с.

3. Эллиот Л., Уилкокс У. Физика. М.: ГИФМЛ, 1963, 495 с.

Свинцово-кислотный аккумулятор — наиболее распространенный на сегодняшний день тип аккумуляторов, изобретен в 1859 году французским физиком Гастоном Планте. Основные области применения: стартерные батареи в автомобильном транспорте, аварийные источники электроэнергии.

Главная > Реферат >Химия

Министерство науки и образования Республики Казахстан

Актюбинский государственный университет им. К. Жубанова

По дисциплине: Физическая химия.

На тему: Аккумуляторы и принцип их работы.

Выполнил: студент Тихонов Тимур

1. Свинцово-кислотный аккумулятор

4. Физические характеристики

5. Эксплуатационные характеристики

7. Свинцово-кислотный аккумулятор при низких температурах

9. Износ свинцово-кислотных аккумуляторов

10. Электри́ческий аккумуля́тор

11. Принцип действия

12. Никель-ка́дмиевый аккумуля́тор

14. Области применения

Свинцово-кислотный аккумулятор — наиболее распространенный на сегодняшний день тип аккумуляторов, изобретен в 1859 году французским физиком Гастоном Планте. Основные области применения: стартерные батареи в автомобильном транспорте, аварийные источники электроэнергии.

Принцип работы свинцово-кислотных аккумуляторов основан на электрохимических реакциях свинца и диоксида свинца в сернокислотной среде. Во время разряда происходит восстановление диоксида свинца на катоде и окисление свинца на аноде. При заряде протекают обратные реакции, к которым в конце заряда добавляется реакция электролиза воды, сопровождающаяся выделением кислорода на положительном электроде и водорода — на отрицательном.

Химическая реакция (слева-направо — разряд, справа-налево — заряд):

В новых версиях свинцовые пластины (решетки) заменяют вспененным карбоном, покрытым тонкой свинцовой пленкой, а жидкий электролит может быть желирован силикагелем до пастообразного состояния. Используя меньшее количество свинца и распределив его по большой площади, батарею удалось сделать не только компактной и легкой, но и значительно более эффективной — помимо большего КПД, она заряжается значительно быстрее традиционных аккумуляторов. [1]

Теоретическая энергоемкость: около 133 Вт·ч/кг.

Удельная энергоемкость (Вт·ч/кг): 30-60 Вт·ч/кг .

Удельная энергоплотность (Вт·ч/дм³): около 1250 Вт·ч/дм³.

ЭДС заряженного аккумулятора = 2,11 В, рабочее напряжение = 2,1 В (6 секций в итоге дают 12,7 В).

Напряжение полностью разряженного аккумулятора = 1,75 — 1,8 В (из расчета на 1 секцию). Ниже разряжать их нельзя.

Рабочая температура: от минус 40 до плюс 40

КПД: порядка 80-90%

Номинальная ёмкость , показывает количество электричества, которое может отдать данный аккумулятор. Обычно указывается в ампер-часах, и измеряется при разряде малым током (1/20 номинальной емкости, выраженной в а/ч).

Стартерный ток (для автомобильных). Характеризует способности отдавать сильные токи при низких температурах. В большинстве случаев замеряется при -18°С (0°F) в течение 30 секунд. Различные методики замера отличаются, главным образом, допускаемым конечным напряжением.

Резервная емкость (для автомобильных). Характеризует время, в течение которого аккумулятор может отдавать ток 25А. Обычно составляет порядка 100 минут.

Ареометр может быть использован для проверки удельного веса электролита каждой секции

Такие нехитрые операции вместе с проверкой автомобиля на утечку тока и периодической подзарядкой аккумулятора могут на несколько лет продлить срок эксплуатации батареи.

Свинцово-кислотный аккумулятор при низких температурах

Свинцово-кислотные аккумуляторы необходимо хранить только в заряженном состоянии. При температуре ниже −20 °C заряд аккумуляторов должен проводиться постоянным напряжением 2,275 В/секцию, 1 раз в год, в течение 48 часов. При комнатной температуре — 1 раз в 8 месяцев постоянным напряжением 2,35 В/секцию в течение 6-12 часов. Хранение аккумуляторов при температуре выше 30 °C не рекомендуется.

Слой грязи и накипи на поверхности аккумулятора создает проводник для тока от одного контакта к другому и приводит к саморазряду аккумулятора, после чего начинается преждевременная сульфатизация пластин и поэтому поверхность аккумулятора необходимо поддерживать в чистоте (то есть его надо мыть перед хранением) Хранение свинцово-кислотных аккумуляторов в разряженном состоянии приводит к быстрой потере их работоспособности.

При длительном хранении аккумуляторов и разряде их большими токами (в стартерном режиме), или при уменьшении ёмкости аккумуляторов, нужно проводить контрольно-тренировочные (лечебные) циклы, то есть разряд-заряд токами номинальной величины. [2]

Всем этим параметрам и соответствует кислотно-свинцовый аккумулятор, об устройстве которого поговорим ниже.

Обычно для автомобилей применяются кислотно-свинцовые аккумуляторы , которые имеют напряжение 12 вольт и различаются только по емкости заряда. Автомобильный аккумулятор должен обладать несколькими важными параметрами.

  1. Иметь малое внутренне падение напряжения
  2. Иметь небольшой саморазряд во время эксплуатации
  3. Иметь способность выдавать большие токи
  4. Иметь небольшие габариты и минимальное обслуживание.

Всем этим параметрам и соответствует кислотно-свинцовый аккумулятор, об устройстве которого поговорим ниже.

Элемент Даниэля-Якоби за прошедшие столетия был значительно улучшен и модернизирован. Выработка электричества стала производиться более компактными и производительными устройствами, которые к тому же теперь восстанавливают свой ресурс. Но общий принцип работы аккумулятора остался тот же и сегодня.

Общие сведения

Невозможно представить работу множества современных приборов и механизмов, без аккумулятора – компактного источника жизненной энергии для нашпигованных электроникой и автоматикой всяческих устройств.

Автомобильная стартерная аккумуляторная батарея (АКБ) – так официально называется подобное устройство в транспортных средствах. Хотя принцип работы и конструкцию аккумулятора изучают ещё в средней школе на уроках физики, но многие успевают к началу самостоятельной жизни автолюбителя изрядно забыть столь ценные знания.

Давайте немного оживим наши познания и вспомним, что за штука такая – аккумулятор, как ему удается сохранять и отдавать накопленное электричество. Основной принцип работы аккумулятора – использование эффекта возникновения разности потенциалов (напряжения) между двумя погруженными в раствор электролита металлическими пластинами. Работающий на этом эффекте элемент впервые был сделан в 1836-1838 годах. Одна из пластин в нем была медной, другая цинковой, но она быстро растворялась в электролите.

Элемент Даниэля-Якоби за прошедшие столетия был значительно улучшен и модернизирован. Выработка электричества стала производиться более компактными и производительными устройствами, которые к тому же теперь восстанавливают свой ресурс. Но общий принцип работы аккумулятора остался тот же и сегодня.

Устройство аккумуляторной батареи

Следует уточнить, что французский физик Гастон Плант в 1859 г. создал свинцово-кислотную батарею, площадь которой была всего 10 кв. м. Современный аккумулятор является копией батареи Планта, но только уменьшенной во много раз.

Все детали конструкции батареи объединены в корпусе, который можно видеть как единый элемент аккумулятора под капотом автомобиля.

Конечно, правильно было бы называть аккумулятором лишь одну, отдельно взятую ячейку. Несколько таких ячеек должны быть названы аккумуляторной батареей. Так, каждый из шести отдельных аккумуляторов («банок») в стандартной аккумуляторной батарее легкового автомобиля (12 В) вырабатывает напряжение в 2 В.

Крайне серьезные и даже жесткие требования предъявляются к корпусу батареи, который должен обладать достаточной виброустойчивостью, справляться со значительными изменениями температур, а так же выдерживать воздействие агрессивных химических реагентов. Всем этим запросам удовлетворяет современный синтетический материал – полипропилен, именно поэтому в большинстве случаев при изготовлении корпуса используется именно этот материал.

Основная глубокая емкость и закрывающая её крышка – это те части, из которых состоит корпус. Крышка может быть оснащена либо дренажной системой, которая выводит вырабатывающийся газ и стабилизирует давление внутри батареи, либо горловинами с пробками. Вид крышки зависит от типа АКБ.

Каждая из отдельных ячеек аккумуляторной батареи оснащена одним скомбинированным пакетом, который состоит из большого количества пластин с чередованием их полярности. Пластины изготовляются из свинца. Они имеют структуру решеток, состоящих из прямоугольных сот. Именно благодаря такой конструкции можно нанести на пластины активную массу – основной рабочий реагент. Так как данную массу наносят посредством намазывания на пластины, то они так и называются – пластины намазного типа.

При изготовлении автомобильных аккумуляторов применяются только намазные пластины, хотя существуют и другие типы аккумуляторов. К примеру, в некоторых аккумуляторах устанавливаются пластины с увеличенной площадью, а также пластины из панцирной сетки.

Каждая из пластин в аккумуляторе – это электрод с противоположной полярностью. Именно поэтому может произойти короткое замыкание. Для его предотвращения между каждой парой пластин вставлен, изготовленный из пористого пластика сепаратор, который не препятствует циркуляции электролита внутри ячейки. Чтобы избежать коробления, каждая положительно заряженная пластина помещается между двумя «минусовыми» пластинами. Именно поэтому отрицательных пластин в ячейке всегда на одну больше.

Дабы предотвратить всевозможные деформации и смещения, весь собранный пакет зафиксирован специальным бандажом. При помощи токосборников, плюсовые и минусовые токовыводы пластин концентрируют свою энергию на выводных борнах аккумулятора. К данным борнам подключаются клеммы автомобиля, принимающие ток.

Принцип работы

Двуокись свинца на пластине с положительным зарядом, раствор серной кислоты в воде (электролит, с плотностью 1,28 г/см3), а так же губчатый свинец на отрицательном электроде – это активные элементы, вступающие в реакцию инициирования нагрузки на клеммы аккумулятора. В результате данной реакции происходит процесс вырабатывания электротока, с последующим образованием сульфата свинца на отрицательно заряженной пластине. Так же снижается плотность электролита, так как из него выделяется вода.

К ак известно, аккумуляторы большой емкости больше и массивнее аккумуляторов малой емкости. У них больше рабочая поверхность пластин и больше пространства для диффузии электролита внутри аккумулятора. Поэтому внутреннее сопротивление аккумуляторов большой емкости меньше, чем внутреннее сопротивление аккумуляторов меньшей емкости.

П адение напряжения на свинцовом аккумуляторе не пропорционально разрядному току. При больших разрядных токах, диффузия ионов электролита происходит в свободном пространстве, а при маленьких токах разряда аккумулятора — сильно ограничивается порами активного вещества пластин аккумулятора. Поэтому внутреннее сопротивление аккумулятора при больших токах в несколько раз (для свинцового аккумулятора) меньше, чем внутреннее сопротивление того же аккумулятора при малых токах.

К ак известно, аккумуляторы большой емкости больше и массивнее аккумуляторов малой емкости. У них больше рабочая поверхность пластин и больше пространства для диффузии электролита внутри аккумулятора. Поэтому внутреннее сопротивление аккумуляторов большой емкости меньше, чем внутреннее сопротивление аккумуляторов меньшей емкости.

И змерения внутреннего сопротивления аккумуляторов на постоянном и переменном токе показывают, что внутреннее сопротивление аккумулятора сильно зависит от частоты. Ниже приводится график зависимости проводимости аккумуляторов от частоты, который взят из работы австралийских исследователей.

И з графика следует, что внутреннее сопротивление свинцового аккумулятора имеет минимум при частотах порядка сотен герц.

П ри высокой температуре скорость диффузии ионов электролита выше, чем при низкой. Эта зависимость имеет линейный характер. Она и определяет зависимость внутреннего сопротивления аккумулятора от температуры. При более высокой температуре, внутреннее сопротивление аккумулятора ниже, чем при низкой температуре.

В о время разряда аккумулятора, количество активной массы на пластинах аккумулятора уменьшается, что приводит к уменьшению активной поверхности пластин. Поэтому внутреннее сопротивление заряженного аккумулятора меньше, чем внутреннее сопротивление разряженного аккумулятора.

Отправить заявку

Аккумуляторы по новым технологиям

При всех этих конструктивных отличиях общий принцип работы и протекания электрохимических процессов внутри батарей остается прежним.

Но, к сожалению, все эти разработки крайне медленно приближаются к коммерческому уровню поскольку все они пока не вышли в массовое производство, не доказали свои практические преимущества, а пробные партии имеют несравнимо высокую цену по сравнению с традиционными, проверенными временем, выпускаемых серийно промышленных образцов аккумуляторных батарей.

  • Чем больше объем двигателя, тем более емкий аккумулятор требуется;
  • В дизельных моторах используются АКБ с большей емкостью, чем в бензиновых, того же объема;
  • Если вы эксплуатируется автомобиль в условиях сильных морозов, нельзя покупать гелиевые АКБ.

Приобретая аккумулятор для своего автомобиля, не обязательно знать все параметры и характеристики, указываемые на батарее, а только к какой категории принадлежит ваш ДВС и какой объем двигателя у вашего автомобиля. Из особенностей которые нужно учитывать при выборе АКБ можно выделить следующее:

  • Чем больше объем двигателя, тем более емкий аккумулятор требуется;
  • В дизельных моторах используются АКБ с большей емкостью, чем в бензиновых, того же объема;
  • Если вы эксплуатируется автомобиль в условиях сильных морозов, нельзя покупать гелиевые АКБ.

Конечно многие обращают внимание и на другие параметры, указанные на аккумуляторе, что не обязательно. Обычно на самой батарее или в ее названии указывают какого типа батарея (например стартерная), ее емкость, мощность, время заряда, масса залитой батареи, параметры согласно стандартов других стран.

Перед тем как покупать АКБ, изучите технический паспорт своего транспортного средства, либо ознакомьтесь с параметрами старой батареи – это поможет не ошибиться с выбором и правильно сделать выбор с учетом особенностей вашего автомобиля. Если самостоятельно выбрать аккумулятор не получается, можно обратиться за консультацией к специалисту, например, к продавцу в автомобильном магазине.

Источники

http://electricalschool.info/spravochnik/eltehustr/1521-kak-ustroen-i-rabotaet-akkumuljator.html
http://pue8.ru/elektricheskie-seti/805-kak-rabotaet-akkumulyator-i-iz-chego-on-sostoit.html
http://kwatt.com.ua/chto-takoe-akkumulyator-osnovnye-ponyatiya-printsip-raboty-i-nemnogo-istorii/
http://electrik.info/device/1297-ustroystvo-i-princip-raboty-akkumulyatora.html
http://works.doklad.ru/view/1VR7KGsSkvI.html
http://works.doklad.ru/view/CDmtTwVmOa0.html
http://autoustroistvo.ru/elektrooborudovanie/akb/
http://akkumulyatorov.net/ustrojstvo-i-princip-raboty-akkumulyatora/
http://www.at-systems.ru/quest/new-quest/battery-resistance-y.shtml
http://wybor-battery.com/stati/tendencii-razvitiya-akkumulyatornyh-batarej/
http://vtorbaza.com/spravka/iz-chego-sostoit-avtomobilnyj-akkumulyator/

принцип работы, из чего состоит, назначение и схема акб

Автор Aluarius На чтение 10 мин. Просмотров 9.6k. Опубликовано

Принципиально устройство аккумулятора больше чем за 150 лет с момента его изобретения не изменилось, хотя современность внесла серьёзные новшества в технологические процессы их изготовления и используемые материалы, из чего состоит аккумулятор.

Автономный источник энергии

 

Что такое аккумулятор

Аккумулятор – автономный источник электричества, который накапливает, сохраняет и отдает энергию. Аккумуляторная батарея – важный элемент электрооборудования транспортного средства. Назначение акб определяется в запуске двигателя и обеспечении подачи электричества в бортовую сеть. Все электроприборы, когда выключен мотор, и не работает генератор, работают от батареи. Накопитель помогает в пробке, когда энергии генератора не хватает.

 

Устройство и принцип работы аккумулятора

Для того, чтобы разобраться, как работает аккумулятор, необходимо знать устройство акб, что внутри аккумулятора обеспечивает работу прибора. Основной принцип работы аккумулятора заключается в разности потенциалов при погружении двух пластин в электролит. В 12-ти вольтовой батарее объединены шесть аккумуляторов, каждый из которых вырабатывает 2 вольта. Все они объединены совместным корпусом, который образует единое целое конструкции.

Аккумулятор в разрезе

При работе этой конструкции, пластинки из-за действия серной кислоты выделяют сульфат свинца, в результате чего образуется электрический ток. Также выделяется вода, и поэтому концентрация электролита становится менее плотной. Во время зарядки АКБ процесс осуществляется в обратном порядке, свинец снова обретает металлическую форму, электролит становится более концентрированным. Принцип работы аккумулятора основан на методе двойной сульфатации, который позволяет полностью восстанавливать первоначальные свойства батареи. Срок службы аккумулятора зависит от качества используемых материалов, из чего состоит акб.

 

Схема строения

 

Схема строения

Виды аккумуляторов

Классификация акб по составу активного вещества

Свинцовые пластины, используемые в старых аккумуляторах перестали устраивать потребителей. Возникала необходимость по улучшению качества работы акб. Сначала добавили сурьму к свинцу, что позволило заметно продлить срок эксплуатации батареи. На следующем этапе – уменьшили процентное содержания сурьмы до оптимальной концентрации. Такой подход привел к созданию малообслуживаемых аккумуляторов, потому что в них уже намного реже требовался долив воды.

При использовании металлического кальция для покрытия пластин появились кальциевые энергосберегающие источники. В предыдущих моделях потери воды из-за электролиза на 12 вольт требовали постоянного долива, а кальций позволил повысить этот порог до 16 вольт. Так появилась возможность в производстве необслуживаемых аккумуляторов использовать герметичный, неразборной корпус.

  • Сурьмянистые батареи относятся к классике из-за повышенного состава сурьмы, которая ускоряет процесс электролиза.
  • В малосурьмянистых акб материалом для пластин служит свинец с небольшой примесью сурьмы. В них степень саморазряда значительно меньше, чем в сурьмянистых АКБ.
  • При производстве кальциевых источников свинцовые пластины легированы до 0,1% кальцием. Они могут иметь различные заряды, как отрицательный, так и положительный.
  • Гибридные источники энергии вытесняют кальциевые. Конструктивные отличия состоят в том, что при их производстве объединили две технологии: одна, когда пластины формируются из сплава свинца и сурьмы, положительные электроды, а другая – когда пластины формируются из сплава свинца и кальция, отрицательные электроды.
  • EFB является улучшенной жидкозаполненной батареей. Свинцовые пластины в ЕФБ аккумуляторах в два раза толще, чем у обычных, вследствие чего увеличивается их ёмкость. Каждая из пластин закрыта в пакет из специальной ткани, который наполнен жидким сернокислотным электролитом.
  • В гелевых аккумуляторах применяется гелеобразный электролит. Такая технология позволила снизить текучесть электролита, в котором содержится агрессивная серная кислота.
  • В литиевых акб используется жидкий электролит, представляющий собой раствор фторсодержащих солей лития в смеси эфиров угольной кислоты.
  • Отличительной особенностью AGM является то, что в электролит с помощью специальной технологии между пластинами вставляются стекловолоконные микропористые прокладки.
  • Во всех щелочных батареях применяется растворенная в воде щёлочь.

Классификация батарей по типу электролита

Электролиты бывают кислотными, щелочными. Щелочные растворы используются в заправке аккумуляторных батарей. Щелочные аккумуляторные жидкости представляют собой сильные основания, которые проявляют большую активность по отношению к металлам и кислотам. При реакциях с кислотами образуются соль и вода. Растворы щелочей подвергаются гидролизу. Химические свойства позволяют использовать этот тип электропроводящей жидкости для накопления электрической энергии в аккумуляторе.

Кислотные смеси с дистиллированной водой применяются в основном в автомобильных аккумуляторах. Такие составы можно приобрести в специализированных магазинах или же приготовить самостоятельно в домашних условиях. На заводе процесс изготовления таких смесей осуществляется в масштабном производстве по ГОСТу. В домашней обстановке также возможно довольно точно при соблюдении обязательных пропорций и правил техники безопасности смешать кислоту с дистиллированной водой.

Важно! вода при минусовых температурах превращается в лед. Всегда при морозе нужно применять меры, необходимые для предотвращения замерзания аккумулятора.

 

Основные технические характеристики аккумуляторов

Номинальная емкость аккумулятора

Номинальная емкость элемента – способность накапливать и отдавать электроэнергию постоянного тока, определяет время автономной работы ИБП. Емкость электрического аккумулятора показывает время питания подключенной к нему нагрузки.

Важно! Емкость не характеризует полностью энергию аккумулятора, т.е. энергию, которая может быть накоплена в полностью заряженном аккумуляторе. Чем больше напряжение аккумулятора, тем больше накопленная в нем энергия.

Емкость всегда указывается на корпусе АКБ, а также на упаковке, ведь именно по этому критерию большинство пользователей выбирают нужную модель.

Пусковой ток

Величину, характеризующую параметр тока, протекающего в стартере автомобиля в момент пуска силового узла, принято считать пусковым током. Пусковой ток или стартерный возникает в момент, когда в замке зажигания поворачивается ключ и начинает проворачиваться стартер. Единица измерения величины – Ампер. Он же ток холодной прокрутки является показателем, как аккумулятор поведет себя в морозную погоду и сможет запустить двигатель при минусовых показателях. Определяется мощностью тока, которую батарея может выдать в течение первых 30 секунд при температуре -18°С. При высоких показателях пускового тока увеличиваются шансы завести машину при минусовой температуре.

Полярность

Порядок расположения на крышке аккумулятора присоединительных клемм, которые являются токовыводящими соединительными элементами, называется полярностью. Полюса всего два – положительный и отрицательный, вариантов расположения – прямое и обратное.

Прямая полярность – отечественная разработка. Чтобы ее определить, нужно повернуть аккумулятор таким образом, чтобы этикетка была перед глазами. При расположении плюсовой клеммы слева, а минусовой справа, можно утверждать, что акб с прямой полярностью. На иномарках устанавливаются аккумуляторные батареи обратной полярности.

Прямая, обратная полярность

Исполнение корпуса

Корпус большинства аккумуляторов состоит из ударопрочного полипропилена, который характеризуется как материал легкий, не вступающий в химическую реакцию с агрессивным электролитом АКБ. Полипропилен довольно стоек к перепадам температур, возникающих под капотом автомобиля, нагрев может достигать до +60 ̊С, а при морозах до -30°С. Корпус большинства АКБ состоит из ручки для переноса, пробок, индикатора заряда, клемм для подключения к электросети. Вес АКБ емкостью 55Ач около 16,5 кг. Традиционно появились американский, европейский, азиатский и российский типы корпусов.

Европейские корпусы и американские имеют идентичные габариты. Например, у батарей емкостью 60 Ач общая высота от 17,5 до 19 сантиметров. У азиатских этот показатель немного выше, до 22 сантиметров за счет верхнего расположения электродов. Именно поэтому важно корректно анализировать возможности посадочного места под капотом, чтобы надежно закрепить АКБ прижимной планкой и избежать замыкания при случайном касании токоотводами металлических частей кузова.

У АКБ с европейским типом корпуса клеммы находятся в углублении, их верхний край не выступает над плоскостью крышки. Иногда клеммы дополнительно защищены от внешнего воздействия специальными крышечками. Азиатский тип корпуса – это коробка, на которой клеммы расположились на верхней крышке, верхний край клемм является самой высокой точкой аккумулятора. Какую клемму снимать с аккумулятора первой читайте здесь. 

Важно! При приобретении акб нужно знать, что европейские производители указывают габаритные размеры аккумулятора по корпусу. На азиатских корпусах могут указывать высоту батареи с учетом клемм или без них.

Российский стандарт акб

Обозначение Описание букв
А АКБ имеет общую крышку для всего корпуса
З Корпус батареи залит и она является полностью заряженной изначально
Э Корпус-моноблок АКБ выполнен из эбонита
Т Корпус-моноблок АБК выполнен из термопластика
М В корпусе использованы сепараторы типа минпласта из ПВХ
П В конструкции использованы полиэтиленовые сепараторы-конверты

 

Европейские корпусы и американские имеют идентичные габариты

Тип и размер клемм

Распространены аккумуляторы с клеммами трех разных стандартов: тип Euro – Type 1, и Asia –Type 3, «под болт» – американский стандарт. В типе Euro плюсовая клемма имеет диаметр 19,5 мм, минусовая клемма – 17,9 мм. В типе Asia клемма плюс имеет диаметр 12,7 мм, клемма минусовая – 11,1 мм. Клеммы «под болт» находятся на боковой стенке аккумулятора и сверху. Болт, соединённый с проводом, продевается в отверстие клеммы и фиксируется гайкой.

Американский стандарт

Тип крепления

При выборе акб особое внимание следует обращать на тип крепления АКБ, при котором батарея может крепиться снизу или сверху. Вверху крепится элемент с помощью специальной монтажной рамки, которая охватывает аккумулятор. Крепление аккумулятора происходит с помощью планки и двух шпилек. Чаще такой вид установки и фиксации аккумуляторной батареи встречается на автомобилях китайского или корейского производства.

Тип крепления встречается на «азиатах»

 

Нижнее крепление применимо на европейских автомобилях. На нижней части корпуса акб находится выступ, за который аккумулятор прижимается к платформе с помощью пластины и винта.

Нижнее крепление

Назначение аккумуляторных батарей

Автомобильная аккумуляторная батарея выступает как источником электрического тока, необходимого для пуска двигателя, так и резервным источником питания, в случае, если энергии, вырабатываемой генератором, оказывается мало для электроснабжения авто. Аккумуляторная батарея действует как стабилизатор напряжения, так как она выполняет роль накопителя электроэнергии, отдающего во время пуска двигателя за короткое время большой ток, и пополняемого постепенно генератором автомобиля в процессе подзарядки.

Важно! Перед проверкой системы электроснабжения и электрического пуска, необходимо убедиться в том, что аккумуляторная батарея находится в заряженном состоянии и готова к эксплуатации.

В каких сферах используется

Аккумуляторные батареи используются как дополнительный или основной источник питания. Надежность, простота в использовании позволяет применять батареи в различных областях:

  • автомобильная промышленность;
  • освещение в аварийном состоянии;
  • переносное электрооборудование;
  • медицинское оборудование;
  • игрушки;
  • сигнализация в разных сферах применения;
  • телекоммуникационное оборудование.

 

Применение батареи в игрушках

Роль акб в работе приборов не оспорима. Применение источника энергии практически во всех отраслях доказывает значимость и необходимость знаний о внутреннем содержимом батарей. С использованием в автомобилях широкого разнообразия электроприборов, кондиционеров, мультимедийных центров, генераторы не всегда справляются с обеспечением их энергией. В этом случае подпитка энергией поступает от АКБ, который кроме этого выполняет основную функцию, обеспечивает электроэнергией стартер двигателя. Водителю необходимо знать, как устроен аккумулятор, чтобы выявить сбои в работе источника энергии, назначение аккумулятора, чтобы правильно использовать ресурс, подобрать батарею к условиям эксплуатации и автомобилю. О способах и рекомендациях как проверить аккумулятор читай тут.

Устройство аккумулятора

Базовый принцип работы свинцово-кислотного аккумулятора (АКБ), определяемый термином «двойная сульфатация», был разработан (изобретен) более полутора веков назад в районе 1860 года и с тех пор никаких принципиальных новшеств не претерпел. Появилось достаточное количество специализированных моделей, но устройство аккумулятора выпущенного вчера в Японии или производимого сегодня в России или в Германии, такое же, как и устройство самой первой батареи собранной «на коленке» во Франции, с неизбежными улучшениями и оптимизацией.

Назначение

АКБ в обычном автомобиле предназначен для работы стартера при запуске двигателя и для устойчивого снабжения заданного вольтажа электроэнергией, многочисленного электрооборудования. При этом роль автомобильного аккумулятора, как «энергетического буфера», при недостаточном поступлении энергии от генератора не менее важна. Типичный пример подобного режима – при работе двигателя на холостых оборотах во время стояния в пробке. В такие моменты весь электропакет и дополнительное сервис-оборудование запитаны только от аккумулятора. Критически важна роль кислотного аккумулятора при аварийных форс-мажорах: поломка генератора, регулятора напряжения, выпрямителя тока, при обрыве ремня генератора.

Правила подзарядки

Подзарядка свинцово-кислотного автомобильного аккумулятора в штатном режиме производится от генератора. При интенсивной работе батареи требуется ее дополнительная подзарядка в стационарных условиях через специальное зарядное устройство. Особенно это актуально в зимнее время, когда возможность холодной батареи принимать заряд резко снижается, а потребление энергии на раскрутку мотора на морозе возрастает. Поэтому зарядку автомобильного АКБ необходимо проводить в тепле после его согревания естественным образом.

Важно! Ускорение согревания батареи горячей водой или феном недопустимо, так как реально разрушение пластин вследствие резкого перепада температур. При опадении наполнителя на дно банок, резко возрастает возможность саморазряда за счет замыкания пластин.
Для так называемых «кальциевых» аккумуляторов, недопущение полного или значительного разряда критически важно, потому что ресурс этого типа батарей ограничен 4-5 циклами полной разрядки, после чего аккумулятор приходит в негодность.


В современных гибридных автомобилях и в электромобилях аккумуляторная батарея имеет повышенные размеры и емкость, обеспечивая движение. Их так и называют – тяговые. В «чистых» электромобилях только аккумуляторы являются поставщиком энергии для движения и работы всего электрооборудования, отчего имеют значительные размеры и в разы большую емкость, чем батарея в «классическом» автомобиле с карбюраторным двигателем. Например: танковые, тепловозные, на подводных лодках и так далее. Хотя принцип кислотного аккумулятора во всех случаях одинаков за исключением размеров.

Устройство кислотного АКБ и принцип его работы

Устройство кислотной АКБ (свинцово-кислотного) различного назначения, от разных производителей отличается не принципиально и в тезисной форме выглядит следующим образом:

  1. пластиковый контейнер-корпус из инертного, устойчивого к агрессивной среде материала;
  2. в общем корпусе располагается несколько модулей-банок (как правило шесть), которые являются полноценными источниками тока и соединяются между собой тем или иным способом в зависимости от основных задач;
  3. в каждой банке располагаются плотные пакеты, состоящие последовательно из разделенных диэлектрическими сепараторами отрицательно и положительно заряженных пластин (свинцовый катод и анод из диоксида свинца соответственно). Каждая пара пластин является источником тока, их параллельное соединение кратно увеличивает выдаваемое на напряжение;
  4. пакеты залиты раствором химически чистой серной кислоты, разбавленной до определенной плотности дистиллированной водой.

Работа кислотного аккумулятора

В процессе работы кислотного аккумулятора на катодных пластинах образуется сульфат свинца и выделяется энергия в виде электрического тока. За счет выделяемой в процессе электрохимической реакции воды плотность кислотного электролита падает, он становится менее концентрированным. При подаче напряжения на клеммы в процессе зарядки происходит обратный процесс с восстановлением свинца до металлической формы и повышается концентрация электролита.

Как устроена щелочная батарея и принцип ее работы

Устройство щелочной батареи аналогично таковому у кислотного. Но положительно и отрицательно заряженные пластины имеют другой элементный состав, а в качестве электролита используется раствор едкого кали определенной плотности. Есть и другие отличия — в самом корпусе контейнера, выводе клемм и в наличии мелкосетчатой «рубашки» вокруг каждой отдельной пластины.

Отрицательные катоды традиционного щелочного аккумулятора выполнены из губчатого кадмия с примесью губчатого железа, положительные – из гидроокиси трехвалентного никеля с добавлением чешуйчатого графита, добавка которого, обеспечивает лучшую электропроводность катода. Пары пластин параллельно соединяются между собой в банках, которые тоже соединены параллельно. В процессе зарядки щелочного аккумулятора двухвалентный никель в гидрате закиси меняет валентность до значения «8» и превращается в гидрат окиси; соединения кадмия и железа восстанавливаются до металлов. При разрядке процессы противоположны.

Достоинства щелочной АКБ

К достоинствам щелочного типа относятся:

  • внутреннее устройство обеспечивает повышенную устойчивость к механическим нагрузкам, в том числе к тряске и ударам;
  • разрядные токи могут быть значительно выше, чем у кислотного аналога;
  • в принципе отсутствует испарение/выделение вредных веществ с газами;
  • легче и меньше при равных емкостях;
  • имеют очень высокий ресурс и служат в 7-8 раз дольше;
  • для них не является критичными перезаряд или недозаряд;
  • эксплуатация их проста.

По достижении максимального возможного заряда и при продолжении подключения к зарядному устройству никаких отрицательных электрохимических процессов с элементами не происходит. Просто начинается электролиз воды на водород и кислород с ростом концентрации едкого кали и падением уровня электролита, что безопасно и легко компенсируется добавлением дистиллированной воды.
Очевидно, что имеются показатели, по которым этот тип аккумуляторов хуже кислотного:

  • использование дорогостоящих материалов повышает стоимость на единицу емкости до четырех раз;
  • более низкое – 1,25 В против 2 и выше В — напряжение на элементах.

Заключение

Правильная эксплуатация любого типа АКБ обеспечивает его долгую и надежную работу, что не только позволяет экономить финансы, но и гарантирует большую безопасность и комфорт при езде на автомобиле.

Мне нравится1Не нравится
Что еще стоит почитать

Принцип работы свинцово-кислотного аккумулятора.


Аккумуляторные батареи




Принцип работы свинцового аккумулятора

Источником электроэнергии на автомобиле при неработающем или работающем с малой частотой вращения коленчатого вала двигателе является аккумуляторная батарея. В настоящее время на автомобилях наиболее широко применяются свинцовые аккумуляторные батареи, состоящие из нескольких последовательно соединенных аккумуляторов. Применение кислотных аккумуляторов объясняется тем, что они обладают небольшим внутренним сопротивлением и способны в течение короткого промежутка времени (несколько секунд) отдавать ток силой в несколько сотен ампер, что необходимо для питания стартера при пуске двигателя.

Свинцовый аккумулятор электрической энергии был изобретен в 1859 году французским физиком Гастоном Планте. В последующие годы конструкция аккумулятора, особенно – химический состав его электродов (пластин) постоянно совершенствовалась. В настоящее время свинцовые аккумуляторы и аккумуляторные батареи широко применяются в разных областях техники в качестве накопителей электроэнергии (стартерные батареи, аварийные и резервные источники энергии и т. п.).

Конструктивно аккумулятор представляет собой емкость, наполненную электролитом, в которой размещены свинцовые электроды. В качестве электролита используется раствор серной кислоты и дистиллированной воды. Электроды выполнены в виде пластин, одна из которых изготовлена из губчатого свинца Pb, а вторая – из диоксида свинца PbO2. При взаимодействии электродов с электролитом между ними возникает разность потенциалов.

Принцип работы свинцово-кислотных аккумуляторов основан на электрохимических реакциях свинца и диоксида свинца в водном растворе серной кислоты.

При подключении к электродам аккумулятора внешней нагрузки начинается электрохимическая реакция взаимодействия оксида свинца и серной кислоты, при этом металлический свинец окисляется до сульфата свинца.

Во время разряда происходит восстановление диоксида свинца на положительном электроде (аноде) и окисление свинца на отрицательном электроде (катоде). При пропускании через электроды аккумулятора зарядного тока в нем протекают обратные реакции. При перезаряде аккумулятора, после исчерпания сульфата свинца начинается электролиз воды, при этом на аноде выделяется кислород, а на катоде — водород.

Электрохимические реакции (слева направо — при разряде, справа налево — при заряде):

Реакции на аноде:

PbO2 + SO42- + 4H+ + 2e ↔ PbSO4 + 2H2O;

Реакции на катоде:

Pb + SO42- — 2e ↔ PbSO4.

Физические процессы, происходящие в аккумуляторе, объясняются свойством электролитического растворения металлов, которое заключается в переходе положительно заряженных ионов металла в раствор. Легкоокисляющиеся металлы (например, свинец) обладают этим свойством в большей степени, чем инертные металлы.
При погружении свинцового электрода в раствор электролита от него начнут отделяться положительно заряженные ионы свинца и переходить в раствор, при этом сам электрод будет заряжаться отрицательно.

По мере протекания процесса растет разность потенциалов раствора и электрода, и переход положительных ионов в раствор будет замедляться.
При какой-то определенной разности потенциалов электрода и раствора наступит равновесие между силой электролитической упругости растворения свинца, с одной стороны, и силами электростатического поля и осмотического давления — с другой.
В результате переход ионов свинца в электролит прекратится.

При погружении электрода, изготовленного из двуокиси свинца, в раствор серной кислоты наблюдается такой же процесс, но результат получается иной. Двуокись свинца в ограниченном количестве переходит в раствор, где при соединении с водой ионизируется на четырехвалентные ионы свинца Рв4+ и одновалентные ионы гидроксила ОН.
Четырехвалентные ионы свинца, осаждаясь на электроде, создают положительный потенциал относительно раствора. Серная кислота образует в воде практически только на ионы НO+ и HSO4.
Таким образом, при разряде аккумулятора расходуется серная кислота, образуется вода, а на обоих электродах — сульфат свинца. При заряде процессы протекают в обратном направлении.

При подключении потребителей в аккумуляторе возникает разрядный ток. При этом ионы сернокислотного остатка SO4 соединяются со свинцом электродов и образуют на них сернокислый свинец PbSO4, а ионы водорода соединяются с кислородом, выделяясь на положительной пластине в виде воды.
В результате электроды покрываются сернокислым свинцом, а серная кислота разбавляется водой, т. е. при разряде аккумулятора плотность электролита уменьшается. Поэтому по плотности электролита можно судить о степени заряженности аккумуляторной батареи.

При прохождении электрического (зарядного) тока через аккумуляторную батарею протекают обратные электрохимические процессы. Ионы водорода, образующиеся в результате распада воды, взаимодействуют с сернокислым свинцом электродов.
Водород, соединяясь с сернистым осадком, образует серную кислоту, а на электродах восстанавливается губчатый свинец. Выделяющийся из воды кислород, соединяется со свинцом положительной пластины, образуя перекись свинца.
В результате этих процессов содержание воды в электролите уменьшается, а содержание кислоты увеличивается, что приводит к повышению плотности электролита.



По завершению процессов восстановления свинца на электродах заряд аккумулятора прекращается. При дальнейшем прохождении электрического тока через электролит начинается процесс электролиза (разложения) воды, при этом аккумулятор «закипает», и выделяющиеся пузырьки образуют смесь водорода и кислорода. Смесь этих газов является взрывоопасной, поэтому следует избегать перезаряда до появления электролизных явлений по разложению воды.

Кроме того, длительный перезаряд приводит к потере электролитом воды (испарению), в результате чего его плотность повышается и для корректировки требуется доливка дистиллированной воды.
При доливке воды необходимо помнить, что вода, попадающая в концентрированную серную кислоту, закипает и сильно разбрызгивает кислотные капли, что при попадании на открытое тело или одежду может привести к ожогам кожи, слизистых оболочек, прожигу одежды и другим неприятным последствиям.

При постоянном напряжении источника зарядного тока по мере увеличения степени заряженности аккумулятора повышается его ЭДС и, следовательно, уменьшается сила зарядного тока. Когда напряжение на клеммах источника тока будет равно ЭДС полностью заряженного аккумулятора плюс ЭДС поляризации, зарядный ток прекратится.

Среднее значение напряжения аккумулятора – 2 В. Поскольку электрооборудование современных автомобилей рассчитано для работы при напряжении в бортовой сети 12 или 24 В, аккумуляторы соединяют в батареи (по 6 или 12 шт.).

Важным параметром аккумулятора является его емкость, т. е. количество электрической энергии, которую способен отдать аккумулятор. Емкость – это произведение силы разрядного тока на продолжительность разрядки до предельно допустимого разряженного состояния. Измеряется емкость аккумулятора в ампер-часах (А×ч). Емкость аккумулятора зависит, в первую очередь, от активной площади его электродов.
Поэтому повышения емкости можно достичь увеличением поверхности электродов, что достигается использованием нескольких параллельно соединенных между собой пластин, а также применением пористого материала для их изготовления, что позволяет использовать в качестве активной массы не только поверхность, но и внутренний объем пластин.

Емкость аккумулятора не постоянна, она зависит от силы разрядного тока, температуры электролита и состояния активной поверхности пластин. При увеличении разрядного тока и понижении температуры электролита емкость аккумулятора уменьшается, что объясняется неполным протеканием электрохимических реакций разрядки в этих условиях, вследствие сокращения времени разрядки и повышения вязкости электролита при низких температурах.

***

Устройство аккумуляторной батареи и ее маркировка


Главная страница


Дистанционное образование

Специальности

Учебные дисциплины

Олимпиады и тесты

Аккумуляторные батареи: виды, принцип действия, характеристики

Данная статья посвящена описанию технических характеристик и принципа действия аккумуляторных батарей различных типов.


Содержание:

  • Принцип действия
  • Технические характеристики
  • Виды аккумуляторов
  • Правила эксплуатации

Аккумуляторные батареи являются источником постоянного тока, предназначенным для хранения и накопления электроэнергии. Большинство моделей современных аккумуляторов действуют по принципу циклического преобразования химической энергии в электрическую, что обеспечивает возможность многократной зарядки и разрядки. В настоящее время такие устройства используются во многих электротехнических приборах.

Принцип действия

Работа аккумуляторных батарей основана на взаимодействии жидкости и металлов. Данный процесс является обратимым и возникает в случае замыкания контактов отрицательных и положительных пластин. При разряде, который происходит при подключении к потребителям, активная масса электродов вступает в реакцию с электролитом. Для зарядки аккумуляторов применяется специальное устройство.

Заряд аккумуляторной батареи должен осуществляться при оптимальном уровне напряжения. Работа АКБ зависит от температуры окружающей среды. При ее повышении увеличивается отдаваемая мощность, но в то же время увеличивается коррозия электродов и саморазряд. Понижение температурного режима сопровождается снижением емкости, уменьшением плотности электролита и замедлением химических процессов.

Срок службы аккумуляторных батарей зависит от интенсивности эксплуатации и в среднем составляет 4-5 лет. Производители постоянно предлагают новые решения, целью которых является повышение эффективности. Среди наиболее перспективных направлений можно выделить:

  • Совершенствование конструкции (передовая AGM-технология).
  • Использование двух батарей, при этом одна из них предназначена только для запуска, а вторая — для всех остальных процессов и операций.
  • Система управления энергетическим балансом, регулирующая подключение потребителей.

Технические характеристики

При выборе аккумуляторов необходимо учитывать следующие параметры:

  • Емкость — показывает количество отдаваемого электролита в случае разрядки до минимально допустимого значения.
  • Ток холодной прокрутки — обеспечивает возможность запуска батареи при низких температурах.
  • Срок хранения — максимальный период, на протяжении которого аккумулятор может храниться при определенных условиях без необходимости дополнительной зарядки.
  • Саморазряд — потеря емкости в случае отсутствия потребителя.
  • Электродвижущая сила — показывает уровень напряжения на клеммах без внешней нагрузки. Для измерения данной величины используется вольтметр или мультиметр.
  • Полярность — влияет на расположение батареи под капотом авто или в корпусе другого устройства.

Виды аккумуляторов

Все многообразие моделей аккумуляторов можно разделить на несколько больших групп:

  • Свинцово-кислотные — наиболее распространенный вид АКБ, который применяется как источник бесперебойного питания и устанавливается автомобилях.
  • Никель-кадмиевые — в настоящее время они используются в качестве замены стандартным гальваническим элементам, а также в троллейбусах, трамваях и электрокарах.
  • Никель-металлогидридные — предназначены для использования в осветительной технике, радиоаппаратуре и электромобилях.
  • Литий-ионные — получили широкое распространение в современных строительных и бытовых приборах и мобильных устройствах.

Правила эксплуатации

С целью обеспечения безопасности и продления срока службы аккумуляторных батарей рекомендуется придерживаться следующих правил:

  • Не хранить аккумуляторы в разряженном состоянии, поскольку это ведет к сульфатации электродов и снижению емкости.
  • Не допускать создания цепей короткого замыкания между клеммами, так как электрический ток может расплавить контакты и нанести термический ожог.
  • Подключать батарею к устройству необходимо в соответствии с ее полярностью. При неправильном подсоединении приборы могут выйти из строя.
  • Запрещается вскрывать корпус аккумулятора. Воздействие расположенного внутри гелеобразного электролита на кожу может вызвать химический ожог.
  • Утилизация отслужившей свой срок аккумуляторной батареи должна осуществляться в соответствии с установленными правилами для устройств, содержащих тяжелые металлы.

принцип работы, разнообразие видов и технические характеристики, советы по выбору и правильной эксплуатации

На рынке автономных источников питания в настоящее время очень большой выбор аккумуляторов и батареек, сотни разных моделей от различных производителей. Как правильно выбрать аккумулятор или аккумуляторную батарею (АКБ), по каким параметрам?

Для подбора источника питания, наиболее подходящего к вашему устройству, в данном обзоре проанализированы достоинства и недостатки аккумуляторных батареек различного химического состава и даны их стандартные типоразмеры (форм-фактор). В данной статье описаны только модели для бытовой техники и электроники.

Аккумуляторные батарейки

Аккумуляторные батарейки — это сложившееся в обиходе название небольших аккумуляторов, обычно цилиндрической формы, для питания электроники и бытовой техники. Несмотря на то, что батарея (или батарейка) это соединение нескольких элементов питания в единый блок, такое название закрепилось также и для отдельных элементов.

Аккумуляторные батарейки очень разнообразны по типоразмеру и химическому составу в отличие, например, от автомобильных АКБ.

Если с типоразмером (форм-фактором) все более-менее понятно, так как элементы неподходящего размера в конкретное устройство просто невозможно установить, то с химическим составом элементов питания не все так однозначно.

Каждый тип элементов, в зависимости от химической технологии изготовления, имеет как свои достоинства, так и особенности (недостатки).

Аккумуляторные батарейки Panasonic Eneloop 750 mAh R03/ААА.

Никель-кадмиевые аккумуляторы

В основе работы никель-кадмиевых аккумуляторов (Ni-Cd) лежат электрохимические процессы между положительным и отрицательным электродами из никеля и кадмия.

Достоинства

  • Низкая стоимость — основное преимущество Ni-Cd элементов.
  • Возможность долгого хранения в разряженном виде.
  • Безопасность использования.

Особенности

  • Невысокая емкость (количество запасаемого электричества).
  • “Эффект памяти” – при неполном заряде или разряде никель-кадмиевый аккумулятор “запоминает” новые крайние верхнее и нижнее значения емкости, которая в результате этого снижается.

Никель-кадмиевая аккумуляторная батарейка Minamoto 1300 mAh

Никель-металл-гидридные аккумуляторы

Никель-металл-гидридные аккумуляторы (Ni-MH) по своим параметрам очень близки к никель-кадмиевым, однако за счет использования немного более продвинутой технологии, они имеют лучшие технические характеристики.

Достоинства

  • Невысокая цена, близкая к стоимости никель-кадмиевых аккумуляторных батареек.
  • Увеличенная емкость по сравнению с Ni-Cd.
  • Немного уменьшен эффект памяти.
  • Простые зарядные устройства для Ni-MH.

Особенности

  • В настоящее время никель-металл-гидридные аккумуляторы практически везде заменили никель-кадмиевые.
  • Никель-металл-гидридные аккумуляторные батарейки Varta 1000 vAh R03/AAA

Литий-ионные аккумуляторы

Литий-ионные аккумуляторы (Li-Ion) значительно отличаются от выше описанных элементов питания по всем характеристикам. У них в три раза большее напряжение. И, чтобы их случайно не вставить вместо обычных никель-металл-гидридных, они имеют, как правило, отличающиеся типоразмеры.

Основные преимущества литий-ионных аккумуляторных батареек

  • Высокая емкость.
  • Увеличенное напряжение.
  • Отсутствие эффекта памяти.

Особенности литий-ионных аккумуляторов

  • Хранение только в заряженном виде.
  • Необходимость использования защиты от перезаряда и перегрева.
  • Необходимость применения зарядных устройств, работающих по определенному алгоритму.
  • Большое снижение напряжения к концу разряда.
  • Старение (снижение емкости с течением времени).

Литий-ионная аккумуляторная батарейка с USB портом Fenix ARB L-18 18650.

Литий-железо фосфатные аккумуляторы

Литий-железо фосфатные аккумуляторы по своей сути являются литий-ионными, но отличаются материалом изготовления катода. Отрицательный электрод изготавливается из материала LiFePO4. Несмотря на такие малые различия, литий-железо-фосфатные элементы имеют все же большие отличия в технических характеристиках.

Достоинства

  • Длительный срок службы (в среднем, 7 лет).
  • Стабильное напряжение разряда.
  • Высокий пиковый ток.
  • Работа в широком диапазоне температур, в том числе и минусовых (-30 … +55 С).

Особенности

Литий-железо-фосфатная аккумуляторная батарейка A123 System APR18650M.

Литий-полимерные аккумуляторы

Литий-полимерные аккумуляторы (Li-polymer) являются результатом дальнейшего усовершенствования литий-ионной технологии. В данном случае в качестве электролита применяется полимерный материал. В результате этого элементы питания, изготовленные по этой новейшей технологии получили много преимуществ. Именно такие аккумуляторные батарейки используются в современных сотовых телефонах.

Достоинства

  • Высокая удельная емкость.
  • Возможность изготовления батарей малой толщины и гибкой формы.
  • Малое изменение напряжения при разряде.

Особенности

Литий-ионный аккумулятор Robiton Li-Po 7,4B.

Форматы цилиндрических аккумуляторов 18650, 16340, 14500, AA, AAA

Аккумуляторы для электроники и бытовой техники изготавливаются в корпусах различного формата: цилиндрические (круглые), призматические (квадратные и прямоугольные), плоские. Для призматических аккумуляторных батареек нет единой системы нумерации.

А вот для цилиндрических элементов производители сумели договориться и создали простую систему маркировки размеров, состоящую из 5-ти цифр. В ней первые две цифры показывают диаметр элемента в миллиметрах, третья и четвертая цифры — это длина, а последний символ 0 символизирует круг, говоря о цилиндрической форме.

Таким образом, аккумулятор 18650 имеет диаметр 18 мм и длину 60 мм. Аккумуляторная батарейка 14500, соответственно, 14 мм в диаметре и 50 мм по длине.

  1. В предлагаемой таблице показаны часто используемые форматы аккумуляторов, а также соответствие стандартной цифровой и альтернативной буквенной маркировок.
  2. Аккумуляторные батарейки формата 14500АА Duracell 2500 mAh.

Расшифровка маркировки аккумуляторов 18650 по химическому составу

Литий-ионные аккумуляторы 18650 имеют буквенную систему маркировки, обозначающую химический состав элемента. Рассмотрим расшифровку маркировки:

  • Первая буква I — это признак Li-Ion технологии;
  • Вторая буква показывает химическую основу катода:
    1. C — кобальтовая,
    2. N — никель-марганцевая,
    3. M — марганцевая,
    4. F — железо-фосфатная.
  • Третья буква R обозначает перезаряжаемый аккумулятор (Rechargeable).

Компания Panasonic сделала немного другую маркировку, у которой в обозначении NCR:

  • первая буква N обозначает никель,
  • вторая буква С — кобальт.

Аккумулятор NCR 18650 Panasonic

Аккумуляторы для ИБП 12V

Аккумуляторы для ИБП принципиально отличаются от элементов питания для электроники. Они должны обеспечить питание компьютера или другой мощной техники на время от нескольких минут до нескольких часов. Поэтому АКБ для ИБП 12V имеют высокую электрическую емкость, однако, вместе с тем, и большой вес и размеры.

Данные АКБ являются свинцово-кислотными. Их принцип работы основан на электрохимических реакциях свинца и диоксида свинца в водном растворе серной кислоты, также как и автомобильных АКБ.

Но, в отличие от них, в гелевых аккумуляторах для ИБП используется электролит, загущенный до гелеобразного состояния с помощью водного раствора силиката натрия. Еще более лучшие результаты в бесперебойных источниках питания показывают АКБ, выполненные по технологии AGM (Absorbent Glass Mat).

Эти два типа АКБ сходны по принципу не текучести электролита, поэтому AGM аккумуляторы часто называют гелевыми, хотя это не совсем верно.

AGM аккумуляторы для ИБП 12V и электромобилей 6V

В аккумуляторах, изготовленных по технологии AGM, заложен принцип нетекучего электролита. Отличие AGM АКБ от обычных свинцово-кислотных заключается в использовании абсорбированного электролита. AGM аккумуляторные батареи были разработаны специально для применения в системах резервного бесперебойного питания. Эти АКБ отлично работают в ИБП в буферном режиме.

Для использования в бесперебойниках применяются АКБ на напряжение 12V, а для детских электромобилей — 6V. Зарядные устройства для аккумуляторов ИБП 12V и электромобилей 6V используются, чаще всего, одни и те же, поскольку многие из них имеют переключатель выбора зарядного напряжения.

Преимущества гелевых и AGM аккумуляторов 12V для ИБП

Гелевые и AGM аккумуляторы имеют во многом схожие преимущества:

  • Приспособлены для работы в ИБП в буферном режиме
  • Длительный срок службы 5-10 лет (гелевые до 12 лет)
  • Устойчивость к вибрации
  • Установка в любом положении, кроме вверх дном
  • Не требуют обслуживания
  • Герметичность
  • Работа при температурах до -30 С

Особенности

  • Большой вес
  • Чувствительны к перезаряду
  • Не допускают хранения в разряженном виде

Удачным примером AGM аккумуляторной батареи для бесперебойников является продукция компании DELTA Battery.

  • АКБ для ИБП моделиDelta HR 12-12.

Аккумуляторы для ИБП газовых котлов

Аккумуляторы для газовых котлов не имеют принципиальных отличий от АКБ для ИБП компьютерной и офисной техники.

Однако, они обязаны иметь гораздо большую емкость, так как должны обеспечить питание газового котла в течение нескольких часов или даже дней в случае длительного отключения электроэнергии.

Компания Delta Battery выпускает также AGM аккумуляторы повышенной емкости для ИБП котлов.

АКБ большой емкости для газовых котлов Delta HR 12-65.

Аккумуляторы для детских электромобилей 6V

Аккумуляторы для детских электромобилей изготавливаются по AGM технологии, также как и АКБ для источников бесперебойного питания. Вместе с тем, важным отличием является выходное напряжение, которое у аккумуляторных батарей для электромобилей составляет 6V. Для использования в детских электрических автомобилях рекомендуем использовать 6-Вольтовую серию АКБ Delta.

АКБ для детского электромобиля Delta HR 6-12.

Аккумуляторы для фонарика

Чтобы правильно выбрать аккумулятор для фонарика, вначале надо внимательно прочитать инструкцию, которая к нему прилагается. В ней указано под какие типы, форм-фактор и количество аккумуляторов рассчитан данный фонарь.

Зная эти параметры, можно подобрать элементы подходящего для вашего устройства типа и емкости. Чаще всего применяются никель-металл-гидридные аккумуляторы типоразмера АА или ААА. В более мощных фонарях используются элементы форм-фактора C или D.

В последнее время появились и фонарики с аккумуляторами 18650 и 14500 литий-ионной технологии, которые имеют более высокую емкость и напряжение, обеспечивая более длительную работу и мощный световой поток.

Кроме того, некоторые модели фонарей, например Fenix E25UE XP-L V5, могут работать как от никель-металл-гидридных аккумуляторных батареек, так и от литий-ионных. Все это надо учитывать при подборе.

Аккумуляторные батарейки АА для фонарика типа Panasonic Eneloop 2500 мАч.

Высокотоковые аккумуляторы 18650 для Vape и шуруповертов

Аккумуляторы 18650 для Vape и шуруповертов — это литий-ионные элементы, рассчитанные на высокий ток разряда.

На таких аккумуляторных батарейках или прямо указывают, что они для электронных испарителей (for Vape) или пишут номинал максимального тока, например, 20, 25, 30, 40 А.

Кроме того, такие элементы должны быть безопасны, поскольку испаритель с аккумулятором находится непосредственно около лица. Этим требованиям соответствует продукция компании SYSMAX Industry Trading Co. Ltd, выпускаемая под брендом NiteCore.

Высокотоковый аккумулятор 18650 для шуруповерта и электронного испарителя Nitecore NL188.

Аккумуляторы для радиотелефона

В зависимости от марки и модели радиотелефонной трубки, в ней могут использоваться обычные Ni-MH элементы типоразмера ААА и АА или специализированные аккумуляторы для радиотелефона. Это так называемые «аккумуляторные сборки» для радиотелефонов, содержащие три или четыре никель-металл-гидридных элемента, и соответственно, 3.6 или 4.8 Вольтовые.

Аккумуляторная сборка для радиотелефона модели Robiton DECT-T207-3XAAA.

Наш магазин цифровой техники «Вольта» предлагает большой выбор лучших бытовых аккумуляторов и аккумуляторных батареек для электроники, ИБП, детских электромобилей, фонариков, электронных испарителей, шуруповертов и радиотелефонов по самым минимальным ценам с доставкой в ваш город по России. Ассортимент включает в себя лучшие модели производителей Panasonic, GP, LG, Varta, Robiton, NiteCore, Delta, Duracell, Fenix, A123 SYSTEMS, Ansmann, Petzl, ZMI.

Источник: https://voltacom.ru/articles/kak-vibrat-akkumulator

Типы аккумуляторов и их отличия друг от друга

Аккумуляторные батареи прочно вошли в жизнь современного человека и активно используются в мобильных электронных устройствах и автомобилях. Однако не все они одинаковые: существует несколько типов аккумуляторов. Различия между ними заключаются в материалах, из которых изготовлены электролит и электроды. От этого зависят технические характеристики АКБ, например, электрическая емкость и количество циклов перезарядки .

Принцип работы и устройство

Аккумуляторы представляют собой химические источники электрического тока. Для увеличения электрической емкости в их состав включается несколько элементов питания. Например, в автомобильных АКБ чаще всего используется шесть элементов (банок) с напряжением в 2,1 вольта. В результате аккумуляторная батарея способна выдавать около 12,6 В.

Первый аккумулятор был создан много лет назад, но его конструкция и принцип работы остались прежними. С тех времен изменились только материалы, используемые для изготовления электродов и раствора электролита.

При разговоре о том, какие бывают аккумуляторные батареи, многие сразу вспомнят о литий-ионных (Li — ion). Они сегодня активно используются в портативной электронике, например, смартфонах и ноутбуках.

Принцип работы АКБ можно рассмотреть на примере литий-ионной батареи.

Два электрода (катод изготовлен из алюминиевой фольги, а анод из медной) находятся в пористом материале (сепараторе), который пропитан электролитом.

Заряд в аккумуляторе переносится с помощью положительных ионов лития, которые во время разрядки перемещаются от катода к аноду. Когда АКБ заряжается, ионы двигаются в противоположном направлении.

Основные виды АКБ

В зависимости от вида, аккумуляторные батареи отличаются техническими характеристиками. Говоря о том, какие бывают АКБ, стоит познакомиться с особенностями наиболее распространенных.

Сурьмянистые или традиционные

Эти батареи содержат 5% и более сурьмы. Хотя они и называются традиционными (классическими), в современных устройствах это вещество используется в меньших количествах. Сурьма входит в состав пластин для увеличения их прочности, так как свинец в чистом виде является очень мягким металлом. Кроме этого, сурьма способствует ускорению процесса электролиза, активизирующегося в аккумуляторе при напряжении в 12 В.

В результате уровень электролита постепенно уменьшается, и пластины оголяются. Это делает сурьмянистый аккумулятор требовательным к обслуживанию, которое заключается в доливании дистиллированной воды. Сегодня этот тип АКБ уже не устанавливается в автомобили, так как был вытеснен более современными типами батарей.

Малосурьмянистые батареи

Снижение количества сурьмы в пластинах (менее 5%) позволило снизить интенсивность процесса испарения воды из раствора электролита. В результате этот тип аккумуляторных батарей не нуждается в частом обслуживании, что является его бесспорным преимуществом. Также, в отличие от традиционных АКБ, малосурьмянистые обладают меньшим показателем саморазряда.

В сравнении с новыми видами АКБ, например, гелевыми, батареи с малым содержанием сурьмы более терпимы к параметрам бортовой сети машины.

Специалисты уверены, что в отечественные автомобили стоит устанавливать именно малосурьмянистые батареи. Это связано с тем, что не все модели российских машин способны обеспечить стабильное напряжение в бортовой электросети.

Кальциевые и гибридные

Введение в кристаллическую решетку свинцовых пластин кальция вместо сурьмы позволило значительно уменьшить потери воды в банках из-за электролиза.

Если в обозначении АКБ указана маркировка Са/Са, то кальций входит в состав как положительных, так и отрицательных электродных пластин.

Для увеличения эффективности кальциевых аккумуляторов некоторые производители добавляют небольшое количество серебра.

В современных батареях этого типа на протяжении всего срока эксплуатации вода практически не испаряется. В результате автовладельцу не приходится контролировать уровень и плотность раствора электролита. Введение в состав электродов кальция позволило снизить показатель саморазряда примерно на 70% в сравнении с сурьмянистыми. В результате такие батареи могут сохранять свои технические характеристики на протяжении длительного отрезка времени.

Однако без недостатков не обошлось — кальциевые АКБ отличаются высокой чувствительностью к перепадам напряжения в бортовой электросети.

Кроме этого, они отличаются более высокой стоимостью в сравнении с содержащими небольшое количество сурьмы.

Устанавливать их стоит на иномарки, качественное электрооборудование которых гарантирует стабильность всех электрических характеристик.

В попытке объединить достоинства малосурьмянистых и кальциевых батарей на свет появились гибридные. Отличить их можно по маркировке, в которой встречаются обозначения Са/Sb либо Ca+. Они говорят о том, что пластины электродов изготовлены по разным технологиям. Такие аккумуляторы имеют средние характеристики.

Гелевые аккумуляторы и AGM

В этих батареях электролит находится в связанном состоянии, а создавались они для повышения безопасности эксплуатации. В классических АКБ электролит может протекать, а кислота является весьма агрессивным веществом. Уменьшение показателя текучести раствора позволило не только сделать батареи более безопасными, но и замедлить процесс осыпания активного материала электродных пластин.

Гелевая технология отличается от AGM способом связывания раствора электролита. В первом случае в него добавляются соединения кремния, а во втором — раствором пропитывается пористое стекловолокно, расположенное между электродами. Название технологии AGM (Absorbent Glass Mat) можно перевести, как «абсорбирующий стекломатериал».

Среди преимуществ батарей этого типа следует отметить:

  • Большое количество циклов перезарядки.
  • Высокий КПД.
  • Могут устанавливаться в наклонном положении.
  • Не требуется обслуживание.
  • Высокая безопасность при эксплуатации.

Среди недостатков стоит выделить непереносимость низких температур, а также требования к стабильным характеристикам бортовой системы автомобиля. Кроме этого, стоимость гелевых АКБ довольно высокая.

Щелочные устройства

В таких батареях в качестве электролита используются не кислоты, а щелочи. Сегодня существует много видов аккумуляторов, изготовленных по этой технологии. Однако они крайне редко используются в автомобилях. В сравнении с кислотными АКБ, щелочные обладают рядом преимуществ:

  • Хорошо переносят циклы перезарядки.
  • Могут длительное время сохранять характеристики при хранении.
  • Менее восприимчивы к низким температурам.
  • Не выделяют вредные вещества.
  • Способны накапливать большую емкость на единицу собственной массы.

Есть у щелочных АКБ и недостатки. Во-первых, они имеют меньшее напряжение, что приводит к увеличению количества банок и, соответственно, габаритов. Во-вторых, стоимость их выше, чем у кислотных.

Литий-ионные и полимерные

Именно этот тип АКБ считается наиболее перспективным. Используя разный материал электродов, можно изменять характеристики аккумулятора. Среди преимуществ литий-ионных батарей можно отметить:

  • Высокий показатель электрической емкости.
  • Напряжение каждого отдельного элемента батареи выше в сравнении с другими типами.
  • Низкий уровень саморазряда.

Однако и недостатков у них много. Наиболее существенный — это химическая деградация, которая приводит к уменьшению срока хранения батарей. Также они весьма чувствительны к низким температурам. Сегодня литий-ионные аккумуляторы активно используются в портативных электронных девайсах и значительно реже в автомобилестроении.

Литий-полимерные АКБ являются результатом совершенствования технологии изготовления литиевых батарей. Роль электролита в них выполняет особый полимерный материал.

Они лишены некоторых недостатков предыдущей технологии. Однако пока не удалось устранить химическую деградацию: получилось несколько замедлить этот процесс. Кроме этого, полимерные АКБ, в случае перегрева или при получении чрезмерного заряда, склонны к самовозгоранию, что и является их главным недостатком.

Работы над усовершенствованием аккумуляторных батарей ведутся постоянно. В основном они направлены на увеличение показателя энергоемкости, применение максимально безопасных материалов и повышение морозоустойчивости. Большинство специалистов уверены, что в ближайшее время на смену свинцово-кислотным АКБ придут более эффективные источники питания.

Источник: https://ProAkkym.ru/obzor/tipy-akkumuljatorov

Аккумулятор: устройство, назначение, принцип работы

Аккумулятор представляет собой устройство, которое накапливает энергию в химической форме при подключении к источнику постоянного тока, а затем отдает ее, преобразуя в электричество. Его используют многократно за счет способности к восстановлению и обратимости химических реакций. Разряжается – снова заряжают. Применяются аккумуляторы в качестве автономных и резервных источников питания для электротехнического оборудования и различных устройств.

Устройство аккумулятора

В автомобилях обычно применяют свинцово-кислотные аккумуляторы. Рассмотрим их устройство.

Все элементы располагаются в корпусе, который изготавливают из полипропилена. Корпус состоит из емкости, разделенной на шесть ячеек, и крышки, оснащенной дренажной системой для стравливания давления и отвода газа. На крышку выводится два полюса (клеммы) – положительный и отрицательный.

Содержимое каждой ячейки представляет собой пакет из 16 свинцовых пластин, полярность которых чередуется. Восемь положительных пластин, объединенных бареткой, являются плюсовым электродом (катодом), восемь отрицательных – минусовым (анодом). Каждый электрод выводится к соответствующей клемме аккумулятора.

Пакеты пластин в ячейках погружены в электролит – раствор серной кислоты и воды плотностью 1,28 г/см3.

Между пластинами электродов, для предотвращения замыкания, вставлены сепараторы – пористые пластины, которые не препятствуют циркуляции электролита и не взаимодействуют с ним.

Отдельная пластина электрода – это решетка из металлического свинца, в которую впрессован (намазан) реагент. Активная масса катода – диоксид свинца (PbO2), анода – губчатый свинец.

Принцип действия аккумуляторов

Принцип действия аккумулятора основан на образовании разности потенциалов между двумя электродами, погруженными электролит. При подключении нагрузки (электротехнических устройств) к клеммам аккумулятора в реакцию вступают электролит и активные элементы электродов. Происходит процесс перемещения электронов, который, по сути, и является электротоком.

При разряде аккумулятора (подключении нагрузки) губчатый свинец анода выделяет положительные двухвалентные ионы свинца в электролит. Избыточные электроны перемещаются по внешней замкнутой электрической цепи к катоду, где происходит восстановление четырехвалентных ионов свинца до двухвалентных.

При их соединении с отрицательными ионами серного остатка электролита, образуется сульфат свинца на обоих электродах.

Ионы кислорода от диоксида свинца катода и ионы водорода из электролита соединяются, образуя молекулы воды. Поэтому плотность электролита понижается.

При заряде происходят обратные реакции. Под воздействием внешнего напряжения ионы двухвалентного свинца положительного электрода отдают по два электрона и окисляются в четырехвалентные. Эти электроны движутся к аноду и нейтрализуют ионы двухвалентного свинца, восстанавливая губчатый свинец. На катоде, путем промежуточных реакций, снова образуется двуокись свинца.

Химические реакции в одной ячейке вырабатывают напряжение 2 В, поэтому на клеммах аккумулятора из 6 ячеек и получается 12 В.

Источник: https://pue8.ru/elektricheskie-seti/805-kak-rabotaet-akkumulyator-i-iz-chego-on-sostoit.html

Типы аккумуляторных батарей

Аккумуляторная батарея – это источник постоянного тока, который предназначен для накопления и хранения энергии.

Подавляющее число типов аккумуляторных батарей основано на циклическом преобразовании химической энергии в электрическую, это позволяет многократно заряжать и разряжать батарею.

Еще в 1800 году Алессандро Вольта произвел поразительное открытие, когда опустил в банку, наполненную кислотой, две металлические пластины – медную и цинковую, после чего доказал, что по соединяющей их проволоке протекает электрический ток. Спустя более чем 200 лет, современные аккумуляторные батареи продолжают производить на основе открытия Вольта.

Рисунок 1. Вольтов столб из шести элементов. Рисунок 2. Алессандро Джузеппе Антонио Анастасио Вольта

Виды аккумуляторных батарей

Со времени изобретения первого аккумулятора прошло не больше 140 лет и сейчас сложно представить современный мир без резервных источников питания на основе батарей.

Аккумуляторы применяются всюду, начиная с самых безобидных бытовых устройств: пульты управления, переносные радиоприемники, фонари, ноутбуки, телефоны, и заканчивая системами безопасности финансовых учреждений, резервными источниками питания для центров хранения и передачи данных, космической отраслью, атомной энергетикой, связью и т. д.

Развивающийся мир нуждается в электрической энергии столь сильно, сколько человеку нужен кислород для жизни. Поэтому конструкторы и инженеры ежедневно ведут работу по оптимизации имеющихся типов аккумуляторов и периодически разрабатывают новые виды и подвиды.

Основные виды аккумуляторов приведены в таблице №1.

Тип Применение Обозначение Рабочая температура, ºC Напряжение элемента, В Удельная энергия, Вт∙ч/кг
Литий-ионный (Литий-полимерный, литий-марганцевый, литий-железно-сульфидный, литий-железно-фосфатный, литий-железо-иттрий-фосфатный, литий-титанатный, литий-хлорный, литий-серный) Транспорт, телекоммуникации, системы солнечной энергии, автономное и резервное электроснабжение, Hi-Tech, мобильные источники питания, электроинструмент, электромобили и т.д. Li-Ion (Li-Co, Li-pol, Li-Mn, LiFeP, LFP, Li-Ti, Li-Cl, Li-S) -20 … +40 3,2-4,2 280
никель-солевой Автомобильный транспорт, ЖД транспорт, Телекоммуникации, Энергетика, в том числе альтернативная, Системы накопления энергии Na/NiCl -50 … +70 2,58 140
никель-кадмиевый Электрокары, речные и морские суда, авиация Ni-Cd –50 … +40 1,2-1,35 40 – 80
железо-никелевый Резервное электропитание, тяговые для электротранспорта, цепи управления Ni-Fe –40 … +46 1,2 100
никель-водородный Космос Ni-h3 1,5 75
никель-металл-гидридный электромобили, дефибрилляторы, ракетно-космическая техника, системы автономного энергоснабжения, радиоаппаратура, осветительная техника. Ni-MH –60 … +55 1,2-1,25 60 – 72
никель-цинковый Фотоаппараты Ni-Zn –30 … +40 1,65 60
свинцово-кислотный Системы резервного питания, бытовая техника, ИБП, альтернативные источники питания, транспорт, промышленность и т.д. Pb –40 … +40 2, 11-2,17 30 – 60
серебряно-цинковый Военная сфера Ag-Zn –40 … +50 1,85

Источник: https://best-energy.com.ua/support/battery/414-vidy-i-tipy-akkumulyatornykh-batarej-v-podrobnostyakh

Что такое аккумулятор (АКБ) — устройство и принцип работы

Знаете ли вы, что первые автомобили были именно электрическими и использовали свинцово-кислотные аккумуляторы? То, что мы привыкли считать машинами будущего – электромобили – появились до изобретения двигателя внутреннего сгорания (ДВС). С тех пор прошло больше 100 лет, но современный АКБ автомобильный изменился только качественно, оставшись принципиально таким же, как и столетие назад.

Сегодня аккумулятор в автомобиле считается расходником, требующим периодической замены. Сколько именно проработает АКБ – вопрос к качеству изготовления, режиму работы, даже к состоянию дорог, но рано или поздно его меняют на «свежий». Какие функции он выполняет, какие характеристики может иметь, как выбирать и как продлить жизнь аккумулятору – читайте в этой статье.

Что такое аккумулятор (АКБ) и для чего он нужен?

Современные автомобили всё больше становятся похожи на сложные электронные гаджеты: умное управление, всевозможные «помощники», автоматическая парковка и даже автопилот – это только небольшая часть той цифровой «начинки», которой богат автомобиль.

И всё это счастье постоянно нуждается в электроэнергии, которую нужно постоянно откуда-то добывать. Именно хранилищем энергии, откуда ее можно взять в любой момент, и выступает АКБ.

Да, он выполняет свою четкую функцию: накапливает заряд, затем отдает и дальше снова накапливает. Отличный вариант!

Само понятие аккумулятора нам уже настолько привычно, что глупо спрашивать, зачем он нужен. Однако на удивление мало людей могут точно сказать, для чего именно служит аккумуляторная батарея в автомобиле.

Ее назначение можно описать в трех пунктах.

  1. Аккумулятор обеспечивает энергию для запуска двигателя на старте.
  2. Аккумулятор служит резервным источником энергии, когда она требуется сверх того, что может дать генератор (например, при включении автомобильного кондиционера).

Устройство и принцип работы АКБ

Тот, кто хоть раз держал в руках аккумулятор автомобиля, знает, как много весит это устройство. Причина в том, что корпус его плотно заполнен элементами, содержащими свинец.

Устройство аккумулятора.

Для легковых автомобилей, требующих 12-вольтных АКБ, используется стандартная схема компоновки.

  1. Шесть элементов по 2 вольта (их обычно называют банками) объединены в общий корпус.
  2. Каждый из элементов состоит из положительных и отрицательных электродов: свинцовых решеток, в которые «впечатано» активное вещество. Электроды разделены между собой сепараторами, так что не соприкасаются друг с другом.
  3. И всё это залито электролитом – смесью воды и серной кислоты.

Активное вещество на решетках отличается по составу: для анода (положительного электрода) используется диоксид свинца, для катода (это отрицательный электрод) – губчатый свинец. В обоих случаях к свинцовым компонентам добавлены вспомогательные вещества (лигатуры), улучшающие работу аккумулятора.

Принцип работы.

В том виде, который описан выше, аккумулятор считается «заряженным». При подключении к выводам батареи любого устройства, требующего энергии, начинается реакция свинцовых компонентов с оксидом серы и водой.

Сера и свинец вступают в реакцию и преобразуются в сульфат свинца и воду.

Кислоты в электролите становится меньше, воды – больше, плотность электролита снижается и через некоторое время концентрации серы не хватает на то, чтобы реагировать со свинцовыми компонентами. Аккумулятор разряжается.

Процессы разряда и заряда АКБ

При подаче электроэнергии для зарядки АКБ происходит обратный процесс — сульфат свинца, осевший на пластинах, разлагается на оксид свинца и серную кислоту, которая выделяется обратно в электролит.

Восстанавливается изначальная плотность электролита, а на пластинах остается активное вещество – батарея заряжена.

Виды аккумуляторов

В попытке улучшить характеристики автомобильных аккумуляторов инженеры перепробовали множество способов. В итоге сегодня мы имеем различные типы АКБ, которые различаются по химическому составу активных компонентов и конструкции.

Классификация по составу активного вещества.

В первых аккумуляторах использовались свинцовые пластины, однако такая конструкция довольно быстро перестала устраивать инженеров и потребителей: тяжелая, малоэффективная, недолговечная.

  1. Первым улучшением стало добавление сурьмы к свинцу, что серьезно продлило срок службы батареи.
  2. Следующий этап – уменьшение процентного содержания сурьмы до оптимальной концентрации. Такой подход позволил создать малообслуживаемые аккумуляторы: в них уже намного реже требовался долив воды.
  3. Затем для покрытия пластин начал использоваться металлический кальций – так появились кальциевые АКБ (они же Са-Са). Кальций серьезно изменил параметры эксплуатации батарей: в прежних моделях потери воды из-за электролиза на 12 В требовали постоянного долива, а кальциевые лигатуры позволили повысить этот порог до 16 В. Благодаря этому появилась возможность делать необслуживаемые аккумуляторы в полностью герметичном, неразборном корпусе.

Но кальциевые батареи имеют и огромный минус: чувствительность к полному разряду. Сульфат кальция, который оседает на электродах, не разлагается полностью при зарядке, а это значит, что один глубокий разряд батареи способен ее «убить».

Самым современным решением стали гибридные аккумуляторы (они же Са+): кальциевые добавки есть только на положительном электроде (поскольку именно на нём происходит разложение воды при электролизе), а отрицательный покрыт малосурьмянистым свинцом.

Классификация по типу электролита.

Обычная жидкостная технология, при которой в аккумулятор заливался раствор кислоты и воды, вызывала много нареканий. Например, чувствительность к наклонам и вибрации. Необходимость обслуживать аккумулятор тоже не добавляла удовольствия от его эксплуатации. В общем, этой технологии было, куда расти.

На смену пришла AGM технология. В AGM аккумуляторе электролит «связывается» волокнистыми прослойками-сепараторами. Таким образом аккумулятор получает дополнительные преимущества: сепараторы сжимают активный слой и не дают ему отставать от пластин, имеют большую проводимость, чем жидкость и способствуют выдаче более мощного тока.

Технические (рабочие) характеристики автомобильных аккумуляторов

У АКБ для автомобиля довольно много рабочих параметров, которые важны при выборе батареи. Ошибешься хоть в одном из них – и аккумулятор нельзя будет использовать. Основные характеристики.

  • Емкость, Ач (ампер*час).
  • Пусковой ток, А (ампер).
  • Полярность.
  • Исполнение корпуса.
  • Тип клемм.
  • Тип крепления.

Номинальная емкость аккумулятора.

Емкостью батареи называют количество электроэнергии, которую аккумулятор может отдавать в течение определенного времени. Измеряется в Ач (ампер в час). Это один из основных параметров не только автомобильного, а вообще любого аккумулятора. Чем выше этот показатель, тем дольше батарея сможет поддерживать работу электроприборов автомобиля во время стоянки.

Для обычного легкового автомобиля с двигателем до 2 л. обычно нужна батарея 60 Ач, и чем больше оборудования в машине, тем более емким должен быть аккумулятор. При выборе лучше ориентироваться на рекомендации автопроизводителя, и если хочется взять АКБ с большей емкостью, то превышать рекомендуемую не более, чем на 5 Ач.

Пусковой ток.

Он же ток холодной прокрутки – показатель того, как аккумулятор справится с самой сложной задачей: запуском двигателя на морозе. Определяется мощностью тока, которую батарея может выдать в течение первых 30 секунд при температуре «-18» градусов. Чем выше этот показатель, тем больше шансов завести свою машину зимним утром.

Например, для запуска бензинового двигателя понадобится минимум 255А, для дизельного – не менее 300А. Именно за увеличение мощности пускового тока сражаются конструкторы аккумуляторов, и именно за более высокую пусковую мощность автолюбители ценят AGM аккумуляторы. Можно даже сказать, что чем выше пусковой ток батареи – тем выше ее качество вообще.

Полярность.

Полярность называют расположение клемм на корпусе аккумулятора. Это важная характеристика, поскольку неправильно выбранный АКБ просто невозможно будет подключить.

Чтобы определить полярность, нужно поставить аккумулятор так, чтобы нормально читались надписи на крышке («лицом» к себе), и посмотреть, с какой стороны находится плюсовая клемма.

  • Плюсовая клемма справа – полярность обратная, она же европейская, она же маркируется как «R» или «0».
  • Плюсовая клемма слева – полярность прямая, она же российская, она же «L» или «1».

Есть аккумуляторы с универсальной полярностью, то есть клеммы располагаются посредине коротких сторон корпуса или по диагонали. Однако такие модели встречаются редко. Чаще всего на автомобили российского производства нужны аккумуляторы с прямой полярностью, а на европейского и азиатского – с обратной.

Исполнение корпуса.

Конструкторы, создавая автомобили, разрабатывали и все комплектующие к ним. В итоге традиционно появились два типа корпусов аккумуляторов: европейский и азиатский.

  1. У АКБ с европейским типом корпуса клеммы находятся в углублении, так что их верхний край не выступает над плоскостью крышки. Иногда клеммы даже прикрыты специальными крышечками, так что дополнительно защищены от внешних факторов.
  2. Азиатский тип корпуса – это коробка, у которой клеммы «растут» из верхней крышки. То есть, именно верхний край клемм является самой высокой точкой аккумулятора.

Важен ли этот фактор? Конечно, удобней использовать такой АКБ, который предусмотрен производителем. Но в крайнем случае исполнением корпуса можно пренебречь, если остальные характеристики совпадают.

Нужно только помнить, что европейские производители указывают габаритные размеры аккумулятора по корпусу, а вот азиатские могут указывать высоту батареи с учетом клемм или без них.

Тип и размер клемм.

Еще одна характеристика, с которой нужно свериться при выборе аккумулятора – толщина клемм для подключения. Они бывают двух типов: стандартные и тонкие.

Стандартные клеммы, они же европейские, более толстые: плюсовая 19,5 мм, минусовая 17,9 мм в диаметре;

Тонкие клеммы, они же азиатские: плюсовая 12,7 мм, минусовая 11,1 мм в диаметре.

В обоих стандартах плюсовая клемма всегда толще, чтобы не перепутать полярность подключения.

Тип крепления.

И, наконец, днищевое крепление, оно же «юбка» аккумулятора – это планки с отверстиями под крепеж, расположенные в нижней части корпуса.

Каким бы тяжелым ни был аккумулятор, крепить его надо. Поэтому тип крепления важен при выборе, ведь он влияет на общие габариты корпуса. Существует 3 типа крепления.

  1. Верхнее крепление специальной прижимной скобой, без фиксации за днище, маркируется В00.
  2. Крепление по двум сторонам, когда ланки есть только на широких сторонах корпуса, а на торцевых отсутствует, маркируется В01.
  3. Крепление по периметру, когда «юбка» идет по всем четырем сторонам, маркируется В13.

В принципе, если в автомобиле предусмотрено только верхнее крепление, поставить ему можно любую батарею, лишь бы вошла по размеру, если нет другого выхода. А вот в обратную сторону эта лазейка не работает, придется подбирать подходящее днищевое крепление.

Рейтинг ТОП аккумуляторов

Много брендов, много советов, трудный выбор – с такими проблемами сталкиваются покупатели. Предлагаем небольшой, наш, субъективный рейтинг торговых марок АКБ.

  1. Первое место по уровню качества и долговечности по праву занимают ОЕМ аккумуляторы. ОЕМ – это аналог детали, которая была установлена с завода. Конечно, за аккумулятор, на котором гордо красуется логотип Mercedes или Honda, придется выложить намного больше, чем за любой другой бренд, но результат того стоит. Самые популярные на рынке бренды аккумуляторов – Varta и Bosch. Они заслужили репутацию надежных безотказных батарей, добросовестно отрабатывающих каждую вложенную копейку.
  2. Среди любителей заплатить поменьше, а получить побольше особо ценится бренд Topla. Это, конечно, не Бош, но вполне может порадовать долгой службой.
  3. А замыкают наш хит-парад бюджетные бренды Sada, Styer, Bi-Power и Ista. Они хоть и не дорогие, но вполне способны порадовать стабильной работой. Можно вспомнить о них, когда аккумулятор нужен срочно, а денег мало.

Советы по эксплуатации и обслуживанию АКБ

Чтобы аккумулятор проработал как можно дольше, нужно уделять ему совсем немного внимания. Вот несколько советов по эксплуатации автомобильного АКБ.

  1. Глубокий разряд – враг батареи. Каждый раз, когда аккумулятор разряжается «в ноль», происходит необратимая сульфатация электродов, особенно от этого страдают кальциевые батареи. Периодически желательно полностью заряжать бат специальным зарядным устройством и ни в коем случае не допускать полной разрядки.
  2. Второй враг – вибрация. От сильной тряски и регулярных ударов с пластин осыпается активный слой. AGM аккумуляторы меньше от этого страдают, жидкостные – больше.
  3. Клеммы аккумулятора склонны к окислению, что ухудшает контакт. Периодически нужно обращать внимание на состояние клемм и при необходимости очищать их от окислов.
  4. Обращайте внимание на корпус батареи. Грязь, масло, влага способствуют утечке тока и саморазряду.
  5. Неполадки в электросети могут вывести из строя и батарею. Особенно проблемы со стартером и генератором – смежными элементами.
  6. Вздутый корпус со следами электролита говорит о том, что пора покупать новый АКБ. Поврежденным аккумулятором пользоваться нельзя!

Заключение

Нормально работающий автомобильный аккумулятор избавляет от множества проблем и нервотрёпки. Работоспособность батареи особенно важна зимой, когда нагрузки возрастают в несколько раз. Именно поэтому автовладельцы стараются менять «уставший» АКБ во время осеннего ТО: и спокойней, и дешевле, не придется лишний раз этим заниматься. А вы давно проверяли свой аккумулятор?

Источник: https://VazNeTaz.ru/akb-avtomobilnyi-akkumulyator

Что такое батарея | Электрика4у

ЧТО ТАКОЕ БАТАРЕЯ?

Батарея, по идее, может быть любым устройством, которое накапливает энергию в форме химической энергии. В то же время батарея преобразует электрическую энергию в химическую во время зарядки и химическую энергию в электрическую во время разрядки.

Обычное использование слова «батарея», однако, ограничивается электрохимическим устройством, которое преобразует химическую энергию в электричество с помощью гальванического элемента.Гальванический элемент представляет собой довольно простое устройство, состоящее из двух электродов (анода и катода) и раствора электролита. Батареи состоят из одного или нескольких гальванических элементов.

[wp_ad_camp_2]

Как работает батарея?

Электроды (две пластины, каждая из которых изготовлена ​​из разных металлов или соединений металлов) помещают в раствор электролита.

Внешние провода соединяют электроды с электрической нагрузкой (в данном случае с лампочкой). Металл в аноде (отрицательный вывод) окисляется, высвобождая отрицательно заряженные электроны и положительно заряженные ионы металла.

Электроны проходят через провод (и электрическую нагрузку) к катоду (положительному выводу). Электроны соединяются с материалом катода. Этот комбинированный процесс называется восстановлением, и он высвобождает отрицательно заряженный ион оксида металла

.

На границе с электролитом этот ион вызывает расщепление молекулы воды на ион водорода и гидроксид-ион. Положительно заряженный ион водорода соединяется с отрицательно заряженным ионом оксида металла и становится инертным.

Отрицательно заряженный ион гидроксида проходит через электролит к аноду, где он соединяется с положительно заряженным ионом металла, образуя молекулу воды и молекулу оксида металла. По сути, ионы металла с анода растворяются в растворе электролита, а молекулы водорода из электролита осаждаются на катоде.

Когда анод полностью окислится или катод полностью восстановится, химическая реакция прекратится и аккумулятор будет считаться разряженным.
[wp_ad_camp_2]
Перезарядка батареи обычно заключается в приложении внешнего напряжения к пластинам для обращения химического процесса вспять. Однако некоторые химические реакции являются культовыми или их невозможно обратить вспять. Клетки с необратимыми реакциями обычно известны как первичные клетки, а клетки с обратимыми реакциями известны как вторичные клетки. Опасно пытаться перезарядить первичные элементы

Величина напряжения и тока, которые производит гальванический элемент, напрямую связана с типами материалов, используемых в электродах и электролите.Продолжительность времени, в течение которого ячейка может производить такое напряжение и ток, зависит от количества активного материала в ячейке и конструкции ячейки.

Каждый металл или металлическое соединение обладает электродвижущей силой, которая представляет собой склонность металла приобретать или терять электроны по отношению к другому материалу. Соединения с положительной электродвижущей силой будут хорошими анодами, а соединения с отрицательной силой — хорошими катодами. Чем больше разница между электродвижущими силами анода и катода батареи А, тем большее количество энергии может произвести элемент.

Как работают батареи — принцип работы, хранение и старение_батарея Greenway

Батарея — это устройство, которое накапливает энергию в форме химического вещества и при необходимости преобразует ее в электрическую энергию. А это обычные батарейки — те, что очень знакомой цилиндрической формы. Не существует батареи, которая хранит электрическую энергию, и каждая батарея хранит энергию в какой-то другой форме. Чтобы узнать больше о том, как работают батареи, мы рекомендуем вам продолжить чтение, чтобы узнать об этом и узнать все, что вам нужно знать о работе батареи.

Каков принцип работы батареи?

+Когда два разнородных металла, называемых электродами, помещают в разбавленный электролит, в электродах происходят реакции окисления и восстановления в зависимости от электронного контакта металла электродов. В результате реакции окисления один электрод получает отрицательный заряд, называемый катодом. Другой электрод получает положительный заряд, называемый анодом, благодаря реакции восстановления. Катод образует отрицательную клемму, а анод — положительную клемму элемента или батареи.

Чтобы понять фундаментальный принцип батареи, вам необходимо понять основную концепцию сродства к электронам. Когда два, в отличие от металлов, помещаются в электролит, между этими металлами возникает разность потенциалов.

Обнаружено, что при добавлении в воду определенных соединений они растворяются и образуют положительные и отрицательные ионы. Этот тип соединения известен как электролит. Энергия, возникающая при принятии электрона нейтральным атомом, называется сродством к электрону.Если два разных типа металлов поместить в один и тот же раствор электролита, то один получит электроны, а другой в конечном итоге отдаст электроны. И какой металл получит электроны, а какой потеряет, зависит от сродства к электрону. Металл с меньшим сродством будет приобретать электроны от -ve ионов раствора электролита.

С другой стороны, металл с высоким сродством к электрону в конечном итоге высвобождает электроны. Следовательно, между этими двумя металлами будет ключевая разница в концентрации электронов.Эта разница приводит к разнице электрических потенциалов, образующейся между металлами. Эту разность или ЭДС можно использовать в качестве источника напряжения в любой электрической цепи. Это общий принцип работы аккумулятора.

 

Как аккумулятор накапливает энергию?

Существует два основных типа химических аккумуляторных батарей: перезаряжаемые или вторичные элементы, первичные элементы и неперезаряжаемые. Что касается хранения энергии, а также разрядки электричества, они идентичны.Вопрос только в том, допускают ли используемые химические процессы многократную зарядку и разрядку.

Все электрохимические элементы имеют два электрода. Область между электродами заполнена электролитом — ионной жидкостью, проводящей электричество. Электрод — анод — позволяет электронам выходить из него. Другой — катод — их принимает. Энергия запасается в специальных соединениях, входящих в состав анода, катода и электролита, например, цинка, меди и SO4.

Анод подвергается реакции окисления: во время разряда два или более ионов соединяются с анодом, образуя соединение, а также высвобождают 1 или более электронов. А катод подвергается реакции восстановления, при которой материал, из которого сделан катод, образует соединения с ионами и свободными электронами.

Как умирает батарея?

Когда активное вещество в пластинах не может поддерживать поток разряда, аккумулятор «умирает». Как правило, автомобильный (или ранний) аккумулятор «стареет» по мере того, как активный материал положительной пластины осыпается (или отслаивается) из-за нормального расширения и сжатия, которые происходят во время циклов разрядки и зарядки.Это приводит к тому, что пластина теряет емкость, и коричневый осадок, называемый шламом или «грязью», накапливается на дне корпуса, а также замыкает пластину ячейки. Это повредит аккумулятор как можно быстрее.?

В жаркую погоду дополнительными причинами выхода из строя являются положительный рост сетки, повреждение металла положительной сетки, отрицательная усадка сетки, коробление пластины или потеря воды. Глубокие разряды, вибрация, нагрев, быстрая зарядка и перезарядка — все это стимулирует процесс «старения». Около 50% преждевременных отказов автомобильных аккумуляторов вызваны отсутствием технического обслуживания, испарением из-за сильного геотермального тепла или потерей воды для нормальной подзарядки из-за перезарядки.Положительный рост сетки и недозарядка, вызванная сульфатацией, могут привести к преждевременным отказам.

Срок службы батареи зависит от ее химического возраста, который больше, чем время после сборки батареи. Химический возраст батареи определяется сложной комбинацией нескольких факторов, включая температурную историю и режим зарядки. Все перезаряжаемые батареи годны к употреблению и химически не эффективны с возрастом. По мере химического старения литий-ионных аккумуляторов объем удерживаемого ими заряда уменьшается, сокращается срок службы аккумулятора и снижается максимальная производительность.

Заключение              

Вот и все. Здесь мы рассмотрели основную идею о том, как работают батареи. Энергия запасается в специальных соединениях, из которых состоят анод, катод и электролит. Аккумулятор достигает заряженного состояния во время перезарядки или сборки устройства. Во время разряда химическое вещество на аноде высвобождает электроны, а ионы в электролите подвергаются реакции окисления. Многие электрохимические и термические процессы происходят одновременно, и даже самые практичные комбинации элементов, упакованные в виде аккумуляторов, не могут полностью отразить все процессы.Таким образом, приближение основных реакций является лишь кратким описанием того, что происходит на самом деле, но также помогает объяснить основной принцип работы батареи.

 

 

 

литий-ионный аккумулятор аккумулятор для электровелосипеда литиевый аккумулятор

Как работают зарядные устройства — Kennedy Electric

Как работает зарядное устройство

Батарея работает, преобразовывая накопленную химическую энергию в электрическую энергию. После того, как электролит батареи израсходован, ее необходимо перезарядить.Зарядное устройство для аккумуляторов — это устройство, которое подает на аккумулятор постоянный ток (DC) для восстановления израсходованного электролита. Так что в идеале, когда все электролиты батареи восстановятся, ее подача тока должна прекратиться.

Весь процесс зарядки представляет собой комбинацию зарядки, стабилизации (оптимизация скорости зарядки) и прекращения (знание момента остановки зарядки). Скорость заряда и разряда аккумуляторов указывается как C-rate (Charge Rate). Это мера скорости, с которой батарея заряжается или разряжается по отношению к ее емкости (измеряется в Ач).Например, если полностью заряженный аккумулятор емкостью 4 Ач разряжается током 4 ампера, то для полной зарядки потребуется час. В большинстве современных гаджетов, таких как мобильные телефоны, электромобили и ноутбуки, используются литий-ионные аккумуляторы, которых хватает на долгое время при частой зарядке.

Зарядка должна немедленно прекратиться после полной зарядки аккумулятора. Но стандартные зарядные устройства не могут узнать, когда зарядка достигла 100 процентов, и продолжают подавать питание на аккумулятор.Вот почему вы видите, что батареи нагреваются — это способ высвободить дополнительную энергию, подаваемую на них. Перезаряд аккумуляторов может не только повредить аккумулятор, но и сократить срок его службы. Доступны различные типы зарядных устройств, такие как капельное, основанное на времени, простое, интеллектуальное зарядное устройство, импульсное зарядное устройство, зарядное устройство с питанием от движения, солнечное, быстрое и трехступенчатое зарядное устройство.

Зарядное устройство всегда изготавливается для конкретной батареи с учетом силы тока, которое оно обеспечивает, и времени, необходимого для полной зарядки батареи.Это означает, что зарядное устройство, предназначенное для зарядки определенного аккумулятора, может не подходить для другого аккумулятора. Производители гаджетов рекомендуют для зарядки аккумуляторов приобретать зарядное устройство той же марки. Вы можете получить максимальную отдачу от своего зарядного устройства, не заряжая батареи с разной емкостью или химическим составом вместе. Это может привести к повреждению батарей с течением времени.

Выбор подходящего зарядного устройства

Есть несколько факторов, которые необходимо учитывать при выборе зарядного устройства для аккумуляторов.Избегайте перезарядки аккумуляторов, чтобы продлить срок их службы и защитить их от необратимого повреждения. Хорошее время автономной работы также поможет повысить производительность вашего электрооборудования.

Надеюсь, теперь вы лучше понимаете зарядные устройства и то, как они работают. Если вам нужны розетки с зарядными портами или даже EVCS, позвоните нам. Мы можем помочь!

Kennedy Electric — надежная электротехническая компания с полным спектром услуг, обслуживающая частных и коммерческих клиентов в округах Цитрус, Эрнандо и Паско.Мы предлагаем ремонт электрооборудования, проводку лодочных подъемников, реконструкцию, низковольтное освещение, подключение генератора, электроснабжение жилых автофургонов, электрические осмотры, установку вентиляторов, домашнее освещение, новые цепи, панели и многое другое. Позвоните сегодня по телефону 352-799-3434.

Понимание того, как работают батареи

Аккумуляторы питают все, от кардиостимуляторов, спасающих жизнь, до мобильных телефонов, которые облегчают жизнь. Они также позволяют нам транспортировать электроэнергию туда, где она нам нужна, от Южного полюса до Амазонки и повсюду между ними, обеспечивая свет, тепло, связь и многое другое.Батареи питают все, от кардиостимуляторов, спасающих жизнь, до наших мобильных телефонов, которые облегчают жизнь. Они также позволяют нам транспортировать электроэнергию туда, где она нам нужна, от Южного полюса до Амазонки и повсюду между ними, обеспечивая свет, тепло, связь и многое другое.

Почти каждый из нас в какой-то момент полагался на батарейки, возможно, хватаясь за фонарик во время отключения электроэнергии. Наша взаимосвязь с батареями означает, что мы редко останавливаемся, чтобы спросить: «Как работают батареи?» Это руководство охватывает все, что вам нужно знать об аккумуляторах, начиная с их появления в 18 веке и заканчивая тем, почему вам не следует заряжать холодный автомобильный аккумулятор.

Знакомство с батареями  

Батарейки дают нам портативный электрический ток или электричество и возможность накапливать энергию. Энергия вездесуща во Вселенной в различных формах.

Электричество — это движение электронов между атомами, когда электроны сталкиваются друг с другом, создавая электрический поток. Батареи не хранят электричество — они хранят электрическую энергию в химических веществах, содержащихся в батарее. Что делает батарея, так это преобразует накопленную химическую энергию в электрический ток.

Как работают батареи?  

Давайте посмотрим на классическую батарейку АА, обычно используемую в пультах дистанционного управления, игрушках и многом другом. На одном конце батареи находится отрицательный конец, называемый анодом . На другом конце находится положительный конец, называемый катодом . И анод, и катод также известны как электроды или электрические клеммы.

Корпус батареи разделяет отрицательный и положительный электроды. Внутри корпуса батареи находятся электролиты, которые действуют как своего рода барьер между анодом и катодом.Эти три части образуют так называемый электрохимический элемент — два электрода (анод и катод) — разделенные электролитом (корпус батареи). Аккумулятор состоит из нескольких таких элементов.

Когда батарея бездействует, не образуя электрической цепи, электролиты и электроды бездействуют. Как только вы замыкаете цепь, например, вставив батарейку в фонарик и включив его, начинается химическая реакция.

Анод, наш отрицательный электрод, реагирует с электролитами и производит электроны, которые накапливаются на отрицательном полюсе батареи.Анод обычно изготавливается из материала, который любит отдавать электроны, также известного как окисленный или окисленный материал.

На положительной клемме катодный электрод реагирует с электролитами, создавая ионы — атомы со слишком малым или слишком большим количеством электронов. Катод сделан из оксида металла, который собирает как ионы, так и электроны.

Как говорится, противоположности притягиваются. Электроны стремятся пройти от отрицательного вывода (анода) к положительному полюсу (катоду).Электролиты действуют как барьер для электронов, и электроны не могут проходить через корпус батареи. При этом заряженные ионы протекают через раствор электролита, находящийся в контакте с обоими электродами.

Со своим фонариком делаем внешнюю цепь, когда вставляем батарейки и включаем фонарик. Заблокированный поток электронов ищет путь наименьшего сопротивления. Электроны хотят покинуть анод и отправиться к катоду.

Наши электроны обнаруживают, что внешняя цепь предлагает путь наименьшего сопротивления для движения по внешней цепи, которую мы создали.Они текут от анода через провода фонарика и лампочку к катоду. Они рекомбинируют с ионами на положительной клемме, чтобы замкнуть цепь и зажечь лампочку в пути. Помните, электричество — это движение электронов между атомами.

Этот процесс известен как восстановление-окисление или окислительно-восстановительная реакция, научный термин для любой реакции, включающей обмен электронами.

Электролит батареи может провести эту химическую реакцию только определенное количество раз, прежде чем он перестанет производить ионы, и батарея разрядится.

Что внутри батареи?  

Мы рассмотрели три основные части батареи: отрицательный электрод (анод), положительный электрод (катод) и электролиты, разделяющие эти электроды.

Давайте посмотрим на компоненты щелочно-диоксид-марганцевой батареи размера AA, также известной как щелочные батареи.

Внешне батарея имеет положительный и отрицательный электроды со стальным покрытием, а основной стальной корпус покрыт этикеткой из ПВХ.

Внутри батарея имеет латунный стержень, действующий как центральный стержень, который действует как токосъемник. Этот латунный стержень окружен сепаратором, чтобы он не попал в раствор электролита. В аккумуляторе есть два типа электролитов — анод имеет гель порошкообразного цинка, а катод — диоксид марганца. Также есть различные уплотнения и шайбы.

Аккумуляторы с разными материалами электродов и электролитов вызывают разные химические реакции.Они влияют на то, как работает батарея, от ее напряжения до емкости накопления энергии. Например, не было бы потока электронов, если бы мы использовали тот же материал для электродов.

Чтобы узнать больше, посмотрите это видео о процессе изготовления батареи.

Различные типы батарей  

источник

Существует множество типов аккумуляторов. Первое различие, которое необходимо сделать, заключается в том, является ли батарея основной батареей или вторичной батареей. Существует много типов батарей.Первое различие, которое необходимо сделать, заключается в том, является ли батарея основной батареей или вторичной батареей.

Проще говоря, первичная батарея не перезаряжается, а вторичная батарея перезаряжается. Вообще говоря, первичная батарея имеет большую плотность энергии, чем вторичная батарея, а это означает, что первичная батарея может обеспечивать питание дольше, чем вторичная батарея. Еще одно важное отличие: мы можем перезаряжать и перерабатывать вторичные батареи, но перерабатываем только изношенные первичные батареи.

Существует несколько типов батарей в рамках двух классификаций первичных и вторичных батарей.Сначала рассмотрим первичные батареи.

Какие существуют три основных типа основных батарей?  

Мы используем первичные батареи во многих важных аспектах нашей жизни благодаря их долговечности. Кардиостимулятор — фантастический пример использования основной батареи — мы не можем просто продолжать работать с людьми, чья батарея кардиостимулятора нуждается в подзарядке.

Первичные батареи

также известны как сухие батареи. Но они не сухие. Термин происходит от того факта, что содержимое батареи не может быть пролито, независимо от ее положения.Различные материалы отличают каждую батарею, причем каждый материал влияет на мощность и срок службы батареи. Существует три основных типа первичных батарей: 

  1. Цинк-углерод : Также известная как батарея Лекланше в честь ее французского изобретателя Жоржа Лекланше, была одной из первых доступных батарей и остается одной из самых дешевых по сей день. Как вы, наверное, догадались, его электроды сделаны из цинка и углерода. Эти батареи бывают цилиндрической и прямоугольной формы и, как правило, имеют относительно короткий срок службы.Они лучше работают с приборами с низким энергопотреблением, такими как игрушки или пульты дистанционного управления телевизором. Кроме того, современные угольно-цинковые батареи могут использовать хлорид цинка для увеличения их потенциала; их часто называют батареями для тяжелых условий эксплуатации.
  2. Щелочные батареи: Щелочные батареи приобрели известность около столетия назад. В нем используются другие материалы, чем в цинково-угольной батарее. Прямоугольные и цилиндрические щелочные батареи имеют цинковый анод и катод из диоксида марганца с гидроксидом калия в качестве электролита.У щелочных батарей есть много практических преимуществ по сравнению с углеродно-цинковыми батареями, с более длительным и мощным разрядом, большим сроком хранения и лучшей способностью работать в более холодных условиях.

Есть и другие подмножества щелочных аккумуляторов, мощность которых зависит от его электродов — электролитом остается гидроксид калия.

Наконец, батарейки-таблетки, используемые, например, в часах и слуховых аппаратах, имеют цинковый анод и катод из оксида серебра.Батарейки-таблетки дороги, известны своим долгим сроком службы и высокой разрядкой.

Вы можете создать щелочную батарею с почти неограниченным сроком годности, называемую воздушно-цинковой батареей, снова заменив электроды. Цинковый анод в сочетании с кислородным катодом образует щелочную батарею, используемую в слуховых аппаратах, пейджерах, часах и многом другом. Воздушно-цинковые батареи имеют самую высокую плотность энергии среди всех одноразовых батарей и бывают цилиндрической, 9-вольтовой и монетной формы.

  1. Литиевые: Эти батареи дополняют секцию основных батарей и являются одними из самых дорогих батарей.Они обычно используются в цифровых камерах и других небольших приборах. В литиевых батареях, обычно цилиндрических или кнопочных, используется органический электролит. Литиевые батареи с более низким напряжением (1,6 В) имеют литиевый анод и катод из сульфида железа, в то время как литиевые батареи с более высоким напряжением (2,8-3,2 В) заменяют сульфид железа на катоды из диоксида марганца.

Какие существуют типы вторичных или перезаряжаемых батарей?  

Также существует три типа вторичных или перезаряжаемых батарей.Как и первичные батареи, существуют вторичные батареи щелочного и литиевого типа. Третий тип аккумуляторной батареи — это свинцово-кислотная батарея, известная тем, что используется в качестве автомобильного аккумулятора. Точно так же изменение исходных материалов батареи влияет на ее производительность и использование. Аккумуляторы всегда следует утилизировать, поскольку их ценные компоненты можно использовать повторно.

1) Свинцово-кислотные аккумуляторы  

Это не просто автомобильные аккумуляторы; они также используются в инвалидных колясках и аварийных источниках питания.Свинцово-кислотные аккумуляторы тяжелые, дешевы в производстве и имеют увеличенный срок службы. Они оснащены свинцовыми анодами, катодами из диоксида свинца и сернокислотными электролитами.

2) Щелочные батареи  

Щелочные аккумуляторы бывают двух типов. Никель-кадмиевые батареи, также известные как никель-кадмиевые или никель-кадмиевые батареи, были широко распространены, когда люди начали использовать перезаряжаемые батареи для игрушек, персональных музыкальных плееров, игрушек и так далее. Они работали и перезаряжались хорошо, но токсичный кадмий было сложно перерабатывать.

Кадмиевый анод был заменен анодом из лантанидного или никелевого сплава для создания никель-металлогидридной батареи или NiMH. Они намного безопаснее, чем никель-кадмиевые аккумуляторы, обеспечивают отличное питание и хорошо заряжаются. Вы увидите в продаже цилиндрические и прямоугольные перезаряжаемые NiMH аккумуляторы, и они используются в электромобилях.

3) Литий-ионные батареи  

Литий-ионные аккумуляторы произвели революцию в наших отношениях с аккумуляторами. Наши сотовые телефоны, ноутбуки и электромобили работают на этих быстрозаряжающихся батареях.Они используют угольный анод и катоды из диоксида лития-кобальта, а также органический электролит. Литий-ионные батареи также используются на гигантских аккумуляторных фермах для сбора избыточной возобновляемой энергии для последующего использования.

Какие бывают аккумуляторы разных размеров?  

источник

Аккумуляторы похожи на коробки и шкафы, когда речь заходит о хранении. Чем больше батарея, тем больше электролитов она содержит и тем больший электрический заряд она предлагает. Наиболее распространенные размеры батарей в нашей повседневной жизни:

  • Батарейки AA: Известные как батарейки двойного размера A, они имеют цилиндрическую форму и чаще всего используются для миллионов гаджетов.
  • Батарейки ААА: Также известные как тройные батарейки типа А, они меньше батареек АА и часто используются в пультах дистанционного управления телевизорами и гаджетах, не требующих большой мощности.
  • Батарейки C : они крупнее батареек AA или AAA и предназначены для использования в предметах повышенного спроса, таких как фонари, фонарики и игры.
  • Аккумуляторы D: Они еще большего размера для более тяжелых продуктов, которые потребляют большое количество энергии или требуют питания в течение длительного времени.

Все вышеперечисленные аккумуляторы имеют напряжение 1,5 В.

Узнаваемая прямоугольная 9-вольтовая батарея обеспечивает большую мощность, а батарейки-таблетки обеспечивают длительный срок службы в небольшом корпусе в форме монеты, идеально подходящем для небольших гаджетов, таких как часы.

Существует много других специализированных типов батарей, таких как CR123A, также известная как 123, для охранной сигнализации и других конкретных применений.

Что означает напряжение батареи?  

Напряжение батареи определяет, какой электрический потенциал она будет создавать после подключения к цепи.Например, 12 вольт автомобильного аккумулятора — это более высокое напряжение, чем 1,5 вольта батареи AAA. Это связано с тем, что для запуска автомобиля требуется достаточное количество энергии, в то время как для работы пульта дистанционного управления телевизора требуются только тройные батарейки AAA меньшего размера.

Вспомните отрицательный конец (анод) и положительный конец (катод) батареи. Термин «напряжение» связан с разницей электрических потенциалов между анодом и катодом — чем больше разница, тем выше напряжение батареи.

Термин «вольт» назван в честь Алессандро Вольта, итальянского физика, который изобрел первый в мире электрохимический элемент в 1800 году.Вольта использовал цинковый анод и медный катод с солью и водой в качестве электролитического раствора. В 1881 году имя Вольта было присвоено измерению разности электрических потенциалов между анодом и катодом. Таким образом, то, что когда-то называлось электродвижущей силой (ЭДС), стало называться вольтом или напряжением.

Аккумуляторы также указывают значения мАч или миллиампер-часы. мАч показывает, сколько электроэнергии держит батарея. Чем выше значение мАч, тем больше энергии может хранить аккумулятор, тем дольше он будет работать, а также тем больше времени потребуется для его перезарядки.

Аккумуляторы переменного или постоянного тока?   Батареи

обеспечивают питание постоянным или постоянным током, обеспечивая регулярный, устойчивый и контролируемый поток. Национальные сети передают электроэнергию с использованием альтернативного тока (AC), тока, который быстро меняет направление.

Являются ли батареи конденсаторами?  

Проще говоря, нет; батареи не конденсаторы. Батареи хранят электрическую энергию, тогда как конденсаторы тоже хранят энергию, но в электрическом поле.

Проблемы с использованием батарей

источник

Аккумуляторы — отличный способ передачи энергии, но они не всегда работают без сбоев. Первичные батареи могут разрядиться в неподходящее время. Кроме того, у вас может не оказаться под рукой зарядного устройства для подзарядки аккумуляторов или аккумулятора, подходящего для вашего прибора. Аккумуляторы — отличный способ передачи энергии, но они не всегда работают без сбоев. Первичные батареи могут разрядиться в неподходящее время. Кроме того, у вас может не оказаться под рукой зарядного устройства для подзарядки аккумуляторов или аккумулятора, подходящего для вашего прибора.

Могут ли батареи намокнуть и продолжать работать?  

Вода не подходит для контакта с батареями. Вода может вызвать ржавчину на корпусе аккумулятора, что иногда приводит к его саморазряду и полному разряду. Деградация батареи также может привести к ее протечке, прекращению работы и, возможно, взрыву.

Если вы случайно постирали одежду с батареей в кармане, ваша стиральная машина должна быть в порядке, потому что любая утечка будет значительно растворена во время цикла стирки машины.

В общем, лучше не мочить аккумуляторы. Если они намокли, рекомендуется прекратить их использование.

Могут ли батареи замерзнуть?  

Все может замерзнуть, если температура упадет достаточно низко. Таким образом, вопрос в том, можете ли вы использовать батареи в морозных погодных условиях и можете ли вы их перезаряжать?

Все батареи разные, но все они работают менее эффективно, когда температура падает ниже нуля. Лучший совет — не заряжать замерзший аккумулятор.

Полностью заряженный свинцово-кислотный автомобильный аккумулятор может работать при температуре до -58 градусов по Фаренгейту. Если у него низкий заряд, он может замерзнуть при температуре около 30 градусов по Фаренгейту. Вы можете заряжать их при температуре окружающей среды от -4 до 122 градусов по Фаренгейту. Всегда лучше заряжать свинцово-кислотный аккумулятор при комнатной температуре, а не в холодном или замороженном состоянии — в конце концов, свинцово-кислотные аккумуляторы могут взорваться. Если вы сомневаетесь, не заряжайте аккумулятор и обратитесь за помощью к профессиональному механику.

Щелочные батареи

работают от -4 до 149 градусов по Фаренгейту и заряжаются от 32 до 113 градусов по Фаренгейту.

Литий-ионные аккумуляторы

будут работать при температуре от -4 до 140 градусов по Фаренгейту и заряжаться от 32 до 113 градусов по Фаренгейту.

Разрешены ли батареи в самолетах?  

Большинство аккумуляторов разрешено перевозить в самолетах — почти каждый берет с собой в самолет ноутбук, планшет, видеоигру или мобильный телефон.

Сухие щелочные и никель-металлогидридные аккумуляторы можно взять с собой в самолет, либо в устройстве, либо в багаже ​​в качестве запасных частей. Эти аккумуляторы также можно сдать в зарегистрированный багаж, хотя рекомендуется брать их с собой на борт.Вы должны иметь только сухие литиевые батареи в устройствах или в качестве запасных частей на борту.

Контакты запасных батарей должны быть заклеены лентой на время полета и храниться в защитных футлярах или полиэтиленовых пакетах. Не держите дополнительные батареи рядом с металлическими предметами, так как это может привести к их короткому замыканию и перегреву.

Если вы планируете путешествовать с запасной перезаряжаемой литий-ионной батареей, заранее обратитесь за консультацией в авиакомпанию. Перезаряжаемые литий-ионные батареи, как правило, разрешены в качестве ручной клади, но часто имеют строгие ограничения по размеру.

Можно ли перерабатывать батареи?  

Аккумуляторы содержат несколько токсичных, вредных и ценных материалов, в зависимости от типа аккумулятора. Ртуть, свинец, литий и кобальт являются одними из возможных материалов батареи и всегда должны утилизироваться надлежащим образом.

Батареи и их компоненты потенциально опасны и наносят ущерб людям, земле, животным и растениям. Утилизация или возврат на место производства — лучший вариант для изношенных аккумуляторов.

Не выбрасывайте батарейки в обычный мусор. Всегда консультируйтесь с местным или государственным отделом по утилизации твердых отходов для получения информации о методах переработки и утилизации. Некоторые розничные продавцы и производители также принимают возврат аккумуляторов, что особенно важно для автомобильных и литий-ионных аккумуляторов.

Посетите search.earth.911com для получения информации о центрах утилизации или посетите веб-сайт call2recycle для получения информации о переработке аккумуляторов.

Будущее батарей  

Аккумуляторы прошли долгий путь от раннего изобретения Алессандро Вольта.Однако они по-прежнему придерживаются его открытия о том, что накопленная химическая энергия может быть преобразована в электрическую энергию. Технологические достижения означают, что мы знаем, что различные материалы увеличивают количество производимой электроэнергии, а дизайн сделал батареи столь же универсальными, сколь и полезными.

Литий-ионные аккумуляторы

обеспечат владельцам сотовых телефонов несколько дней использования и помогут совершить революцию в области электромобилей. Ожидается, что до 2030 года на дорогах мира появится около 145–230 миллионов новых электромобилей, работающих от аккумуляторов.Аккумуляторные фермы коммунального масштаба вырастут с четырех гигаватт в 2019 году до 400 гигаватт к 2040 году, улавливая излишки возобновляемой энергии для последующего использования.

Итак, как работают батарейки? Основная концепция проста. Химическая реакция заставляет электроны покидать отрицательный конец батареи и перемещаться по электрической цепи к положительному концу. Это путешествие на электронах дает нам портативное надежное электричество в виде батареи, питающей нашу повседневную жизнь.

Предоставлено вам amigoenergy

Все изображения предоставлены по лицензии Adobe Stock.
Избранное изображение:

Устройство хранения – обзор

5.4.3.4 Моделирование и расчет аккумуляторов

Устройства хранения, такие как аккумуляторы, сверхпроводники, водород, маховики и гидроаккумулирующие насосы (PHES), привлекли большой интерес за последние несколько десятилетий из-за сильному появлению гибридных систем и прерывистому характеру ВИЭ [40,120,121].Их основная цель — хранить перепроизводство систем ВИЭ для его использования в отсутствие производства. На самом деле батареи являются наиболее используемым устройством хранения данных в гибридных системах, поскольку они имеют ряд преимуществ, таких как быстрый отклик, хорошая энергоэффективность и модульность [121]. На самом деле доступно несколько разновидностей батарей, таких как свинцово-кислотные батареи, литий-ионные батареи, никель-кадмиевые батареи, проточные ванадиевые батареи и натрий-серные батареи [40,120]. На самом деле определение размеров, моделирование и оценка производительности аккумуляторов являются обязательными, когда речь идет об их интеграции в гибридные системы, чтобы иметь представление об оптимальном размере для установки и оценивать их поведение в различных условиях в симуляциях, прежде чем устанавливать их в реальных сценариях. .Что касается размеров батарей, их емкость ( C летучая мышь ) может быть вычислена с помощью уравнения. (5.13)  [41,69,92]:

(5.13)Cbat=Econsumment×NAutVbat×ɳbat×DoD.

Где E E Потребление представляет максимальный электрический ежедневный расход (кВтч / день), N AUT — это количество дней автономии (день), V BAT представляет собой напряжение батареи (В), ɳ bat означает эффективность батареи (≈80%), и, наконец, DoD представляет собой глубину разряда (≈60% для свинцово-кислотных аккумуляторов).Основная цель габаритов аккумуляторов – обеспечить работу строительной техники при отсутствии производства. Поэтому для расчета емкости батарей необходимо определить количество дней автономной работы, которое зависит от географического положения и, следовательно, от погодных условий [41,92]. С другой стороны, необходимая мощность для установки ( C 10 в Ач) рассчитывается по уравнению. (5.14):

(5.14)C10=CbatFCbat.

где F Cbat представляет собой поправочный коэффициент, который используется для расчета емкости C 10 .Этот коэффициент равен 1,25, если количество дней автономии ( N Aut ) колеблется от 1 до 4 дней [41]. Кроме того, количество серийных аккумуляторов ( N s ) зависит от напряжения используемого аккумулятора ( V bat в V) и напряжения преобразователя (

в V) V), как выражено в уравнении (5.15), в то время как количество ветвей ( N p ) должно проверять уравнение.(5.16), где C 10 BAT BAT BAT — это мощность батареи в C 10 (AH) [41]:

(5.15) NS = VConverterVBAT,

(5.16) NP≥C10C10BAT.

Что касается моделирования аккумуляторов, их сложное поведение делает их моделирование, оценку их производительности, оценку и прогнозирование их состояния заряда (SoC) очень сложными [43]. Такое сложное поведение связано с изменением нескольких параметров батареи, таких как ток, напряжение, емкость и температура, во время циклов зарядки/разрядки.Фактически, исследовательское сообщество разработало множество моделей аккумуляторов, в основном электрохимические модели и модели электрических цепей, для оценки их поведения при различных обстоятельствах, а именно при зарядном/разрядном токе и температуре [43,122]. Например, электрохимические модели до сих пор являются наиболее точными моделями. Увы, представление динамического поведения аккумуляторов, идентификация их параметров и оценка их SoC с использованием этих моделей слишком сложны из-за их сильной зависимости от температуры, а также их сложной электрохимии [123].В качестве альтернативы модели электрических цепей, в основном модель идеальной батареи и модели батарей Thevenin, широко используются, особенно когда батареи комбинируются с системами ВИЭ, для оценки, по аналогии с электричеством, динамического поведения батарей из-за тот факт, что они обеспечивают соответствующую точность при сохранении приемлемой сложности вычислений [122]. Они состоят из источника напряжения, резисторов и конденсаторов. Эти модели более точны, когда порядок модели (т.е., число сетей РЦ) увеличивается [124]. С другой стороны, параметры батареи должны быть точно определены для получения точной модели батареи, которая могла бы имитировать ее реальное динамическое поведение. Количество параметров аккумулятора зависит от используемой модели аккумулятора. Фактически, на параметры батареи влияют несколько условий, таких как циклы зарядки/разрядки, температура, глубина разрядки (DoD) и перезарядка. Следовательно, их необходимо идентифицировать в режиме реального времени, а не вычислять фиксированные параметры, которые могут привести к серьезной ошибке модели.Фактически, исследовательское сообщество предложило и разработало множество методологий для точного определения параметров батареи, таких как метод рекурсивных наименьших квадратов (RLS), метод спектроскопии импеданса, тесты OCV, фильтр Калмана (KF), алгоритмы искусственной нейронной сети (ANN) и Гибридный тест характеристики импульсной мощности (HPPC) [125–127]. Например, метод импедансной спектроскопии и тесты OCV используются для извлечения фиксированных параметров батареи [124, 125], в то время как другие методы (например, RLS, KF, ANN и HPPC) используются для определения параметров батареи в режиме реального времени [126, 127]. ].Стоит отметить, что РЛС чаще всего используется для определения параметров батареи в режиме реального времени благодаря своей точности и простоте [127]. Этот метод направлен на минимизацию ошибки, которая представляет собой разницу между экспериментальными результатами и результатами моделирования, для улучшения модели батареи.

С другой стороны, для защиты аккумулятора от перезаряда и глубокого разряда основным индикатором является его SoC. Используется для определения оставшейся емкости аккумулятора; однако нет датчиков, которые могли бы его измерить, что приводит к неизбежности его оценки.На самом деле его можно точно оценить с помощью многочисленных математических методов, которые были предложены, разработаны и описаны в литературе, а именно, методы прямых измерений, методы на основе моделей, методы искусственного интеллекта и гибридные методы [128]. . Например, методы прямого измерения, в основном метод подсчета кулонов, метод напряжения разомкнутой цепи (OCV) и спектроскопия электрохимического импеданса (EIS), оценивают SoC батареи на основе динамических измерений батареи (т.г., напряжение, ток и импеданс) [129]. Увы, их точность не слишком важна из-за шумов измерений и неточной начальной SoC. Кроме того, методы на основе моделей, в основном наблюдатель Люенбергера и фильтр Калмана, а также методы искусственного интеллекта, такие как нейронная сеть и нечеткая логика, широко используются для точной оценки и прогнозирования SoC батареи [130]. . Наконец, гибридные методы направлены на использование преимуществ каждого метода для повышения точности оценки SoC батареи [131].Фактически, они сочетают в себе различные методы, такие как кулоновский подсчет с методами фильтра Калмана и фильтр Калмана с методами нейронной сети.

Как работает источник бесперебойного питания (ИБП)?

Источник бесперебойного питания (ИБП), также известный как резервный аккумулятор, обеспечивает резервное питание, когда ваш обычный источник питания выходит из строя или напряжение падает до недопустимого уровня. ИБП обеспечивает безопасное и правильное отключение компьютера и подключенного к нему оборудования. Размер и конструкция ИБП определяют, как долго он будет подавать питание.

Топологии ИБП

Различные топологии ИБП обеспечивают определенные уровни защиты электропитания. ИБП CyberPower будет принадлежать к одной из этих трех топологий: резервная, линейно-интерактивная и с двойным преобразованием.

Резервный — самая простая топология ИБП. Резервный ИБП прибегает к резервному питанию от батареи в случае общих проблем с питанием, таких как отключение электроэнергии, провалы напряжения или скачки напряжения. Когда входящее напряжение сети падает ниже безопасного уровня или превышает его, ИБП переключается на питание от батареи постоянного тока, а затем преобразует его в питание переменного тока для работы подключенного оборудования.Эти модели предназначены для бытовой электроники, компьютеров начального уровня, POS-систем, систем безопасности и другого базового электронного оборудования.

Интерактивный ИБП line включает в себя технологию, позволяющую корректировать незначительные колебания мощности (пониженное и повышенное напряжение) без переключения на батарею. Этот тип ИБП имеет автотрансформатор, который регулирует низкие напряжения (например, провалы) и повышенные напряжения (например, скачки напряжения) без необходимости переключения на батарею. Линейные интерактивные модели ИБП обычно используются для бытовой электроники, ПК, игровых систем, электроники для домашних кинотеатров, сетевого оборудования и серверов начального и среднего уровня.Они обеспечивают питание во время таких событий, как отключение электроэнергии, провал напряжения, скачок напряжения или перенапряжение.

ИБП с двойным преобразованием (онлайн) обеспечивает стабильное, чистое и почти идеальное питание независимо от состояния входящего питания. Этот ИБП преобразует входящее питание переменного тока в постоянный, а затем обратно в переменный. Системы ИБП с этой технологией работают на изолированном источнике постоянного тока 100 процентов времени и имеют нулевое время переключения, поскольку им никогда не нужно переключаться на источник постоянного тока. Системы ИБП с двойным преобразованием предназначены для защиты критически важного ИТ-оборудования, установок центров обработки данных, высокопроизводительных серверов, крупных телекоммуникационных установок и приложений для хранения данных, а также передового сетевого оборудования от повреждений, вызванных отключением электроэнергии, провалами напряжения, скачками напряжения, перегрузками. напряжение, скачок напряжения, частотный шум, колебания частоты или гармонические искажения.

Выходные сигналы ИБП
Системы ИБП

CyberPower имеют на выходе синусоидальную или имитационную синусоидальную волну, в зависимости от модели.

Выходной синусоидальный сигнал: Наиболее качественным выходным сигналом является синусоидальный сигнал, представляющий собой плавные повторяющиеся колебания переменного тока. Системы ИБП корпоративного уровня производят энергию синусоидальной формы для работы чувствительного электронного оборудования. Выходной синусоидальный сигнал гарантирует, что оборудование, использующее блоки питания с активной коррекцией коэффициента мощности, не выключится при переключении с сетевого питания на питание от батареи.

Имитация выходного синусоидального сигнала:  Аппроксимированная форма синусоидального выходного сигнала. Он использует модуляцию импульсной волны для генерации ступенчатой, приблизительно синусоидальной волны, чтобы обеспечить более экономичное резервное питание от батареи для оборудования, которое не требует выходной синусоидальной волны. Технология, используемая для получения этого типа выходной мощности, менее дорогая в производстве и распространена в резервных и линейно-интерактивных системах ИБП.

Где можно узнать больше?

CyberPower предлагает резервные, линейно-интерактивные ИБП и ИБП с двойным преобразованием.Здесь вы найдете информацию о наших системах ИБП.

Электрические цепи

Эта основная идея исследуется через:

Противопоставление студенческих и научных взглядов

Студенческий повседневный опыт

Студенты имеют большой опыт использования повседневных бытовых приборов, работа которых зависит от электрических цепей (фонарики, мобильные телефоны, iPod). Скорее всего, у них сложилось ощущение, что вам нужна батарея или выключатель питания, чтобы они «работали», и что батареи могут «разряжаться».Они склонны думать об электрических цепях как о чем-то, что они называют «током», «энергией», «электричеством» или «напряжением» — все эти названия они часто используют взаимозаменяемо. Это неудивительно, учитывая, что все эти ярлыки часто используются в повседневном языке с неясным значением. Какой бы ярлык ни использовали учащиеся, они, скорее всего, увидят электрические цепи как связанные с «потоком» и чем-то, что «сохраняется», «используется» или и тем, и другим. Некоторая повседневная лексика, например о «зарядке аккумуляторов», также может быть источником концептуальной путаницы для учащихся.

В частности, учащиеся часто рассматривают ток как то же самое, что и напряжение, и думают, что ток можно хранить в батарее, и этот ток можно израсходовать или преобразовать в форму энергии, такую ​​как свет или тепло.

Есть четыре модели, которые обычно используются учащимися для объяснения поведения простой схемы, содержащей батарею и лампочку. Они были описаны исследователями как:

В частности, студенты часто рассматривают ток как то же самое, что и напряжение, и думают, что ток может храниться в батарее, и этот ток может быть использован или преобразован в форму энергии, такую ​​как свет или тепла.

Есть четыре модели, которые обычно используются учащимися для объяснения поведения простой схемы, содержащей батарею и лампочку. Они были описаны исследователями как:

Четыре модели простых схем
  • «однополярная модель» — точка зрения, что на самом деле нужен только один провод между батареей и лампочкой, чтобы в цепи был ток.
  • «модель конфликтующих токов» – представление о том, что ток «течет» с обеих клемм батареи и «сталкивается» в лампочке.
  • «модель потребляемого тока» — представление о том, что ток «расходуется» по мере того, как он «обходит» цепь, поэтому ток, «текущий к» лампочке, больше, чем ток, «утекающий» от нее обратно к батарея.
  • «научная модель» — представление о том, что ток в обоих проводах одинаков.

Повседневный опыт учащихся с электрическими цепями часто приводит к запутанному мышлению. Учащиеся, которые знают, что можно получить удар током, если прикоснуться к клеммам пустой бытовой розетки при включенном выключателе, поэтому иногда считают, что в розетке есть ток, независимо от того, касаются они ее или нет. (Точно так же они могут полагать, что в любых проводах, подключенных к батарее или розетке, есть ток, независимо от того, замкнут ли выключатель.)

Некоторые студенты считают, что пластиковая изоляция проводов, используемых в электрических цепях, удерживает и направляет электрический ток так же, как водопроводные трубы удерживают и регулируют поток воды.

Исследования: Osborne (1980), Osborne & Freyberg (1985), Shipstone (1985), Shipstone & Gunstone (1985), White & Gunstone (1980) ) относится к области науки.

Модели играют важную роль, помогая нам понять вещи, которых мы не видим, и поэтому они особенно полезны при попытке разобраться в электрических цепях.Модели ценятся как за их объяснительную способность, так и за их предсказательную способность. Однако модели также имеют ограничения.

Модель, используемая сегодня учеными для электрических цепей, использует идею о том, что все вещества содержат электрически заряженные частицы (см. Макроскопические и микроскопические свойства). Согласно этой модели, электрические проводники, такие как металлы, содержат заряженные частицы, которые могут относительно легко перемещаться от атома к атому, тогда как в плохих проводниках, таких как керамика, заряженные частицы перемещаются гораздо труднее.

В научной модели электрический ток представляет собой общее движение заряженных частиц в одном направлении. Причиной этого движения является источник энергии наподобие батареи, которая толкает заряженные частицы. Заряженные частицы могут двигаться только тогда, когда существует полный проводящий путь (называемый «контуром» или «петлей») от одного вывода батареи к другому.

Простая электрическая цепь может состоять из батареи (или другого источника энергии), лампочки (или другого устройства, использующего энергию) и проводников, соединяющих две клеммы батареи с двумя концами лампочки.В научной модели такой простой цепи движущиеся заряженные частицы, которые уже присутствуют в проводах и в нити накала лампочки, — это электроны.

Электроны заряжены отрицательно. Батарея отталкивает электроны в цепи от своей отрицательной клеммы и притягивает их к положительной клемме (см. Электростатика – бесконтактная сила). Любой отдельный электрон перемещается только на короткое расстояние. (Эти идеи получили дальнейшее развитие в основной идее «Понятие напряжения»).В то время как фактическое направление движения электронов — от отрицательного к положительному выводу батареи, по историческим причинам направление тока принято описывать как направление от положительного к отрицательному выводу (так называемый «условный ток»). ‘).

Энергия батареи хранится в виде химической энергии (см. основную идею «Преобразование энергии»). Когда он подключен к полной цепи, электроны движутся, и энергия передается от батареи к компонентам цепи.Большая часть энергии передается световому шару (или другому потребителю энергии), где она преобразуется в тепло и свет или в какую-либо другую форму энергии (например, звук в iPod). Очень небольшое количество преобразуется в тепло в соединительных проводах.

Напряжение батареи говорит нам, сколько энергии она обеспечивает компонентам схемы. Это также говорит нам кое-что о том, насколько сильно батарея выталкивает электроны в цепи: чем больше напряжение, тем сильнее толчок (см. Использование энергии).

Критические обучающие идеи

  • Электрический ток представляет собой общее движение заряженных частиц в одном направлении.
  • Для получения электрического тока необходима непрерывная цепь от одной клеммы батареи к другой.
  • Электрический ток в цепи передает энергию от батареи к компонентам цепи. В этом процессе ток не «расходуется».
  • В большинстве цепей движущимися заряженными частицами являются отрицательно заряженные электроны, которые всегда присутствуют в проводах и других компонентах цепи.
  • Батарея толкает электроны по цепи.

Исследование: Loughran, Berry & Mulhall (2006)

Количественные подходы к обучению (например, с использованием закона Ома) могут препятствовать развитию концептуального понимания, и их лучше избегать на этом уровне.

Язык, используемый учителями, важен. Использование слова «электричество» следует ограничить, поскольку его значение неоднозначно. Говоря о «течении» тока вместо движения заряженных частиц, можно усилить неверное представление о том, что ток — это то же самое, что и электрический заряд; поскольку «заряд» является свойством веществ, подобно массе, лучше говорить о «заряженных частицах», чем о «зарядах».

Идея фокуса В разделе «Введение в научный язык» содержится дополнительная информация о развитии научного языка у учащихся.

Использование моделей, метафор и аналогий крайне важно для развития понимания учащимися электрических цепей, потому что объяснение того, что мы наблюдаем в цепи (например, зажигание лампочки), включает в себя использование научных идей о вещах, которые мы не можем видеть, таких как энергия и электроны. Поскольку все модели/метафоры/аналогии имеют свои ограничения, важно использовать их множество.Не менее важно четко понимать сходства и различия между любой используемой моделью/метафорой/аналогией и рассматриваемым явлением. Общее ограничение физических моделей (в том числе приведенных ниже) заключается в том, что они подразумевают, что любой данный электрон движется по всей цепи.

Исследуйте взаимосвязь между идеями об электричестве и преимуществами и ограничениями моделей в Карты развития концепции – электричество и магнетизм и модели

Некоторые полезные модели и аналогии для использования:

  • аналогия с велосипедной цепью — это полезно для развития идеи потока энергии, для отличия этого потока энергии от тока и для демонстрации постоянства тока в данной цепи.Движение велосипедной цепи аналогично току в полной цепи. Движущаяся цепь передает энергию от педали (то есть «батареи») к заднему колесу (то есть «компонентам цепи»), где энергия преобразуется. Эта модель имеет ограниченную полезность и требует, чтобы учащийся осознал, что заднее колесо является компонентом, выполняющим преобразование энергии.
  • модель желейных бобов — это полезно для развития идеи о том, что движение электронов в цепи сопровождается передачей энергии.Учащиеся разыгрывают «электроны» в электрической цепи. Каждый из них собирает фиксированное количество желейных бобов, представляющих энергию, когда они проходят через «батарейку», и отдают эту «энергию», когда они достигают/проходят через «лампочку». Эти студенческие «электроны» затем возвращаются к «батарее» для получения дополнительной «энергии», что включает в себя получение большего количества мармеладок.

Другое описание этого вида деятельности представлено в виньетке PEEL Ролевая игра «Жемейные бобы». Эта модель может быть очень мощной, но важным ограничением является то, что она представляет энергию как субстанцию, а не как изобретенную человеком конструкцию.

  • модель веревки — эта модель помогает объяснить, почему в электрической цепи происходит нагрев. Учащиеся образуют круг и свободно держат непрерывную петлю из тонкой веревки горизонтально. Один ученик действует как «батарейка» и тянет веревку так, чтобы она скользила по рукам других учеников, «компонентов схемы». Учащиеся могут чувствовать, как их пальцы нагреваются, поскольку энергия преобразуется, когда веревка тянется студенческой батареей

Для получения дополнительной информации о разработке идей об энергии см. основную идею Использование энергии.

  • модель водяного контура — часто используется в учебниках, и на первый взгляд кажется, что это модель, с которой учащиеся могут легко разобраться; однако важно, чтобы учителя знали о его ограничениях.

В этой модели насос изображает аккумулятор, турбина — лампочку, а водопроводные трубы — соединительные провода. Важно указать учащимся, что этот водяной контур на самом деле отличается от бытового водоснабжения, потому что в противном случае они могут опираться на свой повседневный опыт и ошибочно заключить, например, что электрический ток может просачиваться из проводов контура таким же образом, как и вода может вытекать из труб.

Исследование: Loughran, Berry & Mulhall​(2006)

Преподавательская деятельность

Открытая дискуссия через обмен опытом

Упражнение POE (Предсказать-Наблюдать-Объяснить) — полезный способ начать обсуждение. Дайте учащимся батарейку, лампочку для фонарика (или другую лампочку с нитью накаливания) и соединительный провод. Попросите их предсказать, как должна быть подключена цепь, чтобы лампочка загорелась. Примечание: НЕ предоставляйте держатель лампы. Это должно вызвать дискуссию о необходимости полной петли для тока и о пути тока в лампочке.Эту деятельность можно расширить, поощряя учащихся использовать другие материалы вместо проволоки.

Оспорить некоторые существующие идеи

Ряд POE (Предсказать-Наблюдать-Объяснить) можно построить, изменив элементы существующей схемы и попросив учащихся сделать прогноз и их обоснование этого прогноза. Например, попросите учащихся предсказать изменения, которые могут произойти в яркости лампочки, когда она подключена к батареям с разным напряжением.

Прояснить и закрепить идеи для/посредством общения с другими

Попросите учащихся изучить модели и аналогии электрических цепей, представленные выше.Учащиеся должны оценить каждую модель на предмет ее полезности для разъяснения представлений об электрических цепях.

Добавить комментарий

Ваш адрес email не будет опубликован.