Движение колеса: PhysBook:Электронный учебник физики — PhysBook

PhysBook:Электронный учебник физики — PhysBook

Содержание

  • 1 Учебники
  • 2 Механика
    • 2.1 Кинематика
    • 2.2 Динамика
    • 2.3 Законы сохранения
    • 2.4 Статика
    • 2.5 Механические колебания и волны
  • 3 Термодинамика и МКТ
    • 3.1 МКТ
    • 3. 2 Термодинамика
  • 4 Электродинамика
    • 4.1 Электростатика
    • 4.2 Электрический ток
    • 4.3 Магнетизм
    • 4.4 Электромагнитные колебания и волны
  • 5 Оптика. СТО
    • 5.1 Геометрическая оптика
    • 5.2 Волновая оптика
    • 5. 3 Фотометрия
    • 5.4 Квантовая оптика
    • 5.5 Излучение и спектры
    • 5.6 СТО
  • 6 Атомная и ядерная
    • 6.1 Атомная физика. Квантовая теория
    • 6.2 Ядерная физика
  • 7 Общие темы
  • 8 Новые страницы

Здесь размещена информация по школьной физике:

  1. материалы из учебников, лекций, рефератов, журналов;
  2. разработки уроков, тем;
  3. flash-анимации, фотографии, рисунки различных физических процессов;
  4. ссылки на другие сайты

и многое другое.

Каждый зарегистрированный пользователь сайта имеет возможность выкладывать свои материалы (см. справку), обсуждать уже созданные.

Учебники

Формулы по физике – 7 класс – 8 класс – 9 класс – 10 класс – 11 класс –

Механика

Кинематика

Основные понятия кинематики – Прямолинейное движение – Криволинейное движение – Движение в пространстве

Динамика

Законы Ньютона – Силы в механике – Движение под действием нескольких сил

Законы сохранения

Закон сохранения импульса – Закон сохранения энергии

Статика

Статика твердых тел – Динамика твердых тел – Гидростатика – Гидродинамика

Механические колебания и волны

Механические колебания – Механические волны


Термодинамика и МКТ

МКТ

Основы МКТ – Газовые законы – МКТ идеального газа

Термодинамика

Первый закон термодинамики – Второй закон термодинамики – Жидкость-газ – Поверхностное натяжение – Твердые тела – Тепловое расширение


Электродинамика

Электростатика

Электрическое поле и его параметры – Электроемкость

Электрический ток

Постоянный электрический ток – Электрический ток в металлах – Электрический ток в жидкостях – Электрический ток в газах – Электрический ток в вакууме – Электрический ток в полупроводниках

Магнетизм

Магнитное поле – Электромагнитная индукция

Электромагнитные колебания и волны

Электромагнитные колебания – Производство и передача электроэнергии – Электромагнитные волны


Оптика.

СТО

Геометрическая оптика

Прямолинейное распространение света. Отражение света – Преломление света – Линзы

Волновая оптика

Свет как электромагнитная волна – Интерференция света – Дифракция света

Фотометрия

Фотометрия

Квантовая оптика

Квантовая оптика

Излучение и спектры

Излучение и спектры

СТО

СТО


Атомная и ядерная

Атомная физика. Квантовая теория

Строение атома – Квантовая теория – Излучение атома

Ядерная физика

Атомное ядро – Радиоактивность – Ядерные реакции – Элементарные частицы


Общие темы

Измерения – Методы решения – Развитие науки- Статья- Как писать введение в реферате- Подготовка к ЕГЭ — Репетитор по физике

Новые страницы

Запрос не дал результатов.

Физические основы механики

Рассмотрим теперь плоское движение твердого тела, то есть движение, при котором точки тела описывают траектории, лежащие в параллельных плоскостях.

Пример такого движения — вращение колеса автомобиля при его движении по прямой. Можно взять любую точку 0 тела и мысленно провести через нее ось вращения перпендикулярно плоскостям, в которых лежат траектории точек тела. Тогда ось вращения будет двигаться поступательно, оставаясь все время параллельной самой себе.

Видео 7.2. Плоское движение твердого тела в однородном поле тяжести. Полет плоской картонной фигуры

Соответственно, скорость элементарной массы твердого тела складывается из скорости поступательного движения точки 0 и линейной скорости вращения вокруг связанной с ней (мысленно проведенной) оси:

где — радиус-вектор, определяющий положение элементарной массы по отношению к точке 0.

Кинетическая энергия элементарной массы равна тогда:

Векторное произведение

имеет модуль, равный , где — расстояние массы от оси вращения. Следовательно, третье слагаемое в скобках равно . Второе слагаемое, представляющее собой смешанное произведение векторов, не меняется при циклической перестановке сомножителей:

В результате получим для кинетической энергии элемента твердого тела следующее выражение

Для нахождения кинетической энергии тела просуммируем по всем элементарным массам:

Сумма элементарных масс

есть масса твердого тела. Выражение

где — радиус-вектор центра масс тела относительно точки 0.

Наконец,

— есть момент инерции тела относительно оси вращения. Поэтому для кинетической энергии твердого тела можно записать формулу:

Поскольку выбор мысленной оси вращения всецело в нашей власти, мы упростим полученное выражение, взяв в качестве точки 0

центр масс тела. Тогда = 0 и кинетическая энергия тела при плоском движении равна

Здесь — скорость движения центра масс, a — момент инерции относительно оси, проходящей через центр масс и ортогональной плоскости, где лежат траектории точек тела. Таким образом, кинетическая энергия твердого тела при плоском движении слагается из энергии поступательного движения со скоростью, равной скорости центра масс и энергии вращения вокруг оси, проходящей через центр масс тела.

Движение твердого тела определяется действующими на тело внешними силами и моментами этих сил

Индекс в обозначениях для момента внешней силы означает проекцию момента на ось вращения.

В следующих примерах мы имеем дело с плоским движением.

Видео 7.3. Зависимость поведения цилиндров на наклонной плоскости от характера распределение массы по их объему

Пример 1. Круглое однородное тело (обруч, цилиндр, шар) радиусом и массой скатывается без скольжения по наклонной плоскости под углом к горизонту с высоты (рис. 7.12). Начальная скорость тела равна нулю. Найдем скорость центра масс каждого тела в конце спуска.

Рис. 7.12. Скатывание тела с наклонной плоскости

Рассмотрение данной задачи можно вести двумя способами.

1-й способ. По условию тело катится без проскальзывания. Это условие используется у нас дважды. Сила трения между телом и плоскостью действует в точке соприкосновения и в отсутствие скольжения не превышает своего максимального значения:

где — коэффициент трения скольжения.

Оси координат удобно направить следующим образом: ось х — вдоль движения, ось у — перпендикулярно наклонной плоскости.

Тело движется под действием трех сил: силы тяжести , силы трения и силы нормального давления , так что уравнение поступательного движения центра инерции тела имеет вид:

Вдоль оси у тело не движется. Проецируя уравнение движения центра масс на ось у, получаем для силы нормального давления соотношение:

Проекция уравнения движения на ось х дает:

Так как линейная скорость точек соприкосновения цилиндра с наклонной плоскостью равна нулю (опять используем условие отсутствия проскальзывания), то скорость (ускорение) поступательного движения связаны с угловой скоростью (угловым ускорением) тела обычными соотношениями:

Кроме поступательного движения, тело еще и вращается. Вращение удобно описывать относительно оси z, проходящей через центр масс цилиндра.

Выбор этот обусловлен тем, что линии действия силы тяжести и силы нормального давления плоскости проходят через ось вращения и, следовательно, моменты этих сил равны нулю.

Таким образом, цилиндр вращается только под действием силы трения, и уравнение вращательного движения имеет вид:

Таким образом, получается система 4-х уравнений, описывающих поступательное и вращательное движение с дополнительным неравенством, выражающим закон трения. Решая систему уравнений, находим:

Чем больше момент инерции относительно оси, проходящей через центр масс, тем меньше ускорение тела. Мы уже получили ответ на один из вопросов задачи: шар будет двигаться быстрее цилиндра, а цилиндр — быстрее обруча. Подставляя решение для силы трения в неравенство, выражающее закон трения, находим условие, при котором будет отсутствовать проскальзывание:

Смысл этого условия прост: наклон не должен быть слишком крут.

Итак, центр масс тела движется вдоль плоскости с постоянным ускорением

a, так что зависимость пройденного пути и скорости от времени имеет вид:

Отсюда следует связь скорости и пройденного пути:

К концу спуска тело проходит путь

так что его скорость достигает величины

Подставляя сюда моменты инерции обруча (), цилиндра () и шара (), находим соответственно:

2-й способ. Используем закон сохранения полной энергии. В конце спуска тело приобретает кинетическую энергию

Эта кинетическая энергия приобретена за счет потенциальной энергии . Отсюда следует найдено выше выражение для скорости тела в конце спуска. Такой способ намного короче, но он не позволяет узнать детали процесса: действующие на тело силы и т.п.

В рассмотренном выше примере мы считали примере мы имели дело со случаем, когда проскальзывание отсутствовало. Это позволило утверждать простую связь () между угловой и линейной скоростями тела и его радиусом. Сила трения покоя находилась при этом в результате решения уравнений движения. В случае, когда тело движется с проскальзыванием, заранее известной связи между линейной и угловой скоростями нет. Зато мы заранее знаем силу трения: раз точка соприкосновения тела с поверхностью скользит по поверхности, сила трения есть сила трения скольжения,модуль которой связан с силой нормального давления законом Амонтона — Кулона.

Силы трения, как уже говорилось, направлены так, чтобы препятствовать относительному проскальзыванию соприкасающихся тел. Часто путают это возможное проскальзывание с осуществляемым поступательным движением. Необходимо четко понимать, что не редки случаи, когда сила трения не тормозит, но ускоряет тело, то есть направлена по его движению. Самый известный пример — трогание автомобиля с места. Колеса начинают вращаться и проскальзывают по земле назад. Соответственно, сила трения направлена вперед, и именно она заставляет автомобиль трогаться. Чтобы ближе познакомиться с подобными случаями, рассмотрим пример.

Пример 2. Цирковой артист бросает на арену обруч массой и радиусом , который начинает катиться в горизонтальном направлении со скоростью (рис. 7.13). При этом обручу придано обратное вращение с угловой скоростью . Найдем, при какой угловой скорости обруч после остановки покатится назад к артисту, а также конечную скорость поступательного движения обруча.

Рис. 7.13. Движение обруча с обратным вращением

При обратном вращении обруча точка его касания с ареной движется вперед как из-за вращения, так и из-за поступательного движения обруча. Поэтому неизбежно существует проскальзывание и, значит, сила трения достигает своего максимального значения. Она тормозит как поступательное движение, так и вращение обруча. Может случиться так, что поступательное движение обруча будет остановлено в тот момент, когда он еще сохраняет обратное вращение. Далее сила трения начнет ускорять обруч по направлению к артисту. Ускорение это прекратится, когда исчезнет тенденция к проскальзыванию, после чего обруч покатится назад равномерно с некоторой установившейся скоростью . Может, однако, случиться и так, что раньше будет остановлено обратное вращение, и тогда обруч сохранит поступательное движение вперед, изменив направление вращения на прямое. Чтобы различить эти два случая, качественных рассуждений недостаточно, и мы обратимся к формулам.

Направим ось ОХ направо (в направлении красной стрелки на рис. 7.13), ось вращения ОZ направим на нас (см. следующий пример, там эту ось удобнее направить от нас, то есть за чертеж), то есть в направлении «обратного» вращения, ось OY направим как обычно, вверх. Плоское движение обруча представим как суперпозицию его поступательного движения вместе с центром масс (геометрическим центром, поскольку обруч предполагается однородным). Спроектируем линейные и угловые скорости на соответствующие оси. Тогда, до тех пор, пока сила трения есть сила трения скольжения и направлена она налево, уравнения движения имеют вид

(7.3.1)

(7.3.2)

Уравнение (7.3.1) описывает движение центра масс обруча, а уравнение (7.3.2) его вращение вокруг оси проходящей через центр масс в той системе отсчета, в которой она покоится (системе центра масс). В (7.3.2) учтено, что момент инерции однородного обруча относительно его оси симметрии равен . После элементарного интегрирования получаем

(7.3.3)

(7.3.4)

Поступательное движение прекратится, то есть станет равным нулю, в момент времени

(7.3.5)

Вращение прекратится, то есть станет равным нулю,в момент времени

(7.3.6)

Их отношение

(7. 3.7)

может быть любым ввиду независимости начальных скоростей поступательного и вращательного движений.

Для дальнейшего анализа введем в рассмотрение скорость нижней точки обруча — той его точки, которая касается поверхности арены. Отметим уже здесь, что условием исчезновения проскальзывания является обращение в ноль скорости именно этой точки, потому что скорость соответствующей точки на поверхности арены (той, которой касается обруч) очевидным образом в нашей системе отсчета, где арена неподвижна, равна нулю. Отсутствие проскальзывания это и есть неподвижность этих двух точек относительно друг друга. При выбранном направлении осей OZ и OX, имеем

(7.3.8)

Если , то первым прекратится поступательное движение обруча. В момент времени скорости (7.3.3) и (7.3.8) будут иметь значения

Нижняя точка обруча, за счет продолжающегося вращения, будет по-прежнему скользить относительно арены направо (направо на рисунке 7.13), сила трения скольжения сохранит свою величину и направление налево. Соответственно, центр обруча начнет ускорятся налево, то есть станет меньше нуля и начнет расти по модулю, вращение против часовой стрелки (на рисунке 7.13) будет продолжать замедлятся. Другими словами, при обруч в момент времени (7.3.5) начинает возвращаться к бросившему его артисту.

Как следует из (7.3.8), в момент времени

(7.3.9)

скорость нижней точки обруча из (7.3.8) обращается в ноль, проскальзывание прекращается, сила трения скольжения скачком сменяется равной нулю силой трения покоя (силой трения качения пренебрегаем) и обруч начинает катится к артисту с постоянной скоростью движения центра масс

(7.3.10)

вращаясь против часовой стрелки с постоянной угловой скоростью

(7.3.11)

Если , то первым, в момент времени (7.3.6), прекратится вращение обруча. В момент времени скорость (7.3.8) нижней точки обруча будет равна скорости его центра и положительна:

(7.3.12)

Скольжение остается, сила трения скольжения сохраняет свою величину и направление налево, но обруч под действием этой силы трения скольжения начинает вращаться по часовой стрелке (напоминаем: налево, направо, по или против часовой стрелки — на рисунке 10). В результате этого скорость центра масс (центра обруча) будет уменьшаться, скорость вращения увеличиваться, в момент времени

(7.3.13)

проскальзывание обруча прекратится и обруч начнет равномерно удаляться от артиста со скоростью центра (7.3.10) и угловой скоростью вращения (7.3.11). Напомним, что в этом случае , так что а

Таким образом, ответ на вопрос: «Вернется обруч или укатится?» определяется начальными условиями, а конкретнее величиной параметра , который имеет простой физический смысл: это отношение модуля

скорости любой точки обруча за счет его поступательного движения вместе с центром масс к модулю скорости той же точки за счет вращения обруча вокруг оси, проходящей через его центр масс, в начальный момент времени.

Пример 3. Описать движение обруча (см. предыдущий пример), если ему придано прямое вращение (рис. 7.14). Поскольку обруч вращается теперь на рис. 7.14 по часовой стрелке, направим ось вращения OZ от нас, то есть за чертеж — в отличие от предыдущего случая.

Рис. 7.14. Движение обруча с прямым вращением: 1 – ; 2 –

Начальная скорость нижней точки обруча складывается из скорости поступательного движения и линейной скорости за счет вращения, направленной в противоположную сторону. В связи с этим надо различать два случая.

1 случай или . Тогда начальная скорость нижней точки обода положительна, то есть, направлена в ту же сторону, что и скорость . Значит, сила трения f направлена в противоположную сторону, как показано на рис. 11–1. В связи с изменением положительного направления оси вращения необходимо лишь изменить знак перед вторым слагаемым в уравнении (7.3.4). Решение уравнений движения в рассматриваемом случае имеют вид

(7.3.14)

(7.3.15)

При новом выборе направления оси вращения скорость нижней точки обруча записывается в виде

(7.3.16)

Момент исчезновения проскальзывания определится из того же соотношения равенства нулю скорости нижней точки обруча или равенства по модулю противоположно направленных скоростей этой точки за счет поступательного движения вместе с центром масс и вращательного движение вокруг оси, проходящей через центр масс:

откуда находим:

Скорость поступательного движения обруча в этот момент становится равной

и остается потом неизменной. Эта скорость меньше начальной скорости поступательного движения обруча.

2 случай или . В этом случае скорость нижней точки обода отрицательна, направлена против скорости . Значит, сила трения направлена по (см. рис.11-2).

Соответственно, в уравнениях движения и их решениях (7.3.14) и (7.3.15) надо изменить знаки на противоположные перед вторыми слагаемыми, содержащими изменившую направление силу трения, получаем:

(7.3.17)

(7.3.18)

Соответственно, выражение для скорости нижней точки обруча приобретает вид:

(7.3.19)

Момент прекращения проскальзывания определяется аналогично и оказывается равным:

а для скорости установившегося движения получается вновь выражение

но в данном случае она будет больше () начальной скорости поступательного движения.

Объединяя оба случая в один, записываем окончательный результат:

Дополнительная информация

http://www. plib.ru/library/book/14978.html Сивухин Д.В. Общий курс физики, том 1, Механика Изд. Наука 1979 г. — стр. 256 (§ 48, задача 9): рассмотрено движение маятника Максвелла, включая силу натяжения нитей подвеса в нижней точке.

http://kvant.mirror1.mccme.ru/pdf/1997/04/kv0497khorozov.pdf — журнал «Квант» — решение задачи об отскоке вращающегося мяча от плоской стенки (С. Хорозов).

http://kvant.mirror1.mccme.ru/pdf/1998/04/kv0498chernoutsan.pdf — журнал «Квант» — применение законов динамики твердого тела в задаче о падении вертикальной палочки на горизонтальный стол (А. Черноуцан).

http://kvant.mirror1.mccme.ru/pdf/1999/02/kv0299chernoutsan.pdf — журнал «Квант» — продолжение задачи о падении вертикальной палочки на горизонтальный стол (А. Черноуцан).

набор движения колеса следа шины роялти бесплатно векторное изображение

набор движения колеса следа шины роялти бесплатно векторное изображение
  1. org/ListItem»> лицензионные векторы
  2. Векторы шин
ЛицензияПодробнее
Стандарт Вы можете использовать вектор в личных и коммерческих целях. Расширенный Вы можете использовать вектор на предметах для перепродажи и печати по требованию.

Тип лицензии определяет, как вы можете использовать этот образ.

Станд. Расшир.
Печатный/редакционный
Графический дизайн
Веб-дизайн
Социальные сети
Редактировать и изменить
Многопользовательский
Предметы перепродажи
Печать по требованию
Способы покупкиСравнить
Плата за изображение $ 14,99 Кредиты $ 1,00 Подписка $ 0,69

Оплатить стандартные лицензии можно тремя способами. Цены составляют долларов США долларов США.

Оплата с помощью Цена изображения
Плата за изображение $ 14,99 Одноразовый платеж
Предоплаченные кредиты $ 1 Загружайте изображения по запросу (1 кредит = 1 доллар США). Минимальная покупка 30р.
План подписки От 69 центов Выберите месячный план. Неиспользованные загрузки автоматически переносятся на следующий месяц.
Способы покупкиСравнить
Плата за изображение $ 39,99 Кредиты $ 30,00

Существует два способа оплаты расширенных лицензий. Цены составляют долларов США долларов США.

Оплата с помощью Стоимость изображения
Плата за изображение $ 39,99 Оплата разовая, регистрация не требуется.
Предоплаченные кредиты $ 30 Загружайте изображения по запросу (1 кредит = 1 доллар США).
Дополнительные услугиПодробнее
Настроить изображение Доступно только с оплатой за изображение $ 85,00

Нравится изображение, но нужны лишь некоторые модификации? Пусть наши талантливые художники сделают всю работу за вас!

Мы свяжем вас с дизайнером, который сможет внести изменения и отправить вам изображение в выбранном вами формате.

Примеры
  • Изменить текст
  • Изменить цвета
  • Изменение размера до новых размеров
  • Включить логотип или символ
  • Добавьте свою компанию или название компании
файлов включены

Загрузка сведений…

  • Идентификатор изображения
    26843438
  • Цветовой режим
    RGB
  • Художник
    лонгкватро

Лучший способ измерения движения рулевого колеса

Электронный контроль устойчивости (ESC), гидроусилитель руля и различные усовершенствованные системы помощи водителю (ADAS) полагаются на информацию о положении рулевого колеса, скорости поворота и направлении поворота. Эти данные поступают от датчиков угла поворота рулевого колеса, установленных на стойке. Производители транспортных средств ожидают от них точности и надежности, так как они являются критически важными для безопасности устройствами. Они также ищут самую маленькую, легкую и недорогую упаковку, которая выполняет свою работу.

Эта потребность побудила компанию Wells Engineered Products недавно адаптировать новую сенсорную технологию — определение поворотного положения — и применить ее для измерения угла поворота рулевого колеса, что дает многочисленные преимущества по сравнению с датчиками угла поворота рулевого колеса, используемыми сегодня.

Измерение намерений водителя

То, как водитель поворачивает руль, передает много информации о том, что он хочет от автомобиля, особенно при использовании совместно с датчиками скорости вращения колес. Например, для маневрирования на низкой скорости часто требуется несколько быстрых поворотов в обоих направлениях. Те же движения, выполняемые на высоких скоростях, подразумевают, что транспортное средство движется неконтролируемым образом.

Аналогично, левое и правое колеса, вращающиеся с разной скоростью, а руль направлен прямо вперед, указывает на отсутствие сцепления с дорогой.

ESC и другие системы безопасности принимают эти данные и сравнивают их с фактическими действиями автомобиля. Затем сложные алгоритмы определяют необходимые корректирующие или корректирующие действия. Это может включать снижение оборотов двигателя и торможение некоторых или всех колес.

Датчики угла поворота рулевого колеса — это важные для безопасности компоненты, отказ которых может привести к непредсказуемым последствиям. Чтобы избежать таких проблем, используют два, иногда три датчика. Эта избыточность позволяет системам автомобиля проверять правильность и обнаруживать любые проблемы с датчиками. Расхождения между датчиками приведут к отключению ESC и установке неисправности.

Угол поворота рулевого колеса Технология датчиков

В рулевой колонке используется несколько различных типов датчиков. У некоторых колонка поворачивает маленькую шестеренку и измеряет, как она движется. Другие используют датчики Холла или светодиодные фонари. Некоторые датчики могут отслеживать вращение только за один оборот и нуждаются в дополнительном счетчике оборотов, встроенном в электронику, в то время как другие могут обрабатывать несколько оборотов.

Выход — еще одно отличие. Доступны как цифровые, так и аналоговые выходы. Цифровые выходы могут быть переданы непосредственно в шину CAN, в то время как аналоговые сигналы линейно увеличиваются от 0 до +/-5В. (Как правило, положительное напряжение указывает на движение колеса по часовой стрелке, а отрицательное — против часовой стрелки.)

Калибровка датчика

Датчики угла поворота рулевого колеса нуждаются в калибровке как при установке, так и периодически в течение всего срока службы автомобиля. Наиболее распространенной причиной калибровки является соблюдение выравнивания передних колес. На некоторых автомобилях замены батареи может быть достаточно, чтобы датчики нуждались в повторной калибровке. Если этого не сделать, чаще всего система ESC не работает и загорается сигнальная лампа.

Производители датчиков предлагают различные методы калибровки. Некоторые из них должны выполняться техническим специалистом, в то время как другие имеют встроенные процедуры автоматической калибровки. При выборе датчика угла поворота рулевого колеса важно подтвердить, какой метод калибровки используется.

Датчик положения вращения Wells Engineered Products

Новый датчик, разработанный Wells Engineered Products, основан на принципе двухосного синусоидального намагничивания. Применимый везде, где важно знать скорость и направление вращения вала, датчик состоит из магнитного кольца, установленного на валу, и бесконтактного датчика. (Для резервирования полное решение рулевой колонки будет использовать два датчика.)

Используя изменения магнитного поля, возникающие в результате относительного движения, запатентованный датчик положения поворота обеспечивает два аналоговых синусоидальных и косинусных выхода. Взаимодействие между ними дает ESC и другим системам безопасности угол поворота рулевого колеса в течение нескольких поворотов, а также скорость поворота и направление поворота.

Доступны другие выходы, включая цифровые сигналы. Команда Wells Engineered Products работает с клиентами, чтобы удовлетворить их требования к соединителям и интерфейсам.

Конструкция без ламинирования повышает долговечность и минимизирует чувствительность к локальным магнитным полям. Точность датчика составляет 0,5°, а устойчивость к вибрации, экстремальным температурам, грязи и влаге выше, чем у конкурирующих датчиков угла поворота рулевого колеса. Калибровка проста и более того; датчик легче и имеет меньший форм-фактор, чем альтернативы.

О компании Wells Engineered Products

Компания Wells Engineered Products со штаб-квартирой в Фон-дю-Лак, штат Висконсин, специализируется на разработке и производстве высококачественных электронных датчиков и связанных с ними устройств для улучшения работы двигателя и транспортного средства, управления и контроля.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *