Двигатель определение – ДВИГАТЕЛЬ — это… Что такое ДВИГАТЕЛЬ?

ДВИГАТЕЛЬ - это... Что такое ДВИГАТЕЛЬ?

  • двигатель — мотор, движок; движущая сила; болиндер, ветряк, пружина, рычаг, сердце, нефтянка Словарь русских синонимов. двигатель 1. мотор 2. см. рычаг Словарь синонимов русского языка. Практический справочник. М.: Русский язык …   Словарь синонимов

  • ДВИГАТЕЛЬ — устройство, преобразующее один вид энергии в др. вид или механическую работу; (1) Д. внутреннего сгорания тепловой двигатель, внутри которого происходит сжигание топлива и часть выделившейся при этом теплоты преобразуется в механическую работу.… …   Большая политехническая энциклопедия

  • ДВИГАТЕЛЬ — ДВИГАТЕЛЬ, двигателя, муж. 1. Машина, приводящая что нибудь в движение; механизм, преобразующий какой нибудь вид энергии в механическую работу (тех.). Двигатель внутреннего сгорания. Электрический двигатель. 2. Сила, способствующая прогрессу в… …   Толковый словарь Ушакова

  • ДВИГАТЕЛЬ — энергосиловая машина, преобразующая какую либо энергию в механическую работу. Подразделяют на первичные и вторичные. Первичные (гидротурбины, двигатель внутреннего сгорания и др.) непосредственно преобразуют энергию природных ресурсов (воды,… …   Большой Энциклопедический словарь

  • Двигатель — энергосиловая машина, преобразующая какую либо энергию в механическую работу. Двигатели подразделяются на первичные и вторичные. Первичные (гидротурбины, двигатель внутреннего сгорания и др.) непосредственно преобразуют энергию природных ресурсов …   Официальная терминология

  • ДВИГАТЕЛЬ — ДВИГАТЕЛЬ, машина, преобразующая различные виды энергии в механическую работу. Работа может быть получена от вращающегося ротора, возвратно поступательно движущегося поршня или от реактивного аппарата. Различают первичные и вторичные двигатели.… …   Современная энциклопедия

  • ДВИГАТЕЛЬ — ДВИГАТЕЛЬ, я, муж. 1. Машина, преобразующая какой н. вид энергии в механическую работу. Д. внутреннего сгорания. Ракетный д. 2. перен., чего. О силе, содействующей росту, развитию в какой н. области (высок.) Труд д. прогресса. Толковый словарь… …   Толковый словарь Ожегова

  • ДВИГАТЕЛЬ — (Engine) машина, работающая по прямому замкнутому циклу и превращающая какой нибудь вид энергии в механическую работу. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 …   Морской словарь

  • двигатель — – машина, преобразующая энергию сгорания горючки в механическую энергию – сердце любого авто. EdwART. Словарь автомобильного жаргона, 2009 …   Автомобильный словарь

  • двигатель — Машина, преобразующая какой либо вид энергии в механическую работу [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] Синонимы мотор EN enginemotor DE Motor FR moteur …   Справочник технического переводчика

  • dic.academic.ru

    Двигатель определение

    Двигатель

    Дви́гатель — устройство, преобразующее какой-либо вид энергии в механическую работу. Термин мотор заимствован в первой половине XIX века из немецкого языка (нем. Motor — двигатель)[1] и преимущественно им называют электрические двигатели и двигатели внутреннего сгорания[2].

    Двигатели подразделяют на первичные и вторичные. К первичным относят непосредственно преобразующие природные энергетические ресурсы в механическую работу, а ко вторичным — преобразующие энергию, выработанную или накопленную другими источниками.

    К первичным двигателям (ПД) относятся ветряное колесо, использующее силу ветра, водяное колесо и гиревой механизм — их приводит в действие сила гравитации (падающая вода и сила притяжения), тепловые двигатели — в них химическая энергия топлива или ядерная энергия преобразуются в другие виды энергии. Ко вторичным двигателям (ВД) относятся электрические, пневматические и гидравлические двигатели.

    Первичные двигатели

    Первыми первичными двигателями стали парус и водяное колесо. Парусом пользуются уже более 7 тысяч лет.

    Водяное колесо — норию широко применяли для оросительных систем в странах Древнего мира: Египте, Китае, Индии. Водяные и ветряные колёса широко использовались в Европе в средних веках как основная энергетическая база мануфактурного производства.

    Паровые машины
    Основная статья: Паровая машина

    В середине XVII века были сделаны первые попытки перехода к машинному производству, потребовавшие создания двигателей, не зависящих от местных источников энергии (воды, ветра и прочего). Первым двигателем, в котором использовалось тепловая энергия химического топлива, стала пароатмосферная машина, изготовленная по проектам французского физика Дени Папена и английского механика Томаса Севери. Эта машина была лишена возможности непосредственно служить механическим приводом, к ней «прилагалось в комплект» водяное мельничное колесо (по-современному говоря, гидротурбина), которое вращала вода, выжимаемая паром из парового котла в резервуар водонапорной башни. Котел то подогревался паром, то охлаждался водой: машина действовала периодически.

    В 1763 год

    zna4enie.ru

    Двигатель - это... Что такое Двигатель?

            энергосиловая машина, преобразующая какой-либо вид энергии в механическую работу. В зависимости от типа Д. работа может быть получена от вращаюшегося ротора, возвратно-поступательно движущегося поршня или от реактивного аппарата. Д. приводят в действие рабочие машины, транспортные средства сухопутного, водного, воздушного и космического назначения, производственно-технологической установки, коммунальные и бытовые приборы и т. п. Д., непосредственно преобразующие природные энергетические ресурсы (топливо, 1709 энергию ветра, воды и др.) в механическую энергию, называются первичными (паровые, ветряные, гидравлические и др.). Наибольшую группу среди первичных Д. составляют тепловые (См. Тепловой двигатель)
    двигатели,
    использующие химическую энергию топлива или атомную энергию. Д., преобразующис энергию первичных Д. в механическую работу, называются вторичными (электрические, пневматические, некоторые типы гидравлических и др.). Устройства, отдающие накопленную механическую энергию, также относят к Д. (инерционные, пружинные, гиревые механизмы). По назначению Д. разделяют на стационарные, т. е. установленные неподвижно; передвижные, используемые на движущихся рабочих машинах; транспортные, применяемые на различных видах транспортных средств. Первым в истории человечества механическим Д. было водяное колесо, применявшееся для оросительных систем в странах Древнего Востока, в Египте, Китае, Индии. В средние века водяные колёса получили распространение в странах Европы как энергетическая база мануфактурного производства.В этот же период широко применялись ветряные Д. Примерно с 13 в. предпринимались попытки создания вечного двигателя (См. Вечный двигатель)
    .
    Переход к машинной технике, начавшийся с середины 18 в., требовал создания Д., не зависящих от местных источников энергии (воды, ветра и т. п.). Первым Д., использующим тепловую энергию топлива, была поршневая пароатмосферная машина прерывного действия, появившаяся в конце 17 — начале 18 вв. (проекты французского физика Д. Папена и английского механика Т. Севери, усовершенствованные в дальнейшем Т. Ньюкоменом в Англии и М. Тривальдом в Швеции). Пароатмосферные Д. значительного распространения не получили. Проект универсального парового Д. был предложен в 1763 русским механиком И. И. Ползуновым, который сдвоил в своей машине цилиндры, получил Д. непрерывного действия. Вполне развитую форму универсальной тепловой Д. получил в 1784 в паровой машине (См. Паровая машина)английского механика Дж. Уатта. Внедрение паровых машин обусловило независимость размещения промышленного производства от природных источников энергии и привело к быстрому развитию промышленности на новой энергитической основе. К 1880 мощность использовавшихся в мировом хозяйстве паровых машин превысила 26 млн.
    квт
    ( 35 млн. л. с.)          Во второй половине 19 в. в процессе дальнейшего совершенствования энергетической базы производства были созданы два новых типа тепловых Д.: Паровая турбина и Двигатель внутреннего сгорания (Д. в. с.). В паровых турбинах, получивших распространение после 1884 (патенты английского учёного Ч. Парсонса, шведского изобретателя К. Лаваля), энергия пара преобразуется в энергию вращающегося вала без кривошипно-шатунного механизма. Паровые турбины открыли широкие возможности наращивания мощности единичного агрегата и стали основным Д. крупных электрических станций. С начала 20 в. мощность паровых турбин непрерывно увеличивается, достигнув в 60-х гг. 20 в. 1200 Мвт в одном агрегате.          Первый практически пригодный Д. в. с. был сконструирован в 1860 французским механиком Э. Ленуаром. В 1876 Н. Отто в Германии создал более совершенный 4-тактный газовый Д. По сравнению с паровой машиной Д. в. с., освобожденный от парокотельного агрегата, имел более высокий кпд, был более простым и компактным Д. В 1897 немецкий инженер Р.
    Дизель, работая над повышением эффективности Д., предложил Д. в. с. с воспламенением от сжатия (см. Дизель). Дальнейшее усовершенствование этого Д. позволило применить в качестве дешёвого топлива нефть, в результате чего Д. в. с. становится экономичным стационарным Д. В то же время Д. в. с. получает широкое распространение на транспорте. В 60-е гг. 20 в. около 80% суммарной мощности всех существующих Д. падает на долю транспортных (см. Автомобильный двигатель, Судовой двигатель). Например, общая мощность автомобильных Д. во всех странах мира превысила 11 млрд. квт (15 млрд. л. с.).

             Параллельно с развитием тепловых Д. совершенствовалась конструкция первичных гидравлических Д., особенно гидротурбин (проекты французского инженера Б. Фурнерона, американского А. Пелтона, австрийского В. Каплана и др.). Создание мощных гидротурбин позволило строить гидроэнергетические агрегаты большой мощности (до 600 Мвт) и создавать крупные ГЭС в местностях, где имеются большие реки, водопады и т. п.

             Важнейшие сдвиги в развитии энергетической базы промышленного производства были связаны с изобретением и применением двигателей электрических (См. Двигатель электрический). В 1831 английский физик М. Фарадей открыл явление электромагнитной индукции, а в 1834 русский учёный Б. С. Якоби создал первый электрический Д. постоянного тока, пригодный для практических целей. Однако только с 70-х гг. 19 в. Д. постоянного тока получают широкое применение благодаря созданию источников дешёвой электроэнергии (генераторов постоянного тока) и усовершенствованию конструкции Д. электротехниками А. Пачинотти в Италии и З. Граммом в Бельгии. В 1888—89 русский инженер М. О. Доливо-Добровольский создал трёхфазную короткозамкнутую асинхронную электрическую машину (см. Асинхронный электродвигатель). В последующие годы конструкция электрических машин совершенствовалась, были созданы электрические Д. в широком диапазоне мощностей — от долей
    вт
    до десятков Мвт. Асинхронные электрические Д. просты в изготовлении, надёжны в эксплуатации, что обусловило их широкое распространение в промышленности. Электропривод в 20 в. стал основным фактором развития энергетики, обусловив постепенное её расчленение на две самостоятельные системы. Первичные Д. (например, турбогенераторы, гидрогенераторы) концентрируются преимущественно на тепловых электростанциях и ГЭС, а электрические Д. образуют параллельную систему конечных приёмников тока, установленных на предприятиях различных отраслей народного хозяйства. Электрические Д. получают также широкое применение в бытовом обслуживании (швейные, стиральные, кухонные машины, холодильники, электробритвы и т. п.).          В первой половине 20 в. были созданы новые типы практически пригодных тепловых Д. — Газовая турбина, Реактивный двигатель, Ядерная силовая установка
    .
    Газовые турбины стали основой авиационного двигателестроения (см. Авиационный двигатель), распространяются в локомотивостроении (газотурбовозы), на автомобилях и т. д. Реактивные Д. позволяют реализовать огромные мощности в одном агрегате. Суммарная мощность Д. ракеты, которая в 1961 вывела на орбиту первый космический корабль «Восток», пилотируемый Ю. А. Гагариным, составляла 14 млн. квт (около 20 млн. л. с.), что примерно равно мощности всех электростанций СССР в 1948. Мощность Д. ракеты-носителя «Протон» (1965—68) превышала 45 млн. квт (около 60 млн. л. с.) (см. также Ракетный двигатель).         
    В промышленности СССР свыше 85% мощности сосредоточено в электрических Д. и установках. В сельском хозяйстве в 1968 на долю Д. в. с. приходилось около 90% общей мощности Д. (см. Тракторный двигатель). Мощность Д. в народном хозяйстве СССР непрерывно растет. В 1967 мощность выпущенных Д. увеличилась по сравнению с 1960 в 1,8 раза и составила по паровым и гидравлическим турбинам 14,7 млн. квт, по дизелям (без автотракторных) 11 млн. квт. В том же 1967 было выпущено свыше 5 млн. электрических Д. суммарной мощностью около 30 млн. квт.

             Для обеспечения сложных по режиму условий работы применяется комбинирование Д. различных типов, например паровые турбины устанавливаются совместно с Д. в. с. или газовыми турбинами, разрабатываются проекты комбинированных ракетных Д., в которых сочетаются реактивные и жидкостные ракетные Д. (например, турборакетные или ракетно-прямоточные).

             Рост энергосистем, комплексная механизация и автоматизация производства, совершенствование транспорта, расширение космических исследований определяют пути дальнейшего развития Д. Непрерывно увеличивается мощность первичных Д. электрических станций, совершенствуется их конструкция, ведутся работы по созданию установок термоядерного синтеза, Д. внешнего сгорания, новых типов ракетных двигателей (ионных, плазменных, фотонных и др.). Для транспортного двигателестроения важными являются работы по созданию экономичных роторных беспоршневых и роторно-поршневых Д. в. с. (см., например, Ванкеля двигатель), электрических автомобильных и малогабаритных атомных Д. За рубежом (США) ведутся работы по использованию для автомобильного транспорта Д. внешнего сгорания (см. Стирлинга двигатель) в комбинации с электрическим Д. Важнейшим направлением развития энергетической техники во второй половине 20 в. является преобразование химической и тепловой энергии топлива при помощи топливных элементов (См. Топливный элемент) и магнитогидродинамических генераторов (См. Магнитогидродинамический генератор) непосредственно в электрический ток для питания Д. Развитие атомной энергетики, реактивной техники, безмашинных генераторов тока в соединении с Д. большой мощности откроет новые перспективы в развитии производительных сил общества.

             Лит. см. при статьях об отдельных видах двигателей.

             А. А. Пархоменко.

    dic.academic.ru

    мотор - это... Что такое мотор?

  • МОТОР — (этим. см. моторный). Двигатель. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. МОТОР двигатель; так же называют моторные экипажи. Полный словарь иностранных слов, вошедших в употребление в русском языке. Попов М …   Словарь иностранных слов русского языка

  • мотор — МОТОР, а, м. 1. Машина, автомобиль. Поймать мотор. Купить мотор. 2. Сердце. мотор шалит. мотор сдает …   Словарь русского арго

  • мотор — авто, моторчик, двигатель, движок, сердце Словарь русских синонимов. мотор 1. см. двигатель. 2. см. автомобиль …   Словарь синонимов

  • МОТОР — МОТОР, мотора, муж. (лат. motor тот, кто двигает). 1. Двигатель (преим. внутреннего сгорания или электрический). Пустить в ход мотор. 2. Экипаж, вагон, снабженный таким двигателем (автомобиль, моторный вагон трамвая в отличие от прицепного;… …   Толковый словарь Ушакова

  • МОТОР — МОТОиРА межрайонный отдел технического осмотра и регистрации автомототранспортных средств; межрайонный отдел технического осмотра и регистрации автотранспорта авто, техн., транспорт МОТОР Источник: http://gibdd.kirov.ru/News.files/PressReliz… …   Словарь сокращений и аббревиатур

  • МОТОР — МОТОР, см. ДВИГАТЕЛЬ …   Научно-технический энциклопедический словарь

  • МОТОР — МОТОР, а, муж. Двигатель (преимущ. внутреннего сгорания или электрический). Запустить, остановить м. | прил. моторный, ая, ое. Моторное топливо. Моторная лодка (с мотором). Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • Мотор — (от латинского motor приводящий в движение) механизм, преобразующий различные виды энергии в механическую энергию вращения вала. В авиации термин «М.» применяется наряду с термином «двигатель», но охватывает более узкий класс объектов, не… …   Энциклопедия техники

  • мотор — 1) двигло; 2) любой вид авто. EdwART. Словарь автомобильного жаргона, 2009 …   Автомобильный словарь

  • МОТОР — двигатель, использующий тепловую, электрическую или гидравлическую энергию …   Большая политехническая энциклопедия

  • мотор — I. МОТОР I а, м. moteur m. Побудительная причина, двигательная сила. Называя водопад властелином влаги, я его лицетворю, забывая этимологию его, и говорю о том незримом moteur, побудителе водяной суматохи. 28. 8. 1825. П.А. Вяземский Пушкину. //… …   Исторический словарь галлицизмов русского языка

  • dic.academic.ru

    МОТОР - это... Что такое МОТОР?

  • мотор — МОТОР, а, м. 1. Машина, автомобиль. Поймать мотор. Купить мотор. 2. Сердце. мотор шалит. мотор сдает …   Словарь русского арго

  • мотор — авто, моторчик, двигатель, движок, сердце Словарь русских синонимов. мотор 1. см. двигатель. 2. см. автомобиль …   Словарь синонимов

  • МОТОР — МОТОР, мотора, муж. (лат. motor тот, кто двигает). 1. Двигатель (преим. внутреннего сгорания или электрический). Пустить в ход мотор. 2. Экипаж, вагон, снабженный таким двигателем (автомобиль, моторный вагон трамвая в отличие от прицепного;… …   Толковый словарь Ушакова

  • МОТОР — МОТОиРА межрайонный отдел технического осмотра и регистрации автомототранспортных средств; межрайонный отдел технического осмотра и регистрации автотранспорта авто, техн., транспорт МОТОР Источник: http://gibdd.kirov.ru/News.files/PressReliz… …   Словарь сокращений и аббревиатур

  • МОТОР — МОТОР, см. ДВИГАТЕЛЬ …   Научно-технический энциклопедический словарь

  • МОТОР — МОТОР, а, муж. Двигатель (преимущ. внутреннего сгорания или электрический). Запустить, остановить м. | прил. моторный, ая, ое. Моторное топливо. Моторная лодка (с мотором). Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • Мотор — (от латинского motor приводящий в движение) механизм, преобразующий различные виды энергии в механическую энергию вращения вала. В авиации термин «М.» применяется наряду с термином «двигатель», но охватывает более узкий класс объектов, не… …   Энциклопедия техники

  • мотор — 1) двигло; 2) любой вид авто. EdwART. Словарь автомобильного жаргона, 2009 …   Автомобильный словарь

  • МОТОР — двигатель, использующий тепловую, электрическую или гидравлическую энергию …   Большая политехническая энциклопедия

  • мотор — I. МОТОР I а, м. moteur m. Побудительная причина, двигательная сила. Называя водопад властелином влаги, я его лицетворю, забывая этимологию его, и говорю о том незримом moteur, побудителе водяной суматохи. 28. 8. 1825. П.А. Вяземский Пушкину. //… …   Исторический словарь галлицизмов русского языка

  • dic.academic.ru

    Электрический двигатель - это... Что такое Электрический двигатель?

    Электродвигатели разной мощности (750 Вт, 25 Вт, к CD-плееру, к игрушке, к дисководу). Батарейка «Крона» дана для сравнения

    Электрический двигатель — электрическая машина (электромеханический преобразователь), в которой электрическая энергия преобразуется в механическую, побочным эффектом является выделение тепла.

    Принцип действия

    В основу работы любой электрической машины положен принцип электромагнитной индукции. Электрическая машина состоит из неподвижной части — статора (для асинхронных и синхронных машин переменного тока) или индуктора (для машин постоянного тока) и подвижной части — ротора (для асинхронных и синхронных машин переменного тока) или якоря (для машин постоянного тока). В роли индуктора на маломощных двигателях постоянного тока очень часто используются постоянные магниты.

    Ротор может быть:

    • короткозамкнутым;
    • фазным (с обмоткой) — используются там, где необходимо уменьшить пусковой ток и регулировать частоту вращения асинхронного электродвигателя. Сейчас эти двигатели редкость, так как на рынке появились преобразователи частоты, ранее же они очень часто использовались в крановых установках.

    Якорь — это подвижная часть машин постоянного тока (двигателя или генератора) или же работающего по этому же принципу так называемого универсального двигателя (который используется в электроинструменте). По сути универсальный двигатель — это тот же двигатель постоянного тока (ДПТ) с последовательным возбуждением (обмотки якоря и индуктора включены последовательно). Отличие только в расчётах обмоток. На постоянном токе отсутствует реактивное (индуктивное или ёмкостное) сопротивление. Поэтому любая болгарка, если выкинуть электронный блок, будет вполне работоспособна и на постоянном токе, но при меньшем напряжении сети.

    Принцип действия трехфазного асинхронного электродвигателя

    При включении в сеть в статоре возникает круговое вращающееся магнитное поле, которое пронизывает короткозамкнутую обмотку ротора и наводит в ней ток индукции. Отсюда, следуя закону Ампера (на проводник с током, помещенный в магнитное поле, действует эдс), ротор приходит во вращение. Частота вращения ротора зависит от частоты питающего напряжения и от числа пар магнитных полюсов. Разность между частотой вращения магнитного поля статора и частотой вращения ротора характеризуется скольжением. Двигатель называется асинхронным, так как частота вращения магнитного поля статора не совпадает с частотой вращения ротора. Синхронный двигатель имеет отличие в конструкции ротора. Ротор выполняется либо постоянным магнитом, либо электромагнитом, либо имеет в себе часть беличьей клетки (для запуска) и постоянные или электромагниты. В синхронном двигателе частота вращения магнитного поля статора и частота вращения ротора совпадают. Для запуска используют вспомогательные асинхронные электродвигатели, либо ротор с короткозамкнутой обмоткой.


    Асинхронные двигатели нашли широкое применение во всех отраслях техники. Особенно это касается простых по конструкции и прочных трехфазных асинхронных двигателей с коротко-замкнутыми роторами, которые надежнее и дешевле всех электрических двигателей и практически не требуют никакого ухода. Название «асинхронный» обусловлено тем, что в таком двигателе ротор вращается не синхронно с вращающимся полем статора. Там, где нет трехфазной сети, асинхронный двигатель может включаться в сеть однофазного тока.

    Статор асинхронного электродвигателя состоит, как и в синхронной машине, из пакета, набранного из лакированных листов электротехнической стали толщиной 0,5 мм, в пазах которого уложена обмотка. Три фазы обмотки статора асинхронного трехфазного двигателя, пространственно смещенные на 120°, соединяются друг с другом звездой или треугольником.

    • Рис.1. Трехфазный двухполюсный асинхронный двигатель

    На рис.1. показана принципиальная схема двухполюсной машины — по четыре паза на каждую фазу. При питании обмоток статора от трехфазной сети получается вращающееся поле, так как токи в фазах обмотки, которые смещены в пространстве на 120° друг относительно друга сдвинуты по фазе друг относительно друга на 120°.

    Для синхронной частоты вращения nc поля электродвигателя с р парами полюсов справедливо при частоте тока f: nc=f/p

    При частоте 50 Гц получаем для р = 1, 2, 3 (двух-, четырех- и шести полюсных машин) синхронные частоты вращения поля nc = 3000, 1500 и 1000 об/мин.

    Ротор асинхронного электродвигателя также состоит из листов электротехнической стали и может быть выполнен в виде короткозамкнутого ротора (с беличьей клеткой) или ротора с контактными кольцами (фазный ротор).

    В короткозамкнутом роторе обмотка состоит из металлических стержней (медь, бронза или алюминий), которые расположены в пазах и соединяются на концах закорачивающими кольцами (рис. 1). Соединение осуществляется методом пайки твердым припоем или сваркой. В случае применения алюминия или алюминиевых сплавов стержни ротора и заколачивающие кольца, включая лопасти вентилятора, расположенные на них, изготавливаются методом литья под давлением.

    У ротора электродвигателя с контактными кольцами в пазах находится трехфазная обмотка, похожая на обмотку статора, включенную, например, звездой; начала фаз соединяются с тремя контактными кольцами, закрепленными на валу. При пуске двигателя и для регулировки частоты вращения можно подключить к фазам обмотки ротора реостаты (через контактные кольца и щетки). После успешного разбега контактные кольца замыкаются накоротко, так что обмотка ротора двигателя выполняет те же самые функции, что и в случае короткозамкнутого ротора.

    Источник

    Устройство асинхронного двигателя http://techno.x51.ru/index.php?mod=text&uitxt=905

    Классификация электродвигателей

    По принципу возникновения вращающего момента электродвигатели можно разделить на гистерезисные и магнитоэлектрические. У двигателей первой группы вращающий момент создается вследствие гистерезиса при перемагничивании ротора. Данные двигатели не являются традиционными и не широко распространены в промышленности.

    Наиболее распространены магнитоэлектрические двигатели, которые по типу потребляемой энергии подразделяется на две большие группы — на двигатели постоянного тока и двигатели переменного тока (также существуют универсальные двигатели, которые могут питаться обоими видами тока).

    Двигатели постоянного тока

    Двигатель постоянного тока в разрезе. Справа расположен коллектор с щётками

    Двигатель постоянного тока — электрический двигатель, питание которого осуществляется постоянным током. Данная группа двигателей в свою очередь по наличию щёточно-коллекторного узла подразделяется на:

    1. коллекторные двигатели;
    2. бесколлекторные двигатели.

    Щёточно-коллекторный узел обеспечивает электрическое соединение цепей вращающейся и неподвижной части машины и является наиболее ненадежным и сложным в обслуживании конструктивным элементом.[1]

    По типу возбуждения коллекторные двигатели можно разделить на:

    1. двигатели с независимым возбуждением от электромагнитов и постоянных магнитов;
    2. двигатели с самовозбуждением .

    Двигатели с самовозбуждением делятся на:

    1. Двигатели с параллельным возбуждением;(обмотка якоря включается параллельно обмотке возбуждения)
    2. Двигатели последовательного возбуждения;(обмотка якоря включается последовательно обмотке возбуждения)
    3. Двигатели смешанного возбуждения.(обмотка возбуждения включается частично последовательно частично параллельно обмотке якоря)

    Бесколлекторные двигатели (вентильные двигатели) — электродвигатели, выполненные в виде замкнутой системы с использованием датчика положения ротора, системы управления (преобразователя координат) и силового полупроводникового преобразователя (инвертора). Принцип работы данных двигателей аналогичен принципу работы синхронных двигателей.[2]

    Двигатели переменного тока

    Трехфазные асинхронные двигатели

    Двигатель переменного тока — электрический двигатель, питание которого осуществляется переменным током. По принципу работы эти двигатели разделяются на синхронные и асинхронные двигатели. Принципиальное различие состоит в том, что в синхронных машинах первая гармоника магнитодвижущей силы статора движется со скоростью вращения ротора (благодаря чему сам ротор вращается со скоростью вращения магнитного поля в статоре), а у асинхронных — всегда есть разница между скоростью вращения ротора и скоростью вращения магнитного поля в статоре (поле вращается быстрее ротора).

    Синхронный электродвигатель — электродвигатель переменного тока, ротор которого вращается синхронно с магнитным полем питающего напряжения. Данные двигатели обычно используются при больших мощностях (от сотен киловатт и выше).[2]

    Существуют синхронные двигатели с дискретным угловым перемещением ротора — шаговые двигатели. У них заданное положение ротора фиксируется подачей питания на соответствующие обмотки. Переход в другое положение осуществляется путём снятия напряжения питания с одних обмоток и передачи его на другие. Ещё один вид синхронных двигателей — вентильный реактивный электродвигатель, питание обмоток которого формируется при помощи полупроводниковых элементов.

    Асинхронный электродвигатель — электродвигатель переменного тока, в котором частота вращения ротора отличается от частоты вращающего магнитного поля, создаваемого питающим напряжением. Эти двигатели наиболее распространены в настоящее время.

    По количеству фаз двигатели переменного тока подразделяются на:

    Универсальный коллекторный электродвигатель

    Универсальный коллекторный электродвигатель — коллекторный электродвигатель, который может работать и на постоянном токе и на переменном токе. Изготавливается только с последовательной обмоткой возбуждения на мощности до 200 Вт. Статор выполняется шихтованным из специальной электротехнической стали. Обмотка возбуждения включается частично при переменном токе и полностью при постоянном. Для переменного тока номинальные напряжения 127,220., для постоянного 110.220. Применяется в бытовых аппаратах, электроинструментах. Двигатели переменного тока с питанием от промышленной сети 50 гц не позволяют получить частоту вращения выше 3000 об/мин. Поэтому для получения высоких частот применяют коллекторный электродвигатель, который к тому же получается легче и меньше двигателя переменного тока той же мощности или применяют специальные передаточные механизмы, изменяющие кинематические параметры механизма до необходимых нам (мультипликаторы). При применении преобразователей частоты или наличии сети повышенной частоты (100, 200, 400 Гц) двигатели переменного тока оказываются легче и меньше коллекторных двигателей (коллекторный узел иногда занимает половину пространства). Ресурс асинхронных двигателей переменного тока гораздо выше, чем у коллекторных, и определяется состоянием подшипников и изоляции обмоток.

    Синхронный двигатель с датчиком положения ротора и инвертором является электронным аналогом коллекторного двигателя постоянного тока.

    История

    Принцип преобразования электрической энергии в механическую энергию электромагнитным полем был продемонстрирован британским учёным Майклом Фарадеем в 1821 и состоял из свободно висящего провода, окунающегося в пул ртути. Постоянный магнит был установлен в середине пула ртути. Когда через провод пропускался ток, провод вращался вокруг магнита, показывая, что ток вызывал циклическое магнитное поле вокруг провода. Этот двигатель часто демонстрируется в школьных классах физики, вместо токсичной ртути используют рассол. Это — самый простой вид из класса электрических двигателей. Последующим усовершенствованием является Колесо Барлоу. Оно было демонстрационным устройством, непригодным в практических применениях из-за ограниченной мощности. Изобретатели стремились создать электродвигатель для производственных нужд. Они пытались заставить железный сердечник двигаться в поле электромагнита возвратно-поступательно, то есть так, как движется поршень в цилиндре паровой машины. Русский ученый Б. С. Якоби пошел иным путем. В 1834 г. он создал первый в мире практически пригодный электродвигатель с вращающимся якорем и опубликовал теоретическую работу «О применении электромагнетизма для приведения в движение машины». Б. С. Якоби писал, что его двигатель несложен и «дает непосредственно круговое движение, которого гораздо легче преобразовать в другие виды движения, чем возвратно-поступательное».

    Вращательное движение якоря в двигателе Якоби происходило вследствие попеременного притяжения и отталкивания электромагнитов. Неподвижная группа U-образных электромагнитов питалась током непосредственно от гальванической батареи, причем направление тока в этих электромагнитах оставалось неизменным. Подвижная группа электромагнитов была подключена к батарее через коммутатор, с помощью которого направление тока в каждом электромагните изменялось раз за один оборот диска. Полярность электромагнитов при этом соответственно изменялась, а каждый из подвижных электромагнитов попеременного притягивался и отталкивался соответствующим неподвижным электромагнитом: вал двигателя начинал вращаться. Мощность такого двигателя составляла всего 15 Вт. Впоследствии Якоби довел мощность электродвигателя до 550 Вт. Этот двигатель был установлен сначала на лодке, а позже на железнодорожной платформе.

    13 сентября 1838 г. лодка с 12 пассажирами поплыла по Неве против течения со скоростью около 3 км/ч. Лодка была снабжена колесами с лопастями. Колеса приводились во вращение электрическим двигателем, который получал ток от батареи из 320 гальванических элементов. Так впервые электрический двигатель появился на судне.

    Примечания

    Литература

    • Белов М. П., Новиков В. А., Рассудов Л. Н. Автоматизированный электропривод типовых производственных механизмов и технологических комплексов. — 3-е изд., испр. — М.: Издательский центр «Академия», 2007. — 575 с. — (Высшие профессиональное образование). — 1000 экз. — ISBN 978-5-7695-4497-2

    Ссылки

    biograf.academic.ru

    Электрические двигатели: классификация, устройство, принцип работы

    Электрический двигатель – специальная машина (ее еще называют электромеханическим преобразователем), с помощью которой электроэнергия преобразовывается в механическое движение.

    Побочный эффект такой конвертации – выделение тепла.

    При-этом современные двигатели обладают очень высоким КПД, который достигает 98%, в результате чего их использование экономически более выгодно по сравнению с двигателями внутренного сгорания. Электрические двигатели используются во всех сферах народного хозяйства, начиная от бытового применения, заканчивая военной техникой.

    Электрические двигатели и их разновидности

    Как известно с базового школьного курса физики, ток бывает переменным и постоянным. В бытовой электросети – переменный ток. Батарейки, аккумуляторы и другие мобильные источники питания предоставляют постоянный ток.

     

    Электродвигатели постоянного тока характеризуются хорошими эксплуатационными и динамическими характеристиками.

     Такие изделия широко используются в подъемных машинах, буровых станках, полимерном оборудовании, в некоторых агрегатах экскаваторов.

    По принципу работы электродвигатели переменного тока бывают

    • асинхронными;
    • синхронными.

    Подробное сравнение этих видов машин можно почитать тут.

    Синхронные двигатели – электрические машины, где скорость вращения ротора полностью идентична частоте магнитного поля. Учитывая эту особенность, такие устройства актуальны там, где необходима стабильная высокая скорость вращения: насосы, крупные вентиляторы, генераторы, компрессоры, стиральные машины, пылесосы, практически все электроинструменты.

    Особое внимание среди синхронных устройств, заслуживают шаговые двигатели. Они обладают несколькими обмотками. Такой подход позволяет с высокой точностью изменять скорость вращения таких электродвигателей.

    Асинхронными двигателями называют такие машины, в которых скорость ротора отличается от частоты движения магнитного поля.

    Нашли свое применение в подавляющем большинстве отраслей народного хозяйства: в приводах дымососов, транспортерах, шаровых мельницах, наждачных, сверлильных станках, в холодильном оборудовании, вентиляторах, кондиционерах, микроприводах.

    Максимальная скорость вращения асинхронных установок – 3000 об/мин.

    Интересное видео о двигателях смотрите ниже:

    Преимущества и недостатки асинхронных двигателей

    Асинхронные электродвигатели могут обладать фазным и короткозамкнутым ротором.

    Короткозамкнутый ротор более распространен.

    Такие двигатели обладают следующими преимуществами:

    • относительно одинаковая скорость вращения при разных уровнях нагрузки;
    • не боятся непродолжительных механических перегрузок;
    • простая конструкция;
    • несложная автоматизация и пуск;
    • высокий КПД (коэффициент полезного действия).

    Электродвигатели с короткозамкнутым контуром требуют большой пусковой ток.

    Если невозможно реализовать выполнение этого условия, то используют устройства с фазным ротором. Они обладают такими достоинствами:

    • хороший начальный вращающий момент;
    • нечувствительны к кратковременным перегрузкам механической природы;
    • постоянная скорость работы при наличии нагрузок;
    • малый пусковой ток;
    • с такими двигателями применяют автоматические пусковые устройства;
    • могут в небольших пределах изменять скорость вращения.

    К основным недостаткам асинхронных двигателей относят то, что изменять их скорость работы можно только посредством изменения частоты электрического тока.

    Кроме того, частота вращения – относительна. Она колеблется в небольших пределах. Иногда это недопустимо.

    Интересное видео об асинхронных электродвигателях смотрите ниже:

    Особенности работы синхронных двигателей

    Все синхронные двигатели обладают такими преимуществами:

    1. Они не отдают и не потребляют реактивную энергию в сеть. Это позволяет уменьшить их габариты при сохранении мощности. Типичный синхронный электродвигатель меньше асинхронного.
    2. В сравнении с асинхронными устройствами, менее чувствительны к скачкам напряжения.
    3. Хорошая сопротивляемость перегрузкам.
    4. Такие электрические машины способны поддерживать постоянную скорость вращения, если уровень нагрузок не превышает допустимые пределы.

    В любой бочке, есть ложка с дегтем. Синхронным электродвигателям присущи такие недостатки:

    • сложная конструкция;
    • затрудненный пуск в ход;
    • довольно сложно изменять скорость вращения (посредством изменения значения частоты тока).

    Сочетание всех этих особенностей делает синхронные двигатели невыгодными при мощностях до 100 Вт. А вот на более высоких уровнях производительности, синхронные машины показывают себя во всей красе.

    pue8.ru

    Отправить ответ

    avatar
      Подписаться  
    Уведомление о