Одноцилиндровый двигатель – Одноцилиндровый четырехтактный двигатель — устройство и принцип работы

Содержание

Одноцилиндровый четырехтактный двигатель — устройство и принцип работы

В настоящее время, двигатели внутреннего сгорания применяются в большом количестве различных технических средств, причем, данными средствами являются не только автомобили. Такой род двигателей, как и двухтактный ДВС, применяется и в мототехнике и в специализированных устройствах, предназначенных для строительства, например, бензопила. Данные агрегаты представлены четырехтактными ДВС, имеющие по одному цилиндру, а не как в современном автомобиле – по четыре. В этой статье вы узнаете, как устроен одноцилиндровый четырехтактный двигатель, его принцип работы и ремонт.

Устройство и принцип работы одноцилиндрового двигателя

Устройство одноцилиндрового ДВС: – головка цилиндра; 2 – цилиндр; 3 – поршень; 4 – поршневые кольца; 5 – поршневой палец; 6 – шатун; 7 – коленчатый вал; 8 – маховик; 9 – кривошип; 10 – распределительный вал; 11 – кулачок распределительного вала; 12 – рычаг; 13 – впускной клапан; 14 – свеча зажигания

Данные двигатели получили широкое распространение даже в автомобилях. Несмотря на малое количество цилиндров, они имеют довольное малое отношение площади рабочей части цилиндра ко всему рабочему объему двигателя. Это преимущество говорит о том, что такой мотор имеет минимальные потери самое главной — тепловой энергии, а значит, обладает высоким коэффициентом полезного действия.

Устройство такого двигателя практически не представляет собой ничего сложного, в отличии от современных атмосферных и турбированных моторов. Он представлен всего одним цилиндром, во внутренней части которого перемещается такой же поршень, как и во многоцилиндровых автомобильных двигателях. В верхней части камеры сгорания располагаются два клапана, которые отвечают за подачу топливной смеси, а второй за выпуск отработавших газов.

Работа данного двигателя заключается в следующем. Всего такой мотор имеет четыре такта:

  • Впуск. Поршень внутри цилиндра располагается в самой верхней мертвой точке и движется вниз в строгом соответствии с поворотом коленчатого вала на 180 градусов. Пока поршень движется вниз, открывается, клапан, отвечающий за подачу топливной смеси, и в камеру сгорания подается топливо, смешанное с воздухом. После достижения поршнем самой нижней мертвой точки начинается следующий такт.
  • Сжатие. Во время этого такта задача поршня – вернуться в верхнюю мертвую точку. Коленчатый вал вращается дальше, еще на 180 градусов, при этом: впускной клапан полностью закрывается, а поршень движется наверх, сжимая уже готовую смесь.
  • Рабочий ход. Как только поршень достигнет самой верхней мертвой точки, в камере сгорания смесь будет сжата до критической отметки. В этот самый момент на электродах свечи зажигания при помощи ряда устройств возникает искра, которая воспламеняет топливовоздушную смесь. С этого момент начинается такт расширения, или как его называют по-другому – рабочего хода. Поршень, под действием энергии, возникшей от воспламенения смеси, движется снова вниз, заставляя вращаться коленчатый вал. Клапана находятся в закрытом состоянии.
  • Такт выпуска. После достижения нижней мертвой точки, поршень снова движется вверх под действием силы инерции, передаваемой от коленчатого вала. В этот момент открывается выпускной клапан и под давлением через него во впускной коллектор выходят отработавшие газы. Такт завершается после закрытия выпускного клапана и после того, как поршень окажется в верхней точке. Далее цикл тактов повторяется.

Основным тактом любого двигателя является рабочий ход. Именно в этот момент происходит самое главное – преобразование энергии тепла в механическую энергию.

Ремонт одноцилиндрового двигателя

Чтобы изучать особенности ремонта двигателей такого типа, необходимо кое-что знать о его основных проблемах. А он имеет всего одну проблему – это высокая температура. Так как потери тепла стали минимальными, трущиеся детали стали уязвимее к механическим нагрузкам, а значит, нуждаются в качественном охлаждении. Дело в том, что основная жидкость, которая на максимальном уровне контактирует с этими деталями – масло, не может обеспечить должного отвода тепла. Поэтому для такого мотора разрабатываются две системы охлаждения: воздушная и жидкостная со специальной системой термостатов.

Ремонт такого двигателя можно выполнить своими силами. Для этого нужен минимум знаний и стандартный набор инструментов. Если в процессе эксплуатации наблюдаются различные стуки, которые доносятся из головки блока цилиндров, то клапанный механизм нуждается в регулировке. Все регулировки производятся при снятом двигателе и демонтированной клапанной крышке. Кроме того, необходимо снять специальную крышку на генераторе, под которой расположена гайка. Вращая эту гайку, мы вращаем коленчатый вал, для установки поршня в верхнюю мертвую точку. Чтобы определить этот момент, необходимо довести до совмещения специальные метки на роторе. После этого, под кулачки распределительного вала устанавливают измерительные щупы и замеряют тепловые зазоры клапанов. Выполнять данную процедуру нужно, естественно, на холодном двигателе, иначе результат регулировки будет не правильным.

После этого, мотор необходимо собрать и проверить. Его устанавливают на агрегат и запускают. Если он работает ровно без шумов, то регулировка клапанов прошла успешно.

Вот и все. Вот так легко можно произвести ремонт одноцилиндрового четырехтактного двигателя своими руками без помощи мастеров автосервиса. Это поможет вам хорошо сэкономить на их услугах и даст вам бесценный опыт.

vipwash.ru

Принципы работы простейшего одноцилиндрового двигателя внутреннего сгорания

В этой статье будут рассмотрены принципы работы простейшего одноцилиндрового двигателя внутреннего сгорания. Этот двигатель взят для простоты понятия физических процессов, для того чтобы понять, как работают все подобные двигатели. На самом деле всё намного сложнее каждый процесс имеет столько особенностей, что и у специалистов, хорошо знающих работу двигателя, часто возникают споры по многим вопросам. Но все бензиновые двигатели (двигатели с принудительным зажиганием) работают на основе принципов, впервые описанных немецким инженером Отто.

Двигатель нужен для обеспечения автомобиля (если это не стационарный двигатель) механической энергией. Двигатель создаёт эту энергию. Но из школьного курса физики известно, что энергия не возникает из ничего и не исчезает бесследно. Что же является источником механической энергии, вырабатываемой двигателем, какую энергию он преобразует в механическую? Источником энергии двигателя внутреннего сгорания является энергия межмолекулярных связей углеводородного топлива, сгорающего в цилиндрах двигателя. Во время сгорания углеводородного топлива происходит разрыв этих связей с большим выделением тепловой энергии, которую двигатель и преобразует в механическую энергию в форме вращательного движения.

Для химических реакций, происходящих при сгорании топлива, требуется окислитель. Для этого используется кислород, содержащийся в окружающем атмосферном воздухе. Воздух это смесь газов, кислорода в этой смеси приблизительно 21%. В цилиндрах двигателя сгорает смесь топлива с воздухом. В идеальном случае все молекулы углеводородов, поданные в цилиндр, сгорая, соединяются со всеми молекулами кислорода, поданными в цилиндр во время одного рабочего цикла. То есть после процесса сгорания в цилиндре двигателя не должно остаться не одной молекулы топлива, и не одной свободной молекулы кислорода.

Химические реакции, во время которых полностью используются все активные вещества, называются стехиометрическими. Во время стехиометрического процесса для полного сгорания всех молекул 1-го килограмма топлива необходимо использовать приблизительно 14,7 килограммов воздуха. Это идеальный процесс, но реально при работе двигателя на различных режимах обеспечить его достаточно трудно, тем более что на некоторых режимах двигатель будет работать устойчиво, только если смесь отличается от стехиометрической.

Разобравшись, откуда берётся механическая энергия, приступим к изучению принципов работы двигателя. Как уже было отмечено ранее, здесь будет рассматриваться работа четырёхтактного двигателя внутреннего сгорания, работающего по циклу Отто. Основным признаком цикла Отто можно назвать то, что перед воспламенением топливовоздушная смесь предварительно сжимается, а зажигание смеси происходит от постороннего источника – в современных двигателях только при помощи электрической искры.

