Применение — двигатель — внутреннее сгорание
Применение — двигатель — внутреннее сгорание
Cтраница 1
Применение двигателей внутреннего сгорания чрезвычайно разнообразно. Они приводят в движение самолеты, теплоходы, автомобили, тракторы, тепловозы. Мощные двигатели внутреннего сгорания устанавливают на речных и морских судах. [1]
Применение двигателей внутреннего сгорания, работающих на жидком топливе, однако, ограничивается транспортными и судовыми установками вследствие меньших ресурсов жидкого топлива сравнительно с каменным углем. Двигатели внутреннего сгорания на стационарных установках применяются также в районах, где жидкое и газообразное топливо используется в качестве основного, о районах безводных и для специальных установок. [2]
Эффективность применения двигателей внутреннего сгорания в значительной степени определяется их долговечностью и надежностью в эксплуатации. Одним из важных факторов при этом является износостойкость пар трения, зависящая не только от металлофизических характеристик поверхностей трения, но и от свойств смазочного масла, способов подачи к узлам трения, а также от конструкции системы смазки. Для обеспечения надежной работы современных двигателей внутреннего сгорания большое значение имеет предотвращение образования в них лаков, нагаров, низкотемпературных осадков, коррозии поверхностей некоторых деталей, а также очистка масла в двигателях ( фильтрация, центрифугирование) от образующихся в нем механических примесей. Все перечисленные вопросы отражены в книге. [3]
При применении двигателя внутреннего сгорания муфта сцепления позволяет включить барабан яобедкк, ротор при работающих двигателях, зя. [4]
Не допускается применение двигателей внутреннего сгорания ( ДВС) и газотурбинных установок на МНГС без выполнения специальных требований к помещениям этих установок, исключающих доступ в них взрывоопасных смесей при загазованности МНГС. [5]
При необходимости применения двигателей внутреннего сгорания и электродвигателей в нормальном исполнении их необходимо устанавливать за глухой несгораемой стеной в отдельном помещении, а валы, соединяющие двигатель с насосом, в местах прохода через стену следует пропускать через герметические сальники. [6]
С расширением применения двигателей внутреннего сгорания noi eo — ность в бензине непрерывно увеличивалась. [7]
Единственным преимуществом применения двигателей внутреннего сгорания является значительно меньший расход топлива, чем во всех остальных типах двигателей. В среднем небольшой одноцилиндровый двухтактный дизель потребляет топлива 0 25 кг на 1 л. с. — час. Двухцилиндровый двухтактный двигатель с ка-лильной головкой расходует около 0 4 кг топлива на 1 л. с. — час. Расход топлива у двигателя внутреннего сгорания, как мы видим, почти в 4 — 10 раз меньше, чем у промысловой паровой машины. Таким образом, с точки зрения экономии жидкого топлива двигатель внутреннего сгорания имеет значительные преимущества перед паровой машиной. [8]
Повышение экономичности применения двигателей внутреннего сгорания, снижение трудоемкости технического ухода за ними имеет важное народнохозяйственное значение. Большую роль при этом играет установление обоснованных сроков замены масла. Малые сроки замены масла приводят к значительному его перерасходу; особенно это заметно в связи с тем, что ряд удачных конструктивных и технологических решений способствовал снижению проникновения масла в камеры сгорания и его расхода на угар в современных двигателях. [9]
С расширением применения двигателей внутреннего сгорания поа ьб-ность в бензине непрерывно увеличивалась. [11]
В настоящее время применение двигателей внутреннего сгорания на промыслах весьма ограничено. [12]
Исключительное разнообразие областей применения двигателей внутреннего сгорания обусловливает соответственно и многообразие конструктивных форм этих двигателей, а также значительные трудности их классификации. [13]
В виду чрезвычайного разнообразия областей применения двигателей внутреннего сгорания и соответственно многочисленности конструкций и типов двигателей, различающихся как по условиям работы, так и по видам применяемого топлива, не представляется возможным дать
области применения ДВС. Классификация ДВС
Типы автомобильных
двигателей
Среди двигателей, применяющихся в настоящее время, а также перспективных для использования на автомобильном транспорте, следует отметить следующие типы:
1. Двигатели внутреннего сгорания, которые подразделяют на поршневые и роторно-поршневые.
2. Газотурбинные двигатели (ГТД).
3. Двигатели внешнего сгорания (паровые, двигатели Стирлинга).
4. Электрические двигатели.
5. Криогенные двигатели.
6. Инерционные двигатели.
Двигатели внутреннего сгорания (ДВС) в настоящее время являются наиболее распространенными автомобильными двигателями. В этих двигателях топливо сгорает непосредственно внутри рабочего органа — цилиндра (в поршневых двигателях) или в полости, образованной ротором и корпусом (в роторных двигателях). Основным преимуществом ДВС является непосредственное воздействие продуктов сгорания топлива на поршень. Это дает возможность добиться сравнительно высоких значений термического коэффициента полезного действия (ТКПД).
Высокая (по сравнению с другими типами тепловых двигателей) экономичность ДВС, возможность построения их в большом диапазоне мощностей, достаточно быстрый пуск, небольшие масса и размеры, сравнительно невысокая стоимость, большой ресурс обусловили их широчайшее распространение в различных сферах деятельности. ДВС в настоящее время являются практически единственным типом двигателей в силовых агрегатах не только автомобилей, но и тракторов, сельскохозяйственной техники, дорожных, строительных машин. Судовые, локомотивные и авиационные силовые установки малой мощности обычно также представлены двигателями внутреннего сгорания различных типов.
Области применения ДВС
Поршневые и комбинированные двигатели в зависимости от их назначения изготовляются с мощностью от нескольких сот ватт до 40000кВт. Основные области их применения:
1. Автомобильный транспорт, тракторы, сельхозмашины и др.
2. Железнодорожный транспорт, в т.ч. энергопоезда.
3. Морской и речной флот, катера.
4. Легкомоторная авиация.
5. Строительная, дорожная техника (экскаваторы, бульдозеры, скреперы, грейдеры, самоходные краны, компрессоры, передвижные электростанции и др.).
6. Стационарная электроэнергетика.
7. Привод компрессоров, насосов на трубопроводах, в бурильных установках.
8. Модели и модельные установки.
9. Военная и специальная техника.
Классификация ДВС.
Признаки классификации ДВС могут быть различными и определяются как назначением, особенностями практического применения, так и принципами построения, элементами конструкции и др. Поэтому при некоторой условности все же следует отметить следующие общепринятые принципы и признаки классификации поршневых двигателей.
1. По назначению: стационарные, переносные, транспортные (автомобильные, тракторные, судовые, авиационные и др.).
2. По роду применяемого топлива: двигатели легкого топлива, тяжелого, газообразного, многотопливные.
3. По способу осуществления зарядки цилиндров: четырехтактные и двухтактные двигатели.
4. По способу смесеобразования: двигатели с внешним и внутренним смесеобразованием.
5. По способу воспламенения смеси: двигатели с искровым зажиганием и двигатели с воспламенением от сжатия.
6. По конструктивному расположению цилиндров и схеме: рядные и звездообразные, вертикальные и горизонтальные схемы. Кроме того, рядные двигатели подразделяют на V-, W-, H-, Y- и X-образные и др. Некоторые варианты компоновки представлены на рис.1.1.
7. По способу охлаждения двигатели разделяют на двигатели с жидкостным и воздушным охлаждением.
Помимо перечисленных признаков иногда двигатели классифицируют по способам регулирования, скорости вращения, признакам цикла, наличию систем наддува и т.д.
В современных автомобилях применяются преимущественно четырехтактные поршневые двигатели с рядным, V-образным и оппозитным расположением цилиндров.
Двигатель внутреннего сгорания и его использование в современном мире
Научно-техническая революция, которая произошла в конце 19 века, вместе со многими гениальными открытиями привела к изобретению такого полезного устройства, как двигатель внутреннего сгорания. Благодаря этому человечество смогло кардинально изменить мир и сделать значительный шаг в развитии цивилизации. Сегодня такие двигатели широко применяются не только в автомобилестроении, но и в промышленности, где они являются важнейшей составной частью всей технологической цепочки производства. Все фабрики, заводы, комбинаты и прочие промышленные объекты напрямую зависят от агрегатов внутреннего сгорания, которые дают возможность осуществлять всю необходимую работу.
Двигатель внутреннего сгорания представляет собой такой тип мотора тепловой машины, в котором энергия жидкого или газообразного углеродного топлива преобразуется в механическую работу. Благодаря моментальному сгоранию топлива в рабочей зоне цилиндра, обеспечивается вращательно-поступательное движение, которое приводит в действие коленчатый вал. Вот в этом и заключается суть работы двигателя, работающего на топливе.
Как правило, двигатель внутреннего сгорания, а также его основные характеристики знакомы обычному человеку на примере мотора автомобиля. Все знают, что мощность двигателя напрямую зависит от объема его цилиндров, поскольку, чем они объемнее, тем больше топливной смеси сможет поступить, вследствие чего и воздействие на коленвал будет сильнее. Если же говорить о промышленных двигателях, которые установлены на электростанциях, промышленных заводах, холодильных комбинатах и прочих сооружениях, то их мощность измеряется многими сотнями лошадиных сил.
В систему работы любого топливного двигателя обязательно входит система охлаждения и смазки. Поскольку в ходе технологического процесса выделяется значительное количества тепловой энергии, для предотвращения перегрева двигателя в нем сделана специальная рубашка охлаждения. Благодаря ей происходит охлаждение цилиндров, и двигатель внутреннего сгорания имеет возможность работать в течение длительного времени без перерыва. Помимо этого неотъемлемой частью любого мотора является система смазки, которая позволяет снизить коэффициент износа всех трущихся деталей. От качества машинного масла зависит очень многое, поэтому для разных типов двигателей выпускают различные масла, которые могут быть синтетическими, полусинтетическими и минеральными. Новый двигатель, как правило, заправляется минеральным маслом, поскольку оно обеспечивает лучшее притирание новых деталей между собой. Впоследствии оно заменяется синтетическим или полусинтетическим, в зависимости от требований завода-производителя.
Все двигатели такого типа разделяются на две большие группы:
- Двухтактный двигатель внутреннего сгорания. Устанавливается, как правило, на легкие транспортные средства по типу мотоциклов, скутеров, мотороллеров и мопедов. Такой мотор состоит из картера, в который с двух сторон установлен через подшипники коленчатый вал с цилиндрами. В каждом из таких цилиндров находится поршень, который представляет собой металлический стакан, опоясанный специальными кольцами, вложенными в канавки. Они необходимы для того, чтобы отработанные газы не попадали в промежуток между станками цилиндра и поршнем. Последний соединен с шатуном через специальную втулку (палец), который, в свою очередь, передает прямолинейное движение на коленчатый вал.
- Четырехтактный двигатель внутреннего сгорания. Имеет более сложную конструкцию, благодаря которой все вращательно-поступательное движение осуществляется в 4 такта. Именно такими двигателями комплектуются все автомобили, поскольку такая система обеспечивает максимальную мощность, что необходимо для передвижения тяжелого транспортного средства.
Современные двигатели внутреннего сгорания постоянно усовершенствуются, в результате чего уровень их КПД повышается, а мощность увеличивается. Несмотря на то, что с экологической точки зрения они наносят вред окружающей среде, они все еще занимают первое место по уровню применения среди всех остальных видом моторов. Электродвигатели пока не могут с ними конкурировать, поскольку их мощность на порядок ниже.
Поршневой двигатель
- Статья опубликована 26.06.2014 06:16
- Последняя правка произведена 16.11.2015 18:28
Определение.
Поршневой двигатель – один из вариантов двигателя внутреннего сгорания, работающий за счет превращения внутренней энергии сгорающего топлива в механическую работу поступательного движения поршня. Поршень приходит в движение при расширении рабочего тела в цилиндре.
Кривошипно-шатунный механизм преобразует поступательное движение поршня во вращательное движение коленчатого вала.
Рабочий цикл двигателя состоит из последовательности тактов односторонних поступательных ходов поршня. Подразделяют двигатели с двумя и четырьмя тактами работы.
Принцип работы двухтактного и четырехтактного поршневых двигателей.
4-х тактный цикл работы поршневого ДВС: 1. Всасывание горючей смеси. |
2-х тактный цикл работы поршневого ДВС: 1. Поршень движется вверх и происходит сжатие топливной смеси в текущем цикле и всасывание смеси для следующего цикла в полость под поршнем. 2. Поршень опускается обратно — рабочий ход, выхлоп и вытеснение топливной смеси из-под поршня в рабочую полость цилиндра. |
Количество цилиндров в
В поршневых двигателях различных конструкций по-разному происходит процесс воспламенения топлива:
• Электроискровым разрядом, который образуется на свечах зажигания. Такие двигатели могут работать как на бензине, так и на других видах топлива (природный газ).
Сжатием рабочего тела:
• В дизельных двигателях, работающих на дизельном топливе или газе (с 5% добавлением дизтоплива), сжимается воздух, и при достижении поршнем точки максимального сжатия, происходит впрыск топлива, которое воспламеняется от контакта с нагретым воздухом.
• Двигатели компрессионной модели. Подача топлива в них точно такая же, как и в бензиновых двигателях. Поэтому, для их работы, необходимы особенный состав топлива (с примесями воздуха и диэтилового эфира), а также точная регулировка степени сжатия. Компрессорные двигатели нашли свое распространение в авиастроении и автомобилестроении.
• Калильные двигатели. Принцип их действия во многом схож с двигателями компрессионной модели, однако не обошлось без конструкционной особенности. Роль зажигания в них выполняет – калильная свеча, накал которой поддерживается энергией сгорающего на предыдущем такте топлива. Состав топлива также особенный, за основу берут метанол, нитрометан и касторовое масло. Применяются такие двигатели, как на автомобилях, так и на самолетах.
• Калоризаторные двигатели. В этих двигателях воспламенение происходит при контакте топлива с горячими частями двигателя (обычно – днище поршня). В качестве топлива применяется мартеновский газ. Используются они в качестве приводных двигателей на прокатных станах.
Виды топлива, применяющиеся в поршневых двигателях:
• Жидкое топливо – дизтопливо, бензин, спирты, биодизель;
• Газы – природные и биологические газы, сжиженные газы, водород, газообразные продукты крекинга нефти;
• Вырабатываемый в газогенераторе из угля, торфа и древесины, монооксид углерода также используется в качестве топлива.
Работа поршневых двигателей.
Циклы работы двигателей подробно расписаны в технической термодинамике. Различные циклограммы описываются различными термодинамическими циклами: Отто, Дизеля, Аткинсона или Миллера и Тринклера.
Причины поломок поршневых двигателей.
Существует множество причин поломок двигателей. Например, если вы стали замечать вибрации двигателя или повышенный расход топлива, то очень вероятно что необходимо отремонтировать насос-форсунки, с этим вопросом вам помогут здесь — http://www.spbparts.ru/remont/remont_nasos_forsunki/1.htm.
КПД поршневого ДВС.
Максимальный КПД который удалось получить на поршневом двигателе составляет 60%, т.е. чуть меньше половины сгорающего топлива расходуется на нагрев деталей двигателя, а также выходит с теплом выхлопных газов. В связи с чем, приходится оснащать двигатели системами охлаждения.
Классификация систем охлаждения:
• Воздушные СО – отдают тепло воздуху за счет ребристой внешней поверхности цилиндров. Применяются ли
бо на слабых двигателях (десятки л.с.), либо на мощных авиационных двигателях, которые охлаждаются быстрым потоком воздуха.
• Жидкостные СО – в качестве охладителя используется жидкость (вода, антифриз или масло), которая прокачивается через рубашку охлаждения (каналы в стенках блока цилиндров) и поступает в радиатор охлаждения, в котором она охлаждается воздушными потоками, естественными или от вентиляторов. Редко, но в качестве теплоносителя также используется металлический натрий, который расплавляется от тепла прогревающегося двигателя.
Применение.
Поршневые двигатели, благодаря своему мощностному диапазону, (1 ватт – 75 000 кВт) обрели большую популярность не только в автомобилестроении, но и авиастроении и судостроении. Они также используются для привода боевой, сельскохозяйственной и строительной техники, электрогенераторов, водяных насосов, бензопил и прочих машин, как мобильных так и стационарных.
Термодинамическое исследование рабочего цикла двигателя с воспламенением от сжатия с прямым впрыском
1. Введение
В настоящее время одним из наиболее часто используемых во всем мире источников энергии является топливо, полученное из нефти, например углеводороды, которые горят с выделением большого количества кислорода. тепловой энергии. Эта энергия может быть преобразована в механическую работу с помощью двигателей внутреннего сгорания [1]. Двигатель внутреннего сгорания — это устройство, которое позволяет получать механическую энергию из тепловой энергии, накопленной в жидкости в результате процесса сгорания [2].
Следует отметить, что в поршневых двигателях внутреннего сгорания (RICE) продукты сгорания составляют рабочее тело; это упрощает их конструкцию и обеспечивает высокий тепловой КПД. По этой причине эти двигатели являются одними из известных агрегатов, генерирующих более легкий вес, и поэтому фактически являются наиболее часто используемыми транспортными двигателями [3].
RICE работают по механическому циклу , состоящему из двух основных частей: первая — это замкнутый цикл, в котором выполняются процессы сжатия, сгорания и расширения, а вторая — открытый цикл, в котором рабочая жидкость возобновляемый, известный как процесс газообмена, состоящий из процессов впуска и выпуска [4].При исследовании RICE обязательно определение термодинамических свойств рабочего тела, а также количества смеси, поступающей и покидающей цилиндр [5].
flow Характеристики в двигателях с искровым зажиганием (SIE) или двигателях с воспламенением от сжатия (CIE) можно резюмировать согласно [6] следующим образом: переходный процесс в результате движения поршня, полностью турбулентный для всех цилиндров из-за скорости двигателя и размеры впускного канала, а также трехмерные из-за геометрии двигателя, которая также изменяется в течение цикла (контуры меняются со временем), создавая различные локальные поля скорости.
Во время газообмена происходят процессы импульсных и инерционных явлений, а также нестабильность процессов, происходящих в двигателе. Изменение давления в цилиндре при впуске и выпуске имеет сложную картину, по этой причине аналитический расчет газообмена с учетом вышеупомянутых явлений достаточно сложен и требует использования специализированных компьютерных программ, которые используют коэффициенты, полученные экспериментально [ 1].
Основа для расчета характеристик нестационарного неизэнтропического потока входных и выходных каналов RICE и выбросов NO установлена в [7].Различные эмпирические корреляции для учета теплопередачи в процессе газообмена и корректировки экспоненциального множителя числа Рейнольдса таким образом, чтобы уменьшить до одного поправочные коэффициенты, были рассмотрены в [1,2,4 и 8].
Процедура, широко используемая как в экспериментальном, так и в теоретическом исследовании потока в двигателях, заключается в анализе цикла двигателя в отсутствие сгорания, моделировании процесса сжатия-расширения и проведении измерений в двигателе, работающем в этих условиях [5].
Во всех процессах рабочего цикла RICE происходит передача тепла стенкам цилиндра, которая происходит с большей интенсивностью во время сгорания и расширения из-за достигаемых высоких температурных градиентов. Вошни [9] предложил уравнения для определения турбулентной конвективной теплопередачи с учетом средней скорости газов в цилиндрах, а Аннанд [10] нашел корреляции для расчета мгновенных средних коэффициентов турбулентной конвективной теплопередачи с использованием средней температуры газа и предложил корреляции для оценки излучения пламени, испускаемого во время сгорания.В [11] установлены корреляции для конвективного теплообмена с учетом изменения поверхности и замкнутого объема цилиндра при движении поршня. Компьютерная программа для расчета теплопередачи в камере сгорания RICE с использованием моделей для учета турбулентности была представлена в [12]. В [13] предложено универсальное соотношение для расхода смеси в процессе впуска и выпуска, корректирующее коэффициенты чисел Нуссельта, Рейнольдса и Прандтля.
В настоящем исследовании процесс сжатия считается адиабатическим и обратимым, но в реальных двигателях происходит передача тепла между рабочим телом, клапанами и стенками цилиндров.В начале сжатия температура жидкости ниже, чем температура поверхностей, которые окружают объем цилиндра, что вызывает повышение температуры жидкости, через несколько мгновений температуры выравниваются, а затем тепло передается от рабочей жидкости к стенкам. , поэтому коэффициент политропии меняется в процессе [1].
Сложность процесса горения в RICE из-за несвоевременного и неполного сгорания, диссоциации и теплопередачи стимулировала разработку специальных методов для проведения исследований.Адекватная реализация этого процесса имеет решающее значение с точки зрения производимой мощности и ее эффективности, что оказывает большое влияние на срок службы и надежность двигателя [14].
Различные модели были предложены для изучения процесса горения, такие как закон горения Виба, применимый к SIE, и закон Ватсона, применимый к CIE [15]. Эти законы определяют массовую долю сгоревшего топлива и выделяемого тепла в зависимости от угла поворота коленчатого вала. В этих моделях использованы физические константы, полученные экспериментально.Соотношение Расселье и Уитроу, а также законы горения позволяют получить давление сгорания на каждый градус вращения коленчатого вала. Для количественной оценки задержки зажигания существует множество корреляций, например, предложенная в [16], [17], [18] или [19]. Модели, предложенные в [15], [20] и [17], используются для расчета коэффициента горения, который представляет массовую долю сожженной смеси в предварительно смешанной фазе и диффузионной фазе.
Изменения объема можно оценить с помощью выражения, предложенного в [15], которое коррелирует размеры двигателя: степень сжатия, смещенный объем, объем камеры сгорания, радиус кривошипа, длину шатуна и угол поворота коленчатого вала.Среднюю температуру в процессе сгорания можно определить, используя давление в цилиндре и уравнение идеального газа [4].
Методы расчета, используемые для получения равновесного состава и конечного состояния химических веществ, присутствующих в продуктах сгорания топливовоздушной смеси, хорошо известны и упоминаются в литературе [21, 22, 23 и 24]. Одна из наиболее полных программ — это, пожалуй, программа CEC НАСА-Льюиса [25 и 26], которая рассматривает жидкие и газообразные химические соединения, является чрезвычайно универсальной и может использоваться для расчета термодинамического состояния, химического равновесия, теоретического поведения ракет и даже Чепмена-Жуге. детонационные свойства.
Компьютерные программы для расчета систем горения при постоянном давлении CHO и CHON, предполагающие, что продукты горения состоят из восьми и десяти химических веществ, представлены соответственно в [27 и 28]. Код менее общий, чем код НАСА, ограниченный двенадцатью химическими веществами, системами сгорания CHON, специально разработанными для применения в анализе процессов двигателей внутреннего сгорания, был опубликован в [29]. Программа для расчета систем горения с постоянным объемом CHON из двенадцати компонентов, применимая к температурам до 3400 K, представлена в [30].Программа, действующая для температур до 6000 K, которая может быть рассчитана как при постоянном давлении, так и при постоянном объеме горения для системы CHON из восемнадцати химических веществ, доступна в [31].
Функция свойств рабочего тела от его температуры, давления и насыщенности может быть определена путем применения основных термодинамических уравнений для идеальных газовых смесей с учетом массовых долей каждого компонента в смеси [32]. Также можно определить с помощью таких процедур, как FARG и ECP [33 и 34].В дополнение к изучению процесса горения были рассмотрены модели для определения выбросов NO как расширенного механизма Зельдовича. Причина использования этих моделей заключается в том, что конкретные константы скорости реакции для NO очень малы по сравнению со скоростью горения, по этой причине предполагается, что все частицы, присутствующие в продуктах, за исключением NO, находятся в химическое равновесие.
Процесс расширения производит механическую работу из энергии, выделяемой во время сгорания, и завершается, когда открывается выпускной клапан.В этот момент продукты выталкиваются из цилиндра сначала с критической скоростью в диапазоне от 500 до 700 м / с, а затем выталкиваются движением поршня к верхней мертвой точке [4 и 15]. Ближе к концу выхлопа во время перекрытия клапанов часть свежей смеси улетучивается, что способствует выделению несгоревших углеводородов и снижает эффективность двигателя.
Для исследования процесса газообмена с использованием газовой динамики для анализа потока газа в переходных процессах с переменным составом и переменной удельной теплоемкостью использовались такие модели, как [35].
Для улучшения процесса газообмена мы должны ускорить открытие впускного клапана (AIVO) и отсрочить закрытие выпускного клапана (DEVC). Из-за этого существует период, в течение которого два клапана остаются открытыми одновременно, этот период известен как , перекрытие клапанов , что помогает удалить столько газа и впустить столько же воздуха или свежей смеси. Это происходит из-за разрежения, возникающего в непосредственной близости от впускного клапана, из-за эффекта выброса, вызванного движением сгоревшего газа через выпускной клапан; это будет способствовать увеличению эффективности и мощности, производимой RICE [1].
Для изучения рабочего цикла RICE используются два метода исследования. Первый основан на сборе данных экспериментальных испытаний, а второй основан только на математическом моделировании. Последний метод более универсален и сокращает необходимые эмпирические данные исследования в зависимости от используемого метода расчета и наложенных упрощений. Однако для подтверждения результатов математического моделирования необходимы экспериментальные параметры, полученные в лабораторных условиях [5]. Использование методов численного анализа в настоящее время значительно расширилось за счет увеличения скорости и вычислительной мощности современных компьютеров.Эти методы обеспечивают более высокую производительность, универсальность и могут обрабатывать больше информации, чем можно измерить в экспериментальном тесте. Однако точность результатов, полученных с применением моделей, зависит от сделанных предположений.
Моделирование — это метод исследования, используемый в RICE, его использование расширилось за последние два десятилетия из-за снижения затрат, полученного за счет исключения или сокращения лабораторных тестов, поскольку они требуют большого количества повторяющихся тестов для получения соответствующих результатов, в результате чего временные и денежные потери на подготовку, калибровку, замеры, ремонт и замену испытательных двигателей.Разработчики RICE должны создавать более эффективные двигатели из-за более высокой стоимости топлива и новых правил по выбросам сгорания, возникающим в процессе, происходящем внутри двигателя. Чтобы оптимизировать эти конструкции, требуются многочисленные испытания методом проб и ошибок. Проведение испытаний подразумевает дорогостоящее строительство и тестирование нескольких прототипов. Моделирование — это процедура, позволяющая проводить множество тестов с относительно низкими затратами.
Для определения диаграммы зависимости p от V двигателя рабочая жидкость рассматривается как идеальный газ, масса, поступающая в цилиндр, рассчитывается с использованием модели наполнения, которая учитывает подъем клапана и коэффициент нагнетания.Начальная масса в цилиндре — это остаточные газы, то же количество, которое использовалось в качестве эталонного значения для контроля вытесненной массы во время выхлопа. Мгновенный объем определялся с помощью уравнения для угла поворота коленчатого вала [15]. Конечная температура сжатия была найдена из первого закона термодинамики с учетом процесса равномерного течения и конвективной теплопередачи. Мощность, среднее показываемое давление и максимальное давление и температура были рассчитаны с использованием методов, предложенных в [1], [4] и [15].Циклическая дисперсия изучалась с использованием среднего указанного коэффициента изменения давления и изменения давления как функции основного фазового угла сгорания в диапазоне от 10 ° до верхней мертвой точки (ВМТ) и 10 ° после ВМТ [1]. Расчеты для процесса оттока были аналогичны расчетам при приеме. Модель для изучения замкнутого контура цикла с ограниченным давлением CIE, заменяющего процесс отвода тепла с постоянным объемом изоэнтропическим процессом расширения с последующим отводом тепла с постоянным давлением, предложена в [36].
Существуют коммерческие пакеты, которые представляют собой очень полезный инструмент в области исследований и разработок RICE, который используется различными компаниями в автомобильном секторе. К ним относятся ECARD (Engine Computer Aided Research & Development), разработанная группой IMST, глобальная модель, которая позволяет моделировать работу двигателя на протяжении всего его рабочего цикла, используя модели аналогичной сложности для различных задействованных процессов. OpenWAM — это бесплатный одномерный газодинамический код с открытым исходным кодом, созданный группой CMT, который можно использовать для прогнозирования движения потока через элементы двигателя внутреннего сгорания.NEUROPART использует нейронные сети для определения влияния свойств и состава продукта на выбросы выхлопных газов и образование частиц. CHEMKIN использует концепции химической кинетики для анализа флюидов в газовой фазе с помощью гидродинамического моделирования. EQUIL, рассчитывает состав продуктов сгорания при равновесии. PREMIX, рассчитывает скорость сгорания для различных видов топлива. СЕНКИН, позволяет определять временную задержку для различных видов топлива и кинетическую эволюцию горения в зависимости от компонентов, участвующих в процессе.
2. Математическая модель
В настоящем параграфе будут разработаны основы и математические уравнения, которые управляют явлениями, происходящими в CIE. Для этой цели будет рассмотрен регулятор громкости на рисунке 1, который показывает взаимодействие массы и энергии с окружающей средой.
Рисунок 1.
Контрольный объем двигателя
Следует отметить, что контрольный объем в процессе газообмена работает как открытая система. При сжатии, сгорании и расширении процессы работают как замкнутая система, поэтому необходимо внести поправки, чтобы учесть обменную массу из-за утечки и подачи топлива.
2.1. Сохранение массы
Принцип сохранения массы устанавливает, что общее изменение массы в контрольном объеме составляет:
Суммирование используется при наличии нескольких входных и / или выходных потоков. Выражая Ec. 1 в дифференциальной форме и разделив на дифференциал времени, мы получим скорость изменения массы во времени:
Чтобы выразить последнее уравнение в терминах массы воздуха и топлива, входящих в контрольный объем, мы определяем:
Дифференцируя и переставляя время, получаем топливо скорость изменения по времени:
f • = dfdt = (m • e − m • sm) [(fe − fs)] E4Из определения соотношения эквивалентности (насыщенности смеси):
ϕ = mfma (mfma) sto = m • fm • a (m • fm • a) stoE5вместо Ec.3 в Ec. 5 и вычисление времени:
ϕ • = dϕdt = 1 (mfma) stof • (1 − f) 2E62.2. Сохранение энергии
Первый закон термодинамики для открытой системы, без учета изменений кинетической и потенциальной энергии, может быть записан в дифференциальной форме как:
dEdt = dQdt − dWdt + me • he − ms • hsE7Поскольку работа из-за изменение объема:
и первый член в левой части уравнения. 7 можно оценить с точки зрения внутренней энергии:
dEdt = ddt (mu) = (mdudt) vc + (udmdt) vcE9или с точки зрения энтальпии:
dEdt = ddt (mh) −ddt (pV) E10Подставляя уравнения ,8 и 10 в уравнении. 7 имеем:
(mdudt) vc + (udmdt) vc = Q • −W • + m • eh − em • shsE11Поскольку внутренняя энергия, энтальпия и плотность являются функциями T, p и ϕ, скорость их изменения во времени составляет:
dudt = (∂u∂T) dTdt + (∂u∂p) dpdt + (∂u∂ϕ) dϕdtE12dhdt = (∂h∂T) dTdt + (∂h∂p) dpdt + (∂h∂ϕ) dϕdtE13dρdt = (∂ρ ∂T) dTdt + (∂ρ∂p) dpdt + (∂ρ∂ϕ) dϕdtE14Предполагая, что рабочая жидкость является идеальным газом, дифференцируя уравнение идеального газа и переставляя, мы имеем:
pdVdT + VdpdT = mRdTdt + mTdRdt + RTdρdt− = dpdtE15d ρRdTdt − ρTdRdtRTE16Из уравнения.14:
dpdt = dρdt− (∂ρ∂T) dTdt− (∂ρ∂ϕ) dϕdt (∂ρ∂p) E17подставляя уравнение. 17 в уравнении. 16, преобразование и решение для dpdT:
dpdt = −ρTdTdt − ρRdRdt− (∂ρ∂T) dTdt− (∂ρ∂ϕ) dϕdt (∂ρ∂p) −1RTE18Решение Ec. 15 вместо dRdt, упрощая и заменяя в Ec. 18:
dpdt [(∂ρ∂p) −1RT] = — ρTdTdt − ρR [pmTdVdt + VmTdpdt − RTdTdt − Rmdmdt] — (∂ρ∂T) dTdt− (∂ρ∂ϕ) dϕdt E19Замена уравнения идеального газа в Ec. 19 и решая для dpdT:
dpdt = ρ (∂ρ∂p) [dVdtV + dmdtm − 1ρ (∂ρ∂T) dTdt − 1ρ (∂ρ∂ϕ) dϕdt] E20Дифференцирование уравнения идеального газа относительно p и T, получаем:
и подставляя Ecs.21 и 22 в Ec. 20:
dpdt = p [−dVdtV + dmdtm + (dTdt) 1T − RTp (∂ρ∂ϕ) dϕdt] E23Позже уравнение, функция плотности, объема, массы и богатства смеси будет использоваться для получения давления в цилиндре. при изменении времени (индикаторная диаграмма).
Процедура получения аналогичного выражения для изменения температуры во времени будет проиллюстрирована ниже. Решение уравнения. 11 для dudt:
dudt = Q • mvc − pmvcdVdt + 1mvc (me • he − ms • hs− (udmdt) vc) E24и определение:
B = −RTdVdtV + 1m (Q • + m • ehe − m • shs− (udmdt) vc) E25С другой стороны, введение Ecs.8 в Ec. 11, получим следующее выражение:
Подставляя Ec. 26 в Ec. 12 и решение для dpdt:
dpdt = B− (∂udt) dTdt− (∂udϕ) dϕdt (∂u∂p) E27Замена Ec. 27 в Ec. 20 и решение для dTdt дает:
dTdt = (∂u∂p) [- ρdVdtV + ρdmdtm− (∂ρ∂ϕ) dϕdt − B + (∂u∂ϕ) dϕdt] (∂u∂p) (∂ρ∂T) — (∂ρ∂p) (∂u∂T) E28Теперь, учитывая:
И дифференцируя:
dRdt = (∂R∂T) dTdt + (∂R∂p) dpdt + (∂R∂ϕ) dϕdtE30Дифференцируя Уравнение идеального газа и решение для dRdt
dRdt = dpdtpR − dTdtTR − dρdtρRE31Замена Ec.30 в уравнении. 31 и решая fordpdt:
dpdt = (∂R∂T) dTdt + (∂R∂ϕ) dϕdt + dTdtRT + dρdtRρRp− (∂R∂p) E32Замена Ec. 32 в Ec. 27:
(∂u∂T) dTdt + (∂u∂p) [(∂R∂T) dTdt + (∂R∂ϕ) dϕdt + dTdtRT + dρdtRρRp− (∂R∂p)] + (∂u∂ϕ) dϕdt = BE33Определение:
Сбор терминов, содержащих dTdt, и подстановка Ур. 34 в уравнении. 33:
(dTdt) [(∂u∂T) + (∂u∂p) pDR {(∂R∂T + RT)}] + (∂u∂p) 1D [(∂R∂ϕ) dϕdt + dϕdtRρ ] + (∂u∂ϕ) dϕdt = BE35Определение:
Замена Ec. 36 в уравнении. 35 и решая fordTdt:
dTdt = B− (∂u∂p) pD [1R (∂R∂ϕ) dϕdt + dρdt1ρ] — (∂u∂ϕ) dϕdt (∂u∂T) + CDpT (∂u∂p ) E37Начиная с:
Различение по времени и решение для dρdt:
Замена Ec.39 в Ec. 37:
dTdt = B− (∂u∂p) pD [(∂R∂ϕ) dϕdt1R + dmdt1m − dVdt1V] — (∂u∂ϕ) dϕdt (∂u∂T) + CDpT (∂u∂p) E40Это уравнение будет использоваться для определения температуры в цилиндре при изменении времени.
Если уравнения. 25, 34, 36 и 37 заменены в формуле. 23 и собрав члены, мы получили:
dpdt = Q • −m • bbhbb − dVdt [mCV + p] −dmdt [(D (∂u∂ϕ) −hcil + u) −C (DR (∂R∂ϕ + 1 ))] m [C (1p − 1R (∂R∂ϕ)) + (∂u∂p)] E41и:
dmdt = Q • −m • bbhbb − dVdt [mCV + p] −m [C ( 1p − 1R (∂R∂ϕ)) + (∂u∂p)] dpdt (D (∂u∂ϕ) −hcil + u) −C (DR (∂R∂ϕ + 1)) E42Ур. 41 и 42 будут использованы для получения индикаторной диаграммы (p vs.Диаграмма V или p от φ) и диаграмма сгоревшей массовой доли (диаграмма m от t) соответственно.
2.3. Мгновенный объем цилиндра
Мгновенный объем внутри контрольного объема с точки зрения вытесненного объема, степени сжатия, отношения длины шатуна к радиусу кривошипа и угла поворота коленчатого вала можно получить с помощью следующего выражения [15]:
V ( φ) = Vd [1rc − 1 + 12 [RLA + 1 − cosφ− (RLA2 − sen2φ) 12]] E43В этом выражении R LA — это отношение длины (l) шатуна к радиусу кривошипа (a).
Получение Ec. 43 относительно угла поворота коленчатого вала, получаем:
dVdφ = Vd2 [senφ + senφ cosφ (RLA2 − sen2φ) 12] E45Время в секундах, необходимое для описания некоторого угла поворота коленчатого вала, можно рассчитать с помощью следующего выражения:
Решение предыдущего выражения для φ и замена в Ec. 45, чтобы произвести соответствующее преобразование из градусов в радианы, мы получили:
dVdt = 3Vd (об / мин) [senπ rpm30 t + senπ rpm30 t cosπ rpm30 t (RLA2 − sen2π rpm30 t) 12] E47Предыдущее выражение позволяет определить цилиндр изменение объема во времени, а Ec.45 будет использоваться для расчета изменения объема относительно угла поворота коленчатого вала.
3. Уравнения, модели и расчеты
В этом параграфе будут представлены модели и допущения, используемые для анализа каждого из термодинамических процессов, выполняемых в CIE. Процедуры, обычно используемые в RICE, используются для расчета термодинамических свойств химических веществ, образующихся во время горения. Процедуры FARG и ECP [34] используются для определения свойств в зависимости от температуры газа.Процедура PER [29] используется для получения тех же свойств в зависимости от богатства смеси. Подпрограмма DVERK [37], находящаяся в Международной библиотеке математики и статистики, используется для решения систем дифференциальных уравнений методом пятого и шестого порядка Рунге — Кутты Вернера.
3.1. Процесс допуска
Параметром, характеризующим процесс допуска, является объемный КПД, определяемый как:
ηv = m • arm • at = m • arρ0iVdrpm30jE48Он учитывает потери во впускном клапане и всей системе впуска, если значение плотности атмосферы используется для ρ 0 .
Реальный массовый расход воздуха, поступающего в цилиндр, определяется следующими уравнениями [15]: функция отношения p вниз / p вверх :
pdownpup <1 м • = CdArefp0RaT0 (pdownpup) (2γγ − 1 [1− (pdownpup) γ + 1γ]) E49pdownpup≥1 м • = CdArefpup (γRT0) (2γ − 1) γ + 12 (γ + 1) E50, где p внизу — давление на выходе, а p вверх по потоку давление. Хотя коэффициент расхода C d изменяется во время процесса, в настоящем исследовании мы предполагаем, что он постоянный и равен своему среднему значению.Контрольная площадь A ref , обычно называемая площадью завесы, поскольку она зависит от подъема клапана L v , принимается как:
Модель, предложенная в [38], использовалась для теоретического определения профиля подъемного клапана, который функция максимального подъема, L v max и угла поворота коленчатого вала φ:
Lv (φ) = Lv max + C2φ2 + Cpφp + Cqφq + Crφr + CsφsE52Коэффициенты C 2 , C p , C q , C r y C s определяются по следующим уравнениям:
C2 = −pqrsh [(p − 2) (q − 2) (r − 2) (s − 2) cmed2] E53Cp = 2qrsh [(п-2) (д-р) (г-р) (с-р) cmedp] E54Cq = -2prsh [(Q-2) (д-р) (г-д) (с-д) cmedq] E55Cr = 2pqsh [(г-2) (г-р) (г-д) (с-г) cmedr] E56Cs = -2pqrh [(с-2) (с-р) (с-д) (с-г ) cmeds] E57Рекомендуемые значения для p, q, r и s: p = 6; q = 8; г = 10; s = 12.
Изменение давления и температуры газа во времени в этом процессе рассчитывается по формулам. 23 и 40. Поскольку CIE сжимает только воздух, член, соответствующий изменению богатства смеси во времени, равен нулю. По этой причине приведенные выше уравнения:
dpdt = p [−dVdtV + dmdtm + (dTdt) 1T] E58dTdt = B− (∂u∂p) pD [dmdt1m − dVdt1V] (∂u∂T) + CDpT (∂u∂ p) E59Для решения этих уравнений требуются модели тепловыделения, теплопередачи, продувки, задержки воспламенения и образования химических веществ. Кроме того, члены ∂u∂T, ∂u∂p, ∂R∂Ty ∂R∂pm должны быть определены с помощью подпрограмм FARG и ECP.
С уравнениями. 43 и 47 мы вычисляем объем и его производную по времени, соответственно, в то время как с уравнениями. 49 или 50 в зависимости от случая определяют расходную массу. Накопленная масса в цилиндре получается суммированием массовых расходов, умноженных на значения, полученные по формуле. 46.
3.2. Замкнутый цикл
Замкнутый цикл соответствует процессам сжатия, сгорания и расширения. Сжатие начинается при закрытии впускного клапана. Изменение давления и температуры во время этого процесса определяется с учетом того, что сжимается только воздух (Ecs 58 и 59), и есть потери массы из-за продувки.Когда начинается впрыск топлива, состав смеси меняется; поэтому выражения, используемые для определения изменения температуры и давления во времени во время цикла замкнутого контура, имеют вид Ур. 23 и 40. Когда выпускной клапан открывается, начинается процесс выпуска.
3.3. Процесс выхлопа
Уравнения, используемые в этом процессе, такие же, как и во время процесса впуска, но с учетом того, что рабочая жидкость представляет собой смесь сгоревших газов, и теплопередача выше, чем во время впуска, из-за присутствующей высокой температуры.
Во время перекрытия клапанов мы хотим извлечь как можно больше сгоревших газов и, пользуясь преимуществами динамических эффектов, увеличить количество свежего заряда, поступающего в цилиндр. Уравнения, используемые во время этого процесса, аналогичны используемым во время впуска и выпуска, но с учетом того, что одновременно происходит вход свежего заряда и выход сгоревших газов.
3.4. Задержка зажигания, модель
Задержка зажигания в CIE характеризует количество тепла, которое выделяется сразу после самовоспламенения топлива, и имеет прямое влияние на грохот двигателя и образование загрязняющих веществ.Модель, представленная в [19], указывает на то, что задержка зажигания зависит от температуры и давления в цилиндре, скорости двигателя и накопленного количества топлива и может быть рассчитана в градусах и миллисекундах с помощью следующих выражений:
ID [мс] = ID [град. ] 0,006 (об / мин) E61где: A = 0,36 + 0,22Vmp, Vmp = c (об / мин) 30, n = 0, EA = exp [Ru (1RTc-117190) (21,2pc-12,4)], E = 618840NC + 25, pc = pambrcnc, Tc = Tambrcnc-1,
nc = 1,30 a 1,37, Ru = 8,3143 [Дж / моль K] .E62Другие модели, основанные на экспериментальных данных, предлагают корреляции, в которых используется выражение Аррениуса, подобное предложенному в [ 15], в котором константы, оцененные по [39], следующие: A = 3.45, п = 1,02, ЕО = ехр [EaRuTc], Е = 2100.
В другой модели, константы которой такие же, как в предыдущем случае, используется термальная функция богатства, как показано в следующем выражении [16]: A = 2,4ϕ-0,2.
3.5. Модель тепловыделения
Учитывая четвертый числитель члена в уравнении. 41, который представляет тепло, выделяющееся в процессе сгорания, и применяя соотношение Уотсона, мы получаем следующее уравнение:
mcHidXb = dmdt [(D (∂u∂ϕ) −hcil + u) −C (DR (∂R∂ϕ + 1))] E63Модель кажущегося горения топлива будет использоваться для представления процесса горения.В нем используются два эмпирических уравнения: одно для фазы предварительно смешанного горения, а другое — для фазы диффузионного горения. Мгновенное общее количество тепла, выделяемого при вращении коленчатого вала, определяется суммой двух компонентов:
(dmcdφ) Tot = (dmcdφ) pre + (dmcdφ) difE643.6. Коэффициент горения
Модель тепловыделения требует определения, в зависимости от физического состояния процесса, начального количества топлива, сжигаемого на этапе предварительного смешивания. Для этого используется начальный коэффициент сжигания топлива [15] [17].Этот коэффициент позволяет оценить, в зависимости от начальной насыщенности и периода задержки, какая часть впрыскиваемого топлива сгорает во время фазы предварительного смешивания. Разница сжигается во время диффузионной фазы. Коэффициент горения определяется как:
и может быть рассчитан по следующему выражению [15]:
Значения a1, b1 и cc1, которые показаны в таблице 1 [39, 19 и 15], зависят от используемой модели.