Диагностический датчик концентрации кислорода: Лямбда-зонд (датчик кислорода). Устройство лямбда-зонда

Содержание

Кислородный датчик: устройство, назначение, диагностика

Сомнительная заправка, плохой бензин, «чек» на панели — стандартный и быстрый путь к замене кислородного датчика. Про лямбда-зонд слышали многие автомобилисты, но мало кто разбирался, за что именно он отвечает и почему так легко выходит из строя. Рассказываем про датчик кислорода — «обоняние» двигателя.

Лямбда и стехиометрия двигателя

Название датчика происходит от греческой буквы λ (лямбда), которая обозначает коэффициент избытка воздуха в топливно-воздушной смеси. Для полного сгорания смеси соотношение воздуха с топливом должно быть 14,7:1 (λ=1). Такой состав топливно-воздушной смеси называют стехиометрическим — идеальным с точки зрения химической реакции: топливо и кислород в воздухе будут полностью израсходованы в процессе горения. При этом двигатель произведёт минимум токсичных выбросов, а соотношение мощности и расхода топлива будет оптимальным.

Если лямбда будет <1 (недостаток воздуха), смесь станет обогащённой; при лямбде >1 (избыток воздуха) смесь называют обеднённой. Чересчур богатая смесь — это повышенный расход топлива и более токсичный выхлоп, а слишком бедная смесь грозит потерей мощности и нестабильной работой двигателя.

Зависимость мощности и расхода топлива от состава смеси

Из графика видно, что при λ=1 мощность двигателя не пиковая, а расход топлива не минимален — это лишь оптимальный баланс между ними. Наибольшую мощность мотор развивает на слегка обогащённой смеси, но расход топлива при этом возрастает. А максимальная топливная эффективность достигается на слегка обеднённой смеси, но ценой падения мощности. Поэтому задача ЭБУ (электронного блока управления) двигателя — корректировать топливно-воздушную смесь исходя из ситуации: обогащать её при холодном пуске или резком ускорении, и обеднять при равномерном движении, добиваясь оптимальной работы мотора во всех режимах. Для этого блок управления ориентируется на показания датчика кислорода.

Зачем нужен кислородный датчик

Датчиков в современном двигателе великое множество. С помощью различных сенсоров ЭБУ замеряет температуру забортного воздуха и его поток, «видит» положение дроссельной заслонки, отслеживает детонацию и положение коленвала — словом, внимательно следит за воздухом «на входе» и показателями работы мотора, регулируя подачу топлива для создания оптимальной смеси в цилиндрах.

Схема лямбда-коррекции двигателя

Лямбда-зонд показывает, что же получилось «на выходе», замеряя количество кислорода в выхлопных газах. Другими словами, кислородный датчик определяет, оптимально ли работает мотор, соответствуют ли расчёты ЭБУ реальной картине и нужно ли вносить в них поправки. Основываясь на данных с лямбда-зонда, ЭБУ вносит соответствующие коррекции в работу двигателя и подготовку топливно-воздушной смеси.

Где находится кислородный датчик

Датчик кислорода установлен в выпускном коллекторе или приёмной трубе глушителя двигателя, замеряя, сколько несгоревшего кислорода находится в выхлопных газах. На многих автомобилях есть ещё один лямбда-зонд, расположенный после каталитического нейтрализатора выхлопа — для контроля его работы.

Если у двигателя две головки блока (V-образники, «оппозитники»), то удваивается количество выпускных коллекторов и катализаторов, а значит и лямбда-зондов — у современной машины может быть и 4 кислородных датчика.

Устройство кислородного датчика

Классический лямбда-зонд порогового типа — узкополосный — работает по принципу гальванического элемента. Внутри него находится твёрдый электролит — керамика из диоксида циркония, поэтому такие датчики часто называют циркониевыми. Поверх керамики напылены токопроводящие пористые электроды из платины. Будучи погружённым в выхлопные газы, датчик реагирует на разницу между уровнем кислорода в них и в атмосферном воздухе, вырабатывая на выходе напряжение, которое считывает ЭБУ.

Циркониевый элемент лямбда-зонда приобретает проводимость и начинает работать только после прогрева до температуры 300 °C. До этого ЭБУ двигателя действует «вслепую» согласно топливной карте, без обратной связи от кислородного датчика, что повышает расход топлива при прогреве двигателя и количество вредных выбросов. Чтобы быстрее задействовать лямбда-зонд, ему добавляют принудительный электрический подогрев. Кислородные датчики с подогревом внешне отличаются увеличенным количеством проводов: у них 3–4 жилы против 1–2 у обычных датчиков.

В названии узкополосного датчика кроется его недостаток — он способен замерять количество кислорода в выхлопе в достаточно узком диапазоне. ЭБУ может корректировать смесь по его показаниям только в некоторых режимах работы мотора (холостой ход, движение с постоянной скоростью), что не отвечает современным требованиям по экономичности и экологичности двигателей. Для более точных замеров в широком диапазоне используют широкополосный лямбда-зонд (A/F-сенсор), который также называют датчиком соотношения «воздух-топливо» (Air/Fuel Sensor). Обычно к нему подходят 5–6 проводов, хотя бывают и исключения.

Внешне «широкополосник» похож на обычный датчик кислорода, но внутри есть отличия. Благодаря специальным накачивающим ячейкам эталонный лямбда-коэффициент газового содержимого датчика всегда равен 1, и генерируемое им напряжение постоянно. А вот ток меняется в зависимости от количества кислорода в выхлопных газах, и ЭБУ двигателя считывает его в реальном времени. Это позволяет электронике быстрее и точнее корректировать смесь, добиваясь её полного сгорания в цилиндрах.

Почему до сих пор производят узкополосные датчики? Во-первых, для старых автомобилей, где A/F-сенсоры не применялись. Во-вторых, из-за особенностей «широкополосника» его нельзя устанавливать после катализатора, где он быстро выходит из строя. А контролировать работу катализатора как-то надо. Поэтому в современных двигателях ставят два лямбда-зонда разного типа: широкополосный (управляющий) — в районе выпускного коллектора, а узкополосный (диагностический) — после катализатора.

Причины и признаки неисправности лямбда-зонда

Основная причина поломок кислородных датчиков — некачественный бензин: свинец и ферроценовые присадки оседают на чувствительном элементе датчика, выводя его из строя. На состояние лямбда-зонда влияет и нестабильная работа двигателя: при пропусках зажигания от старых свечей или пробитых катушек несгоревшая смесь попадает в выхлопную систему, где догорает, выжигая и катализатор, и датчики кислорода. Приговорить датчик также может попадание в цилиндры антифриза или масла.

Самый очевидный признак неисправности лямбда-зонда — индикатор Check Engine на приборной панели. Считав код ошибки с помощью сканера или самодиагностики, можно проверить, какой именно датчик вышел из строя, если их несколько. Иногда всё дело в повреждённой проводке датчика — с проверки цепи и стоит начать поиск поломки.

Но далеко не всегда проблемный лямбда-зонд зажигает «Чек»: иногда он не ломается полностью, а медленно умирает, давая при этом ложные показания, из-за чего ЭБУ двигателя неверно корректирует состав смеси. В этом случае нужно ориентироваться на косвенные признаки — ухудшение работы двигателя.

Проблемы с датчиком кислорода нарушают всю систему обратной связи и лямбда-коррекции, вызывая целый букет неисправностей. Прежде всего, это увеличение расхода топлива и токсичности выхлопа, снижение мощности и нестабильный холостой ход. Если вовремя не заменить лямбда-зонд, следом выйдет из строя каталитический нейтрализатор, осыпавшись из-за перегрева от обогащённой смеси.

Универсальные кислородные датчики

Цена на оригинальные датчики кислорода вряд ли обрадует автомобилистов, но все лямбда-зонды работают по единому принципу, что позволяет без труда подобрать замену. Главное, чтобы соответствовал типа датчика (широкополосный/узкополосный), количество проводов и резьбовая часть. В продаже есть универсальные кислородные датчики без разъёма, которые можно использовать на десятках моделей автомобилей — подобрать и купить лямбда-зонд не составляет проблемы.

Чтобы избежать проблем с кислородными датчиками, следите за состоянием двигателя, заправляйтесь качественным топливом и регулярно выполняйте компьютерную диагностику, которая позволит выявить неисправности на ранней стадии.

Диагностический датчик концентрации кислорода рено дастер - Описание лямбда-зонда

Далеко не всем современным автолюбителям известно, что лямбда-зонд выполняет одну из основных функций в работе ДВС и выхлопной системы. Без него фактически невозможна нормальная работа мотора. Предлагаем вам узнать, что это такое, зачем нужен, где находится и за что отвечает первый или верхний лямбда-зонд, почему он выходит из строя и как его почистить.

Содержание

Что такое лямбда-зонд?

Назначение

Лямбда-зонд представляет собой кислородный датчик — это такое устройство сопротивления, которое находится в выпускном коллекторе. Благодаря информации, которую отправляет лямбда-зонд, блок управления двигателем может поддерживать определенный состав горючей смеси. Кислородный датчик посылает электрический приборам сигнал, если в камеру поступает слишком богатая или бедная топливно-воздушная смесь. В результате информации, которую отправил лямбда-зонд, бортовой компьютер авто корректируется подачу горючей смеси.

Что такое универсальный лямбда-зонд и для чего он нужен — понятно, но как же он выглядит? Ведь далеко не каждый автолюбитель понимает, что с виду представляет собой это устройство. Тем более, если вы планируете произвести самостоятельную диагностику устройства,то необходимо разобраться в принципе его работы. С этой информацией вы ознакомитесь ниже.

Итак, для чего нужен лямбда-зонд в автомобиле и какой его принцип работы? Перед тем, как ответить на эти вопросы, лучше будет разобраться в устройстве элемента.

  1. Непосредственно сам корпус. Универсальный лямбда-зонд сопротивления имеет металлический корпус, оснащенный нарезной резьбой для правильного монтажа.
  2. Керамический изолятор.
  3. Уплотнительное кольцо.
  4. Керамический наконечник.
  5. Провода, а также манжеты для их правильного уплотнения.
  6. Для того, чтобы обеспечить вентиляцию устройства, применяется специальный корпус, оснащенный дополнительным отверстием.
  7. Контакт, по которому проходит ток.
  8. Дополнительный щиток, именующийся защитным, поскольку оснащен специальным отверстием, необходимым для выпуска выхлопных газов.
  9. Также универсальный датчик оснащается спиралью, установленной в отдельном резервуаре (автор видео — Витя Крякушкин).

Что касается принципа работы, то диагностический датчик концентрации кислорода представляет собой элемент обратной связи. Это устройство позволяет системе правильно рассчитать необходимую дозировку топлива для определенного количества подаваемого воздуха. Оптимальный расчет горючей смеси актуален не только с экологической, но и экономической точки зрения. Поскольку сегодня требования к экологической безопасности при производстве транспортных средств очень велики, то новые машины комплектуются обычно только катализаторами. Также двигатели автомобилей оснащаются двумя датчиками кислорода.

Причины и симптомы поломок

Если универсальный диагностический датчик концентрации кислорода выходит из строя, то причины могут быть следующие:

Если содержание монооксида углерода повышается до 3-7% вместо положенных 0.1-0.3%, то это может свидетельствовать о выходе из строя зонда. Чтобы избавиться от проблемы, необходимо будет только менять элемент, поскольку запаса хода может быть не достаточно. Если транспортное средство оснащено двумя зондами, то при поломке второго устройства наладить оптимальную работу мотора будет невозможно (автор видео — Александр Сабегатулин).

  • во время движения на автомобиле начинают проявляться рывки;
  • вполне ощутимый увеличенный расход бензина;
  • катализатор начинает работать некорректно;
  • обороты двигателя начинают плавать;
  • в выхлопных газах начинает увеличиваться концентрация токсинов.

Диагностика

Измерение напряжения производится с помощью осциллографа, так как благодаря этому прибору можно получить наиболее точный результат. После замера напряжения необходимо проверить уровень сопротивления нагревателя устройства, при этом штекер необходимо заранее отключить. Уровень сопротивления должен составлять от 2 до 14 Ом, в этом случае все зависит от производителя.

Очистка

Чистка чувствительного элемента производится с применением ортофосфорной кислоты. Если вы поместите этот элемент в кислоту на 10-20 минут, то это позволит уничтожить все отложения, при этом не воздействуя негативным образом на электроды. Наиболее эффективным вариантом будет отсоединение разъема и чистка элемента после демонтажа защитного колпака, перед этим колпачок нужно снять на токарном станке. Для снятия регулятора можно использовать съемник кислородного датчика, а после очистки его также можно будет промыть.

Обманка может быть выполнена из бронзы, но размер обманки должен соответствовать размерам катализатора. В обманке необходимо высверлить небольшое отверстие — через него выхлопные газы будут попадать в обманку. В результате концентрация вредных элементов в газах будет снижена, однако при этом блок управления не будет тревожить водителя новыми ошибками, принимая соответствующий сигнал за нормальную работу катализатора.

О том, как правильно произвести прочистку датчика в домашних условиях, узнайте из видео ниже (автор видео — Своими руками).

Замена управляющего и диагностического датчиков концентрации кислорода

Где установлены кислородные датчики?

- Управляющий датчик концентрации кислорода (лямбда-зонд) установлен на приемной трубе на входе в каталитический нейтрализатор, а диагностический датчик - за каталитическим нейтрализатором. (между нейтрализатором и дополнительным глушителем). По своему устройству они одинаковые. (подробнее об этих датчиках)

Работы по замене проводятся на холодном двигателе

Для замены управляющего датчика кислорода отжимаем в моторном отсеке фиксатор колодки жгута проводов системы управления двигателем...

...и отсоединяем разъём от колодки проводов датчика.

Отсоединяем от кронштейна пластмассовый держатель жгута проводов датчика кислорода.

Датчик может «прикипеть» к приемной трубе и тогда, как правило, рожковым ключом отвернуть датчик не удастся - будут срываться его грани. В этом случае отвернуть датчик можно накидным ключом «на 22». Чтобы надеть ключ на шестигранник датчика, можно разобрать колодку жгута проводов датчика, вынув из нее наконечники проводов...

...или перекусить жгут проводов бокорезами, если датчик подлежит замене.

Накидным ключом «на 22» выворачиваем управляющий датчик кислорода...

...и снимаем его.

Для замены диагностического датчика концентрации кислорода...

...отверткой отжимаем снизу автомобиля фиксатор колодки жгута проводов системы управления двигателем...

...и разъединяем колодки жгута проводов и проводов датчика.

Разжимаем отверткой хомут крепления проводов датчика.

Накидным ключом «на 22» выворачиваем диагностический датчик из отверстия приемной трубы и снимаем его.


Датчик концентрации кислорода

Устанавливаем управляющий и диагностический датчики концентрации кислорода в обратной последовательности.

При установке не допускаем попадания смазки или грязи на наконечник датчика с прорезями и на разъем жгута проводов.

Заворачиваем датчик моментом 30–45 Н.м.

Чтобы в процессе эксплуатации датчик не «прикипел» к приемной трубе, перед установкой, наносим на его резьбовую часть тонкий слой противопригарной высокотемпературной присадки на основе графита.

Замена управляющего датчика кислорода (лямбда-зонд) Lada Largus / Лада Ларгус

Примечание: каталожный номер датчика (в зависимости от модификации двигателя) см. здесь, или здесь

Внимание. Не допускается попадание жидкости для чистки контактов или других материалов на датчик кислорода или колодку датчика. Эти материалы могут попасть в датчик кислорода и вызвать нарушение его работы.

На автомобиле используются два кислородных датчика: управляющий, замена которого описана на этой странице и диагностический кислородный датчик, замена которого описана здесь.


Управляющий датчик концентрации кислорода (УДКК)
Находится в резьбовом отверстии выпускного коллектора.

Снятие

Для автомобилей с двигателем К4М

Установить автомобиль на рабочее место, затормозить стояночным тормозом, выключить зажигание и отсоединить клемму провода "массы" от аккумуляторной батареи .

Снять глушитель шума впуска и корпус воздушного фильтра.

Отсоединить колодку жгута проводов от колодки 1, рисунок 11-21, управляющего датчика кислорода.

Рисунок 11-21 - Снятие управляющего датчика кислорода двигателя К4М:

1 - колодка управляющего датчика кислорода;
2 - кронштейн крепления;
3 - управляющий датчик кислорода

Отсоединить от кронштейна 2 крепления колодку управляющего датчика кислорода.

Отвернуть управляющий датчик 3 кислорода (приспособление Mot. 1495 или вставка сменная 22 из набора типа 811382 ф. "USAG").

Для автомобилей с двигателем К7М

Установить автомобиль на двухстоечный подъемник, затормозить стояночным тормозом, выключить зажигание и отсоединить клемму провода "массы" от аккумуляторной батареи .

Снять защиту картера двигателя

Снять колодку 1, рисунок 11-22, управляющего датчика кислорода с держателя, сдвинув его.

Отвернуть управляющий датчик 3 кислорода (приспособление Mot. 1495 или вставка сменная 22 из набора типа 811382 ф. "USAG").

Рисунок 11-22 - Снятие управляющего датчика кислорода двигателя К7М:

1 - колодка управляющего датчика кислорода;
2 - хомут;
3 - управляющий датчик кислорода

Установка

Для автомобилей с двигателем К4М

Установить управляющий датчик 3, рисунок 11-21, кислорода.

  Момент затяжки датчика 45 Н.м (4,5 кгс.м) .

Присоединить к кронштейну 2 крепления колодку управляющего датчика кислорода.

Присоединить колодку жгута проводов к колодке 1 управляющего датчика кислорода.

Установить корпус воздушного фильтра и глушитель шума впуска (см. выше).

Присоединить клемму провода "массы" к аккумуляторной батарее .

Для автомобилей с двигателем К7М

Установить управляющий датчик 3, рисунок 11-22, кислорода.

  Момент затяжки датчика 45 Н.м (4,5 кгс.м).

Закрепить жгут датчика хомутом 2.

Присоединить колодку жгута проводов к колодке 1 управляющего датчика кислорода.

Установить колодку управляющего датчика кислорода в держатель.

Установить защиту картера двигателя

Присоединить клемму провода "массы" к аккумуляторной батарее .

Видео

Замена и проверка датчика концентрации кислорода на LADA

Замена и проверка датчика концентрации кислорода на LADA

Датчик кислорода (лямбда зонд или ДК) определяет количество оставшегося свободного кислорода в выхлопных газах. На основании его данных электронный блок управления двигателем корректирует состав топливно-воздушной смеси. Рассмотрим особенности замены и проверки датчика кислорода на автомобилях LADA.

Где находится датчик кислорода? Управляющий и диагностический датчики концентрации кислорода установлены в системе выпуска автомобилей LADA.

Замена датчиков кислорода. Чтобы избежать ожогов, приступаем к работе после остывания системы выпуска. Перед выворачиванием датчиков отсоединяем колодку с проводами (нажимаем на фиксатор).

специальный ключ для замены датчика кислорода LADAзамена датчика кислорода LADAзамена датчика кислорода LADA

При необходимости обрабатываем соединение датчиков смазкой.

Установка в обратной последовательности. Если датчик используется повторно, обработайте резьбу специальной монтажной пастой, избегая попадания пасты на защитную трубку. Поскольку датчик всасывает эталонный воздух через корпус, его нельзя обрабатывать контактным спреем или смазкой.

Проверка датчика кислорода (оба датчика проверяются аналогично). Самый простой способ - заменить датчик на заведомо исправный.

Если датчик кислорода неисправен, его меняют на новый. В некоторых случаях можно попытаться его восстановить. А вам приходилось своими руками менять или проверять лямбда зонд? С какими трудностями вы столкнулись?

Изображение Артикул Наименование Производитель Цена Наличие В корзину
  intro iso ant-1    Переходник антенный Intro iso ant-1     INTRO        500 / 350 р. Дисконт: 300 р.        2    
  OBD-BT01    Bluetooth OBDII - адаптер для диагностики     Китай        1500 / 1000 р. Дисконт: 900 р.        2    
  multi-vc731    Бортовой компьютер Multitronics vc731     Multitronics        8500 / 7900 р. Дисконт: 7600 р.        1    
  multi-c590    Бортовой компьютер Multitronics C590     Multitronics        7500 / 6600 р. Дисконт: 6200 р.        1    
  multi-vc730    Бортовой компьютер Multitronics vc730     Multitronics        7500 / 6500 р. Дисконт: 5500 р.        2    
  DC1711    Датчик температуры двигателя Рено Дастер индикатор цифровой с экраном     РФ        1900 / 1500 р. Дисконт: 1200 р.        >10    
  DC691-LA6-V003    Противоугонная защита электронного блока управления (ЭБУ) для Duster 2015, Largus, Logan 2, Sandero 2, Vesta, Xray, Arkana     РФ        4900 / 3900 р. Дисконт: 3400 р.        5    
  DC1250    Набор флажковых предохранителей малый (10шт)     Аналог        200 / 150 р. Дисконт: 100 р.        3    
  PU-4TC-BLACK    Парктроник Multitronics PU-4TC для бортовых компьютеров (цвет датчиков-черный)     Multitronics        4000 / 3500 р. Дисконт: 3200 р.        2    
  DC689    Противоугонная защита с замком для разъёма OBD2      РФ        5000 / 4000 р. Дисконт: 3500 р.        1    
  DC190    Монитор для камеры заднего вида, складной      Китай        2500 / 2000 р. Дисконт: 1700 р.        1    
  DC954-8200719629    Датчик абсолютного давления в коллекторе МАП-сенсор на двиг 2,0 и 1,6 - F4R/K4M оригинал 8200719629     Оригинал        2500 / 1900 р. Дисконт: 1700 р.        1    
  DC1134-7700427640    Концевик на двери (выключатель) оригинал 7700427640     Оригинал        800 / 500 р. Дисконт: 400 р.        4    
  DC1195    Набор предохранителей 180шт в пластиковой коробке     Китай        1000 / 800 р. Дисконт: 700 р.        1    
  DC990-8200060049    Выключатель обогрева сидения оригинал 8200060049     Оригинал        800 / 700 р. Дисконт: 600 р.        3    
  DC485-497612479R    Датчик давления жидкости ГУР оригинал Рено 497612479R     Оригинал        1800 / 1400 р. Дисконт: 1200 р.        1    
  DC1143    Кнопка (джойстик) управления зеркалами Рено     Оригинал        700 / 500 р. Дисконт: 450 р.        4    
  PU-4TC-GREY    Парктроник Multitronics PU-4TC для бортовых компьютеров (цвет датчиков-серый)     Multitronics        4000 / 3500 р. Дисконт: 3200 р.        2    
  DC1728    Гудок от Волги - звуковой сигнал (комплект 2 тона)     РФ        1600 / 1200 р. Дисконт: 900 р.        2    
  DC1027-8201167988    Переключатель подрулевой левый с ПТФ артикул 8201167988 / 255400337R     Оригинал        6000 / 4700 р. Дисконт: 4000 р.        1    
  DC1736    Гнездо прикуривателя дополнительное с крышкой     РФ        800 / 500 р. Дисконт: 300 р.        1    
  DC1360-7711238598    Аккумуляторная батарея АКБ оригинал Рено 7711238598     Оригинал        15000 / 12000 р. Дисконт: 10500 р.        1    
  DC1754-104035756    Концевик двери Лада Веста HANS PRIES TOPRAN (1шт.) 104035756     Аналог        300 / 200 р. Дисконт: 100 р.        4    
  DC1750    Насос для замены масла через щуп     РФ        2800 / 2100 р. Дисконт: 1800 р.        3    
  DC1404    Активатор замка крышки багажника и дверей (Asam/MANOVER аналог 7700712901)     Аналог        1400 / 900 р. Дисконт: 700 р.        1    
  DC1828-35372203    Предохранитель штыревой 15А 35.3722-03 (1шт.)     Оригинал        10 / 7 р. Дисконт: 5 р.        3    
  DC1881    Колодка-разъем фары Н4 с проводами Дастер, Веста, Террано, Логан и др. универсальный (1шт.)     Аналог        100 / 60 р. Дисконт: 50 р.        6    
  DC1945    Смазка для электроконтактов и клемм АКБ Liqui Moly     Аналог        600 / 400 р. Дисконт: 300 р.        1    
  DC1949    Датчик уровня топлива Дастер, Ларгус, Логан и др.     ASAM        1300 / 1000 р. Дисконт: 900 р.        2    
  DC634-601986892R    Датчик скорости (заглушка) для машин с АБС оригинал 601986892R     Оригинал        1900 / 1650 р. Дисконт: 1450 р.        1    
  DC996-255675128R    Переключатель подрулевой левый артикул 255675128R     Оригинал        4700 / 4300 р. Дисконт: 3800 р.        2    
  DC1520    Втягивающее реле 1.6 h5M     Аналог        1900 / 1600 р. Дисконт: 1400 р.        1    
  DC1793    Разъем катушки зажигания Дастер, Террано, Каптур     Оригинал        600 / 500 р. Дисконт: 450 р.        1    
  DC1812-6001547488    Резистор печки Дастер, Логан, Террано, Сандеро, Каптур и др. оригинал 6001547488     Оригинал        1500 / 1000 р. Дисконт: 800 р.        1    
  DC1729    Пневмогудок - звуковой сигнал пневматический (комплект)     РФ        2200 / 1800 р. Дисконт: 1500 р.        1    
  DC1739    Мультиметр цифровой с прозвонкой (инструмент)     РФ        800 / 600 р. Дисконт: 450 р.        1    
  DC1737    Звуковой сигнал 2 тона (комплект Airline)     РФ        1600 / 1200 р. Дисконт: 900 р.        1    
  DC1742-723377705    Реле стеклоочистителя с регулировкой паузы с датчиком дождя (723.3777-05 с датчиком дождя)     РФ        2100 / 1800 р. Дисконт: 1500 р.        1    
  DC1743-75377710    Реле автомобильное 12V дополнительное 75.3777-10     РФ        250 / 150 р. Дисконт: 100 р.        2    
  DC1773-983747    Реле автомобильное 12V 5-ти контактное 98.3747     РФ        250 / 180 р. Дисконт: 120 р.        2    
  DC623-8200547283    Датчик скорости оригинал Рено 8200547283 / 6001548870 (без АБС)     Оригинал        1600 / 1100 р. Дисконт: 900 р.        1    
  DC1665-21800141301000    Датчик абсолютного давления и температуры в коллекторе МАП-сенсор 1,6л ВАЗ 21129 оригинал 21800141301000     Оригинал        2800 / 2200 р. Дисконт: 1900 р.        1    
  DC1816-284375765R    Датчик парктроника 284375765R оригинал (1шт.)     Оригинал        1200 / 800 р. Дисконт: 550 р.        1    
  DC1825-353722    Предохранитель штыревой 5А 35.3722 (1шт.)     Оригинал        10 / 7 р. Дисконт: 5 р.        5    
  DC1826-35372201    Предохранитель штыревой 7,5А 35.3722-01 (1шт.)     Оригинал        10 / 7 р. Дисконт: 5 р.        5    
  DC1827-35372202    Предохранитель штыревой 10А 35.3722-02 (1шт.)     Оригинал        10 / 7 р. Дисконт: 5 р.        5    
  DC1829-35372204    Предохранитель штыревой 20А 35.3722-04 (1шт.)     Оригинал        10 / 7 р. Дисконт: 5 р.        5    
  DC1830-35372205    Предохранитель штыревой 25А 35.3722-05 (1шт.)     Оригинал        10 / 7 р. Дисконт: 5 р.        5    
  DC1831-35372206    Предохранитель штыревой 30А 35.3722-06 (1шт.)     Оригинал        10 / 7 р. Дисконт: 5 р.        5    
  DC1832    Наконечник гнездовой серии 6,3 с фиксацией (обжатый с проводом)     РФ        15 / 10 р. Дисконт: 8 р.        >10    
  DC1833    Наконечник гнездовой серии 6,3 с фиксацией (без провода)     РФ        10 / 7 р. Дисконт: 5 р.        >10    
  DC1841    Наконечник кольцевой 8,2мм (без провода под обжим)     РФ        10 / 7 р. Дисконт: 5 р.        5    
  DC1844    Наконечник штыревой серии 6,3 с фиксацией (без провода под обжим)     РФ        20 / 10 р. Дисконт: 6 р.        >10    
  DC1842    Наконечник кольцевой 8,2мм (с проводом)     РФ        45 / 30 р. Дисконт: 20 р.        3    
  DC1843    Наконечник штыревой серии 6,3 с фиксацией (обжатый с проводом)     РФ        45 / 30 р. Дисконт: 15 р.        >10    
  DC1847    Гофра для кабеля разрезная диаметром 6.8 мм (трубка гофрированная с разрезом) цена за 1 метр     РФ        50 / 30 р. Дисконт: 25 р.        >10    
  DC1848    Гофра для кабеля разрезная диаметром 11.5 мм (трубка гофрированная с разрезом) цена за 1 метр     РФ        50 / 30 р. Дисконт: 25 р.        >10    
  DC1850    Гофра для кабеля разрезная диаметром 9.4-9.8 мм (трубка гофрированная с разрезом) цена за 1 метр     РФ        50 / 30 р. Дисконт: 25 р.        >10    
  DC1867    Разъем подключения спинки обогревателя сидения для Ларгус, Веста, X-Ray     Аналог        100 / 60 р. Дисконт: 45 р.        1    
  DC1892    Разъем датчика коленвала Веста, компрессора, поворотников Рено, Лада, Ниссан     Аналог        100 / 70 р. Дисконт: 50 р.        2    
  DC1900    Разъем обогрева сиденья Веста, Ларгус, Икс-Рей и др. Рено, Лада, Ниссан     Аналог        110 / 80 р. Дисконт: 70 р.        2    
  DC1913    Разъем подогрева сидений (колодка 4-х контактная штыревая аналог 98822-1045 Molex с проводами)     Аналог        110 / 100 р. Дисконт: 80 р.        2    
  DC1914    Разъем кнопки подогрева сидений аналог 98172-1003 Molex с проводами с проводами     Аналог        110 / 80 р. Дисконт: 70 р.        2    
  DC1915    Колодка разъем держатель предохранителя с проводами     Аналог        110 / 80 р. Дисконт: 60 р.        2    
  DC1916    Колодка подключения 5-ти контактного реле с проводами     Аналог        110 / 80 р. Дисконт: 60 р.        2    
  DC1917    Провод автомобильный ПВАМ 1,0 кв.мм, 5м.     Аналог        190 / 130 р. Дисконт: 100 р.        1    
  DC1918    Разъем лямбда-зонда, датчика кислорода, топливного насоса     Аналог        300 / 240 р. Дисконт: 200 р.        1    
  DC1919    Концевик двери Лада Веста, ВАЗ 2190, 1118, 2123 оригинал     Оригинал        150 / 80 р. Дисконт: 60 р.        4    
  DC1927    Разъем патрон для бесцокольной лампы Т10 W5W с проводами     Аналог        120 / 80 р. Дисконт: 60 р.        3    
  DC1933    Держатель предохранителя плоского с крышкой и проводом от 1 до 30А     Аналог        190 / 120 р. Дисконт: 90 р.        1    
  DC1935-255404709R    Переключатель подрулевой левый (без пер ПТФ, гудок на руле 2015-) оригинал 255404709R     Оригинал        8500 / 6500 р. Дисконт: 4900 р.        1    
  DC1943    Клемма аккумуляторная быстросъемная плюсовая с зажимом (1шт.)     Аналог        900 / 700 р. Дисконт: 550 р.        1    
  DC1944    Клемма аккумуляторная быстросъемная минусовая с зажимом (1шт.)     Аналог        700 / 500 р. Дисконт: 350 р.        1    
  DC1946    Смазка защита клемм и контактов 210 мл LAVR аэрозоль в баллоне     Аналог        600 / 400 р. Дисконт: 300 р.        1    
  DC1947    Очиститель электрических контактов аэрозоль 0.2L     Аналог        500 / 300 р. Дисконт: 200 р.        1    
  DC1950-172024388R    Бензонасос Ларгус, Логан и др. (один штуцер) 172024388R оригинал     Оригинал        2500 / 2100 р. Дисконт: 1800 р.        2    
  DC1958-793710    Концевик бардачка 1118,2170,2180 Веста, Ручника 2123 - 79.3710 оригинал     Оригинал        200 / 120 р. Дисконт: 80 р.        1    
  DC1959    Разъем прикуривателя Ларгус и др.     Аналог        300 / 200 р. Дисконт: 150 р.        1    
  DC1960    Поддон под аккумулятор (коврик лоток под АКБ) Ларгус, Веста и др.     Оригинал        300 / 200 р. Дисконт: 150 р.        1    
  intro iso fr-12    Переходник для подключения магнитолы     INTRO        500 / 450 р. Дисконт: 400 р.        0    
  multi-cl590    Бортовой компьютер Multitronics CL590 (без голосового синтезатора)     Multitronics        6500 / 5800 р. Дисконт: 5400 р.        0    
  OBD-WF01    Wi-Fi OBDII ELM327 - адаптер для диагностики     Китай        1700 / 1500 р. Дисконт: 1300 р.        0    
  INTRO-PT-04    Парктроник с камерой заднего вида в комплекте (черный)     INTRO        5200 Дисконт: 5200 р.        0    
  Incar-VDR    Зеркало заднего вида с видеорегистратором и монитором     INTRO        25000 / 19900 р. Дисконт: 19000 р.        0    
  DC997-255678753R    Переключатель подрулевой правый артикул 255678753R     Оригинал        2800 / 2700 р. Дисконт: 2700 р.        0    
  INTRO-PT-05    Парктроник с камерой заднего вида в комплекте (серый)     INTRO        5200 Дисконт: 5200 р.        0    
  VR-518    Видеорегистратор VR-518     INTRO        3600 Дисконт: 3600 р.        0    
  DC129    Зеркало заднего вида с видеорегистратором и камерой заднего вида в комплекте     Китай        8500 Дисконт: 8500 р.        0    
  DC1775-VDC118    Камера заднего вида SWAT VDC-118 /в штатное место LADA Vesta, X-Ray, Калина     РФ        3000 / 2700 р. Дисконт: 2500 р.        0    
  DC1821    Адаптер кнопок руля и джойстика для Лада/Рено и магнитол со встроенным рулевым интерфейсом     РФ        2300 / 1800 р. Дисконт: 1400 р.        0    
  DC1907-12010996    Разъем втягивающего реле Веста 12010996     Аналог        110 / 80 р. Дисконт: 70 р.        0    
  DC1998    Кольца контактные для генератора VALEO     Аналог        800 / 600 р. Дисконт: 400 р.        0    
  DC1999    Щетки для генератора VALEO     Аналог        300 / 150 р. Дисконт: 100 р.        0    
  DC2002-8200194414    Насос стеклоомывателя Дастер, Логан, Сандеро, Ларгус оригинал 8200194414     Оригинал        1500 / 1100 р. Дисконт: 800 р.        0    
  DC653    Бортовой компьютер Ancel (Анкель)     Китай        3800 / 3200 р. Дисконт: 2700 р.        0    
  DC642    2.4G Беспроводной RCA Видео Передатчик-Приемник (Комплект для подключения камеры к монитору)     Китай        1700 / 1300 р. Дисконт: 1000 р.        0    
  VCO-2-02    Подголовник с монитором для Рено Дастер (черный)             8800 Дисконт: 8800 р.        0    
  VCO-1-02    Видеорегистратор VICO-TF2 PREMIUM для Рено Дастер     VICO        5900 Дисконт: 5900 р.        0    
  VCO-1-01    Видеорегистратор VICO-SF2 для Рено Дастер     VICO        4700 Дисконт: 4700 р.        0    
  VCO-1-03    Видеорегистратор VICO-TF2+ PREMIUM для Рено Дастер     VICO        6700 Дисконт: 6700 р.        0    
  VCO-1-04    Видеорегистратор VICO-WF1 для Рено Дастер     VICO        8000 Дисконт: 8000 р.        0    
  VCO-2-01    Подголовник с монитором для Рено Дастер (серый)             7800 Дисконт: 7800 р.        0    

Как работают датчики: датчик кислорода

Датчик кислорода, также называемый датчиком O2, выполняет функцию, указанную в его названии, а именно измеряет количество кислорода в отработавших газах. И хотя это может показаться несложной задачей, датчик O2 является одним из наиболее важных датчиков транспортного средства, который отвечает за соблюдение баланса между топливом и воздухом и сведение к минимуму объема вредных выбросов. Поэтому вам полезно будет узнать, для чего он предназначен, почему он выходит из строя, и, что важно, как его заменить в случае поломки.


Как работает датчик O2?

В большинстве автомобилей установлено по крайней мере два кислородных датчика, расположенных в выхлопной системе. Один из них обязательно устанавливается перед каталитическим нейтрализатором, а один или несколько — после каталитического нейтрализатора. Кислородный датчик, установленный перед каталитическим нейтрализатором, регулирует подачу топлива, а датчик, расположенный после него, измеряет эффективность работы каталитического нейтрализатора.

Датчики O2 обычно можно отнести к категории узкодиапазонных или широкодиапазонных.  Чувствительный элемент находится внутри датчика, заключенного в стальной корпус. Молекулы кислорода из выхлопных газов проходят через крошечные прорези или отверстия в стальной оболочке датчика, чтобы достичь чувствительного элемента, или ячейки Нернста. С другой стороны ячейки Нернста кислород из воздуха вне выхлопной системы перемещается вниз по датчику O2 и контактирует с ним. Разница в количестве кислорода между наружным воздухом выхлопными газми вызывает поток ионов кислорода и создает напряжение.

Если смесь выхлопных газов слишком богата и в выхлопе слишком мало кислорода, в электронный блок управления (ЭБУ) двигателя подается сигнал на уменьшение количества топлива, поступающего в цилиндр. Если смесь выхлопных газов слишком бедна, то посылается сигнал на увеличение количества топлива, подающегося в двигатель. Если топлива слишком много, в выхлопных газах присутствуют углеводороды и угарный газ. Если топлива слишком мало — загрязняющие атмосферу оксиды азота. Сигнал датчика помогает поддерживать оптимальный состав смеси. Широкодиапазонные датчики O2 имеют дополнительную насосную ячейку O2 для регулирования количества кислорода, подающегося к чувствительному элементу.  Это позволяет производить измерения в гораздо более широком диапазоне соотношения компонентов топливной смеси.


Почему возникают неисправности датчиков кислорода?

Поскольку датчик кислорода находится в потоке выхлопных газов, он может загрязниться. Обычно причиной загрязнения является чрезмерно богатая топливная смесь или выброс масла в более старых двигателях, а также просачивание в камеру сгорания охлаждающей жидкости через прокладки. Он также подвергается воздействию чрезвычайно высоких температур и, как и любой другой компонент, может со временем изнашиваться. Все это может повлиять на характеристики отклика кислородного датчика, что способно привести к увеличению времени отклика или изменению кривой напряжения датчика, а в долгосрочной перспективе — к снижению эффективности датчика. 


Каковы признаки неисправности датчика кислорода?

При поломке датчика кислорода компьютер больше не может определять соотношение топливно-воздушной смеси, поэтому он вынужден «гадать». В связи с этим существует несколько контрольных признаков, на которые стоит обратить внимание:

  • Индикатор проверки двигателя: хотя он может загореться по многим причинам, обычно это связано с выхлопными газами.
  • Большой расход топлива: неисправный кислородный датчик нарушит правильное смешивание воздуха и топлива, что приведет к увеличению расхода топлива.
  • Неровная работа двигателя на холостом ходу или пропуски зажигания: поскольку выходной сигнал датчика кислорода помогает контролировать синхронизацию двигателя, интервалы сгорания и топливно-воздушную смесь, неисправность датчика может стать причиной неровной работы двигателя.
  • Вялый разгон.


Устранение неисправностей датчика O2


Чтобы определить причину неправильной работы датчика O2, выполните следующие действия:

  • Считайте коды неисправностей с помощью диагностического прибора. Обратите внимание, что при обнаружении проблем с датчиками O2 прибор часто выдает несколько кодов неисправностей.
  • Лямбда-зонды имеют внутренний нагреватель, поэтому следует проверить сопротивление нагревателя — оно обычно бывает довольно низким.
  • Проверьте подачу питания на нагреватель — зачастую это провода одного цвета.
  • Проверьте электрический разъем на наличие повреждений или грязи. 
  • Проверьте выпускной коллектор и топливные форсунки на наличие утечек, а также состояние элементов системы — это может повлиять на правильность работы датчика.
  • Проверьте правильность показаний датчика O2, выполнив замер концентрации кислорода с помощью четырех- или пятикомпонентного газоанализатора.
  • Используйте осциллограф для проверки сигнала на холостом ходу и при 2500 об/мин.
  • Если доступ к проводке датчика затруднен, используйте данные в реальном времени, чтобы проверить наличие сигнала.
  • Проверьте состояние защитной трубки чувствительного элемента датчика на наличие признаков повреждения и загрязнения.


Коды распространенных неисправностей


Ниже приведены коды самых распространенных неисправностей и причины их возникновения:

  • P0135: датчик кислорода перед каталитическим нейтрализатором 1, отопительный контур / разомкнут
  • P0175: богатая топливная смесь (ряд 2)
  • P0713: неправильно сбалансирован состав смеси (ряд 2)
  • P0171: бедная топливная смесь (ряд 1)
  • P0162: неисправность цепи датчика O2 (ряд 2, датчик 3)

Как произвести замену датчика кислорода


Советы по замене кислородных датчиков
  • Прежде чем заменить датчик, вам необходимо выявить причину неисправности.  Подключите диагностический прибор, например Delphi DS, выберите нужный автомобиль и считайте код(-ы) неисправности(-ей).  Подтвердите код неисправности, выбрав действительные данные и сравнив значение с датчика, в котором вы предполагаете неисправность, со значением заведомо рабочего датчика. При необходимости обратитесь к данным производителя автомобиля, чтобы найти правильное значение для сравнения.Чтобы убедиться в том, что проблема обусловлена неисправным датчиком, а не проводкой, могут потребоваться другие инструменты или оборудование. 
  • Поскольку во многих автомобилях новых моделей имеется несколько датчиков кислорода, убедитесь, что вы правильно определили неисправный датчик, чтобы по ошибке не заменить исправный.  Производители транспортных средств несколько по-разному обозначают положение датчиков «ряд 1» и «ряд 2», «перед/зад» и «до/после», поэтому следует убедиться в том, что вы нашли нужный (неисправный) датчик. Лучший способ сделать это — с помощью диагностического инструмента посмотреть данные в реальном времени.
  • После этого отсоедините провод от датчика.
  • С помощью гаечного ключа или специального торцевого ключа для датчиков кислорода выкрутите датчик из его посадочного места.  Затем утилизируйте старый датчик и замените его новым.
  • В большинстве случаев резьбовое соединение датчика имеет специальное токопроводящее покрытие от прикипания, поэтому достаточно просто установить новый датчик на место старого.
  • Чтобы предотвратить схватывание датчика в резьбе, все датчики Delphi поставляются с высокотемпературным противозадирным составом, который либо наносится на заводе-изготовителе, либо прилагается в комплекте.  При необходимости нанесите состав на новый датчик перед установкой. Не наносите чрезмерное количество противозадирного средства на резьбу, так как это может привести к загрязнению чувствительного элемента.
  • Затяните датчик рекомендованным моментом.
  • После установки датчика подключите электронный разъем.
  • Теперь снова подключите диагностический прибор и удалите все сопутствующие коды неисправностей.
  • Наконец, включите зажигание и убедитесь, что индикатор проверки двигателя погас, а затем проведите ходовые испытания.

функции, неисправности и их устранение, видео

Далеко не всем современным автолюбителям известно, что лямбда-зонд выполняет одну из основных функций в работе ДВС и выхлопной системы. Без него фактически невозможна нормальная работа мотора. Предлагаем вам узнать, что это такое, зачем нужен, где находится и за что отвечает первый или верхний лямбда-зонд, почему он выходит из строя и как его почистить.

Содержание

[ Раскрыть]

[ Скрыть]

Что такое лямбда-зонд?

Какой лучше, для чего нужен верхний лямбда-зонд и где находится? Для начала стоит разобраться в том, что же это такое. Подробнее о назначении и принципе работе будет сказано ниже.

Назначение

Место монтажа лямбда-зондов

Лямбда-зонд представляет собой кислородный датчик — это такое устройство сопротивления, которое находится в выпускном коллекторе. Благодаря информации, которую отправляет лямбда-зонд, блок управления двигателем может поддерживать определенный состав горючей смеси. Кислородный датчик посылает электрический приборам сигнал, если в камеру поступает слишком богатая или бедная топливно-воздушная смесь. В результате информации, которую отправил лямбда-зонд, бортовой компьютер авто корректируется подачу горючей смеси.

По теоретическим данным, которые часто бывают далеки от практических, для сгорания одного килограмма горючей смеси необходимо около пятнадцати килограмм кислорода. Соответственно, если кислородный датчик работает не корректно, то это напрямую повлияет на то, как будет работать мотор в целом. Кроме того, это может отразиться на расходе топлива.

Что такое универсальный лямбда-зонд и для чего он нужен — понятно, но как же он выглядит? Ведь далеко не каждый автолюбитель понимает, что с виду представляет собой это устройство. Тем более, если вы планируете произвести самостоятельную диагностику устройства,то необходимо разобраться в принципе его работы. С этой информацией вы ознакомитесь ниже.

Устройство и принцип работы

Устройство кислородного датчика

Итак, для чего нужен лямбда-зонд в автомобиле и какой его принцип работы? Перед тем, как ответить на эти вопросы, лучше будет разобраться в устройстве элемента.

Универсальный кислородный датчик состоит из следующих компонентов:

  1. Непосредственно сам корпус. Универсальный лямбда-зонд сопротивления имеет металлический корпус, оснащенный нарезной резьбой для правильного монтажа.
  2. Керамический изолятор.
  3. Уплотнительное кольцо.
  4. Керамический наконечник.
  5. Провода, а также манжеты для их правильного уплотнения.
  6. Для того, чтобы обеспечить вентиляцию устройства, применяется специальный корпус, оснащенный дополнительным отверстием.
  7. Контакт, по которому проходит ток.
  8. Дополнительный щиток, именующийся защитным, поскольку оснащен специальным отверстием, необходимым для выпуска выхлопных газов.
  9. Также универсальный датчик оснащается спиралью, установленной в отдельном резервуаре (автор видео — Витя Крякушкин).

Следует отметить, что отличительной особенностью, которой характеризуется первый или второй лямбда-зонд в автомобиле, является то, что для изготовления используются термостойкая основа. Применение таких материалов необходимо потому, что само устройство всегда работает при высоких температурах. На сегодняшний день в современных автомобилях используются один из четырех типов датчиков, их различие зависит от числа подводящих к устройству проводов — от одно- до четырехпроводного.

Что касается принципа работы, то диагностический датчик концентрации кислорода представляет собой элемент обратной связи. Это устройство позволяет системе правильно рассчитать необходимую дозировку топлива для определенного количества подаваемого воздуха. Оптимальный расчет горючей смеси актуален не только с экологической, но и экономической точки зрения. Поскольку сегодня требования к экологической безопасности при производстве транспортных средств очень велики, то новые машины комплектуются обычно только катализаторами. Также двигатели автомобилей оснащаются двумя датчиками кислорода.

Благодаря использованию катализатора и двух лямбд, экологический вред при функционировании транспортного средства будет минимальный, то есть машина будет наносить минимальный вред окружающей среде. Однако при появлении неисправности в одном из элементов системы автомобилист может столкнуться с серьезными проблемами, которые ударят по его бюджету, поскольку такая поломка будет дорого стоить.

Причины и симптомы поломок

Вышедший из строя лямбда-зонд

Если универсальный диагностический датчик концентрации кислорода выходит из строя, то причины могут быть следующие:

  1. Произошел разрыв проводки в месте подключения.
  2. Произошло замыкание цепи.
  3. В результате использования некачественного топлива, обогащенного различными октаноповышающими присадками, произошло загрязнение устройства.
  4. Если система зажигания работает некорректно, то датчик может сломаться из-за термических перегрузок.
  5. Регулярная эксплуатация транспортного средства по сельской местности или бездорожью может привести к появлению механических повреждений в работе устройства.
  6. Кроме того, способствовать выходу из строя датчика может неудовлетворительное состояние маслосъемных колец.
  7. Если в цилиндры и впускные трубопроводы попадает охлаждающая жидкость, лямбда-зонд также скоро выйдет из строя.
  8. Постоянно обогащенная горючая смесь также приведет к поломке элемента.

Если содержание монооксида углерода повышается до 3-7% вместо положенных 0.1-0.3%, то это может свидетельствовать о выходе из строя зонда. Чтобы избавиться от проблемы, необходимо будет только менять элемент, поскольку запаса хода может быть не достаточно. Если транспортное средство оснащено двумя зондами, то при поломке второго устройства наладить оптимальную работу мотора будет невозможно (автор видео — Александр Сабегатулин).

Что касается основных симптомов, по которым можно будет узнать о поломке регулятора:

  • во время движения на автомобиле начинают проявляться рывки;
  • вполне ощутимый увеличенный расход бензина;
  • катализатор начинает работать некорректно;
  • обороты двигателя начинают плавать;
  • в выхлопных газах начинает увеличиваться концентрация токсинов.

Как почистить?

Диагностика

Перед тем, как отключить и почистить универсальное устройство, следует правильно произвести диагностику, иначе чистка может быть нецелесообразной. Чтобы наиболее эффективным образом произвести проверку остаточного кислорода, датчик должен быть разогрет минимум до трехсот градусов. В этом случает циркониевый электролит сможет быть проводимым, а благодаря разнице кислорода и атмосферного кислорода на устройстве появляется выходное напряжение. Соответственно, напряжение можно будет проверить только при включенном и прогретом моторе. При несоответствии уровня напряжения следует осуществить замену устройства.

Измерение напряжения производится с помощью осциллографа, так как благодаря этому прибору можно получить наиболее точный результат. После замера напряжения необходимо проверить уровень сопротивления нагревателя устройства, при этом штекер необходимо заранее отключить. Уровень сопротивления должен составлять от 2 до 14 Ом, в этом случае все зависит от производителя.

Перед тем, как поставить диагноз, также следует измерить уровень напряжения, которое подводит к нагревателю лямбда-зонда. Напряжение должно быть не меньше 10.5 вольт, при этом зажигание должно быть включено, а разъем датчика — подключен. В том случае, если напряжение будет более низким, следует также проверить места соединения разъемов, проводов, а также само напряжение АКБ.

Очистка

Определенных технологий по ремонту таких устройств нет, поскольку при выходе из строя регулятор нужно менять на новый. Но перед тем, как поменять универсальный датчик, можно попробовать его почистить. Разумеется, отключение разъемов и чистка будут актуальны только в том случае, если под защитным колпачком лямбда-зонда образовались отложения. Как показывается практика, если отключить разъем и произвести чистку датчика, то в большинстве случаев это помогает избавиться от проблемы (автор видео — Авто новости).

Чистка чувствительного элемента производится с применением ортофосфорной кислоты. Если вы поместите этот элемент в кислоту на 10-20 минут, то это позволит уничтожить все отложения, при этом не воздействуя негативным образом на электроды. Наиболее эффективным вариантом будет отсоединение разъема и чистка элемента после демонтажа защитного колпака, перед этим колпачок нужно снять на токарном станке. Для снятия регулятора можно использовать съемник кислородного датчика, а после очистки его также можно будет промыть.

Когда устройство промыто, его необходимо обработать водой и высушить. В том случае, если прочистка не помогла, то датчик придется менять. При замене важно проследить, чтобы разъемы на регуляторах были идентичные. Если же вы не обращаете внимания на показания, которые предоставляет датчик, ведь устройство может работать некорректно, то можно использовать обманку. Обманка предназначена для монтажа вместо катализатора, благодаря которой можно будет избежать появления ошибок.

Обманка может быть выполнена из бронзы, но размер обманки должен соответствовать размерам катализатора. В обманке необходимо высверлить небольшое отверстие — через него выхлопные газы будут попадать в обманку. В результате концентрация вредных элементов в газах будет снижена, однако при этом блок управления не будет тревожить водителя новыми ошибками, принимая соответствующий сигнал за нормальную работу катализатора.

Видео «Правильная очистка лямбда-зонда»

О том, как правильно произвести прочистку датчика в домашних условиях, узнайте из видео ниже (автор видео — Своими руками).

 Загрузка ...

Простая диагностика топливовоздушных и кислородных датчиков | 2012-04-20

Труглия - владелец Car Clinic, современного ремонтного предприятия в Махопаке, штат Нью-Йорк. Он имеет сертификат ASE A6 и степень магистра Колумбийского университета. В автомобильном мире он прошел обучение в Службе обучения техников и автомобильной техники. Центр Car Clinic полностью оснащен самым современным заводским оборудованием и обслуживает американские, европейские и азиатские автомобили, включая дизели и гибриды.

Транспортные средства, диагностированные Крейгом Труглией и Алексом Портильо. Вклады Дж. Труглиа, Кевина Куинлана и Адама Варни.

Некоторые специалисты, которые проработали в этом бизнесе в течение многих лет, часто все еще не понимают, как диагностировать датчик воздух-топливо, или не уверены, на что обращать внимание при диагностике заднего кислородного датчика. Фактически, когда я начал заниматься этим бизнесом (а это было не так давно), мне сказали, что нет возможности диагностировать топливный датчик с высокой степенью достоверности.Позвольте мне прямо сказать: есть несколько способов, с помощью которых вы можете диагностировать любой датчик воздуха, топлива или кислорода и быть уверенными в том, что вы сделаете правильный ремонт.

Основы

Почему у нас вообще есть эти датчики? Датчики O2 и воздух-топливо - это личный анализатор выбросов автомобиля. Эти датчики измеряют, насколько богат или беден выхлоп.

Топливно-воздушные и кислородные датчики работают в тандеме до и после каталитического нейтрализатора. PCM сравнивает показания, чтобы проанализировать каталитическую эффективность и определить, идет ли автомобиль на богатой или обедненной смеси.

Мы займемся диагностикой каталитической эффективности позже, посмотрев на задний кислородный датчик, но сначала давайте удостоверимся, что мы понимаем, как кислородные и воздушные топливные датчики регулируют расход топлива на транспортном средстве.

Итак, когда датчик воздушного топлива или кислорода обнаруживает богатую топливную смесь в выхлопе, PCM принимает эту информацию, а затем пытается сделать противоположное, чтобы получить идеальную топливную смесь (называемую «лямбда»), отправляя корректировки топлива в противоположное направление.

Поскольку эти датчики выходят из строя на относительно высокой частоте, важно понимать, как они должны работать и какой подход мы должны использовать при их диагностике.

[PAGEBREAK]

Неисправности схемы

Прежде чем перейти к теоретическим деталям, поясним следующее:

Коды неисправности цепи нагревателя

P0135 или P0141 почти всегда являются неисправными датчиками, которые можно проверить с помощью измерения сопротивления на вашем измерителе. «OL» указывает на то, что в датчике имеется обрыв цепи нагревателя, и его следует заменить.

Датчик явно мертв в воде, не дающий никакой обратной связи, скорее всего, не проблема с проводкой. Самый простой способ подтвердить это - проверить сам датчик и посмотреть, показывает ли он напряжение на вашем глюкометре или лабораторном микроскопе.Кислородные датчики генерируют собственное напряжение, и если они ничего не показывают, они явно плохие. Попробуйте вынуть один датчик из машины и поднести его к фонарику. Вы увидите, что он вырабатывает собственное напряжение. (Датчик воздух-топливо также генерирует собственное напряжение, но его нельзя проверить таким образом.)

Используйте датчик марки OE. Я видел датчики вторичного рынка, которые функционально были идеальными с хорошим сигналом и работающими цепями нагревателя, но они все равно устанавливали коды неисправности. Не обращайте внимания на тех, кто занимается запчастями, и просто возьмите правильный датчик.Большинство азиатских автомобилей используют Denso (иногда NTK). У более старых американских автомобилей обычно есть Bosch, но они также в основном перешли на Denso. Европейские автомобили в основном используют Bosch. Уокер не производит свои собственные датчики, но, по оценкам 80% клипов, они переупаковывают датчик оригинального оборудования. Если вы не уверены, с каким датчиком было установлено транспортное средство (и вы не можете прочитать его на внешней стороне датчика), либо сначала купите его у дилера, либо снимите, отнесите его к разорванным деталям или дилеру и сопоставьте. Часто вы можете купить марку оригинального оборудования на вторичном рынке, если вы придерживаетесь марки, которую вы сняли с автомобиля.

Знакомство с датчиком кислорода

Датчик кислорода измеряет количество кислорода в выхлопных газах, которое используется в процессе сгорания.

Для датчиков кислорода перед каталитическим нейтрализатором, используемых для контроля топлива:

Кислород в выхлопе меньше оптимального, поэтому напряжение сигнала превышает 450 мВ. Это отражает БОГАТЫЕ УСЛОВИЯ. Больше кислорода в выхлопе, чем оптимально, приводит к напряжению сигнала ниже 450 мВ. Это отражает СОСТОЯНИЕ Бережливого производства.

Хорошие кислородные датчики имеют ровные волны в диапазоне от 150 мВ до 850 мВ при подъеме или спуске в пределах 100 мс или меньше, когда система находится в замкнутом контуре.

Для датчиков кислорода после каталитического нейтрализатора, используемых для контроля топлива:

Кислородные датчики после катания на кошках в хорошем состоянии показывают стабильное напряжение, обычно от 500 до 700 мВ. Если он зигзаг, каталитический нейтрализатор вызывает большие подозрения.

На некоторых автомобилях задний датчик действительно влияет на регулировку подачи топлива.Для наших целей просто полезно знать, что при проверке датчика напряжение должно повышаться, когда топливная смесь богатая, и снижаться, когда она бедная. К сожалению, невозможно в общих чертах узнать, какое напряжение является оптимальным после кошачьего кислородного датчика. Отличается производителем.

Передний и задний кислородные датчики можно проверить одинаково:

Чтобы убедиться, что датчик реагирует должным образом на богатые и обедненные условия, просто создайте утечку вакуума, чтобы сделать систему обедненной, и используйте немного пропана, чтобы система работала на обогащенной смеси.Все это можно сделать, просто вытащив шланг усилителя тормозов. После того, как вы это сделаете, не забудьте пару раз нажать на тормоза, после того как соберете все вместе. Датчик должен мгновенно реагировать на богатую и обедненную смесь. В противном случае у вас может быть «ленивый» датчик, который необходимо заменить.

Тесты в режимах 5 и 6

Несмотря на то, что Mode 5 в значительной степени ушел в прошлое, и Mode 5, и Mode 6 работают одинаково. Все, что они делают, это говорят нам, доволен ли PCM обратной связью кислородных датчиков.

Режим 5 доступен не на всех транспортных средствах, кроме некоторых автомобилей без CAN, но когда он есть, вы должны просмотреть данные. На рисунках показано, как в режимах 5 и 6 отображаются показания напряжения и результаты переключения. Результаты могут быть полезны при принятии решения относительно кода неисправности P0420. Если напряжение переднего кислородного датчика недостаточно высокое или низкое и не переключается в нужное время, возможно, вы не захотите осуждать этот преобразователь. Когда режим 5 недоступен, следует использовать режим 6 для просмотра данных тестирования кислородного датчика.

Различия между кислородным и воздушно-топливным датчиками

Хотя и то, и другое используются для измерения каталитической эффективности и определения того, работает ли автомобиль на обедненной или богатой смеси, принцип их работы принципиально отличается. Датчики топливовоздушной смеси отражают состояние бедной смеси, когда их напряжение УВЕЛИЧИВАЕТСЯ, и состояние богатой смеси, когда их напряжение УМЕНЬШАЕТСЯ.

Датчики воздух-топливо используются только для контроля топлива, поэтому они всегда являются датчиком перед каталитическим нейтрализатором, а не датчиком после каталитического нейтрализатора.Датчик post-cat всегда является стандартным датчиком кислорода. В то время как датчик кислорода перед каталитическим нейтрализатором переключает напряжение с богатой на обедненную смесь, датчик воздух-топливо сохраняет стабильное напряжение.

[PAGEBREAK]

Знакомство с датчиком воздух-топливо

Ниже приведены некоторые важные указания:

* Не путайте PIDS диагностического прибора, так как большинство диагностических приборов маркируют A / F как 02.

* Некоторые стандартные / глобальные инструменты сканирования не отображают истинное напряжение.Вам понадобится сканер с точными расширенными данными. Это связано с тем, что стандарты OBD II требуют, чтобы напряжение PID датчика O2 отображалось в диапазоне от нуля до 1 вольт. Новые автомобили будут иметь точные значения напряжения датчика топлива.

* В стандартном OBD II вы часто видите процент от истинного напряжения. Чтобы отобразить фактическое напряжение PID PCM, вам понадобится сканирующий прибор с возможностью считывания расширенных данных или сканирующий прибор с заводским программным обеспечением. Достаточно сложно точно отобразить уровни напряжения, начинающиеся с 3.3 вольта (Toyota) по шкале от 0 до 1 вольт. Наиболее частое показание напряжения на универсальном / глобальном приборе сканирования составляет примерно 0,680 вольт (опять же, Toyota).

Вам необходимо знать технические характеристики датчиков воздух-топливо

Одна из самых сложных вещей, связанных с датчиками топлива в воздухе, заключается в том, что никто не говорит вам, что такое заведомо хорошее напряжение. Не зная, каким должен быть ваш PID, очень сложно диагностировать датчик воздух-топливо.

Следующие известные значения напряжения для датчиков воздух-топливо, собранные за последние несколько лет: 3.3 В (Toyota), 2,8 В (Honda), 1,9 В (Hyundai), 2,44 В (Subaru), 1,47 В (Nissan), 1,00 Lambda (все европейские производители). Помните, что 1,00 Ламда идеальна, в то время как любое движение выше 1,00 (т. Е. 1,01) является одним идеальным наклоном, а любое движение ниже соответствует той же пропорции. Например, лямбда 0,85 может установить системный DTC с LTFT -15%. Компании не всегда готовы предоставить эту информацию, поэтому вам придется сравнивать напряжения с известными хорошими автомобилями в вашем магазине.

В противном случае вы можете подключить свой счетчик последовательно с датчиком воздух-топливо в режиме ампер.Идеальное показание - ноль ампер. Каждый миллиампер выше нуля - это обедненный процентный пункт, а каждый миллиампер ниже нуля - богатый процентный пункт. Принципиально это работает так же, как анализ выбросов.

Диагностика датчиков воздух-топливо

Датчик воздух-топливо можно проверить так же, как датчик кислорода, установив режим обедненной и богатой смеси, убедившись, что датчик быстро и точно реагирует. Если у вас есть спецификации напряжения, вы можете убедиться, что датчик точно реагирует на богатые и обедненные условия, и сравнить то, что вы видите, с тем, что вы считаете хорошим.

На графике датчика воздух-топливо будут небольшие неровности. Сопряженный с ним датчик кислорода после кошки не должен колебаться, а вместо этого должен оставаться довольно стабильным где-то между 500 и 700 мВ.

По сути, воздушно-топливные датчики работают так же, как и обычные кислородные датчики, но зеркально. Когда состояние богатое, напряжение уменьшается. Напротив, когда состояние бедное, их напряжение резко возрастает. Это противоположно нашей обычной склонности рассматривать высокие напряжения как богатый индикатор, а низкие - как худой, поэтому будьте осторожны.

Как мы видим, по мере увеличения положения дроссельной заслонки и оборотов двигателя и обогащения смеси напряжение падает. Напряжение повышается, когда частота вращения двигателя и положение дроссельной заслонки снижаются, поскольку смесь обедняется, чтобы вернуть автомобиль в надлежащее состояние воздушно-топливной смеси.

[PAGEBREAK]

Датчики кислорода / воздух-топливо и катализаторы

Датчики кислорода и воздух-топливо должны работать предсказуемо, поскольку это их работа.Они размещаются до и после каталитического нейтрализатора (только датчики кислорода), чтобы они могли проверить, очищает ли нейтрализатор выбросы.

Если кошка работает правильно, она уберет выбросы, и датчики передадут эту информацию обратно в PCM.

Перед каталитическим нейтрализатором кислородный датчик будет зигзагообразно двигаться вверх и вниз. Напротив, датчик воздух-топливо будет иметь стабильное напряжение. Датчик кислорода после каталитического нейтрализатора будет прямолинейным, если каталитический нейтрализатор в большинстве случаев исправен.

Если каталитический нейтрализатор неисправен, кислородный датчик после каталитического нейтрализатора будет отражать кислородный датчик после каталитического нейтрализатора. Иногда у датчика кислорода после каталитического нейтрализатора будет промежуток времени между напряжением переключения датчика перед каталитическим нейтрализатором и самим собой. Это часто является нормальным явлением во время внезапного выброса топлива, когда каталитический нейтрализатор, даже если он исправен, не может мгновенно очиститься.

Реальная диагностика топливовоздушного датчика: Subaru Forester P0130 2002 года и P0171

Один из наших лучших клиентов привез свой автомобиль, потому что на нем горел индикатор проверки двигателя.В остальном автомобиль работал нормально. Итак, она привела машину, и в этот момент свет оказался выключенным. Итак, мы заменили масло и отправили машину в путь. Через несколько минут после того, как она ушла, снова загорелся индикатор проверки двигателя. Вот тогда и началось самое интересное.

Первое, что мы сделали, это отсканировали коды.

После этого мы проверили TSB, но не нашли ни одного, и стали искать совпадения в Identifix. Судя по всему, многие датчики воздух-топливо выходят из строя, но тест, рекомендованный Identifix, нас озадачил.В нем говорилось о замене датчика, если кислородный датчик после катушки был богат, в то время как краткосрочная корректировка топлива была бедной.

Графическое отображение данных показало некоторые интересные результаты.

Очевидно, STFT был полностью отключен и указывал на то, что могло бы быть бедным кислородным датчиком или серьезной утечкой вакуума. Метод, который рекомендовал Identifix, заключался в том, чтобы посмотреть на данные заднего кислородного датчика, чтобы увидеть, были ли они «богатыми», что, очевидно, указывало бы на то, что датчик воздух-топливо застрял на обедненной смеси и, таким образом, управлял топливом до тех пор, пока система не стала на самом деле богатой, хотя теоретически работала. тощий.Похоже, что это и происходило.

Задний кислородный датчик был на 800 мВ, что на высоком уровне ... Я думаю. Однако нам этого недостаточно.

Итак, нам нужно было выяснить, соответствует ли топливный датчик спецификации. У Autoland Scientech Vedis II был ФИД, который давал датчику топливовоздушного отношения лямбда. Простите за плохую картинку, но эти снимки экрана сделаны в реальных условиях магазина. Как видите, лямбда была поднята на скудную территорию, здесь она зафиксирована на 1.21.

Мы добавили пропан, и датчик не сдвинулся с места. Он был прижат худым.

Через несколько минут после того, как мы закончили тест, датчик снова начал работать нормально, и лямбда упала до 1,00. STFT был нормальным. Что касается нас, то мы обнаружили периодически неисправный датчик воздух-топливо во время полета. Однако мы хотели получить характеристики напряжения для этого транспортного средства, когда оно было хорошим, потому что производители, как правило, используют одинаковое напряжение для всех транспортных средств, которые у них есть.

Для тестирования этого датчика не потребовалось никаких изысков или поиска чего-либо на схеме подключения.Датчик имел крышку над областью с положительным и отрицательным знаком, предназначенную для подключения к проводам измерителя (Рисунок 1). На нашем измерителе мы показываем 2,44 В. Мы просто заменили датчик, проверили лямбду и остались довольны тем, что нашли. Машину отправили в путь и с тех пор не возвращали.

Подводя итог

Датчики кислорода и датчики состава топливовоздушной смеси очень сложны. Они просто сообщают PCM, идет ли автомобиль на разогретой или бедной смеси. Хорошие специалисты запутались в том, что годами они работали над датчиками кислорода и не понимали, что воздух-топливо работает принципиально по-другому.

Однако датчики воздух-топливо используются на многих автомобилях уже более 10 лет. Нам нужно знать, как они работают, как вторая натура. При правильных характеристиках и методах тестирования, описанных здесь, нет причин, по которым вы не можете легко и быстро диагностировать эти датчики.

[PAGEBREAK]

NASCAR теперь использует впрыск

Поскольку NASCAR заменяет карбюрацию впрыском топлива в гонках Sprint Cup в 2012 году, Bosch является эксклюзивным поставщиком кислородных датчиков для новых двигателей.Официальный партнер NASCAR по производительности, Bosch поставляет два специально для NASCAR широкополосных датчика кислорода для каждого автомобиля. Эти сложные датчики будут предоставлять важные данные для управления системами управления двигателем с впрыском топлива гоночных автомобилей.

«Два широкополосных датчика кислорода Bosch, по одному на каждом ряду двигателей, практически непрерывно передают переменную информацию о характеристиках двигателя в систему управления подачей топлива, которая контролирует топливные форсунки и определяет, как автомобиль реагирует на условия гонки.Это изменение впрыска топлива даст водителям NASCAR улучшенный контроль над производительностью своего автомобиля, а также над расходом топлива. Датчики кислорода жизненно важны для достижения максимальной производительности на каждой трассе, - сказал Вольфганг Хустедт, менеджер Bosch по автоспорту в Северной Америке.

Как работают кислородные датчики для выполнения этой очень важной функции?

Все началось в 1899 году, когда профессор Вальтер Нернст из Лейпцига, Германия, разработал теорию «концентрационной ячейки», которая, как и батарея, использует газонепроницаемый керамический электролит, который становится электропроводным при температурах выше 625-650. ° F.Эта «ячейка Нернста» переносит ионы кислорода из «эталонного воздуха» внутри ячейки во внешнюю среду (поток выхлопных газов) или из внешней среды в эталонный воздух в ячейке. Этот поток ионов генерирует измеримое напряжение, отражающее разницу в содержании кислорода между газом вне датчика и эталонным воздухом внутри датчика.

Содержание кислорода показывает, являются ли выхлопные газы «богатыми» или «бедными», и инженеры Bosch использовали основные теории и эксперименты Нернста для создания самого первого автомобильного датчика кислорода.После обширных экспериментов, испытаний и инженерных разработок новаторский автомобильный датчик кислорода Bosch был впервые установлен на Volvo 1976 года.

Цель кислородного датчика - помочь системе управления подачей топлива двигателя приблизиться или поддерживать идеальное стехиометрическое соотношение воздуха и топлива 14,7: 1. Почти во всех датчиках кислорода бедная смесь (более 14,7: 1) вызывает падение выходного напряжения датчика кислорода, в то время как богатая смесь (менее 14,7: 1) вызывает повышение выходного сигнала датчика.Если смесь идеально сбалансирована на стехиометрическом уровне, датчик подает минимальный сигнал (около 0,45 В), который сообщает бортовому компьютеру, что смесь воздух / топливо правильная.

Скорость реакции кислородных датчиков на изменение уровня кислорода в выхлопных газах определяется самим датчиком и типом системы подачи топлива, которую использует двигатель. Датчики кислорода, используемые в старых карбюраторах с обратной связью, переключаются каждую секунду при 2500 об / мин. Датчики, установленные с системами впрыска топлива в корпусе дроссельной заслонки, переключаются два или три раза в секунду при 2500 об / мин, в то время как более новые датчики, установленные с системами многоточечного впрыска топлива, могут переключаться от пяти до семи раз в секунду при 2500 об / мин.

Широкополосные датчики обеспечивают переменные показания

Очень сложный широкополосный датчик кислорода Bosch с подогревом, используемый NASCAR, использует внутреннюю многослойную керамическую полосу и добавляет совершенно новую концепцию - «насосную ячейку». Эта насосная ячейка позволяет широкополосному датчику точно измерять соотношение воздух / топливо и генерировать переменный сигнал, практически непрерывно, который сообщает показания от очень богатой до очень бедной и где-то между ними, а не просто «богатая» »Или« наклон », как и в случае с другими датчиками.

Что необходимо знать домашнему механику о датчиках O2

Скачать PDF

Современные компьютеризированные системы управления двигателем полагаются на входные данные от различных датчиков для регулирования характеристик двигателя, выбросов и других важных функций. Датчики должны предоставлять точную информацию, в противном случае могут возникнуть проблемы с управляемостью, повышенный расход топлива и сбои в выбросах.

Одним из ключевых датчиков в этой системе является датчик кислорода. Его часто называют датчиком «O2», потому что O2 - это химическая формула кислорода (атомы кислорода всегда перемещаются парами, а не поодиночке).

Первый датчик O2 был представлен в 1976 году на Volvo 240. Следующие за ним автомобили в Калифорнии получили в 1980 году, когда правила Калифорнии по выбросам требовали снижения выбросов. Федеральные законы о выбросах сделали датчики O2 практически обязательными для всех автомобилей и легких грузовиков, построенных с 1981 года. И теперь, когда действуют правила OBD-II (автомобили 1996 года и новее), многие автомобили теперь оснащены несколькими датчиками O2, некоторые из которых целых четыре!

Датчик O2 установлен в выпускном коллекторе для контроля количества несгоревшего кислорода в выхлопных газах, когда выхлопные газы выходят из двигателя.Контроль уровня кислорода в выхлопных газах - это способ измерения топливной смеси. Он сообщает компьютеру, является ли топливная смесь богатой (меньше кислорода) или бедной (больше кислорода).

На относительную насыщенность или обедненную смесь топливной смеси может влиять множество факторов, включая температуру воздуха, температуру охлаждающей жидкости двигателя, барометрическое давление, положение дроссельной заслонки, расход воздуха и нагрузку на двигатель. Есть и другие датчики, которые отслеживают эти факторы, но датчик O2 является главным монитором того, что происходит с топливной смесью.Следовательно, любые проблемы с датчиком O2 могут вывести из строя всю систему.

Петли

Компьютер использует вход кислородного датчика для регулирования топливной смеси, что называется «контуром управления с обратной связью». Компьютер ориентируется на датчик O2 и реагирует изменением топливной смеси. Это приводит к соответствующему изменению показаний датчика O2. Это называется работой «замкнутого контура», потому что компьютер использует вход датчика O2 для регулирования топливной смеси.Результатом является постоянное переключение от богатой к обедненной смеси, что позволяет каталитическому нейтрализатору работать с максимальной эффективностью, сохраняя при этом среднюю общую топливную смесь в надлежащем балансе для минимизации выбросов. Это сложная установка, но она работает.

Когда от датчика O2 не поступает сигнал, как в случае, когда холодный двигатель запускается впервые (или выходит из строя датчик 02), компьютер заказывает фиксированную (неизменную) богатую топливную смесь. Это называется операцией «разомкнутого контура», потому что входной сигнал от датчика O2 не используется для регулирования топливной смеси.Если двигатель не переходит в замкнутый цикл, когда датчик O2 достигает рабочей температуры, или выходит из замкнутого цикла из-за потери сигнала датчика O2, двигатель будет работать на слишком богатой смеси, что приведет к увеличению расхода топлива и выбросов. Плохой датчик охлаждающей жидкости также может предотвратить переход системы в замкнутый контур, потому что компьютер также учитывает температуру охлаждающей жидкости двигателя при принятии решения о переходе в замкнутый цикл.

Как это работает

Датчик O2 работает как миниатюрный генератор и вырабатывает собственное напряжение, когда нагревается.Внутри вентилируемой крышки на конце датчика, который ввинчивается в выпускной коллектор, находится циркониевая керамическая колба. Колба снаружи покрыта пористым слоем платины. Внутри колбы находятся две платиновые полоски, которые служат электродами или контактами.

Наружная часть колбы подвергается воздействию горячих газов в выхлопе, в то время как внутренняя часть колбы выходит изнутри через корпус датчика во внешнюю атмосферу. Кислородные датчики старого образца на самом деле имеют небольшое отверстие в корпусе, чтобы воздух мог попасть в датчик, но датчики O2 нового типа «дышат» через свои проводные соединители и не имеют вентиляционного отверстия.В это трудно поверить, но небольшое пространство между изоляцией и проводом обеспечивает достаточно места для проникновения воздуха в датчик (по этой причине никогда не следует наносить смазку на разъемы датчика O2, поскольку она может блокировать поток воздуха). Проветривание датчика через провода, а не через отверстие в корпусе, снижает риск попадания грязи или воды, которые могут засорить датчик изнутри и вызвать его выход из строя. Разница в уровнях кислорода между выхлопным и наружным воздухом внутри датчика вызывает прохождение напряжения через керамическую грушу.Чем больше разница, тем выше значение напряжения.

Датчик кислорода обычно вырабатывает примерно до 0,9 вольт, когда топливная смесь богатая и в выхлопных газах мало несгоревшего кислорода. Когда смесь бедная, выходное напряжение датчика упадет примерно до 0,1 вольт. Когда топливно-воздушная смесь сбалансирована или находится в точке равновесия около 14,7 к 1, датчик будет показывать около 0,45 вольт.

Когда компьютер получает сигнал обогащения (высокое напряжение) от датчика O2, он понижает топливную смесь, чтобы уменьшить показания датчика.Когда показания датчика O2 становятся бедными (низкое напряжение), компьютер снова меняет направление, заставляя топливную смесь обогащаться. Это постоянное переключение топливной смеси вперед и назад происходит с разными скоростями в зависимости от топливной системы. Скорость перехода самая низкая на двигателях с карбюраторами с обратной связью, обычно один раз в секунду при 2500 об / мин. Двигатели с впрыском в корпус дроссельной заслонки несколько быстрее (2–3 раза в секунду при 2500 об / мин), тогда как двигатели с многоточечным впрыском являются самыми быстрыми (5–7 раз в секунду при 2500 об / мин).

Датчик кислорода должен быть горячим (около 600 градусов или выше), прежде чем он начнет генерировать сигнал напряжения, поэтому многие датчики кислорода имеют внутри небольшой нагревательный элемент, чтобы помочь им быстрее достичь рабочей температуры. Нагревательный элемент также может предотвратить слишком сильное охлаждение датчика во время длительного холостого хода, что может привести к возврату системы к разомкнутому контуру.

Датчики O2 с подогревом используются в основном в новых автомобилях и обычно имеют 3 или 4 провода.Старые однопроводные датчики O2 не имеют нагревателей. При замене датчика O2 убедитесь, что он того же типа, что и оригинальный (с подогревом или без него).

Новая роль датчиков O2 с OBDII

Начиная с нескольких автомобилей в 1994 и 1995 годах и всех автомобилей 1996 года и новее, количество кислородных датчиков на каждый двигатель увеличилось вдвое. Второй кислородный датчик теперь используется после каталитического нейтрализатора для контроля его эффективности. На двигателях V6 или V8 с двойным выхлопом это означает, что можно использовать до четырех датчиков O2 (по одному для каждого ряда цилиндров и по одному после каждого преобразователя).

Система OBDII предназначена для контроля выбросов двигателя. Это включает в себя наблюдение за всем, что может вызвать увеличение выбросов. Система OBDII сравнивает показания уровня кислорода датчиков O2 до и после преобразователя, чтобы увидеть, снижает ли преобразователь загрязняющие вещества в выхлопных газах. Если он видит незначительные изменения в показаниях уровня кислорода или совсем не видит их, это означает, что преобразователь не работает должным образом. Это приведет к включению контрольной лампы неисправности (MIL).

Диагностика датчика
Датчики

O2 невероятно надежны, учитывая условия эксплуатации, в которых они живут. Но датчики O2 изнашиваются и в конечном итоге должны быть заменены. Характеристики датчика O2 имеют тенденцию к снижению с возрастом, поскольку загрязняющие вещества накапливаются на наконечнике датчика и постепенно снижают его способность производить напряжение. Такое ухудшение может быть вызвано различными веществами, попадающими в выхлопные газы, такими как свинец, силикон, сера, масляная зола и даже некоторые присадки к топливу.Датчик также может быть поврежден факторами окружающей среды, такими как вода, брызги дорожной соли, масло и грязь.

По мере того, как датчик стареет и становится вялым, время, необходимое для реакции на изменения в топливно-воздушной смеси, замедляется, что приводит к увеличению выбросов. Это происходит потому, что колебания топливной смеси замедляются, что снижает эффективность преобразователя. Эффект более заметен на двигателях с многоточечным впрыском топлива (MFI), чем с электронной карбюрацией или впрыском через корпус дроссельной заслонки, потому что соотношение топлива изменяется намного быстрее в приложениях MFI.Если датчик полностью умирает, результатом может быть фиксированная богатая топливная смесь. По умолчанию для большинства применений с впрыском топлива средний диапазон составляет три минуты. Это вызывает большой скачок расхода топлива, а также выбросов. А если преобразователь перегреется из-за богатой смеси, он может выйти из строя. Одно исследование EPA показало, что 70% автомобилей, не прошедших испытание на выбросы I / M 240, нуждались в новом датчике O2.

Единственный способ узнать, выполняет ли датчик O2 свою работу, - это регулярно его проверять.Вот почему на некоторых автомобилях (в основном импортных) есть световой индикатор с напоминанием об обслуживании датчика. Хорошее время для проверки датчика - это замена свечей зажигания.

Вы можете прочитать выходные данные датчика O2 с помощью сканирующего прибора или цифрового вольтметра, но переходы трудно увидеть, потому что числа сильно меняются. Вот где действительно сияет инструмент сканирования на базе ПК, такой как AutoTap. Вы можете использовать графические функции, чтобы наблюдать за изменениями напряжения датчиков O2. Программное обеспечение отобразит выходное напряжение датчика в виде волнистой линии, которая показывает как его амплитуду (минимальное и максимальное напряжение), так и его частоту (скорость перехода от богатого к обедненному).

Хороший датчик O2 должен выдавать колеблющуюся форму волны на холостом ходу, при которой напряжение изменяется от почти минимального (0,1 В) до почти максимального (0,9 В). Искусственное обогащение топливной смеси путем подачи пропана во впускной коллектор должно привести к тому, что датчик среагирует почти немедленно (в течение 100 миллисекунд) и перейдет на максимальный (0,9 В) выходной сигнал. Создание обедненной смеси путем открытия вакуумной линии должно привести к падению выходного сигнала датчика до минимального (0,1 В) значения. Если датчик не переключается вперед и назад достаточно быстро, это может указывать на необходимость замены.

Если цепь датчика O2 разомкнута, закорочена или выходит за пределы допустимого диапазона, она может установить код неисправности и загореться контрольной лампой проверки двигателя или неисправности. Если дополнительная диагностика обнаруживает неисправность датчика, требуется его замена. Но многие датчики O2, которые сильно испорчены, продолжают работать достаточно хорошо, чтобы не устанавливать код неисправности, но недостаточно хорошо, чтобы предотвратить увеличение выбросов и расхода топлива. Таким образом, отсутствие кода неисправности или контрольной лампы не означает, что датчик O2 работает правильно.

Замена датчика

Очевидно, что неисправный датчик O2 требует замены. Но также может быть полезно периодически заменять датчик O2 для профилактического обслуживания. Замена стареющего датчика O2, который стал медленно работать, может восстановить максимальную топливную эффективность, минимизировать выбросы выхлопных газов и продлить срок службы преобразователя.

Необогреваемые одно- или двухпроводные датчики O2 на автомобилях с 1976 по начало 1990-х годов можно заменять каждые 30 000–50 000 миль.Подогреваемые 3- и 4-проводные датчики O2 в приложениях с середины 1980-х до середины 1990-х годов можно менять каждые 60 000 миль. На автомобилях, оборудованных OBDII (1996 г. и новее), рекомендуется интервал замены 100 000 миль.

Датчики кислорода

: как диагностировать и заменить

Компьютеризированные системы управления двигателем полагаются на входные данные от различных датчиков для регулирования характеристик двигателя, выбросов и других важных функций. Датчики должны предоставлять точную информацию, в противном случае могут возникнуть проблемы с управляемостью, повышенный расход топлива и сбои в выбросах.

Датчик кислорода - один из ключевых датчиков в этой системе. Его часто называют датчиком «O2», потому что O2 - это химическая формула кислорода (атомы кислорода всегда перемещаются парами, а не поодиночке). Его также можно назвать датчиком h3O2 для подогреваемого кислородного датчика, поскольку он имеет внутреннюю цепь нагревателя, которая доводит датчик до рабочей температуры после холодного запуска.

Первый датчик O2 был представлен в 1976 году на Volvo 240. Следующие за ним автомобили в Калифорнии получили в 1980 году, когда правила Калифорнии по выбросам требовали снижения выбросов.Федеральные законы о выбросах сделали датчики O2 практически обязательными для всех автомобилей и легких грузовиков, построенных с 1981 года. И теперь, когда действуют правила OBD-II (автомобили 1996 года и новее), многие автомобили теперь оснащены несколькими датчиками O2, некоторые из которых целых четыре!

Датчик O2 установлен в выпускном коллекторе для контроля количества несгоревшего кислорода в выхлопных газах, когда выхлопные газы выходят из двигателя. Контроль уровня кислорода в выхлопных газах - это способ измерения топливной смеси. Он сообщает компьютеру, является ли топливная смесь богатой (меньше кислорода) или бедной (больше кислорода).

На относительную насыщенность или обедненную смесь топливной смеси может влиять множество факторов, включая температуру воздуха, температуру охлаждающей жидкости двигателя, барометрическое давление, положение дроссельной заслонки, расход воздуха и нагрузку на двигатель. Существуют и другие датчики для отслеживания этих факторов, но датчик O2 является главным монитором того, что происходит с топливной смесью. Следовательно, любые проблемы с датчиком O2 могут вывести из строя всю систему.

КОНТУРА КОНТРОЛЯ ОБРАТНОЙ СВЯЗИ ТОПЛИВНОЙ СМЕСИ

Компьютер использует вход датчика кислорода для регулирования топливной смеси, что называется контуром управления с обратной связью по топливу."Компьютер ориентируется на датчик O2 и реагирует изменением топливной смеси. Это приводит к соответствующему изменению показаний датчика O2. Это называется работой" замкнутого контура ", потому что компьютер использует вход датчика O2 для регулирования Результатом является постоянное переключение от богатой к обедненной смеси, что позволяет каталитическому нейтрализатору работать с максимальной эффективностью, сохраняя при этом средний общий баланс топливной смеси для минимизации выбросов.Это сложная установка, но она работает.

Когда не поступает сигнал от датчика O2, как в случае, когда холодный двигатель запускается впервые (или датчик 02 выходит из строя), компьютер заказывает фиксированную (неизменную) богатую топливную смесь. Это называется операцией «разомкнутого контура», потому что входной сигнал от датчика O2 не используется для регулирования топливной смеси.

Если двигатель не переходит в замкнутый цикл, когда датчик O2 достигает рабочей температуры, или выходит из замкнутого цикла из-за потери сигнала датчика O2, двигатель будет работать на слишком богатой смеси, что приведет к увеличению расхода топлива и выбросов.Плохой датчик охлаждающей жидкости также может предотвратить переход системы в замкнутый контур, потому что компьютер также учитывает температуру охлаждающей жидкости двигателя при принятии решения о переходе в замкнутый цикл.

КАК РАБОТАЕТ КИСЛОРОДНЫЙ ДАТЧИК

Датчик O2 работает как миниатюрный генератор и вырабатывает собственное напряжение, когда нагревается. Внутри вентилируемой крышки на конце датчика, который ввинчивается в выпускной коллектор, находится циркониевая керамическая колба. Колба снаружи покрыта пористым слоем платины.Внутри колбы находятся две платиновые полоски, которые служат электродами или контактами.

Наружная часть колбы подвергается воздействию горячих газов в выхлопе, в то время как внутренняя часть колбы выходит изнутри через корпус датчика во внешнюю атмосферу. Кислородные датчики старого образца на самом деле имеют небольшое отверстие в корпусе, чтобы воздух мог попасть в датчик, но датчики O2 нового типа «дышат» через свои проводные разъемы и не имеют вентиляционного отверстия. Трудно поверить, но небольшое пространство между изоляцией и проводом обеспечивает достаточно места для проникновения воздуха в датчик (по этой причине никогда не следует наносить смазку на разъемы датчика O2, поскольку она может блокировать поток воздуха). .Проветривание датчика через провода, а не через отверстие в корпусе, снижает риск попадания грязи или воды, которые могут засорить датчик изнутри и вызвать его выход из строя.

Разница в уровнях кислорода между выхлопным и наружным воздухом внутри датчика вызывает прохождение напряжения через керамическую грушу. Чем больше разница, тем выше значение напряжения.

Датчик кислорода обычно генерирует напряжение до 0,9 вольт, когда топливная смесь богатая и в выхлопных газах мало несгоревшего кислорода.Когда смесь бедная, выходное напряжение датчика упадет примерно до 0,2 В или меньше. Когда топливно-воздушная смесь сбалансирована или находится в точке равновесия около 14,7: 1, датчик будет показывать около 0,45 вольт.


Когда компьютер получает сигнал обогащения (высокое напряжение) от датчика O2, он понижает топливную смесь, чтобы уменьшить напряжение обратной связи датчика. Когда показания датчика O2 становятся бедными (низкое напряжение), компьютер снова меняет направление, заставляя топливную смесь обогащаться.Это постоянное переключение топливной смеси вперед и назад происходит с разными скоростями в зависимости от топливной системы. Скорость перехода самая низкая на двигателях с карбюраторами с обратной связью, обычно один раз в секунду при 2500 об / мин. Двигатели с впрыском в корпус дроссельной заслонки несколько быстрее (2–3 раза в секунду при 2500 об / мин), а двигатели с многоточечным впрыском являются самыми быстрыми (5–7 раз в секунду при 2500 об / мин).

Датчик кислорода должен быть горячим (около 600 градусов или выше), прежде чем он начнет генерировать сигнал напряжения, поэтому многие датчики кислорода имеют внутри небольшой нагревательный элемент, чтобы помочь им быстрее достичь рабочей температуры.Нагревательный элемент также может предотвратить слишком сильное охлаждение датчика во время длительного холостого хода, что может привести к возврату системы к разомкнутому контуру.

Датчики O2 с подогревом используются в основном в новых автомобилях и обычно имеют 3 или 4 провода. Старые однопроводные датчики O2 не имеют нагревателей. При замене датчика O2 убедитесь, что он того же типа, что и оригинальный (с подогревом или без подогрева)

ДАТЧИКИ O2 И OBD II

Начиная с нескольких автомобилей в 1994 и 1995 годах и всех автомобилей 1996 года и новее, количество кислородных датчиков на каждый двигатель увеличилось вдвое.Второй датчик кислорода теперь используется после каталитического нейтрализатора для контроля его эффективности. На двигателях V6 или V8 с двойным выхлопом это означает, что можно использовать до четырех датчиков O2 (по одному для каждого ряда цилиндров и по одному после каждого преобразователя).


Система управления подачей топлива с обратной связью EFI использует входы датчика O2 для управления топливной смесью.

Система OBD II предназначена для контроля выбросов двигателя. Это включает в себя наблюдение за всем, что может вызвать увеличение выбросов.Система OBD II сравнивает показания уровня кислорода датчиков O2 до и после преобразователя, чтобы увидеть, снижает ли преобразователь загрязняющие вещества в выхлопных газах. Если он видит незначительные изменения в показаниях уровня кислорода или совсем не видит их, это означает, что преобразователь не работает должным образом. Это приведет к включению контрольной лампы неисправности (MIL).


ДИАГНОСТИКА КИСЛОРОДНОГО ДАТЧИКА

Датчики

O2 невероятно надежны, учитывая условия эксплуатации, в которых они живут. Но датчики O2 изнашиваются и в конечном итоге должны быть заменены.

Характеристики датчика O2 имеют тенденцию к снижению с возрастом, поскольку загрязнения накапливаются на наконечнике датчика и постепенно снижают его способность производить напряжение. Такое ухудшение может быть вызвано различными веществами, попадающими в выхлопные газы, такими как свинец, силикон, сера, масляная зола и даже некоторые присадки к топливу. Датчик также может быть поврежден факторами окружающей среды, такими как вода, брызги дорожной соли, масла и грязи.

По мере того, как датчик стареет и становится вялым, время, необходимое для реакции на изменения в топливно-воздушной смеси, замедляется, что приводит к увеличению выбросов.Это происходит потому, что колебания топливной смеси замедляются, что снижает эффективность преобразователя. Эффект более заметен на двигателях с многоточечным впрыском топлива (MFI), чем с электронной карбюрацией или впрыском через корпус дроссельной заслонки, потому что соотношение топлива изменяется намного быстрее в приложениях MFI.

Если датчик полностью умирает, результатом может быть фиксированная богатая топливная смесь. По умолчанию для большинства применений с впрыском топлива средний диапазон составляет три минуты. Это вызывает большой скачок расхода топлива, а также выбросов.А если преобразователь перегреется из-за богатой смеси, он может выйти из строя.

Одно исследование EPA показало, что 70% автомобилей, не прошедших испытание на выбросы I / M 240, нуждались в новом датчике O2.

Большинство проблем с датчиком O2 приводят к тому, что система OBD II устанавливает один или несколько диагностических кодов неисправностей (DTC) и включает индикатор проверки двигателя. Это коды OBD, связанные с неисправностями датчика O2:

КОДЫ НЕИСПРАВНОСТЕЙ ДАТЧИКА КИСЛОРОДА

P0030.... Цепь управления нагревателем датчика кислорода (HO2S), ряд 1, датчик 1
P0031 .... Низкий уровень цепи управления нагревателем датчика кислорода (HO2S), ряд 1, датчик 1
P0032 .... Высокий уровень цепи управления нагревателем датчика кислорода (HO2S), ряд 1, датчик 1
P0033 .... Цепь управления перепускным клапаном турбонагнетателя
P0034 .... Низкий уровень сигнала в цепи управления перепускным клапаном турбонагнетателя
P0035 .... Высокий уровень сигнала в цепи управления перепускным клапаном турбонагнетателя
P0036 .... Цепь управления нагревателем датчика кислорода (HO2S), ряд 1, датчик 2
P0037 .... Низкий уровень цепи управления нагревателем датчика кислорода (HO2S), ряд 1, датчик 2
P0038.... Высокий уровень цепи управления нагревателем датчика кислорода (HO2S), ряд 1, датчик 2
P0042 .... Цепь управления нагревателем датчика кислорода (HO2S), ряд 1, датчик 3
P0043 .... Низкий уровень цепи управления нагревателем датчика кислорода (HO2S), ряд 1, датчик 3
P0044 .... Высокий уровень цепи управления нагревателем датчика кислорода (HO2S), ряд 1, датчик 3
P0050 .... Цепь управления нагревателем датчика кислорода (HO2S), ряд 2, датчик 1
P0051 .... Низкий уровень цепи управления нагревателем датчика кислорода (HO2S), ряд 2, датчик 1
P0052 .... Цепь управления нагревателем HO2S, ряд 2, датчик 1
P0056 .... Цепь управления нагревателем датчика кислорода (HO2S), ряд 2, датчик 2
P0057.... Низкий уровень цепи управления нагревателем датчика кислорода (HO2S), ряд 2, датчик 2
P0058 .... Цепь управления нагревателем датчика кислорода (HO2S), ряд 2, датчик 2, высокий уровень
P0062 .... Цепь управления нагревателем датчика кислорода (HO2S), ряд 2, датчик 3
P0063 .... Низкий уровень цепи управления нагревателем датчика кислорода (HO2S), ряд 2, датчик 3
P0064 .... Цепь управления нагревателем датчика кислорода (HO2S), ряд 2, датчик 3
P0130 .... Цепь датчика O2, ряд 1, датчик 1
P0131 .... Низкое напряжение цепи датчика O2, ряд 1, датчик 1
P0132 .... Цепь датчика O2, ряд 1, датчик 1, высокое напряжение
P0133.... Цепь датчика O2 с медленным откликом, ряд 1, датчик 1
P0134 .... Нет активности в цепи датчика O2, датчик 1, ряд 1,
P0135 .... Цепь нагревателя датчика O2, ряд 1, датчик 1
P0136 .... Неисправность цепи датчика O2, ряд 1, датчик 2
P0137 .... Низкое напряжение цепи датчика O2, ряд 1, датчик 2
P0138 .... Высокое напряжение в цепи датчика кислорода, ряд 1, датчик 2
P0139 .... O2 Sensor Circuit Slow Response Банк 1 Датчик 2
P0140 .... Нет активности в цепи датчика O2, датчик 2, банк 1,
P0141.... Цепь нагревателя датчика O2, ряд 1, датчик 2
P0142 .... Неисправность цепи датчика O2, ряд 1, датчик 3
P0143 .... Низкое напряжение цепи датчика O2, ряд 1, датчик 3
P0144 .... Высокое напряжение в цепи датчика кислорода, ряд 1, датчик 3
P0145 .... O2 Sensor Circuit Slow Response Bank 1 Sensor 3
P0145 .... O2 Sensor Circuit Slow Response Банк 1 Датчик 3
P0146 .... Нет активности в цепи датчика O2, датчик 3 банка 1
P0147 .... Цепь нагревателя датчика O2, ряд 1, датчик 3

Если датчик O2 работает незначительно вялым или слегка смещен на богатую или обедненную смесь, он может не установить код неисправности.Единственный способ узнать, нормально ли работает датчик O2, - это проверить его реакцию на изменения в топливно-воздушной смеси. Вы можете прочитать выходное напряжение датчика O2 с помощью сканирующего прибора или цифрового вольтметра, но переходы трудно увидеть, потому что числа сильно меняются. Лучше всего наблюдать за изменениями выходного напряжения датчика O2 с помощью цифрового запоминающего осциллографа (DSO). Осциллограф отобразит выходное напряжение датчика в виде волнистой линии, которая показывает как его амплитуду (минимальное и максимальное напряжение), так и его частоту (скорость перехода от богатого к обедненному).


Образцы осциллографа датчика кислорода.

Хороший датчик O2 должен выдавать колеблющуюся форму волны на холостом ходу, при которой напряжение изменяется от почти минимального (0,1 В) до почти максимального (0,9 В). Искусственное обогащение топливной смеси путем подачи пропана во впускной коллектор должно привести к тому, что датчик среагирует почти немедленно (в течение 100 миллисекунд) и перейдет на максимальный (0,9 В) выходной сигнал. Создание обедненной смеси путем открытия вакуумной линии должно привести к падению выходного сигнала датчика до минимума (0.1в) значение. Если датчик не переключается вперед и назад достаточно быстро, это может указывать на необходимость замены.

Если цепь датчика O2 разомкнута, закорочена или выходит за пределы допустимого диапазона, она может установить код неисправности и загореться контрольной лампой проверки двигателя или неисправности. Если дополнительная диагностика обнаруживает неисправность датчика, требуется его замена. Но многие датчики O2, которые сильно повреждены, продолжают работать достаточно хорошо, чтобы не устанавливать код неисправности, но недостаточно хорошо, чтобы предотвратить увеличение выбросов и расхода топлива.Таким образом, отсутствие кода неисправности или контрольной лампы не означает, что датчик O2 работает правильно. Датчик может быть ленивым, или смещенным, богатым или бедным.

Компания под названием Lenehan Research производит портативный тестер датчика O2, который проверяет время отклика датчика O2, чтобы определить, хорошее оно или плохое. Тестер требует, чтобы датчик кислорода перескочил с уровня ниже 175 мВ до уровня выше 800 мВ менее чем за 100 мс, когда дроссельная заслонка открыта. - отрезал. Если датчик не реагирует достаточно быстро, тест не проходит.Тестер также показывает работу с обратной связью на быстром, сверхъярком, цветном 10-светодиодном дисплее и проверяет управление PCM системой управления топливной обратной связью.


ЗАМЕНА ДАТЧИКА КИСЛОРОДА

Очевидно, что неисправный датчик O2 требует замены. Но также может быть полезно периодически заменять датчик O2 для профилактического обслуживания. Замена стареющего датчика O2, который стал медленно работать, может восстановить максимальную топливную эффективность, минимизировать выбросы выхлопных газов и продлить срок службы преобразователя.

Необогреваемые одно- или двухпроводные датчики O2 на автомобилях с 1976 по начало 1990-х годов можно заменять каждые 30 000–50 000 миль. Подогреваемые 3- и 4-проводные датчики O2 в приложениях с середины 1980-х до середины 1990-х годов можно менять каждые 60 000 миль. На автомобилях, оборудованных OBD ​​II (1996 и новее), можно рекомендовать интервал замены 100 000 миль.

Датчик кислорода можно снять с выпускного коллектора с помощью специального гнезда датчика кислорода (в котором есть вырез для очистки проводов) или гнезда 22 мм.Датчик выйдет легче, если двигатель немного теплый, но не горячий на ощупь. Поместите гнездо на датчик и поверните против часовой стрелки, чтобы ослабить его. Если он замерз, нанесите проникающее масло и нагрейте основание датчика.

При установке нового кислородного датчика прямого монтажа или оригинального кислородного датчика разъем проводки нового датчика вставляется в разъем без каких-либо изменений. Но если вы устанавливаете «универсальный» кислородный датчик, исходный разъем проводки придется отрезать, чтобы провода на новом датчике можно было соединить с проводами, идущими к разъему.В 4-проводных датчиках один провод является сигнальным, один - заземлением, а два других - для цепи нагревателя. Провода имеют цветовую кодировку, но цвета на универсальном датчике, вероятно, не будут совпадать с цветами на исходном датчике. См. Таблицу ниже с цветовой кодировкой, используемой на датчиках кислорода различных марок:


Типовая цветовая кодировка проводки кислородного датчика.

Вопросы и ответы о кислородном датчике

Сколько датчиков кислорода установлено на современных двигателях?

Зависит от года выпуска и типа двигателя.На большинстве четырех- и рядных шестицилиндровых двигателей обычно установлен единственный кислородный датчик, установленный в выпускном коллекторе. На двигателях V6, V8 и V10 обычно есть два датчика кислорода, по одному в каждом выпускном коллекторе. Это позволяет компьютеру контролировать воздушно-топливную смесь из каждого ряда цилиндров.

На более поздних моделях автомобилей с OBD II (некоторые модели 1993 и 94 года, а также все модели 1995 года и новее) один или два дополнительных кислородных датчика также устанавливаются в каталитическом нейтрализаторе или за ним для контроля эффективности преобразователя.Они называются датчиками O2, расположенными ниже по потоку, и будут по одному для каждого преобразователя, если двигатель имеет двойные выхлопы с отдельными преобразователями.

Как кислородные датчики идентифицируются на диагностическом приборе?

При отображении на диагностическом приборе правый и левый верхние кислородные датчики обычно обозначаются Bank 1, Sensor 1 и Bank 2, Sensor 1. Датчик Bank 1 всегда будет находиться на той же стороне двигателя V6 или V8, что и номер цилиндра. один.

На сканирующем приборе нижний датчик на четырех- или рядном шестицилиндровом двигателе с одним выхлопом обычно обозначается Bank 1, Sensor 2.На двигателях V6, V8 или V10 нижний датчик O2 может быть помечен как банк 1 или банк 2, датчик 2. Если двигатель V6, V8 или V10 имеет двойной выхлоп с двойными преобразователями, нижние датчики O2 будут обозначены как банк 1, Датчик 2 и ряд 2, датчик 2. Или нижний кислородный датчик может быть помечен как блок 1 Датчик 3, если двигатель имеет два верхних кислородных датчика в выпускном коллекторе (некоторые делают для более точного контроля выбросов).

Важно знать, как идентифицируются датчики O2, потому что диагностический код неисправности, указывающий на неисправный датчик O2, требует замены определенного датчика.Блок 1 Датчик 1 может быть задним датчиком O2 на поперечном V6 или датчиком на переднем выпускном коллекторе. Более того, датчики O2 на поперечном двигателе могут быть помечены иначе, чем датчики на заднем приводе. От одного производителя транспортного средства к другому не так много единообразия в том, как маркируются датчики O2, поэтому всегда обращайтесь к документации по обслуживанию OEM, чтобы узнать, какой датчик является датчиком 1 банка 1, а какой датчиком 1 банка 2. информацию бывает трудно найти.Некоторые OEM-производители четко определяют, какой датчик O2 является каким, а другие - нет. В случае сомнений позвоните дилеру и спросите кого-нибудь в сервисной службе.

Чтобы узнать, где находится датчик кислорода, щелкните здесь.

Как датчик O2 ниже по потоку контролирует эффективность преобразователя?

Нижний кислородный датчик в каталитическом нейтрализаторе или за ним работает точно так же, как верхний кислородный датчик в выпускном коллекторе. Датчик вырабатывает напряжение, которое изменяется при изменении количества несгоревшего кислорода в выхлопных газах.Если датчик O2 является традиционным датчиком циркониевого типа, выходное напряжение падает примерно до 0,2 В при обедненной топливной смеси (больше кислорода в выхлопе). Когда топливная смесь богатая (меньше кислорода в выхлопе), выходной сигнал датчика подскакивает до максимума около 0,9 вольт. Сигнал высокого или низкого напряжения сообщает PCM о богатой или бедной топливной смеси.

На некоторых более новых автомобилях используется новый тип датчика воздушного топлива с широким соотношением сторон (WRAF). Вместо того, чтобы генерировать сигнал высокого или низкого напряжения, сигнал изменяется прямо пропорционально количеству кислорода в выхлопных газах.Это обеспечивает более точное измерение для лучшего контроля топлива. Эти датчики также называются широкополосными датчиками кислорода, поскольку они могут считывать очень бедные топливно-воздушные смеси.

Система OBD II контролирует эффективность преобразователя, сравнивая сигналы верхнего и нижнего кислородных датчиков. Если преобразователь выполняет свою работу и снижает количество загрязняющих веществ в выхлопных газах, нижний кислородный датчик должен показывать небольшую активность (несколько переходов от обедненной к богатой, которые также называются «перекрестным подсчетом»).Показание напряжения датчика также должно быть достаточно стабильным (не повышаться или понижаться) и составлять в среднем 0,45 В или выше.

Если сигнал нижнего кислородного датчика начинает отражать сигнал верхнего кислородного датчика (ов), это означает, что эффективность преобразователя упала и преобразователь не очищает загрязняющие вещества в выхлопных газах. Пороговое значение для установки диагностического кода неисправности (DTC) и включения контрольной лампы неисправности (MIL) - это когда выбросы, по оценкам, превышают федеральные ограничения на 1.5 раз. См. Раздел «Поиск и устранение неисправностей кода катализатора P0420» для получения дополнительной информации о проблемах преобразователя.

Если эффективность преобразователя снизилась до точки, при которой транспортное средство может превышать предел загрязнения, PCM включит контрольную лампу неисправности (MIL) и установит диагностический код неисправности. В этот момент может потребоваться дополнительная диагностика для подтверждения неисправного преобразователя. Если датчики O2 на входе и выходе работают нормально и показывают снижение эффективности преобразователя, преобразователь необходимо заменить, чтобы восстановить соответствие требованиям по выбросам.Автомобиль не пройдет тест на выбросы OBD II, если в PCM есть коды преобразователя.

В чем разница между "подогреваемым" и "ненагреваемым" кислородным датчиком?

Датчики кислорода с подогревом имеют внутреннюю цепь нагревателя, которая доводит датчик до рабочей температуры быстрее, чем датчик без нагрева. Кислородный датчик должен быть горячим (примерно от 600 до 650 градусов по Фаренгейту), прежде чем он сгенерирует сигнал напряжения. Горячий выхлоп двигателя обеспечивает достаточно тепла, чтобы довести датчик O2 до рабочей температуры, но это может занять несколько минут в зависимости от температуры окружающей среды, нагрузки двигателя и скорости.В это время система управления с обратной связью по топливу остается в «разомкнутом контуре» и не использует сигнал датчика O2 для регулировки топливной смеси. Обычно это приводит к богатой топливной смеси, потраченному впустую топливу и более высоким выбросам.

Путем добавления цепи внутреннего нагревателя к датчику кислорода можно направить напряжение через нагреватель, как только двигатель начнет нагревать датчик. Нагревательный элемент представляет собой резистор, который накаляется докрасна, когда через него проходит ток. Нагреватель доводит датчик до рабочей температуры в течение от 20 до 60 секунд в зависимости от датчика, а также поддерживает датчик кислорода в горячем состоянии, даже когда двигатель работает на холостом ходу в течение длительного периода времени.

Датчики O2 с подогревом обычно имеют два-три или четыре провода (дополнительные провода предназначены для цепи нагревателя). Примечание. Сменные датчики O2 должны иметь такое же количество проводов, что и исходные, и иметь такое же внутреннее сопротивление.

Система OBD II также контролирует цепь нагревателя и устанавливает код неисправности, если цепь нагревателя внутри датчика O2 неисправна. Нагреватель является частью датчика и не может быть заменен отдельно, поэтому, если цепь нагревателя разомкнута или закорочена и проблема не во внешней проводке или разъеме датчика, датчик O2 необходимо заменить.

НАЖМИТЕ ЗДЕСЬ, чтобы просмотреть или загрузить эту статью в виде файла PDF





Щелкните здесь, чтобы узнать больше о направляющей для датчика

Связанные статьи о датчиках двигателя:

Широкополосные датчики O2 и датчики A / F

Расположение датчиков кислорода

Определение проблем с выбросами (датчики O2)

Анализ датчиков двигателя

Общие сведения о системах управления двигателем

Модули управления трансмиссией (PCM)

Все о бортовой диагностике II ( OBD II)

Обнуление диагностики OBD II

Монитор OBD не готов

Каталитические преобразователи

Устранение неполадок с кодом катализатора P0420

Низкая экономия топлива (причины)

Нажмите здесь, чтобы увидеть больше технических статей Carley Automotive Нужна информация из заводского руководства по обслуживанию вашего автомобиля? Mitchell 1 DIY eautorepair manuals

Тестирование и устранение неисправностей лямбда-зонда

Использование нескольких лямбда-зондов

С момента введения EOBD необходимо контролировать работу каталитического нейтрализатора.Для этого за катализатором устанавливается дополнительный лямбда-зонд. Это используется для определения способности каталитического нейтрализатора накапливать кислород.

Функция датчика после каталитического нейтрализатора такая же, как и у датчика на входе. Амплитуды лямбда-зондов сравниваются в блоке управления. Амплитуды напряжения зонда ниже по потоку очень малы из-за способности каталитического нейтрализатора накапливать кислород. Чем меньше емкость каталитического нейтрализатора, тем выше амплитуда напряжения зонда, расположенного ниже по потоку, из-за повышенного содержания кислорода.

Высота амплитуд на датчике ниже по потоку зависит от фактической емкости каталитического нейтрализатора, которая изменяется в зависимости от нагрузки и скорости. Таким образом, при сравнении амплитуд датчиков учитываются условия нагрузки и скорость. Если амплитуды напряжения обоих датчиков все еще примерно одинаковы, емкость каталитического нейтрализатора достигнута, например через старение.

НЕИСПРАВНОСТЬ ДАТЧИКА КИСЛОРОДА ЛЯМБДА: СИМПТОМЫ

Неисправный лямбда-зонд может вызвать следующие симптомы:

  • Высокий расход топлива
  • Низкая производительность двигателя
  • Высокий выброс выхлопных газов
  • Загорается контрольная лампа двигателя
  • Сохраняется код ошибки

ВЛИЯНИЕ НЕИСПРАВНОСТИ ЛЯМБДА-КИСЛОРОДНОГО ДАТЧИКА: ПРИЧИНА НЕИСПРАВНОСТИ

Существует несколько причин, по которым может произойти отказ:

  • Внутреннее и внешнее короткое замыкание
  • Отсутствие заземления / напряжения
  • Перегрев
  • Отложения / загрязнения
  • Механическое повреждение
  • Использование этилированного топлива / присадок

Существует ряд типичных неисправностей лямбда-датчика, которые часто возникают.В следующем списке показаны причины диагностированных неисправностей:

Зонды без подогрева

Коррозия
Диагностированные неисправности Причина
Защитная трубка или корпус датчика забиты остатками масла Несгоревшее масло попало в выхлопную систему, например из-за неисправных поршневых колец или уплотнений штока клапана
Ложный воздухозаборник, недостаток эталонного воздуха Зонд установлен неправильно, отверстие для эталонного воздуха заблокировано
Повреждение из-за перегрева Температуры выше 950 ° C из-за неправильного зажигания точка или люфт клапана
Плохое соединение на штекерных контактах Окисление
Обрыв кабельных соединений Плохо проложенные кабели, точки истирания, укусы грызунов
Отсутствие заземления Окисление выхлопная система
Механическое повреждение Чрезмерный момент затяжки
Химическое старение Очень часто короткие пути
Свинцовые отложения Использование этилированного топлива

ДИАГНОСТИКА НЕИСПРАВНОСТЕЙ КИСЛОРОДНОГО ДАТЧИКА ЛЯМБДА: ОСНОВНЫЕ ПРИНЦИПЫ

Автомобили, оборудованные функцией самодиагностики, могут обнаруживать неисправности, возникающие в цепи управления, и сохранять их в памяти неисправностей.Обычно это отображается с помощью контрольной лампы двигателя. Затем память неисправностей может быть считана с помощью диагностического прибора для диагностики неисправностей. Однако более старые системы не могут определить, связана ли эта неисправность с дефектным компонентом или, например, с неисправность кабеля. В этом случае механик должен провести дальнейшие испытания.

В рамках EOBD мониторинг лямбда-зонда был расширен и теперь включает следующие точки:

  • Обрыв цепи,
  • Готовность к работе,
  • Короткое замыкание на массу блока управления,
  • Замыкание на плюс
  • Обрыв кабеля и старение лямбда-зонда.

Для диагностики сигналов лямбда-зонда блок управления использует форму сигнала частоты.

Для этого блок управления рассчитывает следующие данные:

  • Максимальное и минимальное обнаруженное значение напряжения датчика,
  • Время между положительным и отрицательным фронтом,
  • Регулирующая переменная лямбда-регулятора в соответствии с богатой и обедненной
  • Порог контроля лямбда-регулирования,
  • Напряжение датчика и длительность периода.

Амплитуда: максимальное и минимальное значение больше не достигается, определение богатой / обедненной смеси больше невозможно.

КАК ОПРЕДЕЛЯЮТСЯ МАКСИМАЛЬНОЕ И МИНИМАЛЬНОЕ НАПРЯЖЕНИЕ ДАТЧИКА?

При запуске двигателя все старые максимальные / минимальные значения в блоке управления удаляются.Во время работы минимальные / максимальные значения отображаются в диапазоне нагрузки / скорости, заданном для диагностики.

Время отклика: зонд слишком медленно реагирует на изменение смеси и больше не отображает статус в нужное время.

РАСЧЕТ ВРЕМЕНИ МЕЖДУ ПОЛОЖИТЕЛЬНЫМ И ОТРИЦАТЕЛЬНЫМ ПЛАНОМ

Если напряжение зонда превышает контрольный порог, начинается измерение времени между положительным и отрицательным фронтом.Если напряжение зонда падает ниже контрольного порога, измерение времени прекращается. Период времени между началом и окончанием измерения времени измеряется счетчиком.

Время отклика: частота датчика слишком низкая, оптимальное управление больше невозможно.

ОБНАРУЖЕНИЕ СТАРЕННОГО ИЛИ ЗАГРЯЗНЕННОГО ЛЯМБДА-ДАТЧИКА

Если зонд сильно изношен или загрязнен, e.грамм. через присадки к топливу это влияет на сигнал датчика. Сигнал зонда сравнивается с сохраненным шаблоном сигнала. Медленный зонд определяется как неисправность, например через длительность периода сигнала.

ПРОВЕРКА ЛЯМБДА-ДАТЧИКА С ПОМОЩЬЮ ОСЦИЛЛОГРАФА, МУЛЬТИМЕТРА, ТЕСТЕРА ЛЯМБДА-ДАТЧИКА, АНАЛИЗАТОРА ИЗЛУЧЕНИЯ: УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ

Как правило, перед каждой проверкой следует проводить визуальный осмотр, чтобы убедиться в отсутствии повреждений кабеля или разъема.Выхлопная система не должна иметь утечек.

Для подключения измерительного прибора рекомендуется использовать переходной кабель. Также необходимо убедиться, что лямбда-регулирование неактивно во время некоторых рабочих состояний, например. при холодном пуске до достижения рабочей температуры и при полной нагрузке.

Проверка лямбда-зонда при помощи тестера выхлопных газов

Один из самых быстрых и простых тестов - это измерение с помощью анализатора выбросов четырех газов.

Испытание проводится так же, как и предписанное испытание на выбросы выхлопных газов. Когда двигатель прогрет до рабочей температуры, ложный воздух включается в качестве возмущающей переменной путем снятия шланга. Из-за изменения состава выхлопных газов значение лямбда, которое рассчитывается и отображается тестером выхлопных газов, также изменяется. Система образования смеси должна определять это по определенному значению и регулировать его в течение определенного времени (60 секунд, как в тесте на выброс выхлопных газов).Если переменная возмущения удаляется, значение лямбда должно быть уменьшено до исходного значения.

В качестве основного принципа следует соблюдать спецификации производителя для подключения переменных возмущений и значения лямбда.

Однако этот тест может только определить, работает ли лямбда-регулирование. Электрический тест невозможен. При этой процедуре существует риск того, что современные системы управления двигателем контролируют смесь посредством точного определения нагрузки, так что λ = 1, несмотря на то, что лямбда-регулирование не работает.

Проверка лямбда-зонда мультиметром

Для проверки следует использовать только высокоомные мультиметры с цифровым или аналоговым дисплеем.

Мультиметры с низким внутренним сопротивлением (чаще всего в аналоговых устройствах) перегружают сигнал лямбда-зонда и могут вызвать его выход из строя. Из-за быстро меняющегося напряжения сигнал лучше всего отображать с помощью аналогового устройства.

Мультиметр подключается параллельно сигнальной линии (черный кабель, см. Принципиальную схему) лямбда-зонда. Диапазон измерения мультиметра устанавливается на 1 В или 2 В. После запуска двигателя значение между 0.появляется 0,6 В на дисплее (опорное напряжение) - 4. Если достигается рабочая температура двигателя или лямбда-зонда, фиксированное напряжение начинает меняться от 0,1 В до 0,9 В.

Для достижения безупречных результатов измерения двигатель следует поддерживать на скорости прибл. 2500 об. / Мин. Это гарантирует достижение рабочей температуры зонда даже в системах с ненагреваемым лямбда-зондом. Если температура выхлопных газов недостаточна в режиме холостого хода, существует риск того, что ненагретый датчик остынет и сигнал больше не будет генерироваться.

Проверка лямбда-зонда осциллографом

Форма сигнала лямбда-зонда

Сигнал лямбда-зонда лучше всего отображать с помощью осциллографа.Что касается измерения с помощью мультиметра, основным условием является то, что двигатель или лямбда-зонд должны иметь рабочую температуру.

Осциллограф подключается к сигнальной линии. Устанавливаемый диапазон измерения зависит от используемого осциллографа. Если устройство имеет автоматическое обнаружение сигнала, его следует использовать. Для ручной настройки установите диапазон напряжения 1–5 В и настройку времени 1–2 секунды.

Обороты двигателя снова должны быть прибл.2500 об. / Мин.

Переменное напряжение отображается на дисплее в синусоидальной форме. По этому сигналу можно оценить следующие параметры:

  • Высота амплитуды (максимальное и минимальное напряжение 0,1–0,9 В),
  • Время отклика и продолжительность периода (частота примерно 0,5–4 Гц).

Проверка лямбда-зонда при помощи тестера лямбда-зонда

Различные производители предлагают специальные тестеры лямбда-зондов для тестирования.В этом устройстве функция лямбда-зонда отображается с помощью светодиодов.

Как мультиметр и осциллограф, он подключается к сигнальной линии пробника. Как только зонд достигнет рабочей температуры и начнет работать, светодиоды начнут попеременно загораться - в зависимости от соотношения воздух-топливо и кривой напряжения (0,1 - 0,9 В) зонда.

Здесь все характеристики настроек измерительного устройства для измерения напряжения относятся к датчикам диоксида циркония (датчикам скачков напряжения).Для диоксида титана диапазон измерения напряжения изменяется на 0-10 В, при этом измеряемые напряжения меняются в пределах 0,1-5 В.

Проверка состояния защитной трубки

В качестве основного принципа необходимо соблюдать спецификации производителя. Наряду с электронным тестом состояние защитной трубки элемента зонда может указывать на функциональные возможности:

ЗАЩИТНАЯ ТРУБКА СЛОЖНО ЗАСАЖЕНА

  • Двигатель работает со слишком богатой смесью

Необходимо заменить датчик и устранить причину чрезмерно богатой смеси, чтобы предотвратить повторное засорение датчика.

БЛЕСКА НА ЗАЩИТНОЙ ТРУБКЕ

Свинец разрушает элемент зонда.Необходимо заменить зонд и проверить каталитический нейтрализатор. Замените этилированное топливо неэтилированным.

БЕЛЫЕ (БЕЛЫЕ ИЛИ СЕРЫЕ) ОТЛОЖЕНИЯ НА ЗАЩИТНОЙ ТРУБКЕ

  • Двигатель горит масло, дополнительные присадки в топливо

Необходимо заменить датчик и устранить причину возгорания масла.

НЕПРАВИЛЬНЫЙ МОНТАЖ

Неправильная установка может привести к повреждению лямбда-зонда, и его правильная работа не может быть гарантирована.Во время монтажа необходимо использовать предписанный специальный инструмент и соблюдать момент затяжки.

ПРОВЕРКА НАГРЕВА ДАТЧИКА КИСЛОРОДА ЛЯМБДА: УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ

Можно проверить внутреннее сопротивление и напряжение питания нагревательного элемента.

Для этого отсоедините разъем к лямбда-зонду. Со стороны лямбда-зонда с помощью омметра измерьте сопротивление на обоих кабелях нагревательного элемента.Это должно быть от 2 до 14 Ом. На стороне автомобиля используйте вольтметр для измерения напряжения питания. Должно быть напряжение> 10,5 В (бортовое напряжение).

Различные варианты подключения и цвета кабелей

Зонды без подогрева

9 Сигнал

Зонды с подогревом

Кол-во кабелей Цвет кабеля Подключение
1 Черный Сигнал (заземление через корпус)
2 Черный
Количество кабелей Цвет кабеля Подключение
3 Черный
2 x белый
Сигнал (заземление через корпус) нагревательного элемента
4 Черный белый
Серый
Сигнал, нагревательный элемент, заземление

Зонды для диоксида титана

Количество кабелей Цвет кабеля Подключение
4 Красный
Белый
Черный
Желтый
Нагревательный элемент (+)
Нагревательный элемент (-)
Сигнал (-)
Сигнал (-) (+)
4 Черный
2 x белый
Серый
Нагревательный элемент (+)
Нагревательный элемент (-)
Сигнал (-)
Сигнал (+)

(Требования производителя должны соблюдаться)

ЗАМЕНА КИСЛОРОДНОГО ДАТЧИКА ЛЯМБДА: ВИДЕО

o2-сенсор-тестирование

Мэнди Консепсьон

The O2 датчик измеряет содержание кислорода в выхлопе.В Чувствительность датчиков O2 достигается за счет создания небольшого напряжение пропорционально содержанию кислорода в выхлопных газах. В другими словами, если содержание кислорода низкое, это дает высокий напряжение (0,90 вольт - богатая смесь) и если кислород при высоком содержании вырабатывается низкое напряжение (0,10 В - обедненная смесь). Хотя теоретически датчик O2 должен работать между 0,00 вольт и 1,00 вольт, на самом деле он циклически между 0.10 вольт и 0,90 вольт.

А GM O2 сигнал датчика, застрявший на уровне 450 мВ, указывает на то, что обрыв цепи датчика O2 (сигнальный провод) или неисправный сигнал O2 земля. Значение 450 мВ (GM) называется напряжением смещения и это не одно и то же для всех производителей. Некоторые производители используйте специальное заземление датчика O2. Такой заземляющий провод прикреплен к блоку двигателя или шасси и питает ECM O2 только заземляющий штифт.Затем цепь O2 заземляется через внутри электронной платы ЕСМ этим проводом заземления. А потеря этого заземления также поставит сигнал датчика O2 на около 450 мВ, что также делает его похожим на открытый схема. То же самое верно и для Chrysler, но они используют различное напряжение смещения O2, которое обычно составляет от 2,00 до 4,00 вольт.

1) А несколько ключевых вопросов очень важны при анализе O2 сигналы датчиков.
2) O2 датчик будет переключаться между 0,10 и 0,90 или почти 1 вольт.
3) Датчик O2 должен достигать отметки амплитуды 0,8x вольт. пока при полной эксплуатации.
4) Датчик O2 также должен достигать амплитуды 0,1x вольт. отметьте при полной работе.
5) Полная работа означает, что двигатель полностью прогрет, O2 датчик выше 600 град. F. рабочая температура, и нет наличие топливных или механических проблем.
6) Датчик O2 должен работать не реже одного раза в секунду, что покажет 3 перекрестных счета на PID диагностического прибора.
7) Силикон - основная причина загрязнения O2.
8) Датчику O2 легче перейти от богатой к обедненной смеси чем наоборот.
9) Датчики O2 имеют тенденцию выходить из строя при большом смещении. Другими словами, они склонны перекладывать свою езду на верх или богатство сторона шкалы напряжения.
10) Вопреки тому, что многие думают, датчик O2 БУДЕТ НЕ цикл сам по себе.Цикл датчика O2 является прямым результатом реакции контроллера ЭСУД на изменение смеси.
11) Каждый раз, когда O2 проходит цикл и пересекает отметку 0,450 вольт, система находится в ЗАКРЫТОМ КОНТУРЕ.
12) Даже если датчик O2 циклически переключается и пересекает 0,450 вольт (ECM в замкнутом контуре) НЕ означает, что это работает должным образом.
13) Работа датчика O2 чрезвычайно важна не только для сохранить низкие выбросы HC и CO, а также NOx.
14) Правильная работа датчика O2 будет определять каталитическую КПД преобразователей. Каталитическому нейтрализатору требуется O2. датчик зацикливается на правильной для него амплитуде и частоте работать с максимальной эффективностью.
15) Датчик O2 с высоким показанием напряжения не обязательно означает, что смесь богатая или с высоким содержанием топлива содержание. Проблема с клапаном рециркуляции отработавших газов приведет к высокому уровню сигнала O2 также.

Большой заблуждение среди технических специалистов, пытающихся понять O2 датчики в том, что они работают сами по себе.Датчик O2 просто читает содержание кислорода в выхлопе, ЭТО ЭТО. Избыток кислород в виде обычного окружающего воздуха отправит O2 сигнал напряжения датчика низкий (ниже 0,450 вольт) и его отсутствие пошлет сигнал напряжения высокого (более 0,450 вольт). А застрявший открытый клапан системы рециркуляции ОГ создаст недостаток кислорода в выхлоп, так как рециркулирующий выхлоп содержит весь кислород уже сгорел. Контроллер ЭСУД иногда использует датчик O2 для проверьте правильность работы системы рециркуляции ОГ и при необходимости установите код.Итак, имейте в виду, что автомобиль может двигаться обедненный, потому что ECM видит богатый сигнал O2 из-за неисправен (залип в открытом) клапан рециркуляции ОГ. Поскольку ECM видит богатую сигнал, он попытается исправить с помощью команды Lean и попытается понизить O2 датчики сигнала высокого напряжения.

СОСТОЯНИЕ КОТОРЫЕ ВЛИЯЮТ НА РАБОТУ

ПРИМЕЧАНИЕ: ПРИ ВЫПОЛНЕНИИ ПРОВЕРКИ ДАТЧИКА O2, ВАЖНО СДЕЛАТЬ ИЗМЕРЕНИЯ НА , ХОЛОСТОЙ ХОД И 2000 об / мин .ВНИМАНИЕ, ЧТО ДАТЧИК O2 ПРЕДВАРИТЕЛЬНАЯ КОНДИЦИОНИРОВАНИЕ ВАЖНА, ДАЖЕ НА НОВЕЙ СТИЛЬНЫЕ ДАТЧИКИ O2 С ПОДОГРЕВОМ. ПОДГОТОВКА ДАТЧИКА O2 ПОВЫШЕНИЕ СКОРОСТИ ДВИГАТЕЛЯ ДО 2000 ОБОРОТОВ В МИНУТ НА 15 СЕКУНД ИЛИ ТАК. ДАТЧИК O2 ДОЛЖЕН БЫТЬ ВЫШЕ 600 F. УМЕТЬ РАБОТАТЬ НАДЛЕЖАЩИМ. ДОЛГОСРОЧНЫЕ ПЕРИОДЫ ХОЛОСТОГО ХОДА ВРЕМЯ МОЖЕТ ПРЕДОСТАВИТЬ НЕ НАГРЕВАЕМЫЙ ИЛИ СТАРЫЙ ДАТЧИК O2. ХОЛОДНЫЙ ДЛЯ ЭТОГО РАБОТЫ ВООБЩЕ. В ТО ЖЕ ВРЕМЯ СДЕЛАТЬ НЕ ПЫТАЙТЕСЬ ПРИНУДИТЬ В ЭКСПЛУАТАЦИЮ ОБОГРЕВАЕМЫЙ ДАТЧИК O2.AN ДАТЧИК O2 ПРИ НЕИСПРАВНОМ ОБОГРЕВАТЕЛЕ ЗАКРЫТЫЙ КОНТУР ПОСЛЕ ХОРОШЕЙ РАЗМИНКИ.

После двигатель прошел период прогрева (датчик O2 не влияет на работу двигателя при холодном двигателе), Затем ECM ищет значение O2. Отметка 0,450 вольт - это почти повсеместно считается промежуточной точкой или точка перехода для работы датчика O2.Если сигнал горит богатая сторона (выше 0,45 вольт), тогда ECM ответит с помощью команды бедной смеси (уменьшение пульсации форсунки), или если сигнал на обедненной стороне (ниже 0,45 В), то ECM ответит богатой командой (увеличение инжектора пульсация). Величина коррекции импульса форсунки составляет пропорционально напряжению, регистрируемому контроллером ЭСУД на датчике O2. сигнальный провод. Чем выше напряжение, тем сильнее понижает ECM. вовремя к форсунке.Чем ниже напряжение, тем больше ЕСМ увеличивает время включения форсунки. ECM постоянно делать именно это, немного увеличивая и уменьшая пульсация форсунки. Постоянная корректировка - вот что дает датчик O2 сигнализирует о появлении переключения (синусоида) на экран осциллографа.

ПРИМЕЧАНИЕ: Коррекция топливных импульсов контроллерами ЭСУД постоянно сигнал инжектора называется КРАТКОВРЕМЕННОЙ ТОПЛИВНОЙ ОТДЕЛКОЙ это ИНТЕГРАТОР) и ДОЛГОВРЕМЕННАЯ ОТДЕЛКА ТОПЛИВА (GM назвал это БЛОК УЗНАТЬ) на сканере.FUEL TRIMS - это отклонение системы БАЗОВОГО ИНЖЕКЦИОННОГО импульса. Анализ LTFT и STFT - это отличный способ узнать расход топлива конкретного автомобиля тенденции или насколько хорошо этот автомобиль работает с Касаемо топливного контроля. STFT и LTFT - это первое, что нужно ищите при оценке проблемы с контролем топлива.

г. факт, что сигнал датчика O2 переключается богатые-бережливые-богатые-бережливые также показывают, что ECM контролирует пульсация форсунки и, следовательно, то, что система находится в режим замкнутого цикла.Контроллер ЭСУД под полным контролем (цикл датчика O2) считается замкнутым контуром из-за замкнутого контура действие датчика O2-на ECM-на импульсный контроль форсунки, затем на Датчик O2 и обратно к ECM. Контроллер ЭСУД должен контролировать все время, кроме разогрева, WOT, повышения мощности и режим замедления.

The O2 датчик должен не только циклически, но и быстро циклически достаточно (правильная частота) и достаточно широкая (правильная амплитуда).Минимум один цикл в секунду (1 Гц) должен быть видно на сигнальном проводе для учета O2 хорошо (не ленив). Один цикл в секунду сделает прицел трасса проходит через отметку 0,450 вольт примерно 3 раза, который ECM распознает как 3 перекрестных счета. Медленный датчик O2 повредит каталитический нейтрализатор и выпустить в атмосферу чрезмерное количество выбросов.

А цикл - это полный гребень богатого и обедненного кислородного датчика. сигнал, пересекая 0.45 точка напряжения. Правильный амплитуда относится к способности датчиков O2 достигать полной богатый (0,90 В) и полный обедненный (0,10 В), когда катание на велосипеде. Чем выше напряжение на сигнальной линии O2 тем больше ECM снижает пульсацию на форсунках. В чем ниже напряжение на сигнальной линии O2, тем больше ЕСМ увеличивает пульсацию форсунки. Это причина, по которой Датчик O2, который неправильно считывает смесь, при полном амплитуды и частоты, фактически введет ECM в заблуждение. неправильная схема управления подачей топлива.Как только датчик O2 достигнет его правильная температура 600 F, ищите сигнал O2 цикл с правильной амплитудой и частотой, и он обязательно указывать на отлично работающий датчик O2.

КОМПОНЕНТ ИСПЫТАНИЕ

(нажмите кнопку воспроизведения кнопка для просмотра видео)

ПРИМЕЧАНИЕ: В ранних системах OBD ​​II пост-каталитический нейтрализатор O2 датчик не влияет на контроль топлива.Посткаталитический O2 датчик изначально отвечал только за мониторинг эффективность каталитического нейтрализатора. В большинстве систем сообщение сигнал датчика O2 преобразователя никогда не должен имитировать или соответствовать сигнал O2 перед катализацией. Это указывало бы на неисправность или низкую возможность хранения кислорода в конвертере. На ранней OBD II системы, датчик O2 после кошки должен показывать мало или не показывать колебания напряжения на осциллограмме, так как все колебания смеси поглощаются каталитическим конвертер.

Заявление Примерно в 1999 модельном году на рынок, называемый конвертером хранения с низким содержанием кислорода или LOC. С LOC, датчики O2 до и после включения работают с одинаковой скоростью. Эти преобразователи тестируются путем измерения времени задержки. между двумя сигналами. Дальнейшее развитие этого Система состоит в том, что сигнал пост-преобразователя также используется для Коррекция A / F, но в меньшей степени.

Эти При проверке датчиков O2 следует выполнять простые шаги.

Просканируйте автомобиль на наличие кодов датчиков O2 и проанализировать PID потока данных. Напряжение датчика O2 должен нормально работать с правильной амплитудой и частота. Датчик O2 застрял на фиксированном смещении напряжение указывает на обрыв цепи O2 или отсутствие заземления датчика O2 (выделенного).Если возможно использовать графический мультиметр для анализа датчика O2 данные для определения возможных проблем.

При считывании значений сканирования дроссельной заслонке и проверьте минимум датчика O2 и максимальные значения (от 0,1 до 0,9 вольт). Несмотря на то что это не убедительное доказательство правильного содержания O2 срабатывания датчика, служит предварительным индикация правильной работы.

Некоторые производители автомобилей используют специальный заземляющий провод датчика O2 где-то на блоке двигателя или шасси. Потеря или разрыв этого заземляющего провода приведет к тому, что O2 датчик бесполезен. Этот заземляющий провод питает только Цепь датчика O2 в ECM. Заземление главного двигателя не питайте этот тип цепи датчика O2.

Проверьте целостность провода датчика O2. Большинство датчиков O2 смещены и сигнальный провод обрыв даст значение напряжения смещения. Схемы O2 более поздних моделей Jeep / Chrysler имеют тенденцию быть смещен на уровне около 2 или 4 вольт, следовательно, постоянный чтение около 2 или 4 вольт на Chrysler также индикация обрыва цепи.Во многих из них случаях, ECM поставит датчик O2 High Voltage код.

Наконец, проверьте правильность датчика O2. работа с осциллографом или графическим мультиметром. Проверьте правильность амплитуды и частоты. Помнить что показания датчика O2 сканера только интерпретированные значения и могут не отображать реальное напряжение чтение.Это причина для этого финала ручной тест.

ПРИМЕЧАНИЕ: Этот обучающий блог взят из нашей книги «Диагностика. Стратегии современных автомобильных систем ». для тестирования - инструкции посетите наш книжный раздел на нашем Веб-сайт.

Разбираемся с датчиками: датчик кислорода

Датчик кислорода, также известный как датчик O2, выполняет то, что предполагает его название - он измеряет количество кислорода в выхлопных газах.Хотя это может показаться довольно скромной задачей, датчик O2 на самом деле является одним из самых важных датчиков на любом транспортном средстве, отвечающим за поддержание правильного баланса между воздухом и топливом для оптимальных выбросов. Из-за этого вы захотите знать, что он делает, почему выходит из строя, и, что важно, как его заменить, когда это произойдет.

Как работает датчик O2?

Большинство автомобилей имеют как минимум два кислородных датчика, расположенных по всей выхлопной системе; по крайней мере, один перед каталитическим нейтрализатором и один или несколько после каталитического нейтрализатора.Датчик предварительной очистки регулирует подачу топлива, а датчик ниже по потоку измеряет эффективность каталитического нейтрализатора.

Датчики

O2 обычно можно разделить на узкополосные или широкополосные. Чувствительный элемент находится внутри датчика в стальном корпусе. Молекулы кислорода из выхлопных газов проходят через крошечные щели или отверстия в стальной оболочке датчика, чтобы достичь чувствительного элемента или нервной ячейки. На другой стороне нервной ячейки кислород из воздуха за пределами выхлопной трубы проходит вниз по датчику O2 и вступает в контакт.Разница в количестве кислорода между кислородом в наружном воздухе и в выхлопных газах способствует потоку ионов кислорода и создает напряжение.

Если смесь выхлопных газов слишком богата и в выхлопе слишком мало кислорода, в электронный блок управления двигателя (ЭБУ) отправляется сигнал для уменьшения количества топлива, добавляемого в цилиндр. Если смесь выхлопных газов слишком бедная, то отправляется сигнал об увеличении количества топлива, используемого в двигателе. Слишком много топлива производит углеводороды и окись углерода.Слишком мало топлива производит загрязняющие вещества в виде оксидов азота. Сигнал датчика помогает поддерживать правильную смесь. Широкополосные датчики O2 имеют дополнительную ячейку для откачки O2 для регулирования количества кислорода, присутствующего в чувствительном элементе. Это позволяет измерять гораздо более широкое соотношение воздух / топливо.

Почему датчики O2 выходят из строя?

Поскольку датчик кислорода находится в потоке выхлопных газов, он может быть загрязнен. Общие источники загрязнения включают чрезмерно богатую топливную смесь или прорыв масла в старом двигателе и охлаждающую жидкость двигателя, сгорающую в камере сгорания в результате утечки через прокладку двигателя.Он также подвергается воздействию чрезвычайно высоких температур и, как и любой другой компонент, со временем изнашивается. Все это может повлиять на характеристики отклика датчика кислорода, что приведет к увеличению времени отклика или сдвигу кривой напряжения датчика и, в конечном итоге, к снижению характеристик датчика.

На что обращать внимание при отказе датчика O2

Когда датчик кислорода выходит из строя, компьютер больше не может определять соотношение воздух / топливо, поэтому в конечном итоге он делает предположения. По этой причине есть несколько контрольных знаков, на которые следует обратить внимание:

  • Индикатор проверки двигателя: хотя индикатор проверки двигателя может гореть по многим причинам, обычно это связано с проблемой, связанной с выбросами.
  • Низкая экономия топлива: неисправный кислородный датчик нарушит подачу воздуха в топливную смесь, что приведет к увеличению расхода топлива.
  • Неровная работа двигателя на холостом ходу или пропуски зажигания: поскольку выходной сигнал датчика кислорода помогает управлять синхронизацией двигателя, интервалами сгорания и соотношением воздуха и топлива, неисправный датчик может привести к неровной работе автомобиля.
  • Низкая производительность двигателя.

Поиск и устранение неисправностей датчика O2

Чтобы определить источник неисправности датчика O2, выполните следующие действия:

  • Считайте коды неисправностей с помощью диагностического прибора.Обратите внимание, что при проблемах с датчиками O2 часто возникает несколько кодов неисправностей.
  • Лямбда-зонд имеет внутренний нагреватель, поэтому проверьте сопротивление нагревателя - обычно оно будет довольно низким.
  • Проверьте подачу питания к ТЭНу - часто эти провода одного цвета.
  • Осмотрите электрический разъем на предмет повреждений или грязи.
  • Осмотрите выпускной коллектор и топливные форсунки на предмет утечек, а также на состояние компонентов системы зажигания - они могут повлиять на работу датчика.
  • Проверьте правильность показаний датчика O2, подтвердив значение O2 с помощью четырех или пяти анализаторов выбросов газов.
  • Используйте осциллограф, чтобы проверить сигнал как на холостом ходу, так и на прибл. Скорость двигателя 2500 об / мин.
  • Используйте данные в реальном времени, чтобы проверить наличие сигнала, если проводка датчика труднодоступна.
  • Проверьте состояние защитной трубки элемента зонда на предмет повреждений и загрязнения.

Коды общих неисправностей

Общие коды неисправностей и причины включают:

  • P0135 : Датчик кислорода перед катализатором 1, цепь подогрева / обрыв
  • P0175 : слишком богатая система (банк 2)
  • P0713 : Неисправность регулятора топливной системы (банк 2)
  • P0171 : слишком бедная система (банк 1)
  • P0162 : Неисправность цепи датчика O2 (bank 2, датчик 3)

Как заменить датчик O2

Перед заменой датчика необходимо диагностировать проблему.Подключите диагностический прибор, такой как Delphi DS, выберите правильный автомобиль и прочтите код (ы) неисправности. Подтвердите код неисправности, выбрав данные в реальном времени и сравнив значение подозрительного неисправного датчика со значением известного исправного датчика. При необходимости обратитесь к данным производителя транспортного средства, чтобы найти правильное значение для сравнения. Другие инструменты или оборудование могут потребоваться, чтобы определить, является ли именно датчик, а не проводка, которая является причиной проблемы.

  • Поскольку многие автомобили последних моделей имеют несколько кислородных датчиков, убедитесь, что вы правильно определили неисправный датчик, чтобы по ошибке не заменить неправильный.Производители автомобилей идентифицируют позиции «банк1» и «банк2» и «перед / зад» и «до / после» по-разному, поэтому следует позаботиться о том, чтобы убедиться, что вы определили правильный (проблемный) датчик. Лучший способ сделать это - просмотреть данные в реальном времени с помощью диагностического инструмента.
  • Затем отключите провод соединения.
  • Затем с помощью гаечного ключа или специального торцевого ключа для O2 открутите датчик от гнезда. После откручивания выбросьте старый датчик и замените его новым.
  • Большинство кислородных датчиков поставляются со специальным электропроводящим противозадирным составом, нанесенным на резьбу, так что нужно просто вставить новый датчик в пустоту, оставленную старым.
  • Чтобы защитить датчик от приваривания к резьбе, датчики Delphi поставляются с противозадирными составами, нанесенными заранее или включенными в комплект. При необходимости нанесите состав на новый датчик перед повторной установкой. Будьте осторожны, чтобы не нанести чрезмерное количество противозадирного средства на нитки, так как это может загрязнить чувствительную область.
  • Затяните датчик с рекомендованным крутящим моментом.
  • Как только датчик будет на месте, вставьте электронный разъем.
  • Теперь снова подключите диагностический прибор и удалите все связанные коды неисправностей.
  • Наконец, включите зажигание и убедитесь, что индикатор проверки двигателя погас, затем выполните дорожное испытание.

Полное руководство по ремонту датчика кислорода и датчика кислорода

Ни один владелец транспортного средства не хочет видеть, как включается контрольный двигатель.Этот предупреждающий знак предназначен для того, чтобы сообщить вам, что вашему автомобилю требуется обслуживание или ремонт. Как правило, когда загорается индикатор проверки двигателя, это означает, что система выхлопных газов вашего автомобиля не работает должным образом. Одна из основных причин, по которой горит индикатор, связана с неисправностью кислородного датчика. Узнайте больше об этом устройстве, чтобы понять, насколько оно важно и когда нужно ремонтировать.

Что такое кислородный датчик и для чего он нужен?

Датчик кислорода является частью системы выбросов в вашем автомобиле.Он измеряет долю кислорода в вашем двигателе. Внутреннее сгорание в автомобиле работает за счет сжигания бензина. Чтобы правильно сжечь бензин, большинству автомобилей требуется соотношение 14 граммов кислорода на каждый грамм газа. Датчик кислорода помогает контролировать этот баланс.

Датчик обычно располагается на стороне пассажира автомобиля и устанавливается непосредственно на выхлопной трубе рядом с каталитическим нейтрализатором. Когда датчик выходит из строя, ваш автомобиль может потерять до 40 процентов своей топливной экономичности, потому что ваш автомобиль будет использовать слишком много газа.

Когда в автомобиле слишком много воздуха, говорят, что двигатель работает на обедненной смеси. Когда в двигатель не хватает воздуха, говорят, что он работает на обогащенной смеси. На обедненной смеси двигатель вызывает рывки или нерешительность при ускорении. Богатая смесь двигателя вызывает перегрев автомобиля и загрязнение окружающей среды. Оба условия могут вызвать возможное повреждение двигателя и плохой расход топлива. Датчик O2 контролирует ваши выбросы.

В вашем автомобиле может быть один, два, три или четыре датчика, в зависимости от типа, марки и модели двигателя.

Признаки неисправности кислородного датчика

Вы можете определить неисправность кислородного датчика по следующим признакам:

  1. Отказ пройти тест на выбросы
  2. Уменьшение пробега топлива
  3. Проверьте, горит ли свет двигателя
  4. Низкая производительность, грубая работа на холостом ходу, остановка двигателя и т. Д.
  5. Программа проверки кода, выявляющая неисправность датчика O2

У наших механиков есть специальное оборудование для проверки датчика кислорода в вашем автомобиле.Используя контрольные световые коды двигателя, мы можем быстро определить, почему горит ваш свет, и предложить решения.

Рекомендации по замене датчика кислорода

Частота замены кислородного датчика будет зависеть от возраста вашего автомобиля и типа имеющегося у вас датчика. В более новых автомобилях, которым меньше 20 лет, вероятно, потребуется заменять датчик примерно каждые 100 000 миль. Автомобили старше середины 1990-х годов потребуют замены при пробеге от 50 000 до 70 000 миль.Ознакомьтесь с рекомендациями производителя по обслуживанию.

Датчики кислорода

довольно легко диагностировать и заменять. Как правило, неисправный датчик O2 не отремонтировать. Его необходимо заменить из-за технологии и материалов, из которых он изготовлен. Есть несколько мест, где можно сделать самодельные работы, которые расскажут вам, как очистить датчик, чтобы получить от него еще несколько миль, но вы только отсрочите неизбежное. Нет гарантии, что очистка датчика решит проблему. Вы также можете повредить чувствительную технику.

Когда вы узнаете, что у вас неисправный датчик, это похоже на замену свечи зажигания. Некоторые люди предпочитают заменять датчик самостоятельно, но для этого вам понадобится специальная розетка. Важно не допускать попадания масла или смазки на датчик. Механик может выполнить работу и убедиться, что она установлена ​​правильно.

Не игнорируйте контрольную лампу двигателя

Индикатор проверки двигателя говорит о том, что в вашей машине жар. Это больной. Это может быть что-то незначительное, например, незакрепленная крышка бензобака.Это также может означать неисправный каталитический нейтрализатор или поврежденные провода. В некоторых автомобилях при изменении влажности может загореться индикатор проверки двигателя.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *