Как изобрели электричество: Начало эры электричества | Виртуальный музей истории энергетики Северо-Запада

Содержание

Кто придумал электричество и какой принцип его действия

Современную жизнь просто невозможно представить без света и электроприборов. Потому открытие электричества – важнейшее событие в истории человечества. Это революционный прорыв, который подарил людям огромные возможности, сделав жизнь комфортной. Электричество – это движение заряженных частиц под действием электромагнитного поля либо в одном направлении (постоянный ток), либо с периодической сменой направления (переменный ток). 

Сам термин возник от греческого слова «электрон», что означает «янтарь». Его родоначальником стал древнегреческий философ Фалес, который ещё в 7 в. до н. э. обнаружил чудесное свойство янтаря притягивать к себе легкие материалы (например, пробковую стружку) и волосы, если его потереть о кусок шерсти. Однако только в середине 17 века нашей эры были досконально изучены наблюдения Фалеса. Этим занялся немецкий физик Отто фон Герике, который создал первый электроприбор. Он представлял собой закреплённый на металлическом штифте вращающийся шар из серы, который также как и янтарь имел силу притяжения и отталкивания.

А вот список главных приборов для которых и придумали электричество:

Наименование: Энергосберегающая лампа EUROLAMP Candle Twisted 9W E14 4100K
Тип лампы: Декоративная
Артикул: CT-09144
Мощность (W): 9
Световой поток (lm): 550
Ширина (мм): 106
Высота (мм): 38
Температура (К): 4100
Тип света: свет нейтральный
Тип цоколя: Е14
Напряжение (V): 180-240
Ресурс, часов: 12000
Срок службы, лет 8
Аналог лампы накаливания (W): 45
Ток (mA): 60
Частота электросети (Hz): 50

Количество в ящике, шт: 50
Класс энергосбережения: А
Штрих код упаковки: 4260232674332
Размер упаковки (мм): 46х46х117
Штрих-код ящика: 4260232674356
Производитель: EUROLAMP
Гарантия: 2 года
—//лучшее предложение//—

(Код: CT-09144)

Тип лампы: Декоративная
Мощность (W): 9
Температура (K): 4100
Тип цоколя: Е14

Наименование:EUROLAMP LED Лампа G45 5W E14 3000K
Тип лампы:Декоративная
Артикул:LED-G45-05143(D)
Мощность (W): 5
Cветовой поток (lm): 500
Ширина (мм): 45
Высота (мм): 78
Температура (К): 3000
Тип света: теплый свет
Тип цоколя: E14
Напряжение (V): 175-250

Ресурс , часов: 50000
Срок службы, лет: 35
Аналог лампы накаливания (W): 50
Ток (mA): Данные не указаны
Частота электросети (Hz): 40/60
Количество в ящике, шт: 50
Класс энергосбережения: A
Штрих код упаковки: 4260410482704
Размер упаковки (мм): Данные не указаны
Штрих код ящика: 4260410483107
Производитель: EUROLAMP
Гарантия: 5

(Код: LED-G45-05143(D))

Тип лампы: Декоративная
Мощность (W): 5
Температура (K): 3000
Тип цоколя: E14

Наименование:EUROLAMP LED Лампа G95 15W E27 4000K
Тип лампы:Декоративная
Артикул:LED-G95-15274(D)
Мощность (W): 15
Cветовой поток (lm): 1300
Ширина (мм): 95

Высота (мм): 128
Температура (К): 4000
Тип света: нейтральный свет
Тип цоколя: E27
Напряжение (V): 175-250
Ресурс , часов: 50000
Срок службы, лет: 35
Аналог лампы накаливания (W): 150
Ток (mA): 90
Частота электросети (Hz): 40/60
Количество в ящике, шт: 25
Класс энергосбережения: A
Штрих код упаковки: 4260410485637
Размер упаковки (мм): 145*100*100
Штрих код ящика: 4260410485651
Производитель: EUROLAMP EUROLAMP
Гарантия: 5

(Код: LED-G95-15274(D))

Тип лампы: Декоративная
Мощность (W): 15
Температура (K): 4000
Тип цоколя: E27

Наименование: EUROLAMP LED Світильник квадратний Downlight NEW 4W 4000K

Тип светильника: Врезной
Артикул: LED-DLS-4/4
Мощность (W): 4
Cветовой поток (lm): 280
Ширина (мм): 105
Высота (мм): 10
Температура (К): 4000
Тип света: нейтральный свет
Напряжение (V): 175-250
Ресурс , часов: 50000
Ток (mA): Данные не указаны
Частота электросети (Hz): 50
Количество в ящике, шт: 40
Класс энергосбережения: A
Штрих код упаковки: 4260410480816
Размер упаковки (мм): 1300*1700*320
Штрих код ящика: 4260410481011
Производитель: EUROLAMP
Гарантия: 2

(Код: LED-DLS-4/4)

Тип светильника: Врезной
Мощность (W): 4
Температура (K): 4000
Размеры (мм): 105*10

В 1729 году учёный Стивен Грей, который изучал свойства движения электричества, обнаружил, что не все материалы могут проводить электрический ток.

Вещества, которые проводят ток, получили название «электрики» (проводники), а те, которые не проводят ток, – «диэлектрики» (изоляторы). Не менее важным стало открытие французского учёного Шарля Дюфея, который в 1733 году в результате многочисленных экспериментов с серой и смолой открыл положительный и отрицательный электрический заряд. Хотя он первоначально считал, что это два разных вида электрического тока.

Первый конденсатор, который получил название Лейденская банка, был создан голландским физиком Питером ван Мушенбруком. Это устройство состояло из стеклянной колбы, обшитой листом олова внутри и снаружи. Банка закрывалась деревянной крышкой, и в неё вставлялся металлический штырь. При подаче электроэнергии Лейденская банка могла накапливать довольно мощные заряды. Также с её помощью была получена первая электрическая искра.
В 1747 году американский политик и учёный Бенджамин Франклин представил свой научный трактат, в котором давалось понятие «электричество». Там писалось, что все материалы содержат «жидкое электричество», которое под воздействием трения может перетекать от одного материала к другому и накапливаться в них.

Бенджамин Франклин также является изобретателем громоотвода, с помощью которого доказал, что молния имеет электрическое происхождение.

В 1785 году французским учёным Шарлем Кулоном на основе многочисленных экспериментов с металлическими шариками был выеден закон, описывающий электрическое взаимодействие между точечными зарядами (закон Кулона). Суть его в открытии того, что одноимённо заряженные частицы («-» и «-» или «+» и «+») отталкиваются, а разноимённо заряженные («-» и «+») – притягиваются.

В 1800 году было сделано главное открытие в изучении электричества. Итальянский физик Алессандро Вольта изобрёл первый гальванический элемент – химическую батарею. Он состоял из круглых серебряных пластинок, между которыми находились смоченные в солёной воде кусочки бумаги. Химическая батарея позволяла получать постоянный электрический ток благодаря химическим реакциям.

Датский учёный Ханс-Кристиан Эрстед в 1820 году открыл воздействие электрического тока на магнит. Он заметил, что при подаче электрического тока на проводник стрелка компаса, лежащего параллельно, поворачивается в перпендикулярном направлении. Разработки Эрстеда продолжил французский учёный Андре-Мари Ампер, который занялся исследованием электрического магнетизма, дав начало новой науке – электродинамике. Множество таких талантливых учёных, как Омм, Ленц, Гаусс, Джоуль, занимались исследованиями электрического тока. В 1830 году был открыто электростатическое поле.
В 1831 году английский учёный Майкл Фарадей открыл электромагнитную индукцию и на её основании изобрел первый электрогенератор. Также он ввел понятие магнитного и электрического поля и создал элементарный электродвигатель. Он представлял собой электрический проводник, вращающийся вокруг магнита.


Учёным, который сделал громадный вклад в изучение электричества и магнетизма и, что самое главное, использовал свои разработки на практике, был Никола Тесла. Благодаря его изобретениям современные люди пользуются многими бытовыми и электроприборами. Никола Тесла – человек, которого по праву считают одним из величайших изобретателей 20 века.

Эпоха освещения – Власть – Коммерсантъ

Новости вроде объявленного неделю назад решения компаний «Газпром» и «Ренова» объединить электроэнергетические активы и создать крупнейшего производителя электричества традиционно вызывают в России интерес. Как считает обозреватель «Власти» Сергей Минаев, причина в том, что Россия — самая неосвещенная страна.

Государством, где впервые в истории нашел практическое применение электрический ток, стала Россия. В 1832 году по повелению императора Николая I русский изобретатель Павел Шиллинг фон Канштатт соединил в Петербурге телеграфной линией Зимний дворец и здание Министерства путей сообщения. Если бы императору пришло в голову соединить дворец с Министерством иностранных дел, то служивший там Александр Пушкин мог бы стать первым человеком в мире, с помощью электричества получившим информацию от другого человека, в данном случае от государя. Изобретатель не успел исполнить повеление Николая I соединить электрическим способом также Зимний дворец с Кронштадтом только потому, что умер в 1837 году.

Результат экономического развития Индии хорошо виден из космоса: скоро полуостров Индостан — родина просветления может стать ярче Северной Америки — пионера электроосвещения

Фото: NASA

Однако телеграфия основана на слабом токе. Дальнейшее развитие электротехники в мире пошло по пути использования тока большой силы, и здесь первыми стали другие страны, не полагающиеся на императорское волеизъявление. В 1866 году немец Вернер Сименс изобрел динамо-машину, позволяющую просто и дешево превращать механическую энергию в электрическую и вырабатывать ток прежде невиданной силы. А в 1878 году француз Камилл Фор придумал аккумулятор, позволяющий электроэнергию накапливать. Заметим, что изобретение аккумулятора вызвало у публики невиданный энтузиазм. В технической энциклопедии, изданной в России в 1904 году, указывалось: «Как обычно бывает с новыми изобретениями, о которых много говорят, значение изобретения аккумуляторов оказалось слишком преувеличенным. Его сразу стали считать уже созревшим и законченным, тогда как на это могло потребоваться несколько десятков лет. Мечтали уже о том, что вскоре электричество будет продаваться, как керосин, в мелочных лавках, что экипажи, железнодорожные поезда и т. п. будут приводиться в движение запасом электричества, скопленного в аккумуляторах, что керосиновые лампы будут заменены электрическими, причем резервуар для керосина будет заменен аккумулятором,— словом, выдумывались тысячи различных применений, которые все были бы превосходны, если бы только аккумуляторы были в состоянии выполнить все то, что рассчитывали получить от них».

Как мы видим, идея заменить керосиновое и газовое освещение электричеством к началу 1880-х годов уже овладела массами. И сильный ток позволил ее реализовать. Всех здесь опередили американцы: когда изобретатель Томас Эдисон в 1881 году сделал практически применимой свою лампу накаливания, группа предприимчивых американских финансистов немедленно приобрела в Нью-Йорке участок земли и построила первую в мире центральную электростанцию, обеспечивающую электрическое освещение целого городского района площадью 2,5 кв. км. Для выработки электроэнергии использовались шесть сконструированных Эдисоном паровых динамо-машин мощностью 125 л. с. каждая — такая мощность по тем временам считалась гигантской. К середине 1890-х годов компания Эдисона построила шесть центральных электростанций, дававших ток для 500 тыс. лампочек силой света 16 свечей каждая.

В 1884 году началось электрическое освещение Берлина, им занялось акционерное Немецкое общество Эдисона. Оно купило у городского управления Берлина право прокладки проводов по улицам города и построило одну паровую электростанцию на Маркграфенштрассе, а другую на Мауэрштрассе. Каждая из этих станций снабжала током ограниченный район, но, так как станции были соединены системой проводов, они могли работать через день, поочередно освещая два района сразу. Районы освещения постепенно расширялись, и к концу 1890-х годов вся центральная часть Берлина была покрыта сетью лампочек (в 1885 году было установлено 4880 лампочек, к 1890 году их было уже 92 000, а в 1898 году число берлинских лампочек достигло 615 820).

Коммунистический лозунг электрификации всей страны был реализован в основном в крупных городах. Казань

Фото: NASA

Наконец, в 1889 году американцы придумали вместо пара использовать для приведения в действие динамо-машин падающую воду. К этому их подтолкнули природные условия — наличие Ниагарского водопада. Компания Cataract Construction Co. приобрела право на использование из водопада с американской стороны 200 000 л. с. и с канадской — 205 000 л. с. Вся эта мощность была поделена на динамо-машины мощностью 5000 л.  с. каждая. Вырабатываемый ток передавался в различные города, например в Баффало. В итоге к 1897 году в США было уже 5 млн электрических лампочек.

В 1909 году американский инженер Эзра Скаттергуд придумал построить гидроэлектростанцию на реке Колорадо, создав таким образом искусственный водопад для снабжения электричеством Калифорнии. В итоге к 1912 году Калифорния занимала второе место в США по потреблению электроэнергии после Нью-Йорка. К 1924 году в США электрическое освещение имели в среднем 35% домов, в Калифорнии этот показатель составлял 83%. Стоимость киловатт-часа электроэнергии в США в среднем равнялась $2,17, в Калифорнии — $1,42. Власти Калифорнии выдвинули лозунг «Электричество — это путь к здоровью, богатству и счастью человечества». Именно из-за дешевизны электричества американская киноиндустрия, для которой этого электричества нужно очень много, переместилась из Нью-Йорка в калифорнийский Голливуд.

В России электрическое освещение также постепенно развивалось. Российское Министерство финансов в 1900 году с гордостью отметило: «В 1898 и 1899 годах устроилось в Петербурге еще три громадных центральных станций, и в настоящее время мощность всех центральных станций, не считая частных, достигает до 30 000 киловаттов. Число уличных фонарей с дуговыми лампами доходит до 600. Общее число дуговых фонарей, установленных не для уличного освещения и питаемых от частных станций, превосходит 2500».

Коммунистический лозунг электрификации всей страны был реализован в основном в крупных городах. Москва

Фото: NASA

Главную роль в потреблении электрического тока, на этот раз большой силы, сыграл государь император. Голландский предприниматель Антон Филипс (младший сын Фредерика Филипса, основавшего в мае 1891 года в Эйндховене фирму Philips & Co.) в 1898 году прибыл в Россию с целью продажи новомодных ламп накаливания. Через директора одной из петербургских электростанций он познакомился с распорядителем двора, и разговор с этим царедворцем принес ему заказ на 50 000 ламп. Когда он телеграфировал об этом в Эйндховен, там засомневались, не лишний ли один из нулей. Ответ был: «Fifty thousand, funfzig Tausend, cinquante mille». Завод пришлось расширять. Потом Филипс регулярно бывал в России, и русские даже начали звать его Антоном Федоровичем. Благодаря царским деньгам Philips & Co. из маленького голландского предприятия стала крупной европейской фирмой.

В 1919 году Владимир Ленин прочитал только что вышедшую книгу немецкого исследователя Карла Баллода «Государство будущего» («Der Zukunftstaat»), в которой тот проповедовал идею «полностью электрического государства», и в январе 1920 года написал письмо Глебу Кржижановскому, опубликовавшему в газете «Правда» статью «Задачи электрификации промышленности». В письме говорилось буквально следующее: «Нельзя ли добавить план не технический… а политический или государственный, т. е. задание пролетариату? Примерно: в 10 (5?) лет построить 20-30 (30-50?) станций, чтобы всю страну усеять… Начнем-де сейчас закупку необходимых машин. .. Через 10 (20?) лет сделаем Россию «электрической». Я думаю, подобный «план» — повторяю, не технический, а государственный — проект плана Вы бы могли дать. Его надо дать сейчас, чтобы наглядно, популярно для массы увлечь ясной и яркой (вполне научной в основе) перспективой: за работу-де, и в 10-20 лет мы Россию всю, и промышленную, и земледельческую, сделаем электрической. Доработаемся до стольких-то (тысяч или миллионов лошадиных сил или киловатт?? черт его знает) машинных рабов и проч. Повторяю, надо увлечь массу рабочих и сознательных крестьян великой программой на 10-20 лет».

То, что программа не техническая, а политическая и рассчитана исключительно на удержание большевиками государственной власти, лично выяснил Антон Филипс, который в 1922 году, когда уже был объявлен нэп, приехал в Москву и тут же отписал домой: «Коммунисты — ребята славные. Но только покупать никаких лампочек не хотят».

В 1932 году коммунисты с помощью американских инженеров построили свой аналог Ниагарского водопада — плотину на Днепре, соорудив Днепрогэс. Но когда Фредерик Филипс, сын Антона, в 1939 году прибыл в СССР, чтобы узнать, не поменялось ли после этого отношение советских властей к покупке лампочек, он выяснил, что ничего не изменилось. Как вспоминал Филипс, переговоры шли вяло. Собеседники оживлялись только тогда, когда узнавали, что Карл Маркс работал над «Капиталом» в доме, принадлежавшем деду Филипса. Они поднимали за «Капитал» бесчисленные стопки водки, но электроламп так и не купили.

В дальнейшем советские руководители уделяли развитию электроэнергетики первостепенное значение. В 1981 году на XXVI съезде КПСС Леонид Брежнев заявил: «В 70-е годы в два раза по сравнению с 60-ми годами возросла выработка электроэнергии. К единой энергетической системе страны присоединилась Объединенная энергосистема Сибири. Введены в эксплуатацию уникальные гидроагрегаты на Саяно-Шушенской, Усть-Илимской, Нурекской, Ингурской, Днепровской, Нижнекамской и других гидростанциях. Завершено строительство крупнейших тепловых электростанций — Запорожской и Углегорской. Высокими темпами растет атомная энергетика. В строй действующих вступили новые энергоблоки на Ленинградской, Курской, Белоярской, Армянской и Билибинской атомных электростанциях». Успехи в электроэнергетике товарищ Брежнев увязал с успехами в энергетике в целом, отметив, что в 1970 году в Северо-Западной Сибири было добыто нефти (включая газовый конденсат) 31 млн т, а в 1980 году добыча нефти превысила 312 млн т, добыча газа за этот период возросла с 9,5 млрд до 156 млрд куб. м.

И сейчас российские граждане могут заметить, что успехи того времени в нефтегазовой энергетике хорошо отражаются на нынешнем финансовом состоянии России, а вот тогдашние успехи в электроэнергетике на нынешнюю освещенность России видимого влияния не оказали.

Как появилось электрическое освещение / Статьи / Наши новости / Fandeco.ru

Мы давно уже привыкли к электричеству, не можем даже представить себе, как же люди жили раньше. А ведь еще 100 лет назад свет был проведен менее чем в трети домов на всей территории огромной России. Конечно же большинство этих 30% приходилось на столицу и большие города, а в селах люди все также довольствовались лучиной да свечкой…

Давайте окунемся немного в историю, выясним в каком же веке появилось электрическое освещение, кому мы обязаны этим, таким привычным, чудом.

История развития освещения

Необходимость в искусственном освещении люди поняли еще в те далекие времена, когда обитали… в пещерах. Конечно выбор «осветительных приборов» особым разнообразием не отличался – открытый огонь. Первым изобретением этого рода, были лампы в виде кувшина с маслом, жиром внутри и фитильком. Позже появились свечи, вначале из животных жиров (III тысячелетие до н.э.), а уже в средние века стали использовать воск пчел. Естественно свет был слабым и работать при нем было, мягко говоря, не комфортно.

Шло время. Богатые дома пользовались множеством свечей. Здесь уже свет использовали не только по строгой функциональности, но и для украшения помещений. Красивейшие канделябры, многоуровневые люстры выглядели потрясающе, если не брать во внимание горячий воск, который капал на обнаженные плечи красавиц… и на высокую пожароопасность.

XIX век уже был озарён газовым освещением. Первыми здесь стали англичане. Именно Лондон в 1807 году получил «диковинку» — уличные светильники. Они немилосердно коптили, зажигать и тушить их нужно было вручную, но они стали настоящей сенсацией! А в конце века появились керосиновые лампы, которые и сейчас есть во многих домах.

«Детские годы» электричества

Многие, наверное, удивятся, но первыми электрическими светильниками были фонари «на батарейках». Источником тока выступала «дуга электрическая», давали ее два электрода (угольные). Такая конструкция была очень громоздкой, впервые ее продемонстрировал Дэви Хэмфри (1809 г.) в Лондоне. Это была крайне непрактичная вещь, но она дала толчок другим изобретателям.

Уже детище Яблочкова, который улучшил светильник Хэмфри, пользовалась спросом по всему миру. Свечи Яблочкова освещали Михайловский манеж (Санкт-Петербург) и даже Парижскую оперу. Дуговые лампы дают достаточно яркое, приятное по спектру и световой температуре освещение.

Если говорить о том, в каком году появилось электрическое освещение, первое дата и имя что выдает память – 1879 год, Эдисон. Про Николу Теслу как-нибудь в другой раз… Но все же электрическую лампочку придумал не Эдисон, а мало известный Уоррен де ла Рю. Лампа была очень красивой, но страшно дорогой, так как изготавливалась из платины. Так что Эдисон пошел тем же путем, но нашел идеальные материалы для изготовления. Презентация ста одновременно работающих ламп произвела настоящую сенсацию, она проводилась в Нью-Джерси в 1880 году. Срок эксплуатации «чудо-длампочки» был 100 часов, а потребляла она 100 Вт. В лаборатории ученого дальше занимались усовершенствованием изделия: вначале появилась привычная нам вольфрамовая нить (1913 г.), позже внутренность лампочки стали наполнять газом.

«Лампочка Ильича»

Для многих это сочетание уже ничего не говорит, но граждане постсоветского пространства хорошо знают, что это значит. Конечно, Ильич не изобретал электрическую лампу, да и вряд ли понимал что-то в этом деле, речь идет об электрификации Советского Союза после революции.

Сказать – это большевики принесли в нашу страну освещение, стало бы преувеличением. Прогресс пришел гораздо раньше. Знать давно обустроила свои дворцы этим удобным «усовершенствованием», а прорывом стал 1914 год, когда российское «Общество электрического освещения» (год организации 1886) купило разрешение производить лампочки у компании General Electric. Планы по распространению электричества, освещения общественных зданий, частных жилищ, улиц был грандиозен… но революция перечеркнула эти планы.

И именно большевикам было суждено провести грандиозный процесс электрификации! Знаменитый план ГОЭЛРО в действии: было электрифицировано огромное количество городов. По сравнению с 1913 годом выработка электрического тока была увеличена в семь раз, элетричество в жилых домах стало доступным и прочно вошло в обычную жизнь. Вот как появилось массовое освещение в нашей стране!

Электрические приборы в дизайне

Во все века светильники служили не только для освещения, но и играли огромное значение в украшении помещений. Чтобы убедиться в этом, посетите музеи! Глубина веков… Шикарные люстры, элегантные бра, великолепные торшеры – они действительно потрясающие. В парадных залах устанавливали множество зеркал, не только чтобы дамы любовались своей красотой, но и для более яркого освещения, ведь отраженный свет делает помещение визуально больше, а свет ярче.

Для украшения изделий использовалось стекло, богатые, дорогие ткани, хрусталь, фарфор и даже драгоценные камни. Конечно, простые люди даже слова «люстра» не слышали, а подобным чудом могли любоваться в присутственных местах и церквях.

Феерию моды на осветительные приборы подарил нам XX век. Именно тогда стали использовать огромное количество материалов, разрабатывать разнообразные формы и размеры. Светильник стал частью моды!

О нашем времени и говорить нечего. Наш рынок наполнил таким разнообразием моделей, что голова кругом идет! Дизайн помещений тоже прочно привязан к организации освещения. Так что сейчас для экспериментаторов, любителей стильных интерьеров – золотое время. Помните прошлое и наслаждайтесь настоящим!

 

Как электричество вошло в нашу жизнь

Краткая история электричества

VII век. Янтарь

Электричество как явление природы известно очень давно. Еще в VII веке до нашей эры древние греки знали об одном любопытном свойстве янтаря: если его потереть о шерсть, то он будет притягивать мелкие предметы. Слово янтарь по-гречески звучит, как «электрон», и хотя греки не знали о причинах такого явления, они подарили миру его название — электричество.

1745. Электрометр

Ещё многие столетия такие рукотворные проявления электричества были чем-то вроде забавы, и только в Средние века учёные начали его изучать. В 1745 году российский естествоиспытатель Михаил Ломоносов для изучения атмосферного электричества сконструировал один из первых приборов, измеряющих электрический заряд.

1785. Закон Кулона

А в 1785 году французский учёный Шарль Кулон открыл закон, описывающий взаимодействие электрически заряженных тел (их притяжение и отталкивание). Этот закон с тех пор называется «законом Кулона», а единица электрического заряда — кулон. Считается, что после открытия этого закона, электрические явления из категории наблюдений и испытаний стали относиться к категории точной науки. Простыми словами, Кулон опытным путём определил, что чем больше заряды, тем сильнее их притяжение, и чем больше расстояние между ними, тем эта сила меньше. Причём сила уменьшается пропорционально квадрату расстояния между ними. 

Для этого Кулон изобрёл крутильные весы, в котором подвешивалась на шёлковой нити палочка с металлическим шариком с одной стороны и противовесом с другой. При воздействии на шарик другим заряженным шариком палочка отклонялась от начального состояния и нитка закручивалась. Это отклонение можно было измерить движением стрелки на другом конце шёлковой нити. Считается, что после открытия этого закона, электрические явления из категории наблюдений и испытаний стали относиться к категории точной науки.

1800. Батарейка Вольта

Уже в 1800 году итальянский физик Алессандро Вольта изобрёл химический источник тока (фактически, мощную батарейку). Учёный фактически опустил в кислоту медную и цинковую пластинки, соединённые проволокой. При этом цинковая пластина начала растворяться, а около медной появились пузыри газа. Это означало, что по проволоке протекал ток. Это изобретение дало учёным достаточно сильный, надёжный источник тока и позволило продвинуть изучение электрических явлений. Имя изобретателя увековечено в названии единицы электрического напряжения — вольт.

1821

В 1821 году французский физик Андре-Мари Ампер обнаружил, что если по проводу течёт электроток, то возле него образуется магнитное поле, тем самым он установил связь между электрическими и магнитными явлениями. Ампер впервые ввел понятие электрического тока, и теперь единица измерения силы тока стала называться ампер.

Эстафету исследований продолжил английский физик Майкл Фарадей. В том же 1821 году учёный создал простейший электродвигатель, преобразующий электрический ток в механическое движение.

1831. Электромагнитная индукция

А в 1831 году Фарадей сформулировал и описал явление электромагнитной индукции. Упрощённо это означает следующее: при движении в магнитном поле проводника (например, медного провода) возникает электрический ток.

И вот теперь стало возможным создание полноценных электрогенераторов, превращающих механическое движение в электрический ток. Это было прорывом в развитии электротехники: появилась возможность получать электрический ток из механического движения, например, вращения турбины паровой машины. Практически открылись двери для развития электроэнергетики.

1872. Лампочка Ладыгина

С этого времени началось непрерывное улучшение электродвигателей и генераторов электрического тока, начали создаваться приборы, использующие электричество. К примеру, в 1872 году российский инженер Александр Лодыгин так усовершенствовал лампочку накаливания, что его конструкция практически не меняется до сих пор.

1897. Электрон

И что самое интересное, после всех этих открытий только в 1897 году английский физик Джозеф Томсон открыл электрон как элементарную частицу, движение которой образует электрический ток.

Когда изобрели электричество? В каком году?

Когда и как было открыто

История открытия этого явления была очень длительной. Само слово придумал греческий ученый Фалес. Оно стало производным от понятия «электрон», которое переводится как «янтарь». Появился этот термин до нашей эры, благодаря Фалесу, заметившему свойство янтаря после того, как его потереть, притягивать легкие предметы.

Произошло это за семь столетий до н.э. Фалес проводил много опытов, изучая увиденное. Это были первые опыты с зарядами в мире. На этом его наблюдения и закончились. Далее он не смог продвинуться, но именно этот ученый считается основоположником теории электроэнергии, ее первооткрывателем, хотя как наука это явление не получило развития. Его наблюдения были надолго забыты, не вызвав интереса у ученых.

Электричество 2600 лет назад


Один из инструментов, обнаруженных в археологических раскопках близ Багдада, напоминает электрохимическую ячейку

Примерно в 600 году до нашей эры греческий математик Фалес Милетский обнаружил, что трение меха о Янтарь вызывает притяжение между ними. Более поздние наблюдения доказали, что это притяжение было вызвано дисбалансом электрических зарядов, который называется статическим электричеством.

Археологи также обнаружили доказательства того, что древние люди могли экспериментировать с электричеством. В 1936 году они нашли глиняный горшок с железным прутом и медной пластиной. Он похож на электрохимический (гальванический) элемент.

Неясно, для чего использовался этот инструмент, но он пролил некоторый свет на тот факт, что древние люди, возможно, изучали ранние формы батарей задолго до того, как мы это знаем.

История

Задолго до того, как появились какие-либо знания об электричестве, люди знали о свойствах электрических рыб. Древнеегипетские тексты, датируемые 2750 годом до н. э., упоминают этих рыб как «Громовержцев Нила» и описывают их как «защитников» всех других рыб. Тысячелетия спустя об электрических рыбах вновь сообщали древнегреческие, римские и арабские естествоиспытатели и врачи .

Некоторые древние писатели, такие как Плиний Старший и Скрибоний Ларг, свидетельствовали о парализующем действии электрических разрядов, производимых электрическими сомами и электрическими скатами, и знали, что такие разряды могут перемещаться вдоль проводящих объектов. [3] Пациентам, страдающим от таких недугов, как подагра или головная боль, предписывалось дотрагиваться до электрических рыб — в надежде, что мощный разряд излечит их.

Древние культуры Средиземноморья знали, что некоторые предметы, такие как янтарные палочки, можно натереть кошачьим мехом, чтобы привлечь легкие предметы, такие как перья. Фалес Милетский сделал ряд наблюдений статического электричества около 600 г. до н. э., из которых он заключил, что трение делает янтарь магнитным — в отличие от минералов, таких как магнетит, которые не нуждаются в натирании. Фалес был неправ, полагая, что притяжение вызвано магнитным эффектом, но позже наука докажет связь между магнетизмом и электричеством.

Долгое время знание об электричестве не шло дальше подобных представлений. Хотя и существует основанная на открытии в 1936 году так называемой багдадской батареи полемическая теория, предполагающая использование гальванических элементов ещё в древности, однако неясно, был ли упомянутый артефакт электрическим по своей природе.

В 1600 году Уильям Гилберт ввёл в обращение сам термин электричество («янтарность», от др. -греч. ἤλεκτρον: [электрон] — янтарь), а в 1663 году магдебургский бургомистр Отто фон Герике создал электростатическую машину в виде насаженного на металлический стержень серного шара, которая позволила наблюдать не только эффект притягивания, но и эффект отталкивания. В 1729 году англичанин Стивен Грей провёл опыты по передаче электричества на расстояние, обнаружив, что не все материалы одинаково передают электричество.

В 1733 году француз Шарль Дюфе установил существование двух типов электричества стеклянного и смоляного, которые выявлялись при трении стекла о шёлк и смолы о шерсть. В 1745 г. голландец Питер ван Мушенбрук создаёт первый электрический конденсатор — Лейденскую банку. Примерно в эти же годы работы по изучению атмосферного электричества вели и русские учёные — Г. В. Рихман и М. В. Ломоносов .

Первую теорию электричества создаёт американец Бенджамин Франклин, который рассматривает электричество как «нематериальную жидкость», флюид («Опыты и наблюдения с электричеством», 1747 год). Он также вводит понятие положительного и отрицательного заряда, изобретает молниеотвод и с его помощью доказывает электрическую природу молний. Изучение электричества переходит в категорию точной науки после открытия в 1785 году закона Кулона.


Майкл Фарадей — основоположник учения об электромагнитном поле

Далее, в 1791 году, итальянец Гальвани публикует «Трактат о силах электричества при мышечном движении», в котором описывает наличие электрического тока в мышцах животных. Другой итальянец Вольта в 1800 году изобретает первый источник постоянного тока — гальванический элемент, представляющий собой столб из цинковых и серебряных кружочков, разделённых смоченной в подсоленной воде бумагой. В 1802 году Василий Петров обнаружил вольтову дугу.

С этого открытия русского ученого началась история электрической лампочки или лампы накаливания. В дальнейшем основной вклад в создание электрической лампочки внесли русские инженеры Павел Николаевич Яблочков и Александр Николаевич Лодыгин.

Лодыгин после долгих экспериментов создал «Товарищество электрического освещения Лодыгин и компания» и в 1873 году продемонстрировал лампы накаливания своей системы. Академия наук присвоила Лодыгину Ломоносовскую премию за то, что его изобретение приводит к «полезным, важным и новым практическим применениям». Тогда же собственную конструкцию лампы параллельно разрабатывал Павел Яблочков.

В 1876 году он получил патент за лампочку своей системы, которая получила название «свеча Яблочкова». После грандиозного успеха свечи Яблочкова на Парижской выставке 1878 года, которую посетило много русских, ею заинтересовались в России. Лодыгину, наоборот, не удалось наладить в России широкое производство своих ламп. Он уехал в Америку, и там узнал, что изобретенная им лампочка носит имя Эдисона. Но русский инженер не стал доказывать свой приоритет, а продолжал работу над усовершенствованием своего изобретения.

В 1820 году датский физик Эрстед на опыте обнаружил электромагнитное взаимодействие. Замыкая и размыкая цепь с током, он увидел колебания стрелки компаса, расположенной вблизи проводника. Французский физик Ампер в 1821 году установил, что связь электричества и магнетизма наблюдается только в случае электрического тока и отсутствует в случае статического электричества. Работы Джоуля, Ленца, Ома расширяют понимание электричества. Гаусс формулирует основную теорему теории электростатического поля (1830).

Опираясь на исследования Эрстеда и Ампера, Фарадей открывает явление электромагнитной индукции в 1831 году и создаёт на его основе первый в мире генератор электроэнергии, вдвигая в катушку намагниченный сердечник и фиксируя возникновение тока в витках катушки. Фарадей открывает электромагнитную индукцию (1831) и законы электролиза (1834), вводит понятие электрического и магнитного полей.

Анализ явления электролиза привёл Фарадея к мысли, что носителем электрических сил являются не какие-либо электрические жидкости, а атомы — частицы материи. «Атомы материи каким-то образом одарены электрическими силами», — утверждает он. Фарадеевские исследования электролиза сыграли принципиальную роль в становлении электронной теории. Фарадей создал и первый в мире электродвигатель — проволочка с током, вращающаяся вокруг магнита. Венцом исследований электромагнетизма явилась разработка британским (шотландским) физиком Д. К. Максвеллом теории электромагнитных явлений. Он вывел уравнения, связывающие воедино электрические и магнитные характеристики поля в 1873 году.

В 1880 году Пьер Кюри открывает пьезоэлектричество. В том же году Д. А. Лачинов показал условия передачи электроэнергии на большие расстояния. Герц экспериментально регистрирует электромагнитные волны (1888 год).

В 1897 году Джозеф Томсон открывает материальный носитель электричества — электрон, место которого в структуре атома указал впоследствии Эрнест Резерфорд.

В XX веке была создана теория Квантовой электродинамики. В 1967 году был сделан очередной шаг на пути изучения электричества. С. Вайнберг, А. Салам и Ш. Глэшоу создали объединённую теорию электрослабых взаимодействий.

Появление термина

Выше уже упоминалось то, что понятие «электричество» впервые было введено в употребление Уильямом Гилбертом в 1600 г. С этого момента отмечают дату, когда появилось электричество.

Кто придумал электричество — история

Частные проявления электричества изучались ещё задолго до нашей эры. Но соединить их в одну теорию, объясняющую вспышки молний в небе, притяжение предметов, способность вызывать пожары и онемение частей тела или даже смерть человека, оказалось непростой задачей.

Учёные издревле изучали три проявления электричества:

  • Рыбы, вырабатывающие электричество;
  • Статическое электричество;
  • Магнетизм.

В Древнем Египте целители знали о странных способностях нильского сома и пытались с его помощью лечить головную боль и другие заболевания. Древнеримские врачи использовали в сходных целях электрического ската. Древние греки подробно изучали странные способности ската и знали, что оглушить человека существо могло без прямого контакта через трезубец и рыболовные сети.

Несколько раньше было обнаружено, что если потереть янтарь о кусок шерсти, то он начнёт притягивать шерстинки и небольшие предметы. Позже был открыт и другой материал со сходными свойствами – турмалин.

Примерно в 500-х годах до н.э. индийские и арабские учёные знали о веществах, способных притягивать железо и активно использовали эту способность в разных областях. Около 100-го года до н.э. китайские учёные изобрели магнитный компас.

В 1600 году Уильям Гилберт, придворный врач Елизаветы I и Якова I, обнаружил, что вся планета – это один огромный компас и ввел понятие «электричество» (с греческого «янтарность»). В его трудах эксперименты с натиранием янтаря о шерсть и способность компаса указывать на север начали объединяться в одну теорию. На картине ниже он демонстрирует магнит Елизавете I.

Читайте также:  Параллельное и последовательное соединение проводников

В 1633 год инженер Отто фон Герике изобретает электростатическую машину, которая может не только притягивать, но и отталкивать предметы, а в 1745 году Питер ван Мушенбрук сооружает первый в мире накопитель электрического заряда.

В 1800 году итальянец Алессандро Вольта изобретает первый источник тока – электрическую батарею, вырабатывающую постоянный ток. Также он смог передать электрический ток на расстояние. Поэтому именно этот год многие считают годом изобретения электричества.

В 1831 году Майк Фарадей открывает явление электромагнитной индукции и открывает направление для изобретения различных устройств на основе электрического тока.

На рубеже XIX-XX веков совершается огромное количество открытий и достижений, благодаря деятельности Николы Тесла. Среди прочего, он изобрёл высокочастотный генератор и трансформатор, электродвигатель, антенну для радиосигналов.

Кто является основоположниками науки об электричестве

Вот список некоторых известных ученых, сделавших свой вклад в развитии электроэнергии.


Французский физик Андре Мари Ампер

Основоположниками науки об электричестве являются:

  1. Французский физик Андре Мари Ампер, 1775—1836, работавший по электромагнетизму. Единица тока в системе СИ — ампер, названа в его честь.
  2. Французский физик Чарльз Августин из Кулона, 1736—1806, который был пионером в исследованиях трения и вязкости, распределения заряда на поверхностях и законов электрической и магнитной силы. Его именем названа единица заряда в системе СИ — кулон и закон Кулона.
  3. Итальянский физик Алессандро Вольта, 1745—1827, тот кто изобрел источник постоянного тока, награжден Нобелевской премией по физике 1921 года, в системе СИ единица напряжения — вольт, названа в его честь.
  4. Георг Симон Ом, 1789—1854, немецкий физик, первооткрыватель, оказавший влияние на развитие теории электричества, в частности закона Ома. В системе СИ единица сопротивления — ом, названа в его честь.
  5. Густав Роберт Кирхгоф, 1824—1887, немецкий физик, внесший вклад в фундаментальное понимание электрических цепей, известен своими двумя законами по теории цепей.
  6. Генрих Герц, 1857—1894, немецкий физик, демонстрирующий существование электромагнитных волн. В системе СИ единица частоты — Герц названа в его честь.
  7. Джеймс Клерк Максвелл,1831—1879, шотландский математик и физик, сформулировал систему уравнений об основных законах электричества и магнетизма, названную уравнениями Максвелла.
  8. Майкл Фарадей, 1791—1867, английский химик и физик, основоположник закона индукции. Один из лучших экспериментаторов в истории науки, его обычно считают отцом электротехники. Единица емкости в системе СИ — постоянная Фарадея, названа в его честь.
  9. Томас Эдисон, 1847—1931, американский изобретатель, имеющий более 1000 патентов, наиболее известен разработкой лампы накаливания.


Томас Эдисон

Первые исследования и открытия

Знания в области электричества стали развиваться далее лишь в 15 веке. И если рассматривать электричество, кто создал его и ввел такое понятие, следует в первую очередь отметить английского физика Уильяма Гильберта (1544—1603). Этот ученый-естествоиспытатель и придворный врач по праву считается основоположником учения об электричестве и магнетизме. Благодаря Уильяму появились термины «электричество» и «электрический». В своем научном труде Уильям Гильберт аргументированно доказывает наличие у Земли магнитного поля.

Книга «О магните, магнитных телах и великом магните Земли» подробно описывает опыты, подтверждающие магнитные и электрические свойства тел. Все тела были разделены на электризующиеся с помощью трения и не электризующиеся. Было установлено, что каждый магнит обладает двумя неразделимыми полюсами. То есть, при распиливании магнита на две равные части, на каждой половинке вновь образуется собственная пара полюсов. Разноименные полюса притягиваются друг к другу, а одноименные, наоборот, отталкиваются в противоположные стороны.
Во время опытов с металлическим шаром, взаимодействующим с магнитной стрелкой, ученым впервые было выдвинуто предположение о том, что Земля есть не что иное, как огромный магнит, а ее магнитные полюсы могут совпадать с географическими полюсами.

Электрические явления были исследованы ученым с помощью версора, созданного собственноручно, который стал первым своеобразным электроскопом. Понятия магнетизма и электричества разделились, поскольку магнитными свойствами обладают в основном металлические предметы, а электрические присущи многим веществам, входящим в особую категорию. В книге Уильяма Гилберта впервые определены понятия электрического притяжения, электрической силы и магнитных полюсов.

Опыты ученого через много лет решил повторить немецкий физик, инженер и философ из Магдебурга Отто фон Герике (1602—1686). Он изобрел специальные физические приборы, которые помогли не только подтвердить выводы Гилберта, но и подтвердить научные изыскания самого фон Герике. Лучшими доказательствами считаются ряд экспериментальных исследований, затрагивающих статическое электричество, которым до тех пор практически никто не интересовался.

Для подтверждения собственных изысканий и предыдущих опытов Уильяма Гильберта, фон Герике изобрел специальный прибор, позволяющий создавать электрическое состояние. В нем отсутствовал конденсатор для накопления электричества, производимого трением, поэтому данный прибор не в полной мере соответствовал понятию электрической машины. Тем не менее, он сыграл свою роль и благодаря ему история развития электричества получила новый толчок в нужном направлении.

Фон Герике открыл еще и эффект электрического отталкивания, который был ранее неизвестен. Для подтверждения данного эффекта был изготовлен большой шар из серы, сквозь который продевалась ось, приводившая его в движение. В процессе вращения он натирался сухой рукой, что вызывало электризацию шара. В ходе эксперимента было замечено, что тела вначале притягиваются к нему, а затем отталкиваются. Кроме того, было видно, как оттолкнувшуюся пушинку притягивают другие тела. В процессе исследования наблюдались и другие эффекты, подтверждающие общие характеристики и свойства электричества, известные в то время.

В дальнейшем электрическая машина фон Герике была усовершенствована немецкими учеными Бозе, Винклером, английским физиком Хоксби. С ее помощью в 18 и 19 веках удалось сделать массу новых открытий в теории и практике электричества.

Электрический ток

Электрический ток – упорядоченное движение заряженных частиц под действием электрического поля. В зависимости от среды материи (вещества) частицы могут быть разные: в металлах – электроны, в электролитах – ионы, в полупроводниках – электроны или дырки (электронно-дырочная проводимость).

Если говорить сильно упрощённо, то вся окружающая нас материя (всё, что мы видим вокруг) состоит из молекул. В свою очередь молекулы состоят из атомов. Сами атомы представляют из себя ядро (протоны и нейтроны) и вращающиеся вокруг него электроны. Для более наглядного понимания электрического тока возьмём обычную батарейку. Внутри неё протекает химическая реакция. В результате этого электроны переходят от одних атомов к другим. Поэтому получается, что атомы одного вещества (клемма «плюс») испытывