Как движется ток: Как в реальности протекает электрический ток? | Полезные статьи

Постоянный электрический ток. Направление тока, формула

 

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: постоянный электрический ток, сила тока, напряжение.

Электрический ток обеспечивает комфортом жизнь современного человека. Технологические достижения цивилизации — энергетика, транспорт, радио, телевидение, компьютеры, мобильная связь — основаны на использовании электрического тока.

Электрический ток — это направленное движение заряженных частиц, при котором происходит перенос заряда из одних областей пространства в другие.

Электрический ток может возникать в самых различных средах: твёрдых телах, жидкостях, газах. Порой и среды никакой не нужно — ток может существовать даже в вакууме! Мы поговорим об этом в своё время, а пока приведём лишь некоторые примеры.

• Замкнём полюса батарейки металлическим проводом. Свободные электроны провода начнут направленное движение от «минуса» батарейки к «плюсу».
Это — пример тока в металлах.

• Бросим в стакан воды щепотку поваренной соли . Молекулы соли диссоциируют на ионы, так что в растворе появятся свободные заряды: положительные ионы и отрицательные ионы . Теперь засунем в воду два электрода, соединённые с полюсами батарейки. Ионы начнут направленное движение к отрицательному электроду, а ионы — к положительному.
Это — пример прохождения тока через раствор электролита.

• Грозовые тучи создают столь мощные электрические поля, что оказывается возможным пробой воздушного промежутка длиной в несколько километров. В результате сквозь воздух проходит гигантский разряд — молния.
Это — пример электрического тока в газе.

Во всех трёх рассмотренных примерах электрический ток обусловлен движением заряженных частиц внутри тела и называется током проводимости.

• Вот несколько иной пример. Будем перемещать в пространстве заряженное тело. Такая ситуация согласуется с определением тока! Направленное движение зарядов — есть, перенос заряда в пространстве — присутствует. Ток, созданный движением макроскопического заряженного тела, называется конвекционным.

Заметим, что не всякое движение заряженных частиц образует ток. Например, хаотическое тепловое движение зарядов проводника — не направленное (оно совершается в каких угодно направлениях), и потому током не является (при возникновении тока свободные заряды продолжают совершать тепловое движение! Просто в этом случае к хаотическим перемещениям заряженных частиц добавляется их упорядоченный дрейф в определённом
направлении).
Не будет током и поступательное движение электрически нейтрального тела: хотя заряженные частицы в его атомах и совершают направленное движение, не происходит переноса заряда из одних участков пространства в другие.

 

Направление электрического тока

 

Направление движения заряженных частиц, образующих ток, зависит от знака их заряда. Положительно заряженные частицы будут двигаться от «плюса» к «минусу», а отрицательно заряженные — наоборот, от «минуса» к «плюсу». В электролитах и газах, например, присутствуют как положительные, так и отрицательные свободные заряды, и ток создаётся их встречным движением в обоих направлениях. Какое же из этих направлений принять за направление электрического тока?

Направлением тока принято считать направление движения положительных зарядов.

Попросту говоря, по соглашению ток течёт от «плюса» к «минусу» (рис. 1; положительная клемма источника тока изображена длинной чертой, отрицательная клемма — короткой).

Рис. 1. Направление тока

Данное соглашение вступает в некоторое противоречие с наиболее распространённым случаем металлических проводников. В металле носителями заряда являются свободные электроны, и двигаются они от «минуса» к «плюсу». Но в соответствии с соглашением мы вынуждены считать, что направление тока в металлическом проводнике противоположно движению свободных электронов. Это, конечно, не очень удобно.

Тут, однако, ничего не поделаешь — придётся принять эту ситуацию как данность. Так уж исторически сложилось. Выбор направления тока был предложен Ампером (договорённость о направлении тока понадобилась Амперу для того, чтобы дать чёткое правило определения направления силы, действующей на проводник с током в магнитном поле. Сегодня эту силу мы называем силой Ампера, направление которой определяется по правилу левой руки) в первой половине XIX века, за 70 лет до открытия электрона. К этому выбору все привыкли, и когда в 1916 году выяснилось, что ток в металлах вызван движением свободных электронов, ничего менять уже не стали.

 

Действия электрического тока

 

Как мы можем определить, протекает электрический ток или нет? О возникновении электрического тока можно судить по следующим его проявлениям.

1. Тепловое действие тока. Электрический ток вызывает нагревание вещества, в котором он протекает. Именно так нагреваются спирали нагревательных приборов и ламп накаливания. Именно поэтому мы видим молнию. В основе действия тепловых амперметров лежит тепловое расширение проводника с током, приводящее к перемещению стрелки прибора.