За время становления и развития двигателя внутреннего сгорания было изобретено очень много различных конструкций и, разумеется, двигатель, работающий на принципах цикла Отто, был далеко не единственный. Из двигателей с возвратной поступательным движением поршня можно назвать двигатель, работающий по циклу Аткинсона, а из двигателей с круговым движением поршня наиболее известен роторно-поршневой двигатель Ванкеля. Существует большое количество вообще экзотических конструкций. Но все они не получили широкого практического применения. Более 99,9% используемых в настоящее время двигателей внутреннего сгорания работают по циклу Отто, (в данной статье сюда будут отнесены и дизельные двигатели) которые в свою очередь подразделяются на двигатели с электрическим воспламенением смеси и дизельные двигатели, с компрессионным воспламенением смеси.

Принципы работы таких двигателей и будут рассмотрены в этой статье.

И бензиновые и дизельные двигатели могут быть не только четырёхтактными, но и двухтактными. В настоящее время двухтактные двигатели на автомобиле не применяются, поэтому в данной главе они рассматриваться не будут.

Прежде чем рассматривать принципы работы двигателя рассмотрим, из каких основных деталей он состоит.

Основные детали простейшего ДВС

  1. Цилиндр.
  2. Поршень.
  3. Камера сгорания.
  4. Шатун.
  5. Коленчатый вал.
  6. Впускной канал.
  7. Впускной клапан.
  8. Впускной распределительный вал.
  9. Выпускной канал.
  10. Выпускной клапан.
  11. Выпускной распределительный вал.
  12. Свеча зажигания.
  13. Топливная форсунка (не показана).
  14. Маховик двигателя (не показан).

1. Цилиндр – основа двигателя, именно в нём происходит процесс сгорания топлива, цилиндр является направляющим элементом для движения поршня.

2. Поршень – деталь, перемещающаяся в цилиндре под воздействием расширяющихся газов или под воздействием кривошипно-шатунного механизма. Условно примем, что скользящее соединение, между поршнем и стенками цилиндра абсолютно герметично, то есть, ни какие газа не могут просочиться через это соединение.

3. Камера сгорания – пространство над поршнем, когда поршень находится в самой верхней точке своего хода (ВМТ).

4. Шатун – это стержень, передающий усилие от поршня к кривошипу коленчатого вала и, наоборот, от коленчатого вала к поршню.

5. Коленчатый вал – служит для преобразования возвратно-поступательного движения поршня во вращательное, именно такое движение наиболее удобно для использования.

6. Впускной канал – канал, по которому топливовоздушная смесь поступает в цилиндр двигателя.

7. Впускной клапан – соединяет впускной канал с цилиндром двигателя. Условно принимаем, что в закрытом состоянии клапан полностью герметичен, а в открытом состоянии он не оказывает сопротивление проходу топливовоздушной смеси в цилиндр двигателя.

8. Впускной распределительный вал – открывает и закрывает впускной клапан в нужное время.

9. Выпускной канал – канал, по которому отработавшие газы выводятся из двигателя в атмосферу.

10. Выпускной клапан – соединяет выпускной канал с цилиндром двигателя. Условно принимаем, что в закрытом состоянии клапан полностью герметичен, а в открытом состоянии он не оказывает сопротивление проходу отработавших газов из цилиндра двигателя.

11. Выпускной распределительный вал – открывает и закрывает выпускной клапан в нужное время.

12. Свеча зажигания – служит для воспламенения сжатой топливовоздушной смеси в необходимое время.

13. Топливная форсунка – служит для распыления топлива в воздухе, поступающем в цилиндр двигателя.

14. Маховик двигателя – служит для необходимого перемещения поршня за счёт сил инерции во время всех тактов, кроме рабочего.

Далее придётся понять и запомнить довольно много специальных терминов, но сейчас упомянем, без полного объяснения, только некоторые.

1 — Верхняя мёртвая точка (ВМТ) – точка в которой поршень останавливается при изменении направления своего движения вверх цилиндра на движение вниз.

2 — Нижняя мёртвая точка (НМТ) – точка в которой поршень останавливается при изменении направления своего движения вниз цилиндра на движение вверх.

3 — Ход поршня – расстояние, проходимое поршнем при перемещении от ВМТ к НМТ или наоборот.

4 — Такт двигателя – перемещение поршня от одной мёртвой точки к другой. Во время каждого такта коленчатый вал двигателя совершает половину оборота (180?).

5 — Цикл – периодичное повторение четырёх тактов двигателя во время работы. Полный цикл двигателя состоит из четырёх тактов и совершается за два полных оборота коленчатого вала (720?).

Принципы работы простейшего одноцилиндрового четырёхтактного двигателя:

1 — Такт всасывания

(поступления топливовоздушной смеси в цилиндр).

Впускной клапан открыт.
Выпускной клапан закрыт.

Под воздействием внешнего усилия (стартёра двигателя, заводной ручки или инерции маховика), передаваемого поршню шатуном, поршень перемещается от ВМТ к НМТ. Поскольку соединение между поршнем и цилиндром полностью герметично, в пространстве над поршнем образуется пониженное давление (разрежение). Под воздействием атмосферного давления воздух через впускной канал, и открытый впускной клапан, начинает поступать в цилиндр двигателя. В это время топливная форсунка распыляет в поступающем воздухе необходимое количество топлива, в результате чего в цилиндр поступает горючая топливовоздушная смесь.

При достижении поршнем НМТ впускной клапан закрывается.

2 — Такт сжатия.

Оба клапана закрыты.

Под воздействием внешнего усилия поршень перемещается из НМТ к ВМТ. При этом в цилиндре происходит сжатие топливовоздушной смеси. По окончании такта сжатия, когда поршень встаёт в положении ВМТ, вся топливовоздушная смесь находится в сжатом состоянии в камере сгорания.

В это время свеча зажигания при помощи электрической искры воспламеняет сжатую топливовоздушную смесь. В дизельном двигателе в камеру сгорания при помощи топливной форсунки впрыскивается мелко распылённое топливо. В результате чего в обоих случаях происходит воспламенение смеси.

3 — Рабочий такт.

Оба клапана закрыты.

При сгорании топливовоздушной смеси в цилиндре резко поднимается температура и, главное, давление. Это давление равномерно давит во все стороны, но стенки камеры сгорания и цилиндра рассчитаны на это давления. А вод давление, оказываемое расширяющимися газами на поршень, днище которого является нижней частью камеры сгорания, заставляет поршень перемещаться вниз от ВМТ к НМТ. Это усилие через шатун передаётся на кривошип коленчатого вала, который преобразует поступательное движение поршня во вращательное движение.

При достижении поршнем НМТ открывается выпускной клапан.

4 — Такт выпуска.

Впускной клапан закрыт.
Выпускной клапан закрыт.

Под воздействием внешнего усилия, передаваемого на поршень через шатун, поршень перемещается из положения НМТ в положение ВМТ. Во время этого перемещения поршень вытесняет из цилиндра отработавшие газы через открытый выпускной клапан в выпускной канал и далее в атмосферу.

И так, мы рассмотрели полный цикл двигателя, состоящий из четырех тактов. Далее этот цикл повторяется бесконечно, пока двигатель не будет выключен или не закончится бензин в баке автомобиля.

Наверное, Вы обратили внимание, что из четырёх тактов полезным является только один – рабочий такт. Именно во время этого такта вырабатывается необходимая энергия. Все другие такты являются вспомогательными. Возможно, такая конструкция может показаться не эффективной, но лучшего, по всем показателям, пока ничего не изобретено. Да, существуют двухтактные двигатели, в которых полный цикл осуществляется за один поворот коленчатого вала. Существует роторно-поршневой двигатель Ванкеля, в котором вообще нет деталей, совершающих возвратно-поступательное движение, но этим конструкциям, при некоторых преимуществах, присущи свои недостатки, поэтому двигатели, работающие по четырёхтактному циклу Отто, в настоящее время имеют практически монопольное распространение в мире. И какой-либо замены им, в обозримом будущем, реально не предвидится.

Дизельный двигатель.

Двигатель, изобретённый немецким изобретателем Рудольфом Дизелем, очень похож и по конструкции и принципам работы на двигатель, работающий на бензине, описанный ранее. Но есть одно существенное различие. В этом двигателе воспламенение топливовоздушной смеси происходит не при помощи электрической искры, а за счёт контакта топлива с горячим воздухом находящемся в цилиндре. Такое воспламенение рабочей смеси называется компрессионным зажиганием. А откуда в цилиндре взялся горячий воздух, где его подогрели? Разумеется, никто его нарочно не грел. Если Вам когда-либо приходилось накачивать ручным насосом шину велосипеда, или автомобиля, вы могли обратить внимание, что довольно быстро насос начинает нагреваться. И вообще из школьного курса физики известно, что при сжатии все газы нагреваются, а воздух есть ничто иное, как смесь газов. Сжатие воздуха в двигателе происходит очень быстро, поэтому к концу такта сжатия воздух, находящийся в цилиндре дизельного двигателя, имеет очень высокую температуру (700 ? 900?С).

Поскольку физический процесс немного отличается от описанного ранее бензинового двигателя, в конструкции дизельного двигателя имеются некоторые отличия. Главное отличие в более высокой степени сжатия. У дизельного двигателя отсутствует свеча зажигания, вместо неё непосредственно в головку блока цилиндров вставлена топливная форсунка, разумеется, во впускном канале топливная форсунка отсутствует. В отличие от бензинового двигателя, в цилиндры которого во время такта всасывания поступает смесь бензина с воздухом, цилиндры дизельного воздуха поступает чистый воздух. При достижении поршнем ВМТ во время такта сжатия, в камере сгорания дизельного двигателя находится сжатый воздух, имеющий высокую температуру. И в то время, когда в бензиновом двигателе происходит воспламенение смеси при помощи электрической свечи, в камеру сгорания дизельного двигателя под большим давлением впрыскивается мелко распылённое дизельное топливо. Соприкасаясь с горячим воздухом, находящимся в камере сгорания, топливо воспламеняется.

Запомните основные отличия дизельного двигателя от бензинового.

1 – Топливо в дизельном двигателе воспламеняется не при помощи электрической искры, а за счёт контакта топлива с воздухом, имеющим высокую температуру.

2 – Регулировка крутящего момента и мощности двигателя осуществляется за счёт изменения качества, а не количества топливовоздушной смеси, поэтому в дизельном двигателе отсутствует дроссельная заслонка, регулирующая количество поступающего в цилиндры двигателя воздуха. То есть крутящий момент изменяется количеством впрыскивания топлива без изменения объёма всасываемого воздуха.

Не путайте дизельный двигатель с современными бензиновыми двигателями, с непосредственным впрыском. В этих двигателях топливная форсунка перенесена из впускного канала на головку двигателя, но не вместо свечи зажигания, а установлена совместно с ней. В этом случае топливная форсунка впрыскивает топливо непосредственно в цилиндр. Топливовоздушная смесь в таком двигателе воспламеняется не при помощи компрессионного зажигания, а при помощи электрической искры. А имеющаяся во впускном тракте дроссельная заслонка регулирует количество воздуха, поступающего в цилиндр.

Мы рассмотрели принципы работы простейшего одноцилиндрового двигателя, поняли, как возникает необходимая нам механическая энергия, но для простоты объяснения пришлось прибегнуть очень ко многим упрощениям. Например, клапаны открываются или закрываются не точно в ВМТ или НМТ. Свеча бензинового двигателя воспламеняет смесь или топливная форсунка дизельного двигателя нагнетает топливо в цилиндр не совсем точно при нахождении поршня в ВМТ. Да и двигатель, чаще всего имеет не один, а несколько цилиндров, от 1-го до 16, в автомобильной промышленности, а авиации или на флоте встречались двигатели, имеющие 64 цилиндра. Но основой любого двигателя является цилиндр.

Ранее были рассмотрены некоторые термины, имеющие отношение к цилиндру двигателя, теперь придётся их рассмотреть более подробно и познакомиться с некоторыми новыми.

1. Радиус кривошипа.

Расстояние между осями коренных и шатунных шеек коленчатого вала.
Коренными называются шейки коленчатого вала, в которых вал вращается в блоке цилиндров двигателя.
Шатунными называются шейки, к которым подсоединены шатуны поршней.
Для образования кривошипа ось коренных шеек смещена относительно оси шатунных шеек.
Радиус кривошипа является очень важным конструкционным параметром двигателя. Изменяя радиус кривошипа можно подобрать необходимое соотношение между крутящим моментом и максимальными оборотами двигателя, при неизменном объёме цилиндра.
(Обычно измеряется в миллиметрах)

2. Ход поршня:
Ход поршня, то есть расстояние между НМТ и ВМТ, равен удвоенной величине радиуса кривошипа.

3. Диаметр цилиндра:

Это диаметр внутреннего отверстия цилиндра. Условно принимаем, что диаметр поршня равен диаметру цилиндра.
(Обычно измеряется в миллиметрах)

4. Рабочий объём цилиндра:
Рабочим объёмом цилиндра называется объём, вытесняемый поршнем при перемещении от НМТ к ВМТ.
(Обычно измеряется в кубических сантиметрах (см?) или литрах.)
Рабочий объём цилиндра равен произведению хода поршня на площадь днища поршня.

5. Объём камеры сгорания.
Это объем пространства, находящегося над поршнем, во время нахождения поршня в ВМТ.
(Обычно измеряется в кубических сантиметрах.)
Камера сгорания большинства двигателей имеет сложную форму, поэтому определить её точный объём расчётным методом сложно. Для определения объёма камеры сгорания применяются различные методы прямого измерения.

6. Полный объём цилиндра.
Это сумма объёма камеры сгорания и рабочего объёма цилиндра.
(Обычно измеряется в кубических сантиметрах или литрах.)
Полный объём многоцилиндрового двигателя равен полному объёму одного цилиндра умноженному на количество цилиндров двигателя.

7. Степень сжатия.
Это соотношение полного объёма цилиндра к объёму камеры сгорания. Другими словами это соотношение объёма цилиндра в сумме с объёмом камеры сгорания, когда поршень находится НМТ к объёму пространства, расположенному над поршнем, когда поршень находится в положении ВМТ.
(Безразмерная единица)

8. Соотношение диаметра цилиндра к величине хода поршня:
Является очень важным параметром при конструировании двигателя внутреннего сгорания. Двигатели, в которых ход поршня больше диаметра цилиндра называются длиноходными, двигатели, в которых ход поршня меньше диаметра цилиндра, называются короткоходными.

Значение степени сжатия.

Степень сжатия это один из очень важных технических показателей двигателя внутреннего сгорания, поэтому рассмотрим его более подробно. В общем, повышение степени сжатия поднимает эффективность работы двигателя внутреннего сгорания, то есть при сгорании равного объёма топлива двигатель производит больше механической энергии. При повышенной степени сжатия молекулы топлива физически приближаются друг к другу. При этом топливовоздушная смесь имеет более высокую температуру, в результате чего достигается лучшее испарение частичек топлива и их более равномерное перемешивание с воздухом. Для каждого типа бензина имеется предельное значение степени сжатия. Чем выше октановое число бензина, тем выше степень сжатия, при которой может работать двигатель. При превышении допустимой степени сжатия и, соответственно температуры в камере сгорания, двигатель начинает работать с детонацией (самопроизвольное воспламенение смеси). Процесс детонации достаточно сложный, поэтому, на данном этапе, ограничимся пониманием, что причиной детонации является неправильное сгорание топливовоздушной смеси. При работе двигателя с детонацией резко уменьшается эффективность работы двигателя, и более того, возросшие ударные нагрузки могут привести к разрушению двигателя. Сильные стуки во время работы двигателя являются признаком детонации. Этот режим работы очень вреден для двигателя.

Современные электронные системы управления двигателем практически исключили работу двигателя с детонацией, но те, кому пришлось ездить на автомобилях с двигателями, не имеющих электронных систем управления, помнят, что режим детонации возникал довольно часто.

Раньше для повышения октанового числа бензина применялись специальные присадки на основе свинца. Применение этих присадок позволяло поднять степень сжатия до 12,5:1, но сейчас, в соответствии с законодательными нормами по охране окружающей среды, по причине того, что свинец наносит большой вред окружающей среде, применение присадок на основе свинца запрещено.

Степень сжатия современных бензиновых двигателей равна 10:1 ? 11:1. Величина степени сжатия может изменяться не только от качества предполагаемого к использованию бензина, но и от конструкции двигателя. Современные двигатели, имеющие систему управления двигателя с датчиком детонации, позволяют поднять степень сжатия до 13:1. Такие системы управления, регулируя угол опережения зажигания в каждом отдельном цилиндре, на основе информации, полученной от датчика детонации, позволяют двигателю работать на грани возникновения детонации, но не допускают её. Двигатели с непосредственным впрыском бензина в камеру сгорания из-за особенностей процессов, протекающих в цилиндре, тоже могут работать с повышенной степенью сжатия.

Поскольку воспламенение топлива в дизельных двигателях происходит за счёт нагрева воздуха, находящегося в цилиндре, степень сжатия дизельных двигателей выше, чем бензиновых. Степень сжатия дизельных двигателей лежит в диапазоне 14:1 ? 23:1.

Двигатели с принудительным нагнетанием воздуха в цилиндры (турбокомпрессор или механический нагнетатель), как бензиновые, так и дизельные, имеют более низкую степень сжатия по сравнению с атмосферными двигателями. Это вызвано тем, что перед началом такта сжатия в цилиндре находится большая масса воздуха (и топлива). Слишком высокое давление в цилиндре в конце такта сжатия может привести к разрушению двигателя.

Ранее отмечалось, что повышение степени сжатия явление, в целом, очень желательное, но в действительности всё несколько сложнее. Двигатель внутреннего сгорания, особенно автомобильный, постоянно работает на различных режимах скорости вращения и нагрузок. Научные исследования в данной области показали, что на некоторых режимах двигатель эффективней работает с более низкой степенью сжатия, а на других режимах степень сжатия может быть повышена без риска нанесения повреждений двигателю. Некоторые производители попытались создать двигатель с изменяемой во время работы степенью сжатия. Пионером в этой области, добившимся заметных результатов, был шведский производитель автомобилей SAAB. Работы в этом направлении проводились и другими производителями автомобилей. Но до настоящего времени серийные автомобили с изменяемой степенью сжатия на рынке отсутствуют. Очевидно, это будет следующим направлением повышения эффективности двигателя внутреннего сгорания.

Ранее были рассмотрены некоторые термины, определяющие геометрические показатели двигателя. Далее запомним некоторые термины, определяющие работу двигателя внутреннего сгорания, как простейшего одноцилиндрового, так более сложных двигателей.

  1. Мощность двигателя. Измеряется в киловаттах (кВт) или в старых, для некоторых более привычных единицах измерения, лошадиных силах (л.с.)
  2. Крутящий момент. Измеряется в ньютонах на метр (Н•м).
  3. Удельная литровая мощность. Измеряется отношением максимальной мощности двигателя к рабочему объёму цилиндров двигателя (кВт/литр)
  4. Удельная весовая мощность. Измеряется отношением максимальной мощности двигателя к весу двигателя (кВт/Кг).
  5. Топливная эффективность. Измеряется массой топлива, которое необходимо потратить на выработку мощности в один киловатт в течение часа (гр/кВт*час)
  6. Скорость вращения. В автомобилестроении, как и во многих других областях техники, скорость (частота) вращения коленчатого вала измеряется в оборотах в минуту (об/мин).

За прошедшие более чем сто лет с момента изобретения двигателя внутреннего сгорания (ДВС) количество его конструкций было столь велико, что их не только описать невозможно, их просто никто даже перечислить не сможет, да и задачи такой, в общем, нет. Четко понимая общие принципы работы ДВС (кратко описанные в данной статье), можно разобраться в любой конструкции.

Е.Н. Жарцов

ameuro.ru

Как устроен одноцилиндровый четырехтактный двигатель? + видео » АвтоНоватор

Довольно часто на машины устанавливают одноцилиндровый четырехтактный двигатель, купить который можно в специализированных магазинах или же заказать через интернет. Этот механизм является простейшим поршневым двигателем с камерой внутреннего сгорания и с одним рабочим цилиндром. В чем же его особенности?

Как работает одноцилиндровый четырехтактный двигатель?

Эти моторы распространены довольно широко как в автомобилях, так и в других транспортных средствах, таких как мотоциклы, тракторы, мопеды. Кроме того, в Китае выпускают одноцилиндровые движки объемом 1,03 литра, которые применяются для привода тяжелых мотоблоков. Главными достоинствами можно назвать наименьшее отношение площади цилиндра к рабочему объему, поэтому потери тепла минимальные, а индикаторный КПД достаточно высокий.

Устройство одноцилиндрового дизельного двигателя, впрочем, как и бензинового, заключается в следующем. Всего у таких двигателей четыре такта, первый такт отвечает за впуск. Изначально поршень занимает позицию в верхней предельной или мертвой точке (ВМТ), а коленчатый вал, поворачиваясь на 180 градусов, перемещает его в самую нижнюю точку, тоже называемую мертвой (НМТ). Кроме этого открывается и впускной клапан, а благодаря разряжению, образовавшемуся в цилиндре, в него буквально засасывается горючая смесь, которая, перемешавшись с оставшимися в нем продуктами сгорания, образует рабочую смесь.

Во время следующего такта – сжатия, поршень возвращается обратно в ВМТ, в данный промежуток оба клапана находятся в закрытом положении, что способствует сжатию рабочей смеси, а, следовательно, скачку вверх температуры и давления. Далее идет рабочий ход (третий такт) от искры, создаваемой свечами, происходит воспламенение и сгорание смеси, также приводящее к резкому повышению этих показателей.

Поршень опускается и толкает шатун, который, совершая вращательное движение, воздействует на коленчатый вал. В этот момент и происходит преобразование тепловой энергии в так нам необходимую механическую. Также открывается выпускной клапан, это приводит к снижению температуры и давления. Последний же такт отвечает за выпуск отработанных газов через выпускной клапан в глушитель и затем в атмосферу.

Какие капризы имеет одноцилиндровый дизельный двигатель?

Так как одноцилиндровый дизельный двигатель во время работы создает высокие температуры, то его трущиеся детали, создающие пары, нуждаются в охлаждении и хорошей смазке. А зазоры между ними необходимо периодически промывать, дабы удалить ненужные продукты механического износа. Кроме того, масло еще и обеспечивает отвод тепла от нагруженных поверхностей. Отсюда следует, что поддерживать хороший уровень качественного масла в таком автомобиле необходимо.

Чтобы не допустить перегрев труженика и вовремя охладить элементы головок движка и гильзы цилиндров, применяют дополнительно систему охлаждения, она может быть как воздушной, так и жидкостной. В данных системах устанавливают термостаты, чтобы обеспечить стабильную рабочую температуру. Когда все эти узлы работают четко, ваша машина выдает максимально эффективную жизнедеятельность, пользоваться – одно удовольствие. Но отсюда можно сказать и о существенном дискомфорте при каких-либо поломках, это становится заметно резко.

Осуществляем ремонт одноцилиндрового четырехтактного двигателя

Ремонт такого двигателя иногда можно осуществить и самостоятельно, если речь идет о не очень серьезных повреждениях. Таким образом, если вы услышали характерные стуки, возникшие в головке цилиндра, вполне возможно, что необходима регулировка зазоров в газораспределительном механизме. Как раз эту операцию можно произвести своими руками, правда, если вы хоть приблизительно знакомы с устройством моторов.

Осуществлять регулировку лучше всего на снятом двигателе, естественно после его остывания.

Действовать необходимо следующим образом. Сначала снять свечу зажигания и крышку головки цилиндра, а с левой стороны головки цилиндра нужно снять круглую крышку, таким образом, можно увидеть установочные метки ГРМ. Отворачиваем пробку с левой крышки генератора и получаем доступ к гайке крепления ротора. Поворачивая данную гайку ключом, мы поворачиваем и коленчатый вал. Эту несложную операцию мы производим до того момента, как метки ГРМ наконец совпадут.

Затем, вставляя плоские щупы в зазоры между регулировочным винтом и клапаном, регулируем их величину. Достигнув нужного положения, сворачиваем нашу «кухню», и можно все собрать в обратной последовательности. Запустите мотор и послушайте, все ли посторонние звуки удалось устранить. Если да, то оставляем автомобиль в покое, если нет, возможно, причина не в этом. Скорее всего, поломки двигателя носят более серьезный характер, следует немедленно обратиться к специалистам.

carnovato.ru

Одноцилиндровый двигатель — простейший вариант

Начнем с рассмотрения работы простейшего одноцилиндрового двигателя.

Одноцилиндровый двигатель — простейший двигатель внутреннего сгорания

Такой двигатель состоит из цилиндра, коленчатого вала, поршня с шатуном и головки цилиндра. Поршень плотно установлен в цилиндре, как снаряд в стволе пушки.

Полость между поршнем и головкой блока называется камерой сгорания. В ней и происходит все «волшебство».

В определенный момент (подробнее об этом чуть ниже) в камеру сгорания подается горючая смесь, состоящая из топлива и воздуха в нужной пропорции. Она так и называется — топливовоздушная смесь.

Чтобы горючая смесь смогла попасть в камеру сгорания, в ней необходимо иметь отверстие. Такое отверстие выполнено в головке цилиндра. Есть также второе отверстие, которое служит для выпуска отработавших газов. Что бы ни случилось, в любой ситуации наши специалисты по выездной тех помощи на дорогах москвы приедут и окажут необходимую помощь.

Во время рабочего хода (см. ниже) оба отверстия должны быть плотно закрыты, иначе газы не будут давить на поршень, а выйдут через отверстия. Для этого служат клапаны. Клапан, закрывающий отверстие для впуска, называется впускным, а второй, закрывающий отверстие для выпуска, — соответственно выпускным. Из следующей главы можно будет узнать назначение и устройство газораспределительного механизма двигателя, для чего нужен ремень газораспределительного механизма.

Далее смесь поджигается. А в одной из следующих глав можно будет узнать описание работы системы охлаждения двигателя, а именно современного двигателя внутреннего сгорания.

В бензиновом двигателе для этого используется искра, получаемая между электродами свечи зажигания под действием электрическою разряда. Для создания разряда служит система зажигания, которую мы более подробно рассмотрим чуть ниже.

В дизельном двигателе смесь дизельного топлива и воздуха самовоспламеняется от сжатия. Что такое сжатие вы узнаете буквально через несколько абзацев, а пока поверьте на слово, что и в дизеле смесь загорелась.

Горение смеси подобно взрыву, оно скоротечно и происходит с большим выделением энергии. Как и в случае взрыва пороха в пушке, происходит газообразование, в камере сгорания резко возрастает давление.

Под действием этого давления поршень начинает движение вниз.

Дальше, как говорится, дело техники. Простейший кривошипно-шатунный механизм, знакомый человечеству еще по паровым двигателям, преобразует поступательное движение поршня во вращательное движение коленчатого вала двигателя. Роль кривошипа играет колено коленчатого вала.

Все происходящее в цилиндре в то время, когда коленчатый вал совершает два полных оборота (поворот на 720 градусов), называется рабочим циклом.

За время рабочего цикла поршень успевает сделать два хода вниз и два хода вверх. Рабочий процесс, происходящий в цилиндре за один ход поршня, называется тактом.

В рассматриваемом случае рабочий цикл состоит из четырех тактов:

  • впуск топливовоздушной смеси в камеру сгорания;
  • сжатие смеси;
  • рабочий ход вследствие расширения газов;
  • выпуск отработавших газов из камеры сгорания.

Давайте подробно рассмотрим все такты бензинового двигателя. Эта информация является общей и для одноцилиндрового двигателя, и для многоцилиндрового.

Впуск топливовоздушной смеси начинается, когда поршень находится в верхнем положении. Во время движения поршня вниз, за счет разрежения происходит наполнение цилиндра смесью. За создание смеси отвечает система питания. Она будет рассмотрена ниже. На протяжении этого такта открыт впускной клапан, а выпускной — закрыт.

К моменту, когда поршень достигает нижнего положения, впускной клапан также закрывается.

Пройдя нижнее положение, поршень начинает движение вверх, происходит сжатие смеси. Поскольку объем занимаемый смесью, с движением поршня сокращается (оба клапана закрыты и ей некуда деться из цилиндра), происходит увеличение давления. Соответственно, возрастает температура. Смесь подготавливается к воспламенению.

Когда поршень находится в верхнем положении, свеча зажигания искрой поджигает сжатую смесь. За создание искры отвечает система зажигания. Она также будет рассмотрена ниже. Горение сопровождается интенсивным выделением тепла и возрастанием давления. Впускной и выпускной клапаны закрыты и под действием давления поршень снова начинает двигаться вниз. Происходит рабочий ход.

Далее поршень проходит нижнее положение и снова устремляется вверх. В этот момент открывается выпускной клапан, чтобы отработавшие газы смогли выйти из цилиндра и освободить место для следующей порции топливовоздушной смеси. В конце такта выпуска клапан закрывается.

В дизельном двигателе рабочий процесс протекает практически также. Есть только два важных отличия.

Во-первых, воздух и топливо поступают не в виде смеси, а отдельно. Для подачи топлива служит форсунка.

Во-вторых, воспламенение топлива происходит без искры, системы зажигания у дизеля нет. При такте сжатия происходит более интенсивное сжатие поступившего воздуха. В результате воздух нагревается еще сильнее, чем в бензиновом моторе. В начале рабочего хода форсунка впрыскивает топливо, и оно воспламеняется от разогретого на предыдущем такте воздуха.

Во время рабочего хода и в бензиновом и в дизельном двигателе, поршень движется под действием давления от сгорания смеси. А что заставляет его делать еще два движения вверх (выпуск и сжатие) и одно движение вниз (впуск)?

В одноцилиндровом двигателе только инерция. Для её увеличения применяется массивный маховик. А в двигателях с несколькими цилиндрами, которые будут рассмотрены чуть позже, помимо инерции маховика и противовесов коленчатого вала, используется энергия рабочих ходов в других цилиндрах.

Рассмотренный рабочий цикл называется четырёхтактным. Существует также двухтактный рабочий цикл, но в автомобилях он в настоящее время применения не находит, поэтому здесь его рассматривать не станем.

Лучше вернёмся к четырёхтактному циклу и выясним, какие детали двигателя необходимы для его нормального протекания.

kerel.ru

Одноцилиндровый двигатель — Карта знаний

  • Одноцилиндровый двигатель внутреннего сгорания — простейший поршневой двигатель внутреннего сгорания, имеющий всего один рабочий цилиндр. Одноцилиндровый двигатель является полностью несбалансированным и имеет неравномерный ход. Одноцилиндровые двигатели характеризуются наименьшим отношением площади поверхности рабочего цилиндра к рабочему объёму по сравнению с многоцилиндровыми двигателями, что обеспечивает наименьшие потери тепла в рабочем процессе и высокий индикаторный к.п.д. В то же время одноцилиндровые двигатели характеризуются существенной большей тепловой и механической напряжённостью деталей по сравнению с многоцилиндровыми двигателями. Удельная масса одноцилиндровых двигателей выше чем у многоцилиндровых такого же рабочего объёма.

    В прошлом одноцилиндровые двигатели (благодаря простоте устройства) были широко распространены а их рабочий объём был практически не ограничен сверху — на судах и в стационарных установках встречались малооборотистые одноцилиндровые двигатели с рабочим объёмом до 12 л (например дизельный калоризаторный двигатель «Пионер» мощностью 33 кВт, выпущенный на заводе «Русский дизель»). В настоящее время распространение одноцилиндровых двигателей также достаточно широко, по причине их простоты, малой стоимости и малой массы, но рабочий объём ограничен.

    Наименьшим рабочим объёмом характеризуются одноцилиндровые двигатели для авиамоделей — 1 см³ — 10 см³. Бензиновые двухтактные двигатели ручных газонокосилок (триммеров) имеют рабочий объём 15 см³ — 36 см³. На мотопилах применяются двигатели с рабочим объёмом 36 см³ — 100 см³. На мопедах применяются одноцилиндровые двигатели рабочим объёмом немного меньше 50 см³. Для привода небольших электрических генераторов применяют одноцилиндровые двигатели рабочим объёмом 60 см³ — 420 см³ (дизель Yanmar L100). На мотоциклах нашли применение одноцилиндровые двухтактные двигатели рабочим объёмом 125 см³ — 350 см³. Например, российский мотоцикл «ИЖ-Планета» имеет один из самых крупных в мире серийных одноцилиндровых двухтактных двигателей рабочим объёмом 346 см³. Четырёхтактные мотоциклетные двигатели обладают рабочим объёмом до 800см³(suzuki dr800).

    Для тракторов ДТ-14 и самоходных шасси ДСШ-14 выпускался одноцилиндровый дизельный двигатель рабочим объёмом 1,03 л и мощностью 14 л.с. В Китае по состоянию на 2013 год продолжают выпускаться разработанные в 1930-х годах одноцилиндровые дизельные двигатели S1100 и S1115 рабочим объемом 905 см³ и 1194 см³ соответственно. Эти двигатели широко применяются для привода тяжелых мотоблоков и небольших тракторов.

Источник: Википедия

Связанные понятия

В СССР в различные годы выпускались несколько серий стационарных бензиновых двигателей для привода электрических генераторов, насосов, сельскохозяйственных машин. Эти же двигатели широко использовались на маломерных судах. Рядный двигатель — конфигурация двигателя внутреннего сгорания с рядным расположением цилиндров, и поршнями, вращающими один общий коленчатый вал. Часто обозначается Ix или Lx, где x — количество цилиндров в двигателе. Автомобильный двигатель — двигатель, который преобразует энергию какого-либо рода в механическую работу, необходимую для приведения автомобиля в движение. Десятицилиндровый двигатель — поршневой двигатель внутреннего сгорания с 10 цилиндрами. Имеет V-образную компоновку. Цилиндры расположены параллельно в два ряда, по 5 в ряд. Данный тип двигателя применяется в спортивных автомобилях. Распространено применение двигателя в гоночных автомобилях. Двигатель со встречным движением поршней — конфигурация двигателя внутреннего сгорания с расположением поршней в два ряда один напротив другого в общих цилиндрах таким образом, что поршни каждого цилиндра движутся навстречу друг другу и образуют общую камеру сгорания. Коленвалы механически синхронизированы, причем выпускной вал вращается с опережением относительно впускного на 15-22°, мощность отбирается либо с одного из них, либо с обоих (например, при приводе двух гребных винтов или двух фрикционов… Нагнетатель — механический агрегат, опционально применяемый на поршневых и роторно-поршневых двигателях внутреннего сгорания (далее — ДВС), работающий за счёт того или иного вида энергии, получаемой в процессе работы самого ДВС, и осуществляющий наддув, то есть принудительное нагнетание воздуха в ДВС с целью его всережимной форсировки или (в отдельных случаях) продувки. Карбюраторный двигатель — один из многих типов двигателей внутреннего сгорания с внешним смесеобразованием и автономным зажиганием. Рядный четырёхцилиндровый двигатель — конфигурация двигателя внутреннего сгорания с рядным расположением четырёх цилиндров, и поршнями, вращающими один общий коленчатый вал. Часто обозначается I4 («ай-фор») или L4 («Straight-4», «In-Line-Four»). Плоскость, в которой находятся цилиндры, может быть строго вертикальной или находиться под определённым углом к вертикали. Во втором случае двигатель иногда называют Slant-4 (/4) — например, двигатель автомобиля «Москвич-412». Ди́зельный дви́гатель (в просторечии — дизель) — поршневой двигатель внутреннего сгорания, работающий по принципу самовоспламенения распылённого топлива от воздействия разогретого при сжатии воздуха. Применяется в основном на судах, тепловозах, автобусах и грузовых автомобилях, тракторах, дизельных электростанциях, а к концу XX века стал распространен и на легковых автомобилях. Назван по имени изобретателя. Первый двигатель, работающий по такому принципу, был построен Рудольфом Дизелем в 1897 году… Тюнинг двигателя (англ. tune — настраивать) или форсирование двигателя (фр. forcer или англ. force — стимулировать) — проведение комплекса технических мероприятий по доводке и модернизации двигателя, с целью повышения величины его крутящего момента и максимальных оборотов, т.е. повышения эффективной мощности двигателя. «Кама» — марка лодочных подвесных моторов производства СССР с 1963 по 1966 годы. Выпускались Пермским машиностроительным заводом им. Ф. Э. Дзержинского (г. Пермь). «Вихрь» — марка подвесных лодочных моторов производства Куйбышевского моторостроительного производственного объединения им. Фрунзе (г. Самара) с 1966 года по 2010 год. Удельная мощность — отношение вырабатываемой или потребляемой устройством мощности к другому конструктивному показателю (обычно массе или объёму). Двигатель Хессельмана является комбинацией бензинового и дизельного двигателя, предложен шведским инженером Йонасом Хессельманом в 1925 году. Впоследствии данный тип двигателя применялся в тяжёлых грузовиках и автобусах, выпущенных в промежуток с 1920-х по 1930-е годы. Дви́гатель вну́треннего сгора́ния (ДВС) — двигатель, в котором топливо сгорает непосредственно в рабочей камере (внутри) двигателя. ДВС преобразует тепловую энергию от сгорания топлива в механическую работу. Турбокомпаундный двигатель (ТКД) — двигатель внутреннего сгорания, в котором мощность вырабатывается не только в цилиндро-поршневой группе, но и в силовой турбине. Возможны различные схемы расположения силовой турбины в силовой установке. Поршневой двигатель внутреннего сгорания сегодня является самым распространённым тепловым двигателем. Он используется для привода средств наземного, воздушного и водного транспорта, боевой, сельскохозяйственной и строительной техники, электрогенераторов, компрессоров, водяных насосов, помп, моторизованного инструмента (бензорезок (бензо-болгарок), газонокосилок, бензопил) и прочих машин, как мобильных, так и стационарных, и производится в мире ежегодно в количестве нескольких десятков миллионов изделий… Бесступенчатая трансмиссия (англ. Continuously Variable Transmission, CVT) — вид трансмиссии (передаточного устройства между двигателем и движителем (колёсами, гребным винтом и т. п.)), которая способна плавно изменять коэффициент передачи (отношение скоростей вращения и вращающих моментов двигателя и движителя) во всём рабочем диапазоне скоростей и тяговых усилий. Ротативный двигатель — звездообразный двигатель воздушного охлаждения, основанный на вращении цилиндров (обычно представленных в нечетном количестве) вместе с картером и воздушным винтом вокруг неподвижного коленчатого вала, закреплённого на моторной раме. Подобные двигатели широко использовались во времена Первой мировой войны и Гражданской войны в России. На протяжении этих войн ротативные двигатели превосходили по мощности на единицу массы двигатели водяного охлаждения, поэтому в основном использовались… Топливная аппаратура это общее название систем, снабжающих двигатель топливом. Топливная аппаратура является неотъемлемой частью автомобиля, как с бензиновым так и с дизельным двигателем. Часть механизмов топливной аппаратуры крепится непосредственно к двигателю. Наддув — принудительное повышение давления воздуха выше текущего уровня атмосферного в системе впуска двигателя внутреннего сгорания, приводящее к увеличению плотности и массы воздуха в камере сгорания перед тактом рабочего хода, что, согласно правилу стехиометрической горючей смеси для конкретного типа мотора, позволяет сжечь больше топлива, а значит увеличить крутящий момент (и мощность, соответственно) при сравнимой частоте вращения. В широком смысле, повышение удельной/литровой мощности ДВС при… В СССР, а позже в России выпускались и выпускаются лодочные подвесные моторы нескольких марок и моделей. Первые попытки наладить производство подвесных лодочных моторов предпринимались ещё до Великой Отечественной войны (например мотор «Пионер»). Однако эти попытки были неудачными. Массовый выпуск подвесных лодочных моторов в СССР начался только в 50-х годах. В истории отечественных подвесных моторов прослеживаются четыре основных эпохи… Турбокомпрессор (разговорное «турбина», фр. turbine от лат. turbo — вихрь, вращение) — это устройство, использующее отработавшие газы (выхлопные газы) для увеличения давления внутри камеры сгорания. Турбонаддув — один из методов агрегатного наддува, основанный на использовании энергии отработавших газов. Основной элемент системы — турбокомпрессор. Газотурбинный двигатель (ГТД) — это двигатель, в котором газ сжимается и нагревается, а затем энергия сжатого и нагретого газа преобразуется в механическую работу на валу газовой турбины. Роторный двигатель — наименование семейства близких по конструкции тепловых двигателей, объединённых ведущим признаком — типом движения главного рабочего элемента. Роторный двигатель внутреннего сгорания (ДВС) — тепловой двигатель, в котором главный подвижный рабочий элемент двигателя — ротор — совершает вращательное движение. Пусковые обороты двигателя внутреннего сгорания — частота вращения коленчатого вала в момент запуска двигателя (см. Пусковая система двигателя внутреннего сгорания). Двухта́ктный дви́гатель — двигатель внутреннего сгорания, в котором рабочий процесс в каждом из цилиндров совершается за один оборот коленчатого вала, то есть за два хода поршня. Такты сжатия и рабочего хода в двухтактном двигателе (за исключением двигателя Ленуара) происходят так же, как и в четырёхтактном (а значит, возможна реализация тех же термодинамических циклов, кроме цикла Аткинсона), но процессы очистки и наполнения цилиндра совмещены и осуществляются не в рамках отдельных тактов, а за… Рабочий объём (рабочий объём двигателя) — важнейший конструктивный параметр (характеристика) двигателя внутреннего сгорания (ДВС), выражаемый в кубических сантиметрах (см³) или литрах (л), в США применяются также кубические дюймы (cid). Входит в краткую характеристику любого автомобиля, мотоцикла, трактора, автобуса, тепловоза или судна с поршневым мотором . Гидротрансформа́тор (турботрансформатор), или преобразователь крутящего момента (англ. torque converter) — гидравлическое устройство, служащее для передачи крутящего момента от двигателя к трансмиссии. В отличие от гидромуфты гидротрансформатор способен увеличивать момент на ведомом валу при его блокировке. «Ветеро́к» — марка лодочных подвесных моторов, выпускавшихся в СССР и позже в России Ульяновским моторным заводом с 1964 года по август 2008 года. Оппозитный двигатель — поршневой двигатель внутреннего сгорания, в котором угол между рядами цилиндров составляет 180 градусов, а противостоящие поршни двигаются зеркально по отношению друг к другу (одновременно достигают верхней мёртвой точки). Следует отличать от V-образного двигателя с развалом цилиндров 180 градусов, в котором поршни двигаются синхронно (когда один поршень находится в верхней мёртвой точке, противостоящий ему находится в нижней). Турбокомпаундирование двигателей — применение системы газотурбинного наддува со свободным турбокомпрессором и силовой турбиной. В турбокомпаундном двигателе внутреннего сгорания ТКД мощность создается не только в его цилиндрах, но и в силовой турбине. Нефтяной двигатель (также керосиновый двигатель, двигатель с калильной головкой, калоризаторный двигатель, полудизель) — двигатель внутреннего сгорания, воспламенение топлива в котором происходит в специальной калильной головке — калоризаторе. Двигатель может работать на различных видах топлива: керосине, лигроине, дизельном топливе, сырой нефти, растительном масле и т. д. Двигатель внутреннего сгорания любого типа не создаёт вращающего момента в неподвижном состоянии. Прежде чем он начнёт работать, его нужно раскрутить с помощью внешнего источника энергии. Практически используются следующие варианты… Малый газ — минимальный устойчивый режим работы авиационного двигателя. Термин «холостой ход» в этом случае не употребляется, так как авиационный двигатель, как правило, всегда связан с движителем: турбореактивный двигатель на малом газе всегда создаёт незначительную тягу, поршневой, турбовальный или турбовинтовой двигатель обычно жёстко связан с винтом (исключение — многие поршневые вертолёты, некоторые турбовинтовые двигатели) и также всегда при работе передаёт мощность винту для его вращения… Кали́льный карбюра́торный дви́гатель — один из типов карбюраторных поршневых двигателей внутреннего сгорания, особенностью которого является воспламенение топливо-воздушной смеси в цилиндре при помощи калильной свечи. Силовая турбина (СТ) — соединенная с коленчатым валом двигателя газовая турбина. В турбокомпаундном двигателе внутреннего сгорания ТКД мощность создается не только в цилиндрах ДВС, но и в силовой турбине. Декомпрессио́нный механи́зм (декомпрессор) — устройство, облегчающее запуск двигателя внутреннего сгорания. Декомпрессионный механизм за счёт сообщения камеры сгорания с атмосферой позволяет временно снизить сопротивление проворота коленчатого вала пусковой системы. При этом пусковая система позволяет разогнать коленчатый вал двигателя до пусковой частоты вращения. После этого декомпрессионный механизм выключается и двигатель запускается за счёт инерции коленчатого вала и маховика. Применение декомпрессионного… Конфигурация двигателя внутреннего сгорания — это инженерный термин, обозначающий расположение главных компонентов поршневого двигателя внутреннего сгорания (ПДВС). Этими компонентами являются цилиндры и в особенности коленчатые валы, а также иногда распределительный вал. Бензи́новые электроста́нции — компактные автономные силовые установки для производства электрической энергии. Используются в качестве основного или резервного источника электроснабжения. Виды генераторов…

Подробнее: Бензиновая электростанция

Шестицили́ндровые дви́гатели — двигатели внутреннего сгорания, имеющие шесть цилиндров, размещённые чаще всего друг напротив друга под углом 60° или 90°. Моде́льный электродви́гатель — электрический двигатель, приводящий в движение летающую, плавающую, вообще какую-либо движущуюся модель, например модель автомобиля.

kartaslov.ru

Oдноцилиндровый ДВС

Описание устройства простейшего двигателя

Чтобы сразу не смущать сложными терминами и громоздкими определениями, сначала рассмотрим простейший одноцилиндровый двигатель внутреннего сгорания (ДВС), работающий на бензине, устройство которого представлено на рисунке 4.1.

Состоит этот двигатель из блока с цилиндрическим отверстием внутри – гильзой цилиндра. В гильзе находится поршень, соединенный через шатун с коленчатым валом. Коленчатый вал, в свою очередь, связан с распределительным валом через цепь (эта связь постоянна и передаточное отношение (О том, что такое «передаточное отношение», будет рассказано в главе 5 «Трансмиссия») составляет 1 к 2, то есть распределительный вал делает один оборот за два оборота коленчатого вала).


Рисунок 4.1 Одноцилиндровый двигатель внутреннего сгорания.


Рисунок 4.2 Разрез бензинового двигателя внутреннего сгорания.


Рисунок 4.4 Двигатель внутреннего сгорания с воздушным охлаждением.

Распределительный вал вместе с клапанами расположен в головке блока цилиндров, которая установлена соответственно на блок цилиндров.

Теперь разложим все по частям.

Блок цилиндра — литая деталь из чугуна или из алюминиевого сплава. Блок цилиндров образует картер. По сути, это корпус, внутри которого находятся основные элементы кривошипно-шатунного механизма (о котором речь пойдет ниже). Этот корпус имеет двойные стенки (именуемые рубашкой блока). В полостях между стенками течет охлаждающая жидкость, если двигатель с жидкостным охлаждением. Если двигатель с воздушным охлаждением, то блок имеет одну стенку с многочисленными ребрами для отвода тепла, как показано на рисунке 4.3.

В блоке имеются гильза и масляные каналы для подвода смазки к трущимся деталям. Рабочая поверхность гильзы, с которой соприкасается поршень, называется зеркалом цилиндра.

Поршень имеет вид перевернутого стакана, обычно отлит из алюминиевого сплава. В цилиндр поршень устанавливается с очень небольшим зазором (обычно сотые доли миллиметра). Чтобы газы, образовавшиеся при сгорании топлива, через этот зазор не прорвались в картер блока цилиндров, поршень уплотнен кольцами. Обычно устанавливают два компрессионных кольца (они воспринимают основную нагрузку при перемещении поршня) и одно маслосъемное (оно состоит из нескольких элементов), необходимое для снятия со стенок цилиндра моторного масла. Поршень, шарнирно, то есть через палец соединен с верхней головкой шатуна, а шатун, в свою очередь, шарнирно соединен с коленчатым валом. Шатун вместе с коленчатым валом и называют кривошипно-шатунным механизмом. Благодаря шатуну поступательное движение поршня вверх и вниз преобразуется во вращательное движение коленчатого вала.

Примечание
Уважаемый читатель может подумать, что пропустил целый раздел, ведь на рисунке 4.1 отсутствует и палец, и верхняя головка шатуна, но это не так — вышеприведенное описание дано для общего представления о двигателе внутреннего сгорания, а вот устройство каждого из элементов подробно рассмотрено в разделе 4.7 «Блок цилиндров и кривошипно-шатунный механизм».

Головка блока цилиндра — по сути, это корпус (обычно из алюминиевого сплава), в котором, в зависимости от конструкции (Слова «в зависимости от конструкции» означают, что не всегда распределительный вал или валы располагают в головке блока. Об этом подробнее будет рассказано в главе 4.6 «Головка блока цилиндров»), находится распределительный вал (или валы), а также клапаны – впускной и выпускной. Распределительный вал и клапаны называют газораспределительным механизмом (ГРМ). Распределительный вал необходим для своевременного открытия впускных и выпускных клапанов. Клапаны плотно прилегают к головке блока цилиндра и прижимаются с помощью клапанных пружин.

Вот и весь четырехтактный бензиновый двигатель внутреннего сгорания. Сложного ничего нет.

Принцип работы двигателя внутреннего сгорания

Четырехтактным двигатель называется потому, что полный рабочий процесс разбит на четыре промежутка – такта. Из этих тактов только один рабочий, то есть тот, во время которого происходит перемещение поршня под действием газов, выделяющихся при сгорании топливовоздушной смеси. Каждый такт приходится (приблизительно) на один полуоборот коленчатого вала.

Примечание
Верхняя мертвая точка (ВМТ) — крайнее положение поршня в верхней части цилиндра.
Нижняя мертвая точка (НМТ) — крайнее положение поршня в нижней части цилиндра.
Расстояние от ВМТ до НМТ называется ходом поршня.

Наверняка, у каждого в детстве был велосипед. И, если спускала шина, то ее необходимо было подкачать насосом. Так вот, хотя и отдаленно, но этот насос для накачивания шин напоминает нам наш одноцилиндровый двигатель. Внутри цилиндрического корпуса насоса тоже есть клапаны и так же двигается поршень. Когда вы тяните ручку поршня на себя, через клапан в корпусе всасывается воздух, когда двигаете поршень вниз — клапан на впуске закрывается и воздух выходит через клапан на выпуске в трубку, попадая в шину колеса велосипеда. Теперь мысленно представим перевернутый насос, у которого мы начали перемещать поршень вниз, набирая при этом внутрь корпуса воздух, так же мысленно закрываем выпускное отверстие, например, пальцем, и начинаем перемещать поршень насоса вверх – воздух при этом начнет сжиматься, так как деваться ему некуда. Доведя поршень насоса до упора, мы возьми и подожги засыпанный до начала этого действа порох в корпусе. Сгорая, этот порох будет выделять большое количество газа, который, в свою очередь, повысит давление внутри корпуса и начнет перемещать поршень, только уже без нашего участия – самостоятельно. Когда порох полностью выгорит, а поршень дойдет до самой нижней точки, мы откроем выпускное отверстие, и начнем снова перемещать поршень вверх, выталкивая из корпуса насоса уже отработавшие свое газы. Вытолкнув продукты горения наружу, мы снова закрываем пальцем выпускное отверстие насоса и начинаем повторять все вышеперечисленное в той же последовательности. Вот так же приблизительно работает любой четырехтактный бензиновый двигатель. Поместите корпус насоса в блок, клапаны установите в головку, которую в свою очередь смонтируйте на блок, а поршень соедините через шатун с коленвалом и получите наш простейший одноцилиндровый двигатель.

Есть такое понятие, как «рабочий цикл». Это совокупность процессов, происходящих последовательно в цилиндре двигателя при вращении коленчатого вала на два полных оборота (720o). Рабочий цикл состоит из тактов.

Примечание
Читая далее описание процессов, вспомните о насосе, который был описан перед этим.

Собственно, ничего сложного. Практически все четырехтактные двигатели внутреннего сгорания, использующие в качестве топлива бензин, работают по такому принципу.

Первый такт. Впуск воздуха, смешанного с топливом

Коленвал, вращаясь, перемещает поршень вниз из ВМТ. В этот момент открыт впускной клапан, через него в цилиндр всасывается воздух вперемешку с распыленным топливом (в виде очень мелких капелек). Далее поршень достигает НМТ, впускной клапан закрывается

Второй такт. Сжатие

Коленвал продолжает вращаться, а поршень начинает от НМТ перемещаться вверх, сжимая при этом топливовоздушную смесь, дополнительно более тщательно смешивая топливо с воздухом, чтобы смесь была максимально однородная. Оба клапана закрыты

Третий такт. Рабочий ход

Поршень в ВМТ, в камере сгорания сжатая и нагретая до высокой температуры смесь, в этот момент возникает разряд между электродами свечи, который поджигает топливо. Сгорая, топливовоздушная смесь выделяет газы, которые, к слову, разогреты до 800 градусов Цельсия, создается высокое давление, под действием которого поршень перемещается вниз, толкая коленчатый вал. Весь процесс протекает до НМТ

Четвертый такт. Выпуск

Газы свое дело сделали, теперь от них необходимо избавиться, чтобы подготовить цилиндр для следующей порции топливовоздушной смеси. После НМТ, открывается выпускной клапан, поршень под действием силы инерции поднимается вверх, выталкивая отработанные газы. После того, как поршень достигнет ВМТ и будут удалены все отработанные газы, весь процесс повторится заново.

monolith.in.ua

Почему (почти) все мотоциклы имеют одноцилиндровый двигатель?

Основная причина использования двухтактного двигателя заключается в том, что он ускоряется намного быстрее, чем четырехтактный двигатель аналогичного размера. Очевидная причина этого — 2-тактный цилиндр срабатывает при каждом обороте коленчатого вала, а 4-тактный — при каждом втором обороте. Кроме того, поскольку 2-тактный огонь срабатывает при каждом обороте, им нужен только вес, достаточный для уравновешивания двигателя. 4-х тактному двигателю требуется дополнительный вес в коленчатом валу, чтобы он продолжал работать во время хода без пуска. Это относится, главным образом, когда двигатель работает на низких оборотах. Благодаря добавленному весу, двигателю требуется больше времени для увеличения скорости от более низких диапазонов оборотов в минуту.

Эти двигатели также в основном с воздушным охлаждением. Наличие одноцилиндрового двигателя с воздушным охлаждением намного эффективнее, чем попытка охлаждения двух (или более) двигателей с воздушным охлаждением. Воздушное охлаждение является более простым решением, чем водяное охлаждение.

Одноцилиндровый двигатель намного проще, чем двухцилиндровый, двух- или четырехтактный. Движущихся частей намного меньше.

Нет проблем с тем, почему чем больше, тем лучше … это восходит к старой поговорке о том, что замены не существует. Имея большее смещение, будь то 2-х или 4-х тактный, чтобы обеспечить более низкий конечный крутящий момент.

Благодаря тому, что большинство 2-тактных двигателей заполняют цилиндр смесью воздуха и топлива, они по своей природе менее эффективны, чем 4-тактные двигатели. Объемная эффективность безнаддувного двухтактного двигателя ограничивает его способность производить мощность. Четырехтактный двигатель аналогичного размера может заполнить цилиндр намного более полно, что позволит ему увеличить мощность. Для назидания тех, кто может не знать, 2-тактный двигатель имеет только геркон, который функционирует как обратный клапан для обеспечения правильного потока воздуха / выхлопа. Впуск для воздуха / топлива через отверстие в отверстии (отверстиях) цилиндра на одной стороне цилиндра. Эти впускные отверстия находятся в положении, когда поршень движется вниз в цилиндре, и эти отверстия открыты, чтобы позволить топливовоздушной смеси попасть в цилиндр. Когда поршень движется обратно вверх по цилиндру, порт (ы) закрываются, что позволяет сжать топливовоздушную смесь непосредственно перед воспламенением. Когда поршень движется вниз по цилиндру, он сначала попадает в выпускное отверстие (отверстия), которые также находятся со стороны цилиндра, только напротив впускных отверстий. Поршни обычно имеют специальную форму для направления выходящей выхлопной и поступающей воздушно-топливной смеси в правильном направлении, так что двигатель будет фактически функционировать (вместо того, чтобы сказать, что выхлоп выходит из впускного отверстия). Для сравнения, четырехтактный поршень относительно плоский (есть исключения). Вот довольно хорошее представление двух ударов и формы поршня:

С внедорожным велосипедом, имеющим низкий крутящий момент, вам нужно вырыть свой путь из крутого поворота, а затем иметь возможность быстро набрать скорость … вот где он. Двухтактный двигатель может сделать то же самое для велосипеда за счет эффективности процесса.

askentire.net

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *