Электроника как искусство: электрический ток / Хабр
Не влезай. Убьет! (с)Среднестатистическая грамотность населения в области электроники и электротехники оставляет желать лучшего. Максимум, спаять схемку, а как она работает — темный лес. К сожалению, все русскоязычные учебники пестрят формулами и интегралами, от них любого человека потянет в сон. В англоязычной литературе дела обстоят несколько лучше. Попадаются довольно интересные издания, но камнем преткновения здесь уже выступает английский язык. Постараюсь изложить основные понятия по электротехнике максимально доступно, в вольном стиле, не от инженера инженеру, а от человека человеку. Сведущий читатель, возможно, тоже найдет для себя несколько интересных моментов.
Электрический ток
Пути электрического тока неисповедимы. (с) мысли из интернетаНа самом деле, нет. Все так или иначе можно описать с помощью математической модели, моделирования, да даже прикинув по-быстренькому на бумажке, а некоторые уникумы делают это в голове.
Электрический ток характеризуется несколькими параметрами. Напряжением U и током I. Конечно, все мы помним определения по физике, но мало кто понимает их значения. Начну с напряжения. Разность потенциалов или работа по перемещению заряда, как сухо и неинтересно пишут в учебниках. На самом деле, напряжение всегда измеряется между двумя точками. Оно характеризует способность создавать электрический ток между этими двумя точками. Назовем эти точки источником напряжения. Чем больше напряжение, тем больше ток. Меньше напряжения – меньше ток. Но об этом чуть позже.
Что же такое ток? Представьте аналогию русло реки – это провода, электрический ток – это скорость потока воды в реке. Тогда напряжение здесь – перепад высоты между начальной точкой реки и конечной точкой. Или напряжение – это насос гоняющий воду, если река течет в одной плоскости. Такие аналогии на начальных этапах очень помогают понять, что же происходит в электрической схеме.
Но, в конечном итоге, лучше от них отказаться. Лучше представить ток как некий поток электронов. Количество заряда, перемещаемое в единицу времени. Конечно, в учебниках говорится, что де электроны движутся со скоростью несколько сантиметров в минуту и значение имеет лишь электромагнитное поле, но пока забудем про это. Итак, под током можно понимать движение электрического тока, т.е. заряда. Носители заряда, электроны, отрицательно заряжены и двигаются от отрицательного потенциала к положительному, электрический ток же имеет направление от положительного потенциала к отрицательному, от плюса к минусу, так принято для удобства и так мы будем пользоваться в дальнейшем, забыв про заряд электрона.Конечно, сам по себе ток не появится, нужно создать напряжение между двумя точками и нужна какая-либо нагрузка для протекания тока через нее, подключенная к этим двум точками. Очень полезно знать свойство, что для протекания тока нужно два проводника: прямой, до нагрузки, и обратный, от нагрузки до источника.
Что же такое источник напряжения? Представим его в виде черного ящика, имеющего как минимум два вывода для подключения. Самые простые примеры из реальной жизни: электрическая розетка, батарейка, аккумулятор и т.п.
Идеальный источник напряжения обладает неизменным напряжением при протекании через него любого значения тока. Что же будет, если замкнуть зажимы идеального источника напряжения? Потечет бесконечно большой ток. В реальности источники напряжения не могут отдать бесконечно большой ток, потому что обладают некоторым сопротивлением. Например, провода в сетевой розетке 220в от самой розетки до подстанции имеют сопротивление, пусть и малое, но довольно ощутимое. Провода от подстанций до электростанций тоже имеют сопротивление. Нельзя забывать про полное сопротивление трансформаторов и генераторов. Батарейки имеют внутреннее сопротивление, обусловленное внутренней химической реакцией, которая имеет конечную скорость протекания.Что же такое сопротивление? Вообще, это тема довольно обширная. Возможно, опишу в одной из следующих глав. Если кратко – это параметр, связывающий ток и напряжение. Оно характеризует, какой ток потечет при приложенном напряжении к этому сопротивлению. Если говорить «водной» аналогией, то сопротивление – это дамба на пути реки. Чем меньше отверстие в дамбе – тем больше сопротивление. Эту связь описывает закон Ома: . Как говорится: «Не знаешь закон Ома, сиди дома!».
Зная закон Ома, не сидя дома, имея какой-либо источник тока с заданным напряжением и сопротивление в виде нагрузки, мы очень точно можем предсказать какой потечет ток.
Реальные источники напряжения имеют какое-то свое внутреннее напряжение и отдают некий конечный ток, называемый током короткого замыкания. При этом батареи и аккумуляторы еще и разряжаются со временем и имеют нелинейное внутреннее сопротивление. Но пока тоже забудем об этом, и вот почему. В реальных схемах удобнее проводить анализ с использованием сиюминутных мгновенных значений напряжения и тока, поэтому будем считать источники напряжения идеальными. За исключением того факта, когда потребуется посчитать максимальны ток, который способен отдать источник.
Насчет «водной» аналогии электрического тока. Как я уже писал, она не очень правдива, поскольку скорость движения реки до дамбы и после дамбы будет разным, также разным будет кол-во воды до и после дамбы. В реальных схемах электрический ток втекающий в резистор и вытекающий из него будет равен между собой. Ток по прямому проводу, к нагрузке, и по обратному проводу, от нагрузки до источника, тоже равен между собой. Ток ни откуда не берется и никуда не девается, сколько «втекло» в узел схемы, столько и «вытечет», даже если путей несколько. Например, если есть два пути протекания тока от источника, то он потечет по этим путям, при этом полный ток источника будет равен сумме двух токов. И так далее. Это и есть иллюстрация закона Кирхгофа. Это очень просто.
Также есть еще два важных правила. При параллельном соединении элементов, напряжение в каждом из элементов одинаково. Например, напряжение на резисторе R2 и R3, на рисунке выше, одинаковы, но токи могут быть разными, если резисторы имеют разные сопротивления, по закону Ома. Ток через батарейку равен току на резисторе R1 и равен сумме токов на резисторах R2 и R3. При последовательном соединении напряжения элементов складываются. Например, напряжение которое выдает батарея, т.е. ее ЭДС, равно напряжению на резисторе R1 + напряжение на резисторе R2 или R3.Как я уже писал, напряжение измеряется всегда между двумя точками. Иногда, в литературе можно встретить: «Напряжение в точке такой-то». Это означает напряжение между этой точкой и точкой нулевого потенциала. Создать точку нулевого потенциала можно, например, заземлив схему. Обычно «землят» схему в месте самого отрицательно потенциала около источника питания, например, как на рисунке выше. Правда это бывает не всегда, да и применение нуля довольно условно, например, если нам нужно двухполярное питание +15 и -15 вольт, то «землить» надо уже не -15в, а потенциал посредине.
Если же заземлить -15в, то мы получим 0, +15, +30в. См. рисунки ниже. Заземление также применяется в качестве защитного или рабочего. Защитное заземление называют зануление. Если нарушится изоляция схемы в каком-нибудь другом участке, отличном от земли, то по нулевому проводу потечет большой ток и сработает защита, которая отключит часть схемы. Защиту мы должны предусмотреть заранее, поставив автоматический выключатель или иное устройство на пути протекания тока.Иногда «землить» схему нельзя или невозможно. Вместо земли применяют термин общая точка или ноль. Напряжения в таких схемах указываются относительно общей точки. При этом вся схема относительно земли, т.е. нулевого потенциала может располагаться где угодно. См. рисунок.
Обычно, Xv близко к 0 вольт. Такие незаземленные схемы с одной стороны более безопасны, поскольку если человек прикоснется одновременно к схеме и земле ток не потечет, т.к. нет обратного пути протекания тока. Т.е. схема станет «заземлена» через человека.Вообще земля — это термин довольно обширный и расплывчатый. Есть очень много терминов и названий земли, смотря где «землить» схему. Под землей может пониматься как защитная земля, так и рабочая земля (по протеканию тока через нее при нормальной работе), как сигнальная земля, так и силовая земля (по роду тока), как аналоговая земля, так и цифровая земля (по роду сигнала). Под землей может пониматься общая точка или наоборот, под общей точкой пониматься земля или и быть ей. Также в схеме могут присутствовать все земли одновременно. Так что надо смотреть по контексту. Есть даже такая забавная картиночка в иностранной литературе, см. ниже. Но обычно земля – это схемные 0 вольт и это точка от которой измеряют потенциал схемы.
До сих пор, упоминая источник напряжения, я не касался рода этого самого напряжения. Напряжение есть меняющееся со временем и есть не меняющееся. Т.е. переменное и постоянное. Например, напряжение, меняющееся по синусоидальному закону всем хорошо знакомо, это напряжение сети 220в в бытовых розетках. С постоянным напряжением работать очень просто, мы это уже делали выше, когда рассматривали закон Кирхгофа. А что же делать с переменным напряжением и как его рассматривать?На рисунке приведены несколько периодов переменного напряжения 220в 50Гц (синяя линия). Красная линия – постоянное напряжение 220в, для сравнения.
Определимся, сначала что такое напряжение 220в, кстати, по новому стандарту положено считать 230в. Это действующее значение напряжения. Амплитудное значение будет в корень из 2х раз выше и составит примерно 308в. Действующее значение – это такое значение напряжения, при котором за период переменного тока в проводнике выделяется столько же теплоты, сколько и при постоянном токе такого же напряжения. Выражаясь математическим языком – это среднеквадратичное значение напряжения.На первый взгляд это может показаться неудобным, какое-то действующее значение, но это удобно для расчетов мощности без необходимости конвертации напряжения.
Переменное напряжение еще удобно рассматривать как постоянное напряжение, взятое в какой-либо точке времени. После чего проводить анализ схемы несколько раз, изменяя знак постоянного напряжение на обратный. Сначала рассмотреть работу схемы с постоянным положительным напряжением, потом, изменить знак, с положительного на отрицательный.
Для переменного напряжения также необходимо два провода. Они называются фаза и ноль. Иногда ноль заземляют. Такая система называется однофазной. Напряжение фазы измеряется относительно нуля и меняется со временем, как показано на рисунке выше. При положительной полуволне напряжения ток протекает от фазы к активной нагрузке и от нагрузки возвращается обратно по нулевому проводу. При отрицательной полуволне ток течет по нулевому проводу и возвращается по фазному.
В промышленности широко применяют трехфазную сеть. Это частный случай многофазных систем. По сути все тоже самое, что и однофазная система, только умноженная на 3, т.е. применение одновременно трех фаз и трех земель. Впервые изобретено Н. Тесла, впоследствии усовершенствовано М. О. Доливо-Добровольским. Усовершенствование состояло в том, что для передачи трехфазного электрического тока можно было выкинуть лишние провода, достаточно четырех: три фазы ABC и нулевой провод или же вовсе три фазы, отказавшись от нуля. Нулевой провод очень часто заземляют. На рисунке ниже ноль общий.
Почему же 3 фазы, и не больше, не меньше? С одной стороны, 3 фазы гарантированно создают вращающееся магнитное поле, так необходимое электрическим двигателям для вращения или получаемое от генераторов электростанций, с другой стороны это экономически выгодно с материальной точки зрения. Меньше нельзя, а больше и не нужно.Чтобы гарантировано создавать вращающееся поле в трехфазной сети нужно чтобы фазы напряжения были сдвинуты друг относительно друга. Если принять полный период напряжения за 360 градусов, то 360/3 = 120 градусов. Т.е. напряжение каждой фазы сдвинуто относительно друг друга на 120 градусов. См. рисунок ниже.
Здесь показан график напряжения 3-х фазной сети 380в по времени. Как видно из рисунка, все тоже самое, что и с однофазной сетью, только напряжений стало больше. 380в – это так называемое линейное напряжение сети Uл, т.е. напряжение, измеряемое между двумя фазами. На рисунке показан пример нахождения мгновенного значения Uл. Оно также изменяется по синусоидальному закону. Также наряду с линейным напряжением различают фазное Uф. Оно измеряется между фазой и нулем. Фазное напряжение в данной трехфазной сети равно 220в. Под фазным и линейным напряжение, конечно же подразумевается действующее напряжение. Соотносятся линейное к фазному напряжению, как корень из трех. Нагрузку к трехфазной сети можно подключать как угодно – к фазному напряжению: между какой-либо фазой и нулем, либо к линейному напряжению: между двумя фазами. Если нагрузка подключена к фазному напряжению, то такая схема соединения называется звездой. Она и показана выше. Если к линейному напряжения – то соединение треугольником. Если одинаковая нагрузка подключается к линейным напряжениям между всеми тремя фазами, то такие сети симметричные. Ток через нулевой провод в симметричных сетях не течет. См рис. ниже. Промышленные сети также считаются условно симметричными. Как правило ноль в таких сетях присутствует, но лишь в защитных целях. Иногда может и отсутствовать вообще. Веселая картиночка из вики наглядно иллюстрирует как протекает ток в таких сетях. На этом кратенький обзор по электросетям и электричеству завершен. Возможно в будущем объясню на пальцах как работает диод и транзистор, что такое стабилитрон, тиристор и другие элементы. Пишите, про что вам интересно почитать.Библиографический список
- Искусство схемотехники, П. Хоровиц. 2003.
- GROUNDS FOR GROUNDING. A Circuit-to-System Handbook, Elya B. Joffe, Kai-Sang Lock.
- Wiki и интернет ресурсы.
Законы постоянного тока — Умскул Учебник
На этой странице вы узнаете- Что общего у электрического тока с водой?
- В чем отличие сопротивления от удельного сопротивления?
- Почему нежелательно использовать телефон, подключенный к зарядке?
- Фамилия какого ученого стоит миллион?
«Все, кина не будет. Электричество кончилось». Наверное, никого не оставит равнодушным популярная фраза из широко известного фильма «Джентльмены удачи». Ведь действительно: бесит, когда сидишь за просмотром любимого сериальчика, вдруг — бамс! Вырубили свет, и зарядки ноута, как назло, не хватило. И не выработаешь электричество в домашних условиях, а жаль… Но вот понять, как оно работает — это мы сможем сделать в статье.
Электрический токВ наше время трудно себе представить жизнь без электричества. Телевизор не посмотреть, телефон не зарядить, чай не попить… Ни один электроприбор в доме не будет работать без электричества. А объявление об отключении электроэнергии, вызывает тихий ужас.
Электричество — это форма энергии, которая существует в виде статических или подвижных электрических зарядов.
Что общего у электрического тока с водой? Поток. И то и другое представляет собой направленное движение частиц. Из чего состоит вода? Из молекул. Когда эти молекулы движутся в одном направлении, то они образуют поток воды, который течет, например, по трубам. Так же и электрический ток. Он образуется потоком заряженных частиц, которые движутся по проводам. |
Сформулируем определение:
Электрический ток — это упорядоченное движение заряженных частиц.
Чтобы электрический ток существовал, необходимо выполнение следующих условий:
- наличие свободных заряженных частиц;
- наличие электрического поля;
- наличие замкнутой электрической цепи.
Основными количественными характеристиками электрического тока являются сила тока и напряжение.
НапряжениеЧтобы внутри цепи существовал электрический ток, цепь должна быть замкнута и между концами участка цепи должно существовать напряжение.
Напряжение — скалярная (не имеющая направления) физическая величина, значение которой равно работе тока на участке цепи, совершаемой при переносе единичного электрического заряда из одной точки в другую.
\(U = \frac{A}{q}\), где U — напряжение (В), |
Единица измерения U — В (Вольт) = \(\frac{Дж}{Кл}\)
Электрический ток – результат “труда” множества частиц. Они любят работать – не ленятся перемещаться из одного конца цепи в другой. И чем больше они будут работать, тем большее напряжение получится. Так запоминаем связь напряжения (U) с работой (A).
Услышав слова из известной песни Димы Билана «Это ты, это я, между нами молния, С электрическим разрядом 220 Вольт…» любой физик (и электрик) приобретает новую пару седых волосинок. Такое напряжение очень опасно для человека. Однако, 220 Вольт — это то самое напряжение в наших розетках!
Прибор для измерения напряжения — вольтметр. Он включается в цепь параллельно. Пример подключения представлен на рисунке:
Сила токаЭто еще одна немаловажная характеристика электрического тока.
Сила тока — это физическая величина, показывающая, какой заряд переносится через рассматриваемую площадь поперечного сечения за единицу времени .
\(I = \frac{q}{t}\), где I — сила тока (А), |
Единица измерения I — А (ампер) = \(\frac{Кл}{с}\).
Представим, что внутри проводника «бежит» в одном направлении огромное количество заряженных частиц. Так вот, чем больше общий заряд частиц, пробегающих через поперечное сечение проводника за единицу времени, тем больше будет значение силы тока. Это поможет вам запомнить зависимость силы тока (I) от электрического заряда (q).
Прибор для измерения силы тока — амперметр. Он включается в цепь последовательно. Пример подключения представлен на рисунке:
Направление тока совпадает с направлением движения положительно заряженных частиц.
Давайте разберемся, как можно определить направление тока в цепи на примере.
Задача. На рисунке изображена электрическая цепь с источником тока и сопротивлением R. Определите направление тока в данной цепи (по часовой стрелке/против часовой стрелки).
Решение:
Обратите внимание, «большая» пластина реостата расположена справа (именно она и направляет ток), а «маленькая» слева. Положительно заряженные частицы двигаются от катода к аноду (от положительно заряженной пластинки к отрицательно заряженной), а направление тока всегда совпадает с направлением положительно заряженных частиц. Значит, ток в цепи направлен по часовой стрелке.
Ответ: по часовой стрелке
Электрическое сопротивлениеОно является электрической характеристикой проводника.
Сопротивление — физическая величина, характеризующая электрические свойства участка цепи.
\(R = \frac{pl}{S}\), где R — сопротивление (Ом), |
Единица измерения R — Ом.
Удельное сопротивление проводника (p) можно посмотреть в специальной таблице в справочнике или в интернете. Для каждого материала будет свое значение. Мы приведем для примера лишь фрагмент такой таблицы. 2\)/ м
В чем отличие сопротивления от удельного сопротивления? Сопротивление — это внешнее свойство, зависящее от количества присутствующего материала, от геометрических характеристик проводника и от самого материала, из которого сделан проводник. Удельное сопротивление — это внутреннее свойство проводника, которое не зависит от его размера, а зависит от химического состава вещества и температуры. Условно можно сказать, что сопротивление — это свойство проводника, а удельное сопротивление — свойство материала. |
Получается, что прежде всего на то, каким будет сопротивление, влияют размеры проводника, его форма, материал, из которого он сделан.
Удельное сопротивление проводника зависит также от температуры. Когда температура твердых тел увеличивается, то удельное сопротивление возрастает. А в растворах и расплавах — наоборот, уменьшается. В экзаменационных задачах случаи с изменением удельного сопротивления не рассматриваются, а вот в олимпиадных задачах такое встретить можно.
Давайте поразмышляем: что чему сопротивляется?
Причина электрического сопротивления кроется во взаимодействии зарядов разного знака при протекании тока по проводнику. Это взаимодействие можно сравнить с силой трения, стремящейся остановить движение заряженных частиц.
Чем сильнее взаимодействие свободных электронов с положительными ионами в узлах кристаллической решетки проводника, тем больше сопротивление проводника.
Проводник с определенным постоянным сопротивлением называется резистор.
Вернемся к сравнению электрического тока с водой: как молекулы воды из крана движутся сверху вниз, так и электрический ток имеет определенное направление — от катода к аноду. Электрический заряд условно в нашем примере аналогичен массе воды, а напряжение — напору воды из крана.
Закон ОмаСила тока, напряжение и сопротивление связаны между собой соотношением, которое называется закон Ома:
\(I = \frac{U}{R}\) , где I — сила тока (А), |
Для упрощенного понимания закона Ома можно использовать данный треугольник. Чтобы вспомнить формулу для нахождения той или иной величины, нужно ее закрыть рукой. Если оставшиеся открытыми величины стоят бок о бок, то они перемножаются друг с другом (U=IR). А если одна величина стоит выше другой, то в таком случае мы делим их друг на друга (I=U/R или R=U/I)
Данный закон справедлив для участка цепи, на который не действуют сторонние силы.
Разберем задачу из контрольно-измерительных материалов ЕГЭ (номер 12).
Ниже на рисунке приведена схема электрической цепи, в которой провода можно считать идеальными. Определите сопротивление резистора, если показания амперметра 0,2 А, а вольтметра — 8 В.
Решение:
Вольтметр подключен параллельно резистору. Следовательно, он показывает напряжение на резисторе U.
Амперметр подключен последовательно. Следовательно, он показывает силу тока I на всей цепи.
Чтобы найти сопротивление на резисторе, воспользуемся законом Ома:
I=\(\frac{U}{R}\), где R — сопротивление резистора.
Выразим R и подставим значения:
R=\(\frac{U}{I}\)
R=\(\frac{8}{0,2}\)=40 (Ом)
Ответ: 40
Работа и мощность электрического токаВернемся к понятию работы. Мы говорили, при перемещении заряда по проводнику электрическое поле совершает работу (А):
A = qU
Если мы выразим заряд из формулы силы тока q=It, то получим, формулу для расчета работы электрического поля (А) при протекании постоянного тока (или просто работа тока):
А = UIt , где A — работа электрического тока (Дж), |
Единица измерения А — Дж (Джоуль).
В быту ток совершает работу длительное время, поэтому при определении затраченной электрической энергии используют единицу измерения кВт * ч. Киловатт в час — это энергия, которая потребляется устройством мощностью 1 кВт в течении 1 часа. Учитывая, что 1 ч=3600 с, получим:
1 кВт*ч = 1000 Вт * 3600 с = 3600000 Дж = 3600 кДж
Если же работу тока рассчитать за единицу времени, то мы получим мощность постоянного электрического тока.
Мощность — величина, обозначающая интенсивность передачи электрической энергии.
\(P = \frac{A}{t}\) , где P — мощность (Вт), |
Единица измерения P — Вт (Ватт).
Средняя мощность тока равна:
\(P = \frac{A}{t} = \frac{qU}{t} = IU = \frac{U^2}{R} = I^2R\)
Теперь мы знаем все про мощность и работу тока, а значит, нужно отработать это на практике. Тем более что такие задачи встречаются в ЕГЭ (номер 12).
Задача.
Какую работу совершит электрический ток в электродвигателе вентилятора за 20 мин., если сила тока в цепи 0,2 А, а напряжение 12 В?
Решение.
Вспомним формулу для работы тока A=U*I*t , где U=12 В — напряжение в электродвигателе, I=0,2 A — сила тока, t=20 мин=1200 с — время.
Все данные нам уже известны, поэтому можем подставить их в формулу для работы тока и получить ответ.
A=12*0,2*1200=2880 Дж
Ответ: 2880 Дж
Мощность электроприбора всегда указывается в документации, прилагающейся к нему. Кроме того, нередко ее пишут на самом приборе. Давайте посмотрим на утюг, или стиральную машину дома. Мы увидим, что утюг имеет мощность 1000 Вт, а обычная энергосберегающая лампочка, всего 40 Вт (на то она и сберегающая). Чем больше мощность прибора, тем больше энергии он будет потреблять. Примеры мощностей различных приборов представлены на рисунке.
Закон Джоуля — ЛенцаТеперь же свяжем работу тока и теплоту, которая выделяется на проводнике за некоторое время t.
Почему нежелательно использовать телефон, подключенный к зарядке? Когда приборы подключены в сеть, мы можем заметить, что они нагреваются. Очень часто это наблюдается, когда телефон подключен на зарядку, а мы продолжаем по нему звонить, использовать интернет и прочее. Это плохо влияет на телефон: перегрев батареи и корпуса могут быстрее привести девайс в негодность. |
Почему так происходит?
Электрический ток оказывает тепловое действие на проводник. Количество теплоты, которое при этом выделяется, будет рассчитываться по закону Джоуля — Ленца:
Количество теплоты, выделяемое за время в проводнике с током, пропорционально произведению квадрата силы тока на этом участке и сопротивления проводника:
Q = I2Rt , где Q — количество теплоты (Дж), |
Единица измерения Q — Дж (Джоуль).
В электронагревательных приборах используются проводники с высоким сопротивлением, что обеспечивает выделение тепла на определенном участке.
Так, проволоку из нихрома (сплав никеля с хромом) применяют в электронагревательных элементах, работающих при температуре до 1000 ℃ (резисторах, например). Нихром относится к классу сплавов с высоким электрическим сопротивлением, что определяет его применение в качестве электрических нагревателей. Этот сплав используется также в печах обжига и сушки и различных аппаратах теплового воздействия, например, в фенах, паяльниках или обогревателях.
Фамилия какого ученого стоит миллион? Кто первый ввел понятие «электрический ток» в науку? Ответ: Андре-Мари Ампер. Такой был финальный вопрос (ценой в 1 000 000) в игре «Кто хочет стать миллионером?» от 20 января 2018 г. Но участники не смогли ответить на него, и мечту получить свой миллион не исполнили. |
Еще немного про электричество…
- Постоянный электрический ток используется в работе двигателей электротранспорта, схемах автомобилей, электронике и др.
- Электричество есть и в нашем организме. Мышечные клетки сердца при сокращении производят электроэнергию, эти импульсы можно измерить с помощью электрокардиограммы (ЭКГ).
- Бенджамин Франклин (да-да, президент Америки) провел множество опытов в 18 веке и создал громоотвод. Также он является человеком, который вывел закон сохранения электрического заряда.
- В древности люди считали, что, если молния ударила в курган, значит, там зарыто сокровище.
Источник тока — устройство, разделяющее положительные и отрицательные заряды.
Сторонние силы — силы неэлектрического происхождения, вызывающие разделение зарядов в источнике тока.
Фактчек- Сила тока — это физическая величина, показывающая, какой заряд переносится через рассматриваемую площадь поперечного сечения за единицу времени: \(I = \frac{q}{t}\)
- Напряжение — скалярная физическая величина, равная отношению полной работы кулоновских и сторонних сил А при перемещении положительного заряда на участке цепи к значению этого заряда: \(U = \frac{A}{q}\)
- Сопротивление — физическая величина, характеризующая электрические свойства участка цепи: \(R = \frac{pl}{S}\)
- Мощность — величина, обозначающая интенсивность передачи электрической энергии: \(P = \frac{A}{t}\)
- Закон Ома: сила тока в однородном участке цепи прямо пропорциональна напряжению при постоянном сопротивлении и обратно пропорциональна сопротивлению участка при постоянном напряжении: \(I = \frac{U}{R}\).
- Закон Джоуля— Ленца: количество теплоты Q, выделяемое за время t в проводнике с током, пропорционально произведению квадрата силы тока I на этом участке и сопротивления R проводника: Q = I2Rt.
- Работа электрического поля при протекании постоянного тока (или просто работа тока): А = UIt.
Задание 1.
Упорядоченное движение заряженных частиц — это:
- электрическое поле
- электрический ток
- электрическая мощность
- работа тока
Задание 2.
Удельное сопротивление проводника:
- зависит от температуры
- не зависит от температуры
- зависит от силы протекающего через проводник тока
- не зависит от напряжения
Задание 3.
Формула для расчета силы тока:
- I = Ut
- I = UIt
- I = I2Rt
- \(I = \frac{q}{t}\)
Задание 4.
Что такое мощность электрического тока:
- работа за единицу времени
- отношение заряда к единице времени
- произведение силы тока на сопротивление
- тепло, выделяемое на резисторе
Задание 5.
Причина электрического сопротивления:
- во взаимодействии зарядов одинакового знака
- в отсутствии взаимодействия между зарядами
- во взаимодействии зарядов разного знака
- в передаче тепла
Ответы: 1.— 2; 2. — 1; 3.— 4; 4.— 1; 5. — 3.
Цепи серии– основное электричество
Электрические цепи
Три закона для последовательных цепей
Существуют три основных соотношения, касающихся сопротивления, тока и напряжения для всех последовательных цепей. Важно, чтобы вы усвоили три основных закона для последовательных цепей.
Сопротивление
Всякий раз, когда отдельные сопротивления соединены последовательно, они имеют тот же эффект, что и одно большое комбинированное сопротивление. Поскольку в последовательной цепи есть только один путь для протекания тока, и поскольку каждый из резисторов находится на линии, чтобы действовать как противодействие этому протеканию тока, общее сопротивление представляет собой комбинированное сопротивление всех встроенных резисторов.
Общее сопротивление последовательной цепи равно сумме всех отдельных сопротивлений в цепи .
Rt = R1 + R2 + R3…
Используя эту формулу, вы находите, что общее сопротивление цепи составляет:
RT = 15 Ом + 5 Ом + 20 Ом = 40 Ом
Рис. 16. Последовательная схема
Текущий
Поскольку в последовательной цепи существует только один путь для потока электронов, ток в любой точке цепи имеет одинаковую величину.
Полный ток в последовательной цепи равен току через любое сопротивление цепи.
ИТ = И1 = И2 = И3…
Учитывая 120 В в качестве общего напряжения и определяя общее сопротивление цепи как 40 Ом, теперь вы можете применить закон Ома для определения полного тока в этой цепи:
IT = 120 В/ 40 Ом = 3 А
Этот общий ток цепи будет оставаться одинаковым для всех отдельных резисторов цепи.
Напряжение
Прежде чем какой-либо ток будет протекать через сопротивление, должна быть доступна разность потенциалов или напряжение. При последовательном соединении резисторов они должны «делить» общее напряжение источника.
Общее напряжение в последовательной цепи равно сумме всех отдельных падений напряжения в цепи.
Когда ток проходит через каждый резистор в последовательной цепи, он создает разность потенциалов на каждом отдельном сопротивлении. Это обычно называют падением напряжения, и его величина прямо пропорциональна значению сопротивления. Чем больше значение сопротивления, тем выше падение напряжения на этом резисторе.
ЭТ = Е1 + Е2 + Е3…
Используя закон Ома, вы можете определить напряжение на каждом резисторе.
3 А × 15 Ом = 45 В
3 А × 5 Ом = 15 В
3 А × 20 Ом = 60 В
Общее напряжение источника равно сумме отдельных падений напряжения:
45 В + 15 В + 60 В = 120 В
youtube.com/embed/mZiVmProd_U?feature=oembed&rel=0&rel=0″ frameborder=»0″ allowfullscreen=»allowfullscreen»>
Обрыв в последовательной цепи
Если вводится обрыв, ток в цепи прерывается. Если ток отсутствует, падение напряжения на каждом из резистивных элементов равно нулю. Однако разность потенциалов источника появляется поперек обрыва. Если вольтметр подключен через разомкнутую цепь, показания будут такими же, как если бы он был подключен непосредственно к клеммам источника питания.
Рис. 17. Разомкнутая цепьПоследствия падения и потери линии
Медь и алюминий используются в качестве проводников, потому что они мало противодействуют току. Хотя при простом анализе цепей сопротивлением часто пренебрегают, в практических приложениях может возникнуть необходимость учитывать сопротивление линий.
Отвод линии
Рисунок 18. Падение напряжения
Поскольку ток 10 А протекает через каждую линию с сопротивлением 0,15 Ом, на каждой линии возникает небольшое падение напряжения. Это падение напряжения на линейных проводах обычно называют отбрасывание строки .
Поскольку имеется две линии, общее падение составляет 2 × 1,5 В = 3 В. Чистое напряжение на нагрузке (117 В) меньше напряжения источника.
В некоторых ситуациях может быть необходимо использовать более крупные проводники с меньшим сопротивлением, чтобы падение напряжения в линии не слишком сильно снижало напряжение нагрузки.
Потеря линии
Другим термином, связанным с проводниками, являются потери в линии. Это потери мощности, выраженные в ваттах и связанные с рассеиванием тепловой энергии при протекании тока через сопротивление линейных проводников. Потери в линии рассчитываются с помощью одного из уравнений мощности.
Используя предыдущий пример:
P = I 2 × R
P = (10 А) 2 × 0,3 Ом
P = 30 Вт
*Помните:
- Падение напряжения в линии выражается в вольтах.
- Потери в линии выражены в ваттах.
Направление тока в цепи
Некоторые объекты поглощают энергию, а некоторые излучают энергию.
Батареи и другие источники напряжения могут отдавать энергию остальной части цепи, но большинство компонентов, таких как резистор в ваших примерах, не могут.
Когда ток протекает через устройство в направлении, где он входит в клемму с высоким потенциалом, течет через устройство, чтобы выйти на конце с низким потенциалом, тогда устройство поглощает или получает энергию. Светодиоды, резисторы и многое другое действительно делают это; они поглощают энергию и преобразуют ее в какую-либо другую форму, такую как свет, тепло или движение.
Вы указали, что источник напряжения или батарея действуют прямо противоположным образом: ток течет через устройство от конца с низким потенциалом к концу с высоким. Это имеет смысл, потому что эти устройства отдают энергии другим компонентам в цепи. Это должно быть правдой из-за закона сохранения энергии. Если свет, тепло и кинетическая энергия покидают цепь (из-за резисторов, светодиодов, двигателей и многого другого), что-то должно обеспечивать эту энергию, в данном случае батарея.
Более интересен тот факт, что если каким-то образом вам удалось добиться того, чтобы ток в батарее протекал через нее в направлении высокого потенциала к низкому (прямо как резистор), то батарея должна быть получающей энергии, а не отдающей. На самом деле это именно то, что мы делаем, чтобы заряжал батарею. В отличие от резистора, батарея предназначена для хранения этой энергии химическим способом (вместо того, чтобы тратить ее в виде тепла) для последующего восстановления.
Напротив, невозможно заставить ток течь в резисторе в любом другом направлении, кроме как от высокого потенциала к низкому; напряжение на резисторе всегда будет самым высоким там, где входит ток, это закон Ома. Это потому, что резисторы не могут ничего делать, кроме как преобразовывать электрическую энергию в тепло, а не наоборот. Резисторы никогда не могут отдавать энергию другим частям цепи, они могут только получать энергию и преобразовывать ее в тепло (см. также мое примечание об этом в конце).
Конденсатор же вполне способен как принимать, так и отдавать энергию. Ток, протекающий через него, всегда будет вызывать потенциал на клемме, куда входит ток, до , возрастающей на по отношению к клемме, откуда выходит ток. Если это приводит к увеличению разности потенциалов, то конденсатор заряжается и накапливает все больше и больше энергии. Если напряжение на конденсаторе снижается, то он разряжается и отдает энергию.
Энергия, запасенная в конденсаторе, может быть восстановлена, если его разность потенциалов равна протолкнуть ток через какой-то внешний приемник энергии. В таком случае, когда конденсатор теперь разряжается, отдавая энергию, этот ток должен быть в том же направлении, в котором он выходит через вывод конденсатора с более высоким потенциалом, как в батарее.