2. Магнитное действие тока. Электрический ток создаёт магнитное поле: стрелка компаса, расположенная рядом с проводом, при включении тока поворачивается перпендикулярно проводу. Магнитное поле тока можно многократно усилить, если обмотать провод вокруг железного стержня — получится электромагнит. На этом принципе основано действие амперметров магнитоэлектрической системы: электромагнит поворачивается в поле постоянного магнита, в результате чего стрелка прибора перемещается по шкале.

3. Химическое действие тока. При прохождении тока через электролиты можно наблюдать изменение химического состава вещества. Так, в растворе положительные ионы двигаются к отрицательному электроду, и этот электрод покрывается медью.

Электрический ток называется постоянным, если за равные промежутки времени через поперечное сечение проводника проходит одинаковый заряд.

Постоянный ток наиболее прост для изучения. С него мы и начинаем.

 

Сила и плотность тока

 

Количественной характеристикой электрического тока является сила тока. В случае постоянного тока абсолютная величина силы тока есть отношение абсолютной величины заряда , прошедшего через поперечное сечение проводника за время , к этому самому времени:

(1)

Измеряется сила тока в амперах (A). При силе тока в А через поперечное сечение проводника за с проходит заряд в Кл.

Подчеркнём, что формула (1) определяет абсолютную величину, или модуль силы тока.
Сила тока может иметь ещё и знак! Этот знак не связан со знаком зарядов, образующих ток, и выбирается из иных соображений. А именно, в ряде ситуаций (например, если заранее не ясно, куда потечёт ток) удобно зафиксировать некоторое направление обхода цепи (скажем, против часовой стрелки) и считать силу тока положительной, если направление тока совпадает с направлением обхода, и отрицательной, если ток течёт против направления обхода (сравните с тригонометрическим кругом: углы считаются положительными, если отсчитываются против часовой стрелки, и отрицательными, если по часовой стрелке).

В случае постоянного тока сила тока есть величина постоянная. Она показывает, какой заряд проходит через поперечное сечение проводника за с.

Часто бывает удобно не связываться с площадью поперечного сечения и ввести величину плотности тока:

(2)

где — сила тока, — площадь поперечного сечения проводника (разумеется, это сечение перпендикулярно направлению тока). С учётом формулы (1) имеем также:

Плотность тока показывает, какой заряд проходит за единицу времени через единицу площади поперечного сечения проводника. Согласно формуле (2), плотность тока измеряется в А/м2.

 

Скорость направленного движения зарядов

 

Когда мы включаем в комнате свет, нам кажется, что лампочка загорается мгновенно. Скорость распространения тока по проводам очень велика: она близка к км/с (скорости света в вакууме). Если бы лампочка находилась на Луне, она зажглась бы через секунду с небольшим.

Однако не следует думать, что с такой грандиозной скоростью двигаются свободные заряды, образующие ток. Оказывается, их скорость составляет всего-навсего доли миллиметра в секунду.

Почему же ток распространяется по проводам так быстро? Дело в том, что свободные заряды взаимодействуют друг с другом и, находясь под действием электрического поля источника тока, при замыкании цепи приходят в движение почти одновременно вдоль всего проводника. Скорость распространения тока есть скорость передачи электрического взаимодействия между свободными зарядами, и она близка к скорости света в вакууме. Скорость же, с которой сами заряды перемещаются внутри проводника, может быть на много порядков меньше.

Итак, подчеркнём ещё раз, что мы различаем две скорости.

1. Скорость распространения тока. Это — скорость передачи электрического сигнала по цепи. Близка к км/с.

2. Скорость направленного движения свободных зарядов. Это — средняя скорость перемещения зарядов, образующих ток. Называется ещё скоростью дрейфа.

Мы сейчас выведем формулу, выражающую силу тока через скорость направленного движения зарядов проводника.

Пусть проводник имеет площадь поперечного сечения (рис. 2). Свободные заряды проводника будем считать положительными; величину свободного заряда обозначим (в наиболее важном для практики случая металлического проводника это есть заряд электрона). Концентрация свободных зарядов (т. е. их число в единице объёма) равна .

Рис. 2. К выводу формулы

Какой заряд пройдёт через поперечное сечение нашего проводника за время ?

С одной стороны, разумеется,

(3)

С другой стороны, сечение пересекут все те свободные заряды, которые спустя время окажутся внутри цилиндра с высотой . Их число равно:

Следовательно, их общий заряд будет равен:

(4)

Приравнивая правые части формул (3) и (4) и сокращая на , получим:

(5)

Соответственно, плотность тока оказывается равна:

Давайте в качестве примера посчитаем, какова скорость движения свободных электронов в медном проводе при силе тока A.

Заряд электрона известен: Кл.

Чему равна концентрация свободных электронов? Она совпадает с концентрацией атомов меди, поскольку от каждого атома отщепляется по одному валентному электрону. Ну а концентрацию атомов мы находить умеем:

м

Положим мм . Из формулы (5) получим:

м/с.

Это порядка одной десятой миллиметра в секунду.

 

Стационарное электрическое поле

 

Мы всё время говорим о направленном движении зарядов, но ещё не касались вопроса о том, почему свободные заряды совершают такое движение. Почему, собственно, возникает электрический ток?

Для упорядоченного перемещения зарядов внутри проводника необходима сила, действующая на заряды в определённом направлении. Откуда берётся эта сила? Со стороны электрического поля!

Чтобы в проводнике протекал постоянный ток, внутри проводника должно существовать стационарное (то есть — постоянное, не зависящее от времени) электрическое поле. Иными словами, между концами проводника нужно поддерживать постоянную разность потенциалов.

Стационарное электрическое поле должно создаваться зарядами проводников, входящих в электрическую цепь. Однако заряженные проводники сами по себе не смогут обеспечить протекание постоянного тока.

Рассмотрим, к примеру, два проводящих шара, заряженных разноимённо. Соединим их проводом. Между концами провода возникнет разность потенциалов, а внутри провода — электрическое поле. По проводу потечёт ток. Но по мере прохождения тока разность потенциалов между шарами будет уменьшаться, вслед за ней станет убывать и напряжённость поля в проводе. В конце концов потенциалы шаров станут равны друг другу, поле в проводе обратится в нуль, и ток исчезнет. Мы оказались в электростатике: шары плюс провод образуют единый проводник, в каждой точке которого потенциал принимает одно и то же значение; напряжённость
поля внутри проводника равна нулю, никакого тока нет.

То, что электростатическое поле само по себе не годится на роль стационарного поля, создающего ток, ясно и из более общих соображений. Ведь электростатическое поле потенциально, его работа при перемещении заряда по замкнутому пути равна нулю. Следовательно, оно не может вызывать циркулирование зарядов по замкнутой электрической цепи — для этого требуется совершать ненулевую работу.

Кто же будет совершать эту ненулевую работу? Кто будет поддерживать в цепи разность потенциалов и обеспечивать стационарное электрическое поле, создающее ток в проводниках?

Ответ — источник тока, важнейший элемент электрической цепи.

Чтобы в проводнике протекал постоянный ток, концы проводника должны быть присоединены к клеммам источника тока (батарейки, аккумулятора и т. д.).

Клеммы источника — это заряженные проводники. Если цепь замкнута, то заряды с клемм перемещаются по цепи — как в рассмотренном выше примере с шарами. Но теперь разность потенциалов между клеммами не уменьшается: источник тока непрерывно восполняет заряды на клеммах, поддерживая разность потенциалов между концами цепи на неизменном уровне.

В этом и состоит предназначение источника постоянного тока. Внутри него протекают процессы неэлектрического (чаще всего — химического) происхождения, которые обеспечивают непрерывное разделение зарядов. Эти заряды поставляются на клеммы источника в необходимом количестве.

Количественную характеристику неэлектрических процессов разделения зарядов внутри источника — так называемую ЭДС — мы изучим позже, в соответствующем листке.

А сейчас вернёмся к стационарному электрическому полю. Каким же образом оно возникает в проводниках цепи при наличии источника тока?

Заряженные клеммы источника создают на концах проводника электрическое поле. Свободные заряды проводника, находящиеся вблизи клемм, приходят в движение и действуют своим электрическим полем на соседние заряды. Со скоростью, близкой к скорости света, это взаимодействие передаётся вдоль всей цепи, и в цепи устанавливается постоянный электрический ток. Стабилизируется и электрическое поле, создаваемое движущимися зарядами.

Стационарное электрическое поле — это поле свободных зарядов проводника, совершающих направленное движение.

Стационарное электрическое поле не меняется со временем потому, что при постоянном токе не меняется картина распределения зарядов в проводнике: на место заряда, покинувшего данный участок проводника, в следующий момент времени поступает точно такой же заряд. По этой причине стационарное поле во многом (но не во всём) аналогично полю электростатическому.

А именно, справедливы следующие два утверждения, которые понадобятся нам в дальнейшем (их доказательство даётся в вузовском курсе физики).

1. Как и электростатическое поле, стационарное электрическое поле потенциально. Это позволяет говорить о разности потенциалов (т. е. напряжении) на любом участке цепи (именно эту разность потенциалов мы измеряем вольтметром).
Потенциальность, напомним, означает, что работа стационарного поля по перемещению заряда не зависит от формы траектории. Именно поэтому при параллельном соединении проводников напряжение на каждом из них одинаково: оно равно разности потенциалов стационарного поля между теми двумя точками, к которым подключены проводники.
2. В отличие от электростатического поля, стационарное поле движущихся зарядов проникает внутрь проводника (дело в том, что свободные заряды, участвуя в направленном движении, не успевают должным образом перестраиваться и принимать «электростатические» конфигурации).
Линии напряжённости стационарного поля внутри проводника параллельны его поверхности, как бы ни изгибался проводник. Поэтому, как и в однородном электростатическом поле, справедлива формула , где — напряжение на концах проводника, — напряжённость стационарного поля в проводнике, — длина проводника.

что это такое и как он возникает

Без электричества невозможно представить жизнь современного человека. Вольты, Амперы, Ватты – эти слова звучат в разговоре об устройствах, которые работают от электричества. Но что это такое электрический ток и каковы условия его существования? Об этом мы расскажем далее, предоставив краткое объяснение для начинающих электриков.

  • Определение
  • Условия существования электрического тока
  • Электрический ток в разных средах
  • В металлах
  • В полупроводниках
  • В вакууме и газе
  • В жидкости
  • Заключение

Определение

Электрическим током является направленное движение носителей зарядов – это стандартная формулировка из учебника физики. В свою очередь носителями заряда называются определенные частицы вещества. Ими могут быть:

  • Электроны – отрицательные носители заряда.
  • Ионы – положительные носители заряда.

Но откуда берутся носители заряда? Для ответа на этот вопрос нужно вспомнить базовые знания о строении вещества. Всё что нас окружает – вещество, оно состоит из молекул, мельчайших его частиц. Молекулы состоят из атомов. Атом состоит из ядра, вокруг которого движутся электроны на заданных орбитах. Молекулы также хаотично движутся. Движение и структура каждой из этих частиц зависят от самого вещества и влияния на него окружающей среды, например температуры, напряжения и прочего.

Ионом называют атом, у которого изменилось соотношение электронов и протонов. Если изначально атом нейтрален, то ионы в свою очередь делят на:

  • Анионы – положительный ион атома, потерявшего электроны.
  • Катионы – это атом с «лишними» электронами, присоединившиеся к атому.

Единица измерения тока – Ампер, согласно закону Ома он вычисляется по формуле:

I=U/R,

где U – напряжение, [В], а R – сопротивление, [Ом].

Или прямопропорционален количеству заряда, перенесенному за единицу времени:

I=Q/t,

где Q – заряд, [Кл], t – время, [с].

Условия существования электрического тока

Что такое электрический ток мы разобрались, теперь давайте поговорим о том, как обеспечить его протекание. Для протекания электрического тока необходимо выполнение двух условий:

  1. Наличие свободных носителей заряда.
  2. Электрическое поле.

Первое условие существования и протекания электричества зависит от вещества, в котором протекает (или не протекает) ток, а также его состояния. Второе условие также выполнимо: для существования электрического поля обязательно наличие разных потенциалов, между которыми находится среда, в которой будут протекать носители заряда.

Напомним: Напряжение, ЭДС – это разность потенциалов. Отсюда следует, что для выполнения условий существования тока – наличия электрического поля и электрического тока, нужно напряжение.

Это могут быть обкладки заряженного конденсатора, гальванический элемент, ЭДС возникшее под действием магнитного поля (генератор).

Как он возникает, мы разобрались, давайте поговорим о том, куда он направлен. Ток, в основном, в привычном для нас использовании, движется в проводниках (электропроводка в квартире, лампочки накаливания) или в полупроводниках (светодиоды, процессор вашего смартфона и другая электроника), реже в газах (люминесцентные лампы).

Так вот основными носителями заряда в большинстве случаев являются электроны, они движутся от минуса (точки с отрицательным потенциалом) к плюсу (точке с положительным потенциалом, подробнее об этом вы узнаете ниже).

Но интересен тот факт, что за направление движения тока было принято движение положительных зарядов – от плюса к минусу. Хотя фактически всё происходит наоборот. Дело в том, что решение о направлении тока было принято до изучения его природы, а также до того, как было определено за счет чего протекает и существует ток.

Электрический ток в разных средах

Мы уже упоминали о том, что в различных средах электрический ток может различаться по типу носителей заряда. Среды можно разделить по характеру проводимости (по убыванию проводимости):

  1. Проводник (металлы).
  2. Полупроводник (кремний, германий, арсенид галия и пр).
  3. Диэлектрик (вакуум, воздух, дистиллированная вода).

В металлах

В металлах есть свободные носители зарядов, их иногда называют «электрическим газом». Откуда берутся свободные носители зарядов? Дело в том, что металл, как и любое вещество, состоит из атомов. Атомы, так или иначе движутся или колеблются. Чем выше температура металла, тем сильнее это движение. При этом сами атомы в общем виде остаются на своих местах, собственно и формируя структуру металла.

В электронных оболочках атома обычно есть несколько электронов, у которых связь с ядром достаточно слабая. Под воздействием температур, химических реакций и взаимодействия примесей, которые в любом случае находятся в металле, электроны отрываются от своих атомов, образуются положительно заряженные ионы. Оторвавшиеся электроны называются свободными и двигаются хаотично.

Если на них будет воздействовать электрическое поле, например, если подключить к куску металла батарейку – хаотичное движение электронов станет упорядоченным. Электроны от точки, в которую подключен отрицательный потенциал (катод гальванического элемента, например), начнут двигаться к точке с положительным потенциалом.

В полупроводниках

Полупроводниками являются такие материалы, в которых в нормальном состоянии нет свободных носителей заряда. Они находятся в так называемой запрещенной зоне. Но если приложить внешние силы, такие как электрическое поле, тепло, различные излучения (световое, радиационное и пр.), они преодолевают запрещенную зону и переходят в свободную зону или зону проводимости. Электроны отрываются от своих атомов и становятся свободными, образуя ионы – положительные носители зарядов.

Положительные носители в полупроводниках называются дырками.

Если просто передать энергию полупроводнику, к примеру нагреть, начнется хаотичное движение носителей заряда. Но если речь идет о полупроводниковых элементах, типа диода или транзистора, то на противоположных концах кристалла (на них нанесен металлизированный слой и припаяны выводы) возникнет ЭДС, но это не относится к теме сегодняшней статьи.

Если приложить источник ЭДС к полупроводнику, то носители заряда также перейдут в зону проводимости, а также начнется их направленное движение – дырки пойдут в сторону с меньшим электрическим потенциалом, а электроны – в сторону с большим.

В вакууме и газе

Вакуумом называют среду с полным (идеальный случай) отсутствием газов или минимизированным (в реальности) его количеством. Так как в вакууме нет никакого вещества, то и носителям заряда браться не откуда. Однако протекание тока в вакууме положило начало электронике и целой эпохе электронных элементов – электровакуумных ламп. Их использовали в первой половине прошлого века, а в 50-х годах они начали постепенно уступать месту транзисторам (в зависимости от конкретной сферы электроники).

Допустим, что у нас есть сосуд, из которого откачали весь газ, т.е. в нём полный вакуум. В сосуд помещено два электрода, назовем их анод и катод. Если мы подключим к катоду отрицательный потенциал источника ЭДС, а к аноду положительный – ничего не произойдет и ток протекать не будет. Но если мы начнем нагревать катод – ток начнет протекать. Этот процесс называется термоэлектронной эмиссией – испускание электронов с нагретой поверхности электрона.

На рисунке изображен процесс протекания тока в вакуумной лампе. В вакуумных лампах катод нагревают расположенной рядом нитью накала на рис (Н), типа такой, как в осветительной лампе.

При этом, если изменить полярность питания – на анод подать минус, а на катод подать плюс – ток протекать не будет. Это докажет, что ток в вакууме протекает за счет движения электронов от КАТОДА к АНОДУ.

Газ также как и любое вещество состоит из молекул и атомов, это значит, что если газ будет находиться под воздействием электрического поля, то при определенной его силе (напряжение ионизации) электроны оторвутся от атома, тогда будут выполнены оба условия протекания электрического тока – поле и свободные носители.

Как уже было сказано, этот процесс называется ионизацией. Она может происходить не только от приложенного напряжения, но и при нагреве газа, рентгеновском излучении, под воздействием ультрафиолета и прочего.

Ток через воздух потечет, даже если между электродами установить горелку.

Протекание тока в инертных газах сопровождается люминесценцией газа, это явление активно используется в люминесцентных лампах. Протекание электрического тока в газовой среде называется газовым разрядом.

В жидкости

Допустим, что у нас есть сосуд с водой в который помещены два электрода, к которым подключен источник питания. Если вода дистиллированная, то есть чистая и не содержит примесей, то она является диэлектриком. Но если мы добавим в воду немного соли, серной кислоты или любого другого вещества, образуется электролит и через него начнет протекать ток.

Электролит – вещество, которое проводит электрический ток вследствие диссоциации на ионы.

Если в воду добавить медный купорос, то на одном из электродов (катоде) осядет слой меди – это называется электролиз, что доказывает что электрический ток в жидкости осуществляется за счет движения ионов – положительных и отрицательных носителей заряда.

Электролиз – физико-химический процесс, который заключается в выделении на электродах компонентов составляющих электролит.

Таким образом происходит омеднение, золочения и покрытие другими металлами.

Заключение

Подведем итоги, для протекания электрического тока нужны свободные носители зарядов:

  • электроны в проводниках (металлы) и вакууме;
  • электроны и дырки в полупроводниках;
  • ионы (анионы и катионы) в жидкости и газах.

Для того, чтобы движение этих носителей стало упорядоченны, нужно электрическое поле. Простыми словами — приложить напряжение на концах тела или установить два электрода в среде, где предполагается протекание электрического тока.

Также стоит отметить, что ток определенным образом воздействует на вещество, различают три типа воздействия:

  • тепловое;
  • химическое;
  • физическое.

Напоследок рекомендуем просмотреть полезно видео, в котором более подробно рассматриваются условия существования и протекания электрического тока:

Полезное по теме:

  • Зависимость сопротивления проводника от температуры
  • Закон Джоуля-Ленца простыми словами
  • Какой электрический ток опаснее для человека: постоянный или переменный

Текущее электричество — Мир науки

Цели

  • Опишите компоненты, необходимые для замыкания электрической цепи.

  • Продемонстрируйте различные способы замыкания цепи (параллельные или последовательные).

  • Определите, как электричество используется в бытовых приборах.

  • Опишите связь между электроном и электрическим током.

Материалы

Справочная информация


Электричество используется для работы мобильного телефона, питания поездов и кораблей, работы холодильника и двигателей таких машин, как кухонные комбайны. Электрическая энергия должна быть преобразована в другие формы энергии, такие как тепло, свет или механическая, чтобы быть полезной.

Все, что мы видим, состоит из крошечных частиц, называемых атомами. Атомы состоят из еще более мелких частей, называемых протонами, электронами и нейтронами. Атом обычно имеет одинаковое количество протонов (имеющих положительный заряд) и электронов (имеющих отрицательный заряд). Иногда электроны могут удаляться от своих атомов.

Электрический ток — это движение электронов по проводу. Электрический ток измеряется в ампер (ампер) и относится к количеству зарядов, которые перемещаются по проводу в секунду.

Чтобы протекал ток, цепь должна быть замкнута; другими словами, должен быть непрерывный путь от источника питания через цепь, а затем обратно к источнику питания.

Параллельная цепь (сверху)

Серийная цепь (внизу)

Напряжение иногда называют электрическим потенциалом и измеряют в вольт . Напряжение между двумя точками цепи — это общая энергия, необходимая для перемещения небольшого электрического заряда из одной точки в другую, деленная на размер заряда.

Сопротивление измеряется в Ом и относится к силам, противодействующим потоку электронного тока в проводе. Мы можем использовать сопротивление в свою пользу, преобразуя электрическую энергию, теряемую в резисторе, в тепловую энергию (как в электрической плите), световую энергию (лампочка), звуковую энергию (радио), механическую энергию (электрический вентилятор) или магнитную энергию. энергия (электромагнит). Если мы хотим, чтобы ток протекал прямо из одной точки в другую, мы должны использовать провод с как можно меньшим сопротивлением.

Прекрасная аналогия, помогающая понять эти тер мс: система водопроводных труб.

  • Напряжение эквивалентно давлению воды, которое выталкивает воду в трубу
  • Ток эквивалентен скорости потока воды
  • Сопротивление похоже на ширину трубы – чем тоньше труба, тем выше сопротивление и тем тяжелее вода, протекающая через нее.

В этой серии заданий учащиеся будут экспериментировать с проводами, батареями и выключателями для создания собственных электрических цепей, одновременно изучая напряжение, силу тока и сопротивление.

Интересный факт!

Вы можете заметить, что символы некоторых единиц СИ (Международная система единиц) в этом плане урока написаны с заглавной буквы, например, вольт (В) и ампер (А), в отличие от тех, которые вы привык к использованию (м, кг). Это традиция использовать заглавную букву, когда единица называется в честь человека. В этих случаях единицы были названы в честь Алессандро Вольта и Андре-Мари Ампера. Единица сопротивления также была названа в честь человека (Георг Симон Ом), но использует символ Ω, который представляет собой греческую букву омега. Этим правилам важно следовать, поскольку строчные и прописные буквы могут обозначать разные единицы измерения, например, тонну (т) и тесла (Т). Единственным исключением является то, что допустимо использовать L для обозначения литров, так как букву «l» часто путают с цифрой «1»!

Словарь

амперметр : Прибор, используемый для измерения электрического тока в цепи; единица измерения – ампер или ампер (А).
цепь : Путь для прохождения электрического тока.
проводник : Вещество, состоящее из атомов, которые свободно удерживают электроны, что позволяет им легче проходить через него.
электрический ток : непрерывный поток электрического заряда, перемещающийся из одного места в другое по пути; требуется для работы всех электроприборов; измеряется в амперах или амперах (А).
электрохимическая реакция : Реакция, которая чаще всего включает перенос электронов между двумя веществами, либо вызванный электрическим током, либо сопровождаемый им.
электрод : Проводник, через который ток входит или выходит из объекта или вещества.
электрон : субатомная частица, имеющая отрицательный электрический заряд.
изолятор : Вещество, состоящее из атомов, которые очень крепко удерживают электроны, не позволяя электронам очень легко проходить.
параллельная цепь : тип цепи, которая позволяет току течь по параллельным путям. Электрический ток разделяется между разными путями. Если лампочки соединены в параллельную цепь, а одна из ламп удалена, ток все равно сможет протекать, чтобы зажечь другие лампочки в цепи.
полупроводник : Вещество, состоящее из атомов, удерживающих электроны, с силой между проводником и изолятором.
серия цепь : Цепь, в которой все компоненты соединены по одному пути, так что через все компоненты протекает один и тот же ток. Если вынуть одну из лампочек, цепь разорвется, и ни один из других огней не будет работать.
напряжение : разность потенциалов между двумя точками цепи, например положительным и отрицательным полюсами батареи. Его часто называют «толчком» или «силой» электричества. Возможно иметь напряжение без тока (например, если цепь неполная и электроны не могут течь), но невозможен ток без напряжения. Измеряется в вольтах (В).
вольтметр : прибор, используемый для измерения разности электрических потенциалов между двумя точками цепи.

Прочие ресурсы

BC Hydro | Power Smart для школ

BC Hydro | Изучение простых схем

BC Hydro | Исследование последовательных и параллельных цепей

BC Hydro | Электробезопасность

Как это работает | Как работают светоизлучающие диоды

Чтобы приобрести мини-лампочки для рождественской елки: Home Depot, Canadian Tire

Для приобретения небольших учебных лампочек (с номиналом не более 2 вольт каждая):  Boreal Science

Центр обработки данных Переменный ток — Raritan

В этом видео подробно демонстрируется переменный ток с однофазным питанием, приводятся конкретные Примеры. В переменном токе электроны не движутся только в одном направлении. Вместо этого они какое-то время прыгают от атома к атому в одном направлении, а затем разворачиваются и прыгают от атома к атому в противоположном направлении. Время от времени электроны меняют направление. В переменном токе электроны не движутся равномерно вперед. Вместо этого они просто двигаются вперед и назад.

 

 Дополнительные ресурсы Raritan


Расшифровка:
Добро пожаловать в этот видеокурс по электропитанию в центре обработки данных применительно к стойкам центра обработки данных.

Как мы покажем в другом видеоролике, мощность, поступающая в центр обработки данных, обычно представляет собой 3-фазную мощность переменного тока, которую чаще называют 3-фазной мощностью переменного тока.

Важно понимать, как работает переменный ток, чтобы иметь возможность оценить тот факт, что трехфазная мощность на самом деле представляет собой три линии, отстоящие друг от друга на 120 градусов. Эта концепция смущает многих людей, поэтому, чтобы последнее предложение имело смысл, давайте начнем с того, как ток движется в однофазной сети.

Здесь, на верхнем рисунке, у нас есть магнит. Северный полюс — это положительно заряженный полюс, а южный полюс — отрицательно заряженный полюс. И рядом с этим магнитом у нас есть медный кабель. Медь используется, потому что у нее есть электрон, который легко перемещается.

Я не собираюсь вдаваться в основы химии 101, где говорится о ядре, электронах и их функционировании. Позвольте мне просто заявить на простом уровне, что требуется очень небольшая сила, чтобы отодвинуть электрон от ядра в атоме меди. Вот почему медь является отличным проводником электроэнергии.

Магнитные силы притягивают положительные и отрицательные стороны. Если у вас есть два магнита, и вы держите положительные концы близко друг к другу и отпускаете магниты, они будут отталкиваться друг от друга. Если вы держите позитив и негатив близко друг к другу, они будут притягиваться друг к другу. Электроны заряжены отрицательно. Поэтому они притягиваются к положительной части магнита и отталкиваются от отрицательной части магнита.

Когда мы помещаем магнит рядом с медным проводом или медной катушкой, магнитная сила достаточно сильна, чтобы начать движение медных электронов. Ближайший к положительному полюсу магнита электрон хочет приблизиться еще ближе. И тот, что рядом с ним, хочет заполнить пустоту, которую только что оставил тот первый, а тот, что за ним, заполняет следующую пустоту, и в медной проволоке начинается цепная реакция.

В этом упрощенном примере я показываю только один конец медного [провода] вместо петли. В куске медной проволоки миллионы таких электронов. Когда электроны движутся, они генерируют ток. Более толстая проволока будет иметь больше меди, а это означает, что в ней будет больше электронов, генерирующих ток.

Если положительно заряженная часть магнита находится непосредственно рядом с медным кабелем, электроны будут двигаться к магниту с максимальной скоростью. Альтернативная часть заключается в том, что если отрицательно заряженная часть магнита находится непосредственно рядом с медным кабелем, электроны будут удаляться от магнита с максимальной скоростью.

Теперь давайте возьмем этот магнит и начнем вращать его по часовой стрелке. Магнит расположен перпендикулярно проводу. Обратите внимание, что отрицательный и положительный полюса магнита находятся на одинаковом расстоянии от медного провода. Сила притяжения положительного полюса уравновешивается силой отталкивания отрицательного полюса. Это означает, что электроны не движутся, поэтому ток не генерируется. Ток выражается в амперах или амперах, поэтому генерируемые здесь амперы равны нулю.

Если повернуть магнит еще на 90 градусов, у нас южный полюс магнита рядом с проводом. Эта отрицательно заряженная часть магнита теперь отталкивает электроны, и они движутся в противоположном направлении от магнита.

Сила движения электронов от одного атома меди к другому либо к положительному заряду, либо от отрицательного заряда вызывает ток.

Переменный ток — это ток, протекающий в одном направлении, достигающий максимальной силы, замедляющийся до остановки, а затем изменяющий направление до достижения другой максимальной силы, после чего он замедляется и снова останавливается. Один полный цикл — от нуля до максимального положительного значения, обратно до нуля, до максимального отрицательного значения и снова до нуля. Это называется Герц.

В Северной Америке у нас 60 Гц в секунду, а большая часть остального мира использует 50 Герц в секунду. Многие люди видят плюсы и минусы, типа плюс 2,3 ампера и минус 2,3 ампера, и путаются и думают, что одно компенсирует другое. Это не так. Положительные и отрицательные числа используются для отображения движения тока.

Ток вызван движением электронов, и не имеет значения, в каком направлении они движутся.

Вот простая аналогия. Подумайте о том, чтобы выйти из дома, сесть в машину и проехать через квартал. Автомобиль стартует с нуля и разгоняется до 30 миль или 30 километров в час. Вы знаете, что в конце квартала есть знак «стоп», поэтому вы начинаете замедляться и в конце концов останавливаетесь. Теперь давайте предположим, что вы что-то забыли дома, и решили сделать резервную копию того же расстояния, которое вы только что преодолели. Вы снова ускоряетесь до 30, а затем начинаете замедляться, приближаясь к дому, пока не остановитесь.

Вы только что преодолели нулевое расстояние? Конечно нет. Вы преодолели двойную длину квартала, в котором живете, даже несмотря на то, что теперь вы вернулись в исходную точку. Вы просто чередовали направления, в которых путешествовали. В нашем примере с автомобилем вы двигаетесь вперед и назад, но с медным проводом электроны движутся к положительным и удаляются от отрицательных магнитных сил. Вращая магнит, мы заставляем направление этого движения двигаться вперед и назад. Но называть его обратным и прямым током звучит неправильно, поэтому мы просто называем его переменным током.

Амперметр измеряет силу тока или силу тока в линии. Некоторые будут показывать положительные и отрицательные значения, а другие нет. Другой метод измерения тока заключается в использовании цифрового осциллографа. На многих диаграммах отображаются положительные и отрицательные числа, отражающие направление тока.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *