Из чего состоит свеча зажигания – элементы свечи и какова их роль?

Содержание

Устройство свечи зажигания

При всем разнообразии конструкций, любая искровая свеча зажигания (рис.9) включает 8 себя керамический изолятор, металлический корпус, электроды и контактную головку для соединения с высоковольтным проводом.

Центральный электрод установлен в канале изолятора, имеющем переменный диаметр. Головка электрода опирается на коническую поверхность канала изолятора в месте перехода от большего диаметра к меньшему. Рабочая часть центрального электрода выступает на величину от 1.0 до 5.0 мм из изолятора. Закрепление электрода в канале изолятора и герметизацию этого соединения осуществляют с использованием стеклогерметика. Он представляет собой смесь специального технического стекла и порошка металла. Стекло должно иметь коэффициент термического расширения одинаковый с этим коэффициентом у керамики. В этом случае герметизирующая пробка не разрушится при изменениях температуры в процессе эксплуатации. Порошок могалла (медь или свинец) добавляют в стекло для придания ему электрической проводимости.

Рис. 9 - Устройство искровой свечи зажигания: 1 - контактная гайка: 2 - оребрение изолятора (барьеры для тока уточки): 3 - контактный стержень: 4 - керамический изолятор: 5 - металлический корпус, б - пробка стеклогерметика. 7 - уплотнительное колыю: 8 - теплоотводящая шайба: 9 - центральный электрод. 10 - тепловой конус изолятора: 11 - рабочая камора: 12 боковой электрод -массы-: h - искровой зазор

Сборку сердечника (изолятора в сборе с центральным электродом и контактным стержнем) осуществляют в следующем порядке. Электрод устанавливают в канале изолятора и сверху засыпают порошкообразный стеклогерметик или укладывают ого в виде таблетки. Затем в канал изолятора устанавливают контактную головку. До запрессовки стеклогерметик занимает больший объем, чем после этой операции, и контактный стержень не может полностью войти в канал изолятора Он примерно на треть длины выступает над изолятором. Заготовку нагревают до температуры 700-900 "С и с усилием в несколько десятков килограммов контактный стержень вводят о размягченный под воздействием температуры стеклогерметик. При этом он затекает в зазоры между каналом изолятора, головкой центрального электрода и контактной головкой. После остывания стеклогерметик затвердевает и надежно закрепляет обе детали в канале изолятора Между торцами электрода и контактной головки образуется герметизирующая пробка высотой от 1.5 до 7,0 мм, полностью перекрывающая канал изолятора от прорыва газов

В случае необходимости встроить в цепь центрального электрода электрическое сопротивление для подавления электромагнитных помех применяют резистивный стеклогерметик. После остывания герметизирующая пробка приобретает электрическое сопротивление необходимой величины.

Сердечник устанавливают в корпусе свечи так, что он соприкасается своей конической поверхностью с соответствующей поверхностью внутри корпуса. Между этими поверхностями устанавливают герметизирующую -теплоотводящую» шайбу (медную или стальную).

Закрепление сердечника осуществляют завальцовкой буртика корпуса на поясок изолятора. Герметизацию по соединению изолятор - корпус осуществляют методом осадки корпуса в нагретом состоянии (термоосадкой).

Боковой электрод -массы» прямоугольного сечения приваривают к торцу корпуса и изгибают в сторону центрального. На цоколь корпуса с упором в плоскую опорную поверхность устанавливают уплотнительное кольцо, предназначенное для герметизации соединения свеча - двигатель.

На резьбовую часть контактного стержня устанавливают контактную гайку, если это требуется конструкцией наконечника высоковольтного провода. В некоторых свечах контактный стержень не имеет резьбовой головки, она сразу же штампуется в форме контактной гайки.

ИЗОЛЯТОР

Для обеспечения бесперебойности искрообразования изолятор должен обладать необходимой электрической прочностью даже при высокой рабочей температуре. Напряжение, прикладываемое к изолятору в процессе работы двигателя, равно напряжению пробоя искрового зазора. Это напряжение возрастает с увеличением давления и величины зазора и уменьшается по мере возрастания температуры. На двигателях с классической системой зажигания используются свечи с искровым зазором 0.5-0,7 мм. Максимальная величина напряжения пробоя в этих условиях не превышает 12-15 кВ (амплитудное значение). На двигателях с электронными системами зажигания установочный искровой зазор составляет 0,8-1,0 мм. В процессе эксплуатации он может увеличиться до 1,3-1,5 мм (у обеих систем). При этом напряжение пробоя может достигать 20-25 кВ.

Конструкция изолятора относительно проста - это цилиндр с осевым отверстием для установки центрального электрода.

в средней части изолятора имеется утолщение, так называемый -поясок- для соединения с корпусом. Ниже пояска расположена более тонкая цилиндрическая часть - -дульце-, переходящая в тепловой конус. В месте перехода от дульца к тепловому конусу расположена коническая поверхность, предназначенная для установки между изолятором и корпусом герметизирующей теплоотводящей шайбы. Выше пояска расположена -головка', а в месте перехода от пояска к головке расположено плечико под завальцовку буртика корпуса при сборке свечи.

Допустимая, с учетом коэффициента запаса прочности, толщина стенок определяется электрической прочностью материала изолятора. По отечественным стандартам изолятор должен выдерживать испытательное напряжение от 18 до 22 кВ (действующее значение), что больше амплитудного в 1.4 раза Длина головки изолятора определяется напряжением поверхностного перекрытия и выполняется в пределах от 15 до 35 мм. У большинства автомобильных свечей эта величина около 25 мм. Дальнейшее увеличение малоэффективно и приводит к снижению механической прочности изолятора. Для исключения возможности электрического пробоя по поверхности изолятора его головку снабжают кольцевыми канавками (барьерами тока) и покрывают специальной глазурью для защиты от возможного загрязнения.

Функцию защиты от поверхностного перекрытия со стороны камеры сгорания выполняет тепловой конус. Эта важнейшая часть изолятора при относительно небольших размерах выдерживает без перекрытия по поверхности указанное выше напряжение.

Первоначально в качестве материала изолятора применяли обычный фарфор. но такой изолятор плохо сопротивлялся тепловому воздействию и имел низкую механическую прочность.

С увеличением мощности двигателей потребовались изоляторы более надежные. чем фарфоровые. Продолжительное время применяли слюдяные изоляторы. Однако при использовании топлив с присадкой свинца слюда разрушалась. Изоляторы снова стали изготавливать керамическими, но не из фарфора, а из особо прочной технической керамики.

Наиболее распространенной и экономически целесообразной для производства изоляторов является технология изостатического прессования, когда из заранее подготовленных компонентов изготавливают гранулы необходимого состава и физических свойств. Из гранул при высоком давлении прессуют заготовки изоляторов, шлифуют до необходимых размеров с учетом усадки при обжиге, а затем однократно обжигают.

Современные изоляторы изготавливают из высокоглиноземистой конструкционной керамики на основе оксида алюминия. Такая керамика, содержащая около 95% оксида алюминия, способна выдержать температуру до 1600 'С и имеет высокую электрическую и механическую прочность.

Важнейшим преимуществом керамики из оксида алюминия является то, что она обладает высокой теплопроводностью. Это существенно улучшает тепловую характеристику свечи, так как через изолятор проходит основной поток тепла, поступающий в свечу через тепловой конус и центральный электрод (рис. 10).

КОРПУС

Металлический корпус предназначен для установки свечи в двигатель и обеспечивает герметичность соединения с изолятором. К его торцу приваривается боковой электрод, а в конструкциях с кольцевым искровым зазором корпус непосредственно выполняет функцию электрода «массы».

Корпус изготавливают штамповкой или точением из конструкционных малоуглеродистых сталей.

внутри корпуса имеется кольцевой выступ с конической поверхностью. на которую опирается изолятор. На цилиндрической части корпуса выполнена кольцевая проточка, так называемая термоосадочная канавка. В процессе сборки свечи верхний буртик корпуса завальцовывают на поясок изолятора. Затем его нагревают и осаживают на прессе, при этом термоосадочная канавка подвергается пластической деформации, и корпус плотно охватывает изолятор. В результате термоосадки корпус оказывается в напряженном состоянии, что обеспечивает герметичность свечи на весь срок службы.

Рис. 10. Тепловые потоки в изоляторе свечи

ЭЛЕКТРОДЫ

Как сказано выше, для улучшения эффективности воспламенения электроды свечи должны быть как можно более тонкими и длинными, а искровой зазор должен иметь максимально допустимую величину. С другой стороны, для обеспечения долговечности электроды должны быть достаточно массивными.

Поэтому, в зависимости от требований к мощности, топливной экономичности и токсичности двигателей, с одной стороны, и требований к долговечности свечи с другой стороны, к каждому типу двигателя разрабатывалась своя конструкция электродов.

Появление биметаллических электродов позволило в определенной степени решить эту проблему, так как такой электрод имеет достаточную теплопроводность. В отличие от обычного «монометаллического» он при работе на двигателе имеет меньшую температуру и соответственно больший ресурс. В тех случаях, когда требуется увеличить ресурс, применяют два электрода "массы- (рис.11). На свечах зарубежного производства с этой целью применяют три и даже четыре электрода. Отечественная промышленность выпускает свечи с таким количеством электродов только для авиационных и промышленных газовых двигателей. Следует отметить, что с увеличением числа электродов снижается стойкость к образованию нагара и затрудняется очистка от нагара.

К материалу электродов предъявляются следующие требования высокая коррозионная и эрозионная стойкость: жаростойкость и окалиностойкость: высокая теплопроводность; достаточная для штамповки пластичность. Стоимость материала не должна быть высокой Наибольшее распространение в отечественной промышленности для изготовления центральных электродов свечей зажигания получили жаростойкие сплавы: железо-хромтитан, никель-хром-железо и никельхром с различными легирующими добавками

Рис. 11. Свеча А26ДВ-1 с двумя боковыми электродами «массы-

Боковой электрод «массы» должен обладать высокой жаростойкостью и стойкостью к коррозии. Он должен обладать хорошей свариваемостью с обычной конструкционной сталью, из которой изготавливают корпус, поэтому применяют сплав никель - марганец (например. НМц-5). Боковой электрод должен обладать хорошей пластичностью для обеспечения возможности регулирования искрового зазора.

С целью снижения гасящего влияния электродов при доработке свечей на электродах выполняют канавки, в электроде -массы» выполняют сквозные отверстия. Иногда боковой электрод разделяют на две части, превращая одноэлектродную свечу в двухэлектродную.

ВСТРОЕННЫЙ РЕЗИСТОР

Искровой разряд является источником электромагнитных помех, в том числе радиоприему. Для их подавления между центральным электродом и контактной головкой устанавливают резистор, имеющий при температуре 25±10 'С электрическое сопротивление от 4 до 13к0м. В процессе эксплуатации допускается изменение величины этого сопротивления в диапазоне 2-50 кОм после воздействия температуры от -40 до +300 'С и импульсов высокого напряжения.

ДОПОЛНИТЕЛЬНЫЙ ИЗОЛЯТОР

Даже небольшие потери энергии зажигания приводят к ослаблению искры со всеми неприятными последствиями: ухудшение пуска, неустойчивая работа на холостом ходу, потеря мощности двигателя, перерасход топлива, рост токсичности отработавших газов и т. д. Если поверхность изолятора покрыта нагаром, грязью или просто влагой, происходит утечка тока «на массу». Она обнаруживается в темноте в виде коронного разряда по поверхности изолятора. Утечка по загрязненной поверхности теплового конуса изолятора в камере сгорания двигателя может привести к отказу в искрообразовании. Наиболее радикальным способом повышения электрической прочности изоляции является установка между корпусом и контактной головкой свечи дополнительного изолятора в виде керамической втулки. Таким образом, свеча приобретает двойную защиту от утечек тока «на массу».

Данное техническое рошенио защищено патентом и реализовано у нас в стране ЗАО «Автоконинвест» (Москва).

ФОРКАМЕРНЫЕ СВЕЧИ

Рис. 12. Форкамерная свеча зажигания

Известны различные варианты устройства свечи, у которых рабочая камера выполнена в виде форкамеры. Их используют с целью улучшения сгорания рабочей смеси. Форкамерные свечи подобны свечам для спортивных форсированных двигателей, где электроды для защиты от перегрева установлены глубоко внутри рабочей камеры корпуса. Отличие заключается в том. что отверстие. соединяющее рабочую камеру (форкамеру) с цилиндром двигателя, делают специальной формы. При сжатии свежая смесь поступает в форкамеру, искровой разряд возникает в области вихревого потока, и образование первичного очага воспламенения становится интенсивнее. Благодаря этому обеспечивается быстрое распространение пламени в форкамере. Давление быстро возрастает и выбрасывает факел пламени, проникающий в камеру сгорания двигателя и интенсифицирующий воспламенение даже сильно обедненной рабочей смеси.

При перетекании горящих газов из форкамеры в цилиндр двигателя, в связи с турбулизацией горючей смеси, ускоряется и становится более эффективным процесс сгорания. Это. в свою очередь, может привести к улучшению показателей, характеризующих топливную экономичность и токсичность отработавших газов.

Недостатки форкамерных свечей заключаются в том, что велико гасящее влияние электродов, а стойкость к образованию нагара мала. Вентиляция форкамеры затруднена и горючая смесь в ней содержит повышенное количество остаточных газов. При перетекании горящих газов из форкамеры в цилиндр возникают дополнительные тепловые потери. Один из вариантов форкамерной свечи представлен на рис. 12. 


largus-mcv.ru

Свечи зажигания, устройство | Twokarburators.ru

Свеча зажигания – устройство, предназначенное для воспламенения топливной смеси, поступающей в камеры сгорания двигателя, в конце такта сжатия.

Принцип действия

Электрический ток высокого напряжения (до 40.000 В) подаётся по высоковольтным проводам от катушки зажигания, через распределитель зажигания, к свече зажигания. Между центральным электродом свечи (плюс) и её боковым электродом (минус) возникает искровой разряд. От этой искры воспламеняется топливная смесь, находящаяся в камере сгорания двигателя в конце такта сжатия.


Виды свечей зажигания

Свечи зажигания бывают искровые, дуговые, накаливания. Нас будут интересовать искровые, применяющиеся в бензиновых двигателях внутреннего сгорания.

Расшифровка маркировки свечей зажигания отечественного производства

В качестве примера возьмём широко распространённую свечу А17ДВРМ.

А – резьба М 14 1,25

17 – калильное число

Д – длина резьбовой части 19 мм (с плоской посадочной поверхностью)

В – выступание теплового конуса изолятора свечи за торец резьбовой части корпуса

Р – встроенный помехоподавительный резистор

М – биметаллический центральный электрод

Также могут быть указаны – дата изготовления, производитель, страна изготовления.

Подробнее: «Расшифровка маркировки свечей зажигания отечественного производства».

Маркировка свечей зажигания импортного производства не имеет единой системы расшифровки. Что она означает для тех или иных свечей можно посмотреть на сайтах их производителей.

 

Устройство свечи зажигания

 

Контактный наконечник. Служит для крепления высоковольтного провода на свече.

Изолятор. Выполнен из высокопрочной алюминиево-оксидной керамики, выдерживающей температуру до 1000и электрический ток напряжением до 60.000 В. Необходим для электрической изоляции внутренних деталей свечи (центрального электрода и т. д.) от ее корпуса. То есть разделения «плюса» и «минуса». Имеет несколько кольцевых канавок в верхней части и покрытие из специальной глазури, служащих для предотвращения утечки тока. Часть изолятора со стороны камеры сгорания, выполненная в виде конуса называется тепловым конусом и может как выступать за пределы резьбовой части корпуса (горячая свеча), так и быть утопленным в него (холодная свеча).

Корпус свечи. Изготовлен из стали. Служит для вворачивания свечи в головку блока двигателя и отведения тепла от изолятора и электрода. Помимо этого он является проводником «массы» автомобиля к боковому электроду свечи.

Центральный электрод. Наконечник центрального электрода изготавливают из жаростойкого железо-никелевого сплава с сердечником из меди и других редкоземельных металлов (т. н. биметаллический электрод). Он проводит электрический ток для создания искры и является наиболее горячей частью свечи.

Боковой электрод. Изготавливается из жаропрочной стали с примесью марганца и никеля. На некоторых свечах может быть несколько боковых электродов для улучшения искрообразования. Так же существуют биметаллические боковые электроды (например, железо с медью) имеющие лучшую теплопроводность и увеличенный ресурс. Боковой электрод предназначен для обеспечения образования искры на свече зажигания между ним и центральным электродом. Выполняет роль «массы» (минуса).

Помехоподавительный резистор. Изготовлен из керамики. Служит для подавления радиопомех. Соединение резистора с центральным электродом герметизировано специальным герметиком. Имеется не на всех свечах зажигания. Например А17ДВ его нет, А17ДВР есть.

Уплотнительное кольцо. Выполнено из металла. Служит для уплотнения соединения свечи с посадочным гнездом в головке блока. Присутствует на свечах с плоской контактной поверхностью. На свечах с конусной контактной поверхностью его нет. На модели показана свеча с плоской посадочной поверхностью и уплотнительным кольцом.

Зазор между электродами свечи зажигания

Двигатель легкового автомобиля эффективно работает только при определенном зазоре между электродами свечей зажигания. Зазор в свечах зажигания должен соответствовать требованиям заводской инструкции по эксплуатации автомобиля. При меньшем зазоре искра между электродами получается короткой и слабой, сгорание топливной смеси ухудшается. При большем зазоре увеличивается напряжение, необходимое для пробивания воздушного промежутка между электродами свечи, и искры вообще может не быть или она будет, но очень слабая.

Измеряется зазор при помощи круглого щупа необходимого диаметра. Не рекомендуется применение плоского щупа, так как измерение зазора будет неточным. Объясняется это тем, что при работе свечи происходит перенос металла с одного электрода на другой. На одном электроде, со временем, образуется ямка, на другом бугорок. Поэтому для измерения зазоров подходят только круглые щупы.

Зазор между электродами свечи зажигания регулируют только подгибанием бокового электрода.

С наступлением зимы, для снижения пробивного напряжения нормальный зазор можно уменьшить на 0,1 – 0,2 мм. При прокрутке двигателя стартером в мороз, двигатель быстрее будет схватывать.

Калильное число

Тепловая характеристика свечи зажигания (способность противостоять нагреву) называется калильным числом. Для каждого типа двигателя требуется свеча зажигания с определенным калильным числом. Свечи делятся на холодные (с высоким калильным числом) и горячие (с низким калильным числом).

Калильное число определяется материалом изолятора и длиной его нижней части (у горячих свечей он более длинный). Отечественные свечи имеют показатели калильного числа от 11 до 23, зарубежные индивидуально у каждого производителя.

При неправильно подобранных свечах зажигания возможно калильное зажигание, когда топливная смесь в цилиндрах поджигается преждевременно не электрической искрой, возникающей между ее электродами, а  от раскаленного корпуса свечи. Двигатель в этом случае звенит под нагрузкой (детонация, «пальцы стучат») как при неверно выставленном угле опережения зажигания, а также продолжает некоторое время работать при выключении зажигания. Необходимо заменить свечи на более холодные.

И, наоборот, наличие постоянно возникающих черных отложений (нагар) на электродах свечей, при заведомо исправном двигателе, говорит о том, что свечи зажигания холодные и их следует заменить на более горячие.

Правильно подобранные свечи должны иметь светло-коричневый цвет в нижней части, так как температурный режим такой свечи 600-8000. В этом случае свеча самоочищается, масло, попавшее на нее, выгорает, нагар не образуется. Если температура ниже 600(например, при постоянном движении в городе), то свеча очень быстро покрывается нагаром, если выше 800(при движении на мощностных режимах) возникает калильное зажигание. Поэтому стоит подбирать свечи для своего двигателя согласно рекомендациям его завода-производителя.
[driwenetwork]

Проверка свечей зажигания

Выкрутите свечи и осмотрите их центральные электроды. Если они черные — топливная смесь переобогащается, если они светлые (светло-серые) — топливная смесь обеднена.

Дефектные свечи меняем. Подробнее об этом на странице «Неисправности свечей зажигания» .Применяемость свечей зажигания для разных двигателей можно посмотреть на странице  «Применяемость свечей зажигания для двигателей автомобилей ВАЗ»

Еще пять статей по электрике автомобилей ВАЗ

— Применяемость свечей зажигания на автомобилях ВАЗ

— Неисправности свечей зажигания

— Неисправности бесконтактной системы зажигания автомобилей ВАЗ 2108, 2109, 21099

— Порядок присоединения высоковольтных проводов к крышке трамблера на автомобилях ВАЗ 2108, 2109, 21099

— Проверка высоковольтных проводов на автомобилях ВАЗ 2108, 2109, 21099

twokarburators.ru

Свечи зажигания - когда менять. Выбор и уход

  После приобретения автомобиля появляется вопрос - когда правильно менять свечи зажигания -  по их фактическому износу или в рекомендованный производителем машины или свечей срок. Иногда необходимость замены возникает намного раньше рекомендованного срока, а бывает и наоборот, двигатель работает нормально, при этом рекомендуемый срок замены свечей давно вышел. Если внеплановая замена уж точно не навредит, то интересуют последствия, если не менять свечи зажигания в указанные (рекомендованные)  сроки.

  Есть много факторов, которые влияют на то, как долго ваш автомобиль может работать на одном комплекте свечей зажигания без необходимости замены. Это и стиль вождения, марка и качество топлива, которое  используется, марка и производитель самих свечей, общее состояние двигателя  автомобиля. Замена свечей зажигания – простая процедура, под силу любому новичку, да и новые свечи стоят не очень дорого. Однако, надо уметь определять, когда требуется замена свечей зажигания или высоковольтных проводов, чтобы  двигатель был всегда в отличном состоянии. Новые свечи зажигания поддерживают оптимальную работу двигателя и его эффективность. Двигатель автомобиля, при каждом рабочем цикле производит зажигания в нужное время для  воспламенения рабочей смеси.  Поджог этой смеси производится при помощи электрического разряда в несколько тысяч или десятков тысяч вольт, который возникает между электродами свечи. Но если в зажигании будут появляться проблемы, это влияет на мощность двигателя и на объем испарений топлива из двигателя, которые не сгорели.

Новые автомобили  оснащены бортовым компьютером, которые подсказывают водителю с помощью индикации на панели приборов Check Engine,  которая указывает на проблемы в работе двигателя автомобиля. Чтобы уменьшить пропуски зажигания в двигателе и для поддержания его максимальной производительности, важно менять свечи зажигания, в то время когда они только начинают изнашиваться.  Производители свечей определяют период эксплуатации  в зависимости от материалов, из которых изготовлены электроды. Так, для классических свечей, средний срок службы составляет не более 50 тысяч километров пробега (30-35 тыс. км). Для платиновых и иридиевых - не более 90 тысяч километров пробега. Естественно, эти цифры могут корректироваться в зависимости, например, от того, какого качества бензин заливается в автомобиль, и в каком состоянии находится сам двигатель. 

 Обычная свеча зажигания состоит из нескольких компонентов:

  • Контактный вывод  - предназначен для подключения свечи к высоковольтным проводам системы зажигания или напрямую к катушке зажигания;
  • Изолятор - предохраняет свечу от перегревов, часть изолятора, непосредственно прилегающая к центральному электроду, наиболее сильно влияет на качество работы свечи зажигания;
  • Ребра изолятора -  предотвращают электрический пробой по его поверхности;
  • Центральный и боковой электрод - между ними  возникает искра, которая и воспламеняющая топливно-воздушную смесь в цилиндре;
  • Уплотнительное кольцо - предназначено для предотвращения проникновения горячих газов из камеры сгорания.

 Основные признаки неисправности свечей зажигания:

  • затрудненный запуск мотора (стартер срабатывает, но двигатель не заводится или заводится после длительного использования стартера)
  • двигатель «троит» (его подергивает при езде, особенно заметно на холостых оборотах, уменьшена мощность, тяга)
  • увеличен расход топлива
  • увеличено  СО в выхлопных газах 
  • ухудшена динамика  двигателя (мотор плохо  развивает обороты и соответственно, падает его мощность)

Одним из печальных последствий неисправности свечей зажигания может быть детонация в камере сгорания двигателя. В результате детонации определенного объема смеси возникает ударная волна, которая в зависимости от объема смеси, может иметь такую интенсивность, что своей энергией заставит сдетонировать весь оставшийся в цилиндре заряд. При отражении ударных волн от стенки камеры сгорания возникает звонкий металлический звук. При сильной детонации стуки становятся громче, мощность двигателя падает, в отработавших газах появляется черный дым. Также, во время сильной детонации мотор испытывает большие тепловые и механические нагрузки на поршень, шатун и коленвал. Могут обгореть кромки поршней и прокладки головки блока цилиндров, электроды свечей. Ударные волны разрушают масляную пленку в верхней части цилиндра, вызывая, тем самым, его повышенный износ.

Какие бывают свечи

Длительное время использовались обычные одноэлектродные свечи. В принципе, они наиболее распространены и сейчас. Но прогресс не стоит на месте и сейчас появились новые, модные, крепкие и дорогие платиновые да ещё и с несколькими электродами по центру или сбоку.

  Платиновые одноэлектродные свечи зажигания 
  Двухэлектродная платиновая свеча зажигания 
  Трёхэлектродная 
 Четырехэлектродная

 Отличием является специальная наплавка, в которой и содержится, этот дорогостоящий метал. Иногда сам центральный электрод выполнен из сплава платины, которая более устойчива к коррозии и химическим разрушениям, нежели хромоникелевый сплав. Цена соответственно. Такие свечи более низки по характеристикам калильного зажигания. При этом срок службы увеличивается, чуть ли не в три раза. Для тех, кто не в курсе, калильное зажигание -  это процесс которым нельзя управлять, возникает вследствие воспламенения рабочей смеси от раскалённых частей свечи. 
 Несколько электродов сделано как раз для увеличения службы свечи. Если вы думаете, что искра появляется между всеми электродами сразу, то вы  заблуждаетесь. Между двух, как только поверхность одного из них засоряется, в работу включается следующий электрод, к которому электрическому току проще прорваться (где меньше сопротивление). Многоэлектродные свечи служат дольше, но ухудшают эффективность сгорания из-за маскировки этими дополнительными электродами  очага воспламенения в камере сгорания получается, что кпд мотора с такими свечами ниже. Вдобавок, дополнительные боковые электроды интенсивно поглощают тепло, делая свечу «холоднее». Так же играют большую роль в уменьшении службы эксплуатации свечей зажигания климат и условия эксплуатации.

Как правильно выбрать свечу зажигания?

 Прежде всего, открыть инструкцию к своему авто. В ней обязательно указывается тип рекомендованной свечи или ее аналог. Ну а если таковой нет, значит, подбираем свечу по калильному числу, которое должно быть наиболее близко к тому, которое имеет «родная» свеча, стоящая на двигателе вашего автомобиля.  Калильное число – это величина, которая показывает время, по истечении которого, свеча достигнет состояния калильного зажигания.  Чем больше калильное число, тем свеча меньше нагревается. Соответственно с малым калильным числом будет «горячая» свеча, а с большим «холодная». При небольших нагрузках отлично работают « горячие» свечи, но при длительной и интенсивной работе температура свечи возрастает, это может привести к « калильному» зажиганию. Результат – потеря мощности двигателя. Свечу обязательно следует заменить, уточнив тепловую характеристику и устранив все неисправности. Избежать калильного зажигания можно, надо только соблюдать несколько простых правил: первое - не допускаем ранней установки зажигания; во вторых – заливаем топливо, соответствующее данному двигателю; и в третьих – следим за внешним видом свечи.

Как же узнать, когда нужно использовать ту или иную свечу? Надо иметь в виду, что условия работы свечей летом и зимой различны, следует вывод – правильнее всего иметь два комплекта свечей: летний с «холодными» и зимний с «горячими». Если вы ездите зимой и часто стоите в пробках, то лучше всего поставить свечи более горячие, ну а если летом вы гоняете на высоких скоростях, да еще и на дальние расстояния, то, конечно, поставьте холоднее. Для длинных расстояний и высоких скоростей – «холодные» свечи, а для коротких и на малой скорости – «горячие» свечи. Так же на выбор свечи влияет и размер двигателя, чем он больше, тем «холоднее» свеча. Та же самая свеча для одного двигателя может быть «холодная», а для другого «горячая». Как сильно будет разогреваться свеча в процессе работы, и как она будет отдавать тепло, зависит так же от материала изолятора и длины теплового конуса.

Если вы правильно подобрали свечу, то при использовании ее, изолятор должен иметь светло-коричневый цвет. А если цвет изолятора очень светлый, даже белый, то это говорит только об одном, что эта свеча слишком «горяча» и нужно заменить, на более «холодную». И еще один момент, если на свече вы обнаружили сильный нагар, значит при работе двигателя, свеча не нагревается до нужной температуры. В этом случае нужно заменить ее, на более «горячую» с меньшим калильным числом.

«Горячие» и «холодные» свечи

Температурный режим свечи маркируется калильным числом. Как правило, чем оно меньше, тем свеча «холоднее», то есть тем интенсивнее она поглощает тепло из камеры сгорания и рассеивает его в воздухе и головке блока. Чем больше — тем свеча «горячее». «Холодные» свечи применяют для высокофорсированных двигателей, а «горячие» — для относительно малонагруженных моторов.

Кривые температурного режима «горячих» (1), «умеренных» (2) и «холодных»(3) свечей зажигания

Конструктивные отличия свечей с различным калильным числом заключаются, в основном, в длине теплового конуса изолятора, омываемого раскаленными газами. «Горячая» свеча (1) интенсивно нагревается, но медленно рассеивает тепло, «холодная» — наоборот (3). «Умеренная» свеча —посередине (2)

 Уход за свечами зажигания

Свечи зажигания требуют регулярной очистки и регулировки зазора между электродами. При интенсивной эксплуатации автомобиля эти операции следует производить приблизительно через каждые 10 тыс.км. Если же годовой пробег автомобиля не превышает 10-15 тыс.км, то очищать свечи и регулировать зазор рекомендуется дважды в году - перед началом летнего и зимнего эксплуатационных сезонов.
Для очистки свечей нельзя применять острые металлические предметы, такие как отвертка или шило, так как ими легко повредить или поцарапать изолятор. На поцарапанном же конусе изолятора ускоряется и усиливается нагарообразование, а нагар шунтирует электроды, свеча перестает работать.

Черный влажный нагар (как на фотографии) говорит об избытке масла в картере двигателя. Сухой черный нагар свидетельствует о недостаточной нагрузке автомобиля. Сухой белый нагар — следствие слишком раннего зажигания. В идеальном случае на конусе не должно быть никакого нагара, а его цвет должен быть между светло-коричневым и светло-серым.

Причиной нагара так же может быть не качественное топливо. Качество бензина можно проверить и в домашних условиях.

Подходящий инструмент для очистки свечей - щетка из тонкой стальной проволоки.

Лучше же всего свечи очищать химическим способом.
Химический способ очистки свечей зажигания.
1) Обезжирить свечи промывкой в бензине.
2) Просушить.
3) Погрузить в горячий 20%-ный водный раствор ацетата аммония (другое название - уксуснокислый аммоний).
4) Выдержать в этом растворе в течение 25-30 мин при температуре не ниже 90° С (можно при слабом кипении раствора).
5) Прочистить свечи жесткой волосяной или капроновой щеткой.
6) Хорошо промыть горячей водой.
7) Просушить.
Эту работу следует проводить на открытом воздухе, так как из горячего раствора выделяются пары уксусной кислоты.


Зазор между электродами свечи регулируется подгибанием бокового электрода, причем для измерения величины зазора следует применять не плоский, а цилиндрический щуп (отрезок проволоки подходящего диаметра). Дело в том, что в результате износа в боковом электроде образуется выемка, поэтому измерение плоским щупом даст неправильный результат. Для карбюраторных двигателей зазор должен быть 0,7–0,85 мм, а с системой впрыска – 1,00–1,13 мм. Для того что бы узнать зазор рекомендованный для вашего автомобиля, обратитесь к технической документации, Удобен специальный ключ (предназначенный для технического обслуживания системы зажигания) с набором необходимых щупов. Аккуратно подгибая или отгибая боковой электрод, добиваемся требуемого зазора.

Влияние зазора свечей зажигания:

Большой зазор хорошо влияет на воспламенение топлива, так как между контактами попадает очень много топливной и воздушной смеси, вероятность поджига которой очень велика.
К сожалению, при большом зазоре, вероятность обрыва искры намного больше. На высоких оборотах это проявляется как пропускание воспламенения в определенных цилиндрах (двигатель троит). Часто топливо взрывается уже в выхлопной системе и слышны хлопки.
Происходит это из за того, что энергии катушки не хватает что бы пробить большой зазор с такой большой скоростью (частотой) работы свечи.

При маленьком зазоре искра будет очень мощная, но очень короткая. Из за малого доступа к топливо-воздушной смеси это может стать проблемой и свечи просто начнет заливать.
 Проявляется это опять в том, что двигатель начинает троить.
 На больших же оборотах очень вероятен поджиг дуги на свече. Из за короткого промежутка и больших оборотов, искра просто не успевает разорваться и между контактами образуется постоянный поток плазмы. Это опасно, так как может привести даже к сгоранию катушки зажигания - по сути получается короткое замыкание на длительное время выхода (контактов катушки зажигания). Двигатель тоже работает не стабильно на высоких оборотах и может даже заглохнуть (клинить).

В случае подбора зазора между контактами свечи зажигания обычно преследуют две цели:
 1. Добиться более высоких оборотов двигателя - если говорить точнее, то добиться высокой частоты срабатывания свечи и при этом стабильной работы двигателя.
  2. Добиться экономии топлива - заставить двигатель стабильно работать на низких оборотах, всегда эффективно сжигая топливо в цилиндрах.

Выбирайте свечи внимательно по рекомендациям авто-производителя и технической документации. Вовремя проведенное техобслуживание свечей зажигания продлит как срок эксплуатации самих свечей, так и всего двигателя в целом. 

bazila.net

Свечи зажигания - это... Что такое Свечи зажигания?

Свечи зажигания

Свеча зажигания — устройство для поджига топливо-воздушной смеси в самых разнообразных тепловых двигателях. Бывают искровые, дуговые, калильные, каталитические.

В бензиновых двигателях внутреннего сгорания используются искровые свечи. Поджиг горючей смеси производится электрическим разрядом напряжением в несколько тысяч или десятков тысяч вольт, возникающим между электродами свечи. Свеча срабатывает на каждом такте, в определённый момент работы двигателя.

В ракетных двигателях свеча зажигает топливную смесь электрическим разрядом только в момент запуска. Чаще всего, в процессе работы свеча разрушается и к повторному использованию непригодна.

В турбореактивных двигателях свеча воспламеняет смесь в момент запуска мощным дуговым разрядом. После этого горение факела поддерживается самостоятельно.

Калильные и одновременно каталитические свечи используются в модельных двигателях внутреннего сгорания. Топливная смесь двигателей специально содержит компоненты, которые легко воспламеняются в начале работы от раскалённой проволочки свечи. В дальнейшем накал нити поддерживается каталитическим окислением паров спирта, входящего в смесь.

Устройство свечей зажигания

Устройство свечи зажигания
1 — Контактный вывод
2 — рёбра изолятора
3 — изолятор
4 — металлическая оправа
5 — центральный электрод
6 — боковой электрод
7 — уплотнитель

Свеча зажигания состоит из металлической оправы, изолятора и центрального проводника.

Детали свечи зажигания

Контактный вывод

Контактный вывод расположенный в верхней части свечи предназначен для подключения свечи к высоковольтным проводам системы зажигания. Могут встречаться несколько слегка различных вариантов конструкции. Наиболее часто провод к свече зажигания имеет защёлкивающийся контакт, который надевается на вывод свечи. В других типах конструкции провод может крепиться к свече гайкой. Часто вывод свечи делают универсальным: в виде оси с резьбой и навинчивающегося защёлкивающегося контакта.

Рёбра изолятора

Рёбра изолятора предотвращают электрический пробой по его поверхности.

Изолятор

Изолятор, как правило, делается из алюминиево-оксидной керамики, которая должна выдерживать температуры от 450 до 1000°C и напряжение до 60 000 В. Точный состав изолятора и его длина частично определяют тепловую маркировку свечи.

Часть изолятора, непосредственно прилегающая к центральному электроду, наиболее сильно влияет на качество работы свечи зажигания. Применение керамического изолятора в свече предложено Г. Хонольдом вследствие перехода к высоковольтному зажиганию.

Уплотнители

Служат для предотвращения проникновения горячих газов из камеры сгорания.

Металлическая оправа (корпус)

Служит для завинчивания свечи и удержания её в резьбе головки блока цилиндров, для отвода тепла от изолятора и электродов, а также служит проводником электричества от «массы» автомобиля к боковому электроду.

Боковой электрод

Как правило, изготавливается из легированой никелем и марганцем стали. Приваривается контактной сваркой к корпусу. Боковой электрод, зачастую, очень сильно нагревается во время работы, что может привести к калильному зажиганию. Некоторые конструкции свечей используют несколько боковых электродов. Для увеличения долговечности электроды дорогих свечей снабжают напайками из платины и других благородных металлов. С 1999 года на рынке появились свечи нового поколения - так называемые плазменно-форкамерные свечи, где роль бокового электрода играет сам корпус свечи. При этом образуется кольцевой (коаксиальный) искровой зазор, где искровой заряд перемещается по кругу. Такая конструкция обеспечивает большой ресурс и самоочистку электродов. Форма бокового электрода в зоне пробоя напоминает сопло Лаваля, за счёт чего создаётся поток раскалённых газов истекающих из внутренней полости свечи. Этот поток эффективно поджигает рабочую смесь в КС (камера сгорания), полнота сгорания и мощность увеличивается, токсичность ДВС уменьшается.

Центральный электрод

Центральный электрод как правило соединяется с контактным выводом свечи через керамический резистор, это позволяет уменьшить радиопомехи от системы зажигания. Наконечник центрального электрода изготавливают из железо-никелевых сплавов с добавлением меди, хрома и благородных и редкоземельных металлов. Обычно центральный электрод — наиболее горячая деталь свечи. Кроме того, центральный электрод должен обладать хорошей способностью к эмиссии электронов, для облегчения искрообразования (предполагается, что искра проскакивает в той фазе импульса напряжения, когда центральный электрод служит катодом). Поскольку напряжённость электрического поля максимальна вблизи краёв электрода, искра проскакивает между острым краем центрального электрода и краем бокового электрода. В результате этого края электродов подвергаются наибольшей электрической эрозии. Раньше свечи периодически вынимали и удаляли следы эрозии наждаком. Сейчас, благодаря применению сплавов с редкоземельными и благородными металлами (иттрий, иридий, платина, вольфрам, палладий), нужда в зачистке электродов практически отпала. Срок службы при этом существенно вырос.

Зазор

Зазор - минимальное расстояние между центральным и боковым электродом. Величина зазора - это компромисс между "мощностью" искры, т.е. размерами плазмы, возникающей при пробое воздушного зазора и между возможностью пробить этот зазор в условиях сжатой воздушно-бензиновой смеси.

Факторы, определяющие зазор:

1) Чем больше зазор - тем больше размеры искры, => больше вероятность воспламенения смеси и больше зона воспламенения. Всё это положительно влияет на потребление топлива, равномерность работы, понижает требования к качеству топлива, повышает мощность. Кстати, такие эксперименты уже делали - двигатель работал чуть ли не на парах и разлагающихся при этом молекулах воды.

Внимание! Слишком увеличивать зазор тоже нельзя, иначе высокое наряжение будет искать более лёгкие пути - скажем пробивать высоковольтные провода на корпус, пробивать изолятор свечи и т.д.

2) Чем больше зазор - тем сложнее пробить его искрой. Т.к.

Пробоем изоляции называют потерю изоляцией изоляционных свойств при превышении напряжением некоторого критического значения, называемого пробивным напряжением Uпр. Соответствующая напряженность электрического поля Eпр = U пр/h, где h – расстояние между электродами, называется электрической прочностью промежутка.

Т.е. чем больше зазор - тем бОльшее напряжение пробоя U пр необходимо. Там есть ещё зависимость от ионизации молекул, равномерности структуры вещества, полярности искры, скорости нарастания импульса .. но это не важно в данном случае. Понятное дело, что высокое напряжение U пр мы не можем поменять - оно определяется катушкой зажигания. А вот зазор h мы поменять можем.

3) Напряжённость поля в зазоре определяется формой электродов. Чем они острее - тем больше напряжённость поля в зазоре и легче пробой (как у иридиевых, платиновых свечей).

4) Пробиваемость зазора зависит от плотности газа в зазоре. В нашем случае - от плотности воздушно-бензиновой смеси. Чем она больше - тем сложнее пробить.

Пробивное напряжение газового промежутка с однородным (ОП) и слабо неоднородным (СНП) электрическим полем зависит как от расстояния между электродами, так и от давления и температуры газа. Эта зависимость определяется законом Пашена, согласно которому пробивное напряжение газового промежутка с ОП и СНП определяется произведением относительной плотности газа δ на расстояние между электродами S,U прf(δS). Относительной плотностью газа называют отношение плотности газа в данных условиях к плотности газа при нормальных условиях (20о С, 760 мм рт. ст.).

Зазор свечей не является константой один раз заданной. Он может и должен подстраиваться под конкретную ситуацию эксплуатации двигателя.

Режимы работы свечей

Искровые свечи бензиновых двигателей по режиму работы условно подразделяют на горячие, холодные, оптимальные. Суть данной классификации - в степени нагрева изолятора и электродов. При работе изолятор и электроды любой свечи должны нагреваться до температур, способствующих "самоочищению" их поверхности от продуктов сгорания топливной смеси - нагара, сажи и т.п. Поэтому изоляторы свечей, работающих в оптимальном режиме всегда цвета "кофе с молоком".

Очистка поверхности изоляторов необходима для предотвращения поверхностных утечек высокого напряжения через слой нагара, что уменьшает мощность искрового пробоя зазора. Однако, если элементы свечи нагреваются слишком сильно, то может возникать неконтролируемое калильное зажигание. Процесс часто проявляется только на больших оборотах. Это может приводить к детонации и разрушению элементов двигателя.

Степень нагрева элементов свечей зависит от следующих основных факторов:

Внутренние: -конструкция электродов и изолятора (длинный электрод нагревается быстрее) -материал электродов и изолятора -толщина материалов -степень теплового контакта элементов свечи с корпусом

Внешние: -степень сжатия и компрессии -тип топлива (более высокооктановое обладает бОльшей температурой сгорания) -стиль езды (на больших оборотах двигателя нагрев свечей больше)

Горячие свечи - конструкция свечей специально разработана таким образом, что снижается теплопередача от центрального электрода и изолятора. Применяются в двигателях с низкой степенью сжатия и при использовании низкооктанового топлива. Т.к. в этих случаях меньше температура в камере сгорания.

Холодные свечи - конструкция свечей специально разработана таким образом, что максимально повышается теплопередача от центрального электрода и изолятора. Применяются в двигателях с высокой степенью сжатия, с высокой компрессией и при использовании высокооктанового топлива. Т.к. в этих случаях больше температура в камере сгорания.

Оптимальные свечи - конструкция свечей разработана таким образом, что теплопередача от центрального электрода и изолятора оптимальна для данного конкретного двигателя. Свечи нормально самоочищаются во всех режимах работы двигателя и в то же время не приводят к калильному зажиганию.

Типовые размеры свечей зажигания

Размеры свечей зажигания классифицируются по типу резьбы на них. Наиболее распространены следующие типы свечей: M10x1 M12x1,25 (мотоциклы) M14x1,25 (автомобили) M18x1,5 (некоторые старые двухтактные двигатели).

Ссылки

Wikimedia Foundation. 2010.

dic.academic.ru

Свечи зажигания

Свеча зажигания (искровая свеча зажигания) – составной элемент системы зажигания, который обеспечивает образование искры для воспламенения топливно-воздушной смеси в камере сгорания. Смесь в цилиндре воспламеняется в строго заданный момент от электрической искры, которая проходит между электродами свечи зажигания.

Свечи зажигания устанавливаются на атмосферные и турбированные бензиновые двигатели внутреннего сгорания. В устройстве дизельных двигателей свечи зажигания отсутствуют.  Конструкция свечи зажигания включает в себя следующие основные элементы:

  • контактный стержень;
  • центральный электрод;
  • изолятор;

Также устройство свечи зажигания предполагает наличие резистора, уплотнительной шайбы, корпуса, резьбы для вкручивания в ГБЦ и бокового электрода.

Свечи зажигания присутствуют во всех типах систем: контактной, бесконтактной и электронной системе зажигания. Контактный стержень является местом соединения свечи зажигания с высоковольтным проводом или катушкой зажигания, что зависит от индивидуальных конструктивных особенностей реализации той или иной системы зажигания на конкретном двигателе.

Центральный электрод в устройстве свечи зажигания является катодом, материалом изготовления которого выступает легированная сталь. Для изготовления зачастую используется сплав хрома и никеля. В целях увеличения срока службы центральный электрод современной свечи зажигания также может изготавливаться из сплавов, в составе которых находятся редкие металлы: платина, иридий, вольфрам палладий и другие. Благодаря наличию таких металлов свеча зажигания называется платиновой, иридиевой и т.д. Ресурс свечей зажигания может сильно отличаться, что напрямую зависит от качества, особенностей и материалов изготовления. Обычные свечи служат порядка 25 тыс. километров, тогда как платиновые или иридиевые аналоги могут превышать по сроку службы данный показатель в 2-3 раза.

Соединение центрального электрода с контактным стержнем выполняется через резистор свечи зажигания. Резистор является материалом, который проводит ток. Указанным материалом заполняется свободное пространство между стержнем и электродом. Использование резистора продиктовано необходимостью создания защиты электрооборудования от электрических помех, которые возникают во время образования искры.

Изолятор свечи зажигания керамический и жаропрочный. Его внутренняя часть называется тепловой конус. Указанный конус служит для определения теплового режима свечи зажигания. Температурный режим свечей имеет определенные пороги. Минимальный порог является той температурой, при которой на тепловом конусе свечи начинают выгорать отложения. Максимальным порогом принято считать такой нагрев конуса, когда возникает эффект КЗ (калильного зажигания). Такое самопроизвольное воспламенение топливной смеси может вызывать детонацию двигателя, что является аномальным процессом горения топливного заряда во время работы силового агрегата и приводит к разрушительным последствиям для ДВС.

Зависимо от величины теплового конуса изолятора свечи зажигания имеют разное калильное число и делятся на так называемые «горячие» и «холодные». Также встречаются промежуточные значения. Горячие свечи имеют калильное число 11-14, средними свечами принято считать показатель 17-19, холодные свечи имеют показатель 20 и более. Универсальные или унифицированные свечи зажигания имеют показатель калильного числа на отметке 11-20.

Горячие свечи быстрее нагреваются, при этом отвод тепла происходит медленнее. По этой причине горячие свечи устанавливаются на моторы, которые имеют низкую степень сжатия и работают на топливе с низким октановым числом. Холодные свечи характеризуются медленным нагревом и быстрым отводом тепла. Ставятся указанные свечи на форсированные атмосферные и оснащенные турбонаддувом двигатели с высокой степенью сжатия, которые рассчитаны на бензин с высоким октановым числом. При подборе свечей зажигания необходимо отдельно учитывать тепловой режим работы двигателя и калильное число.

Корпус свечи зажигания изготовлен из металлических сплавов. В нем установлены базовые конструктивные элементы свечи.  Наружная часть корпуса имеет резьбу, благодаря чему свеча зажигания вкручивается в головку блока цилиндров. Для дополнительного уплотнения на корпусе часто присутствует специальная уплотнительная шайба.

Также на корпусе свечи присутствует шестигранник под свечной ключ. Закручивать свечу зажигания необходимо с рекомендуемым усилием при помощи свечного ключа. Недостаточный момент затяжки может привести к разгерметизации камеры сгорания, превышение часто заканчивается как повреждениями свечи зажигания, так и резьбы в свечном колодце ГБЦ.

Внизу корпуса находится один или несколько боковых электродов свечи зажигания. Указанный электрод может быть как никелевым, так и выполняться из сплавов редких металлов.  Свечи с несколькими электродами имеют увеличенный срок службы, так как после разрушения одного электрода свеча продолжает процесс искрообразования при помощи дополнительных боковых электродов. Центральный и боковой электроды имеют между собой определенный искровой промежуток, который также известен как зазор свечи зажигания. Указанный зазор на разных свечах выставляется на заводе-изготовителе и может отличаться, что зависит от конструктивных особенностей свечи и соответствия конкретной модели двигателя.

Увеличенный зазор позволяет добиться лучшего искрообразования и более эффективного воспламенения смеси, но также требует большего напряжения. По этой причине слишком большой зазор на свечах может привести к пропускам зажигания, повышенному расходу топлива и т.д. Одновременно с этим значительное уменьшение зазора приводит к тому, что процесс воспламенения топливного заряда в камере сгорания становится менее эффективным, двигатель теряет мощность. С учетом вышесказанного самостоятельная регулировка зазоров свечей зажигания путем сгибания бокового электрода без надлежащего опыта подобных действий настоятельно не рекомендуется.

Читайте также

krutimotor.ru

Все, что нужно знать о свечах зажигания

Начнем с определения

Свеча зажигания — это устройство, которое поджигает топливно-воздушную смесь в цилиндрах двигателей внутреннего сгорания. Поджиг осуществляется с помощью электрического разряда напряжением в несколько тысяч вольт, проскакивающего между электродами свечи.

При работающем двигателе, они постоянно подвергаются воздействию высокой температуры (до 1000 градусов Цельсия) и давления. Существует множество типов и моделей свечек, от качества которых зависит работа двигателя.

Посмотрите, в каких суровых условиях работают свечи:

  • Температура до 1 000 градусов Цельсия. Например, серебро плавится при 960 градусах Цельсия;
  • Давление до 4 000 000 Паскаль, что в 20 раз больше давления в шинах;
  • Напряжение до 25 000 Вольт. Такое высокое напряжение подается для того, чтобы искра пробила слой воздуха между электродами и зажгла топливную смесь. Для пробивки одного сантиметра воздуха требуется напряжение в 30 000 вольт. Делайте выводы.

Почти все люди знают, как выглядит свеча зажигания, но мало кто догадывается о том, что находится у нее внутри.

Принцип работы очень прост. С катушки зажигания на наконечник 1 подается напряжение, и между электродами 2(+) и 3(-) проскакивает искра, которая воспламеняет топливно-воздушную смесь.

Ознакомимся с разновидностями свечей

Свечки классифицируются по конструкции и по материалу электродов.

  • По конструкции, свечи зажигания разделяют на двухэлектродные (первая) и многоэлектродные (вторая):

Многоэлектродные свечи служат дольше и они более надежные, сейчас объясню почему. При эксплуатации свеч электроды выгорают, после чего нарушается искрообразование. Боковой электрод выгорает гораздо быстрее. Так вот, в многоэлектродных свечках, искра проскакивает между центральным и одним из боковых электродов, нагрузка распределяется между боковыми электродами, тем самым, увеличивая их срок службы.

  • По материалу электродов свечки разделяют на классические и иридиевые. Есть еще и платиновые (платиновая напайка на электродах, которая более устойчива к разрушению), но как класс я их не рассматриваю. С обычными свечками все понятно.

Давайте ознакомимся с иридиевыми.

На рисунке изображена иридиевая свечка (1 — боковой электрод с платиновой напайкой, 2 — иридиевый электрод диаметром 0,6 мм, который приваривается лазерной сваркой). Если присмотреться, то на боковом электроде можно увидеть платиновую напайку. Такие свечи имеют ряд неоспоримых преимуществ перед классическими:

  • Центральный электрод очень тонкий, что позволяет «концентрировать» напряжение зажигания;
  • Иридий практически не выгорает, на сердечнике практически не скапливаются отложения;
  • Благодаря тонкому сердечнику сведен к минимуму гасящий эффект при распространении пламени;
  • Иридиевый сердечник прослужит как минимум в два раза дольше.

Свечи зажигания с V-образным разрезом в сердечнике

Довольно интересная разработка и, уверен, довольно эффективная. Как видно на рисунке, на свече с разрезом искра проскакивает на кромке электрода, где топливной смеси скапливается больше. Этот факт свидетельствует о том что смесь будет загораться быстрее, что улучшит качество работы двигателя и снизит расход топлива.

Вот так работает свеча зажигания

avtoberloga.ru

чем они отличаются, какие выбрать

Свечи являются одной из самых важных вещей в машине – без них невозможно запустить двигатель, а, следовательно, начать движение. Им приходится работать в тяжелых условиях – при температуре до 1000 градусов по Цельсию, при напряжении в 40 000 Вольт и давлении на уровне 100 бар! Ниже рассмотрим виды свечей зажигания и их особенности.

Какие и для какого двигателя

При выборе следует особое внимание обращать виды свечей зажигания. Для бензиновых двигателей выбирают зажигания, а для дизельных двигателей — накаливания.

Различают три типа электродов:

  1.  стандартные,
  2.  иридиевые,
  3.  платиновые.

Стандартные разновидности свечей зажигания имеют вдвое меньшую прочность, чем иридиевые. Лучшими, но и одновременно самыми дорогими, в настоящее время доступными на рынке являются свечи, изготовленные из платины. По словам производителей, срок их службы определяется пробегом 100 000 километров. Следует также помнить, что от количества и формы электродов зависит их долговечность и характеристика работы двигателя. Поэтому, выбирая свечи для бензинового автомобиля, следует убедиться в том, какие требования имеет двигатель (одноэлектродная или многоэлектродная), а затем проверить, соответствует ли она критериям из каталога данного продукта или проконсультироваться с механиком.

Основные параметры

К основным параметрам, можно отнести:

  •  Тепловое значение, которое определяет способность свечи к отводу тепла.
  •  Диаметр резьбы, который чаще всего составляет: 18, 14, 12 или 10 мм. Стоит отметить, что в современных двигателях четкая тенденция к уменьшению диаметра резьбы, что связано с экономией места в цилиндре (потому что по сравнению со старыми конструкциями необходимо оставить место для дополнительных клапанов и топливной форсунки).
  •  Длина резьбы стандартной свечи зажигания 19 или 26,5мм. Современные виды имеют резьбу намного длиннее. Это связано с тем, что современные головки из сплавов алюминия менее надежны, чем те, которые выполняются из чугуна. Большая толщина стенок отверстия головки снижает риск срыва резьбы.
  •  Размер ключа связан в определенной степени с диаметром резьбы – очень часто, чем больше диаметр резьбы, тем больше размер ключа. Наиболее часто применяются размеры: 20.7, 16 и 14. Иногда, помимо типичного шестигранного корпуса, можно встретить и другие формы резьбы.
  •  Количество боковых электродов: 1, 2, 3 или 4 – стоит отметить, что не обязательно большее количество электродов определяет лучшую свечу, то есть, оптимально подходящую для данного типа двигателя.
    Материал покрытия электрода – это чаще всего хороший проводник, например, медь, никель, платина, иридий.
  •  Расстояние между электродами – слишком большое не может обеспечить искру (так называемые „пропуски зажигания”), слишком маленькое может затруднить запуск теплого двигателя и ограничивает энергию искры. В зависимости от типа и применения, интервал должен составлять от 0,3 до 1,3 мм.
  •  Значения моментов затяжки в зависимости от диаметра резьбы составляет от 10 до 30 Нм. В случае ввинчивания свечей, используемых крутящий момент, затягивание должно быть слабее, потому что металлическая прокладка корпуса уже не является такой эластичной.

Другие параметры включают, например, использование экранированного резистора, резьбы нестандартной длины, назначения для нестандартных двигателей.

Свечи зажигания

Тепловое значение

Это один из немногих „невидимых”, но очень важных параметров, определяющих, какие бывают свечи зажигания и, в какой степени, они отводят тепло от двигателя. Когда свечка хорошо отводит тепло, следовательно, она меньше нагревается, называется „холодной”. Если она отводит тепло в небольшой степени (сохраняя его) и больше нагревается – в этом случае говорится, что она „горячая”.

Коэффициент ценности тепла обозначается в виде цифрового кода. К сожалению, каждый производитель используют свои различные обозначения. Например, по данным компании NGK, чем выше значение коэффициента ценности тепла, тем свеча более „холодная”.

В свою очередь, производитель Bosch имеет обратную нумерацию, в которой, высокое числовое значение соответствует „горячей”, а низкое „холодной”.

Правильное тепловое значение

Правильно подобранное тепловое значение позволяет работать электродам при оптимальной температуре, которую можно определить на уровне 450 – 850о С. Тогда возникает явление самоочистки электродов.

  1.  Когда свечка слишком „холодная” — это явление не возникает и электрод покрывается нагаром, который затрудняет или даже делает невозможным появление искры.
  2.  Когда свечка слишком „горячая” — высокая температура может привести к возникновению детонационного сгорания и плавлению электродов.

Непосредственное влияние на эффективность отвода тепла имеет длина нижней части изолятора, называемого конусом. Чем она длиннее, тем свеча больше нагревается.

Главной задачей свечей зажигания является инициирование воспламенения топливно-воздушной смеси в камере сгорания двигателя. От ее бесперебойной работы зависит запуск двигателя, его равномерное действие, производительность, диапазон оборотов и расход топлива.

Чаще всего на каждый цилиндр приходится одна свеча. Встретить можно, однако, и другие технические решения. Например, в двигателях Alfa Romeo Twin Spark используются два экземпляра на цилиндр.

Стандартные свечки зажигания подлежат замене каждые 20000 — 30000 км. Платиновые и иридиевые аналоги меняют даже после 100000 — 120000 км пробега. При замене необходимо придерживаться рекомендаций производителя в отношении стоимости и видов свечей, используемых в автомобиле.

Конструкция свечей зажигания

Как устроена свеча зажигания

Принцип действия не изменился с момента изобретения, но, тем не менее, производители все время пытаются превзойти друг друга, используя новые технологии и материалы для производства. Каждая, имеет похожее строение. Чем отличаются свечи зажигания показано на следующем рисунке.

Типы массовых электродов:

а – стандартный, с выпуклым конусом изолятора,
b – стандартный ведущий,
c – одна сторона,
d – два боковых электрода,
e – два боковых электроды в закругленной форме,
f – три боковых электрода,
g – четыре боковые электрода,
h – платиновый центральный электрод,
i – платиновый наконечник,
j – платиновые концы обоих электродов,
к – платиновые наконечники двух боковых и центрального электрода,
l – платиновый центральный электрод.

Чем отличаются: стандартная, иридиевая и платиновая свеча

Стандартные – оснащены электродом из сплава никеля. Обеспечивают эффективную работу привода и низкий расход топлива. Сплав ионной никелевой аккумуляторной свечи характеризуется высокой жизнеспособностью, а стандартно используемая в таких вариантах медная сердцевина электрода хорошо отводит тепло, а также предотвращает свечу от тепловой перегрузки. К тому же — это самая дешевая из возможных вариантов разновидность.

Иридиевые – это вид, в котором сейчас применяются высококачественные технические решения. Такие свечи имеют наконечник центрального электрода из сплава иридий. Применение этого металла связано с его особенностями, ибо иридий один из самых твердых металлов и характеризуется высокой устойчивостью к коррозии. Применение иридия несет и другие преимущества. Благородный металл позволяет выполнять более тонкий стержень электрода – даже 0,4 мм. Это, в свою очередь влияет на уменьшение напряжения зажигания и, кроме того, улучшает распространение фронта пламени зажигания в камере сгорания. Из-за применения новейших технологий этот вид стоит дороже. Однако цену компенсирует в два раза больший срок службы.

Платиновые – характеризуются очень длительным периодом эксплуатации. Применяемые в центральном электроде платиновые пластины обеспечивают постоянную мощность даже в самых сложных условиях.

Такой электрод более тонкий, чем стандартный. Цена платиновых свечей выше, чем у стандартных аналогов. Платиновые элементы идеально подходят для автомобилей, работающих на газе. В этом случае срок их службы даже в четыре раза выше, чему обычных.

Как выбрать подходящие свечи

Подбор правильного типа свечи зажигания — это очень важный момент. Ибо универсальных вариантов не бывает. Для каждой модели автомобиля присваиваются специальные виды. Именно такие должны устанавливаться в автомобиле. Наиболее точными источниками информации о том, какие продукты надо применять, служат инструкции по эксплуатации автомобилей, а также каталоги производителей.

Отдельные компании имеют различные способы обозначения своих продуктов, поэтому перед покупкой лучше проконсультироваться с продавцом. В точках продаж продавцы с удовольствием посоветуют, какие типы можно применять для данной модели автомобиля и помогут сделать правильный выбор вида и производителя. В ассортименте представлены свечи в разных ценовых категориях, практически, всех производителей: Beru, Bosch, Denso, NGK.

Свечи зажигания могут отличаться друг от друга размером – формой резьбы, корпусом, стандартом исполнения, значением тепла и типом используемых электродов. Следует также обратить внимание на то, каким топливом питается ваш двигатель. Это может быть бензин, газ или дизельное топливо. Все эти параметры определяют правильный выбор.

В случае старых автомобилей, работающих на бензине, можно позволить себе выбрать самое дешевое решение — стандартные свечи. Также подойдут более дорогие и прочные иридиевые и платиновые варианты, которые используются в большинстве автомобилей после 2000 года выпуска. Если Ваш автомобиль питается газом, отличным выбором станет покупка типа, приспособленного к этому виду топлива.

Что подходит для дизельного двигателя

Отличия свечей зажигания имеют дизельные двигатели – для них используются свечи накаливания. Они служат только для запуска привода в начальной стадии работы до момента предварительного нагрева двигателя. Время нагрева свечей накаливания бывает разным и составляет от 3 до 30 секунд. Большинство используемых в современных дизелях, после 3 до 5 секунд разогревается до температуры 900 градусов по Цельсию. Трудно определить пробег, после которого необходимо произвести их замену.

В старых автомобилях, о повреждении и необходимости замены, дадут о себе знать проблемы с запуском даже при положительных температурах. В новых конструкциях водителю облегчает задачу вездесущая электроника, которая сообщает о неисправности свечей. Механики рекомендуют производить замену свечей не реже, чем каждые 100 тысяч км, хотя, как показывает практика, во многих случаях они работают гораздо дольше.

Если свеча накаливания долгое время повреждена, на ней накапливается нагар и в результате могут возникнуть проблемы с извлечением свечи. Для этого может понадобиться демонтаж всей головки.

Советы специалистов

  •  Подбирая свечи, не руководствуйтесь только ценой, но и типом. Иридиевые или платиновые виды имеют в несколько раз больший срок службы, чем у стандартных свечей и большую долговечность.
  •  Старайтесь не покупать свечей, которые не являются дизайнерскими. Это слишком важная деталь для двигателя авто, чтобы на ней экономить.
  •  Не подбирайте их самостоятельно. Лучше всего в этом вопросе обратиться к специалисту, который подберет специальную свечу для вашего автомобиля.
  •  Лучше не меняйте свечи самостоятельно. Хотя действие и кажется простым, следует иметь в виду, что корпус закручивается с достаточной силой (моментом).
  •  Никогда не устанавливайте в автомобиле использованные свечи, не меняйте их по отдельности. Когда необходима замена, меняйте сразу весь комплект

Правильный подбор свечей зажигания очень важен и положительно влияет на увеличение срока службы всей системы зажигания. Это происходит за счет снижения уровня высокого напряжения, генерируемого в системе зажигания до расхода топливной смеси. До наступления холодного времени года пользователи автомобилей с бензиновыми и газовыми двигателями следует позаботиться об исправности системы зажигания.

Даже минимальные повреждения могут не давать никаких симптомов летом, но способны вызвать проблемы с осенью и зимой.

 

Facebook

Twitter

Вконтакте

Google+

tolkavto.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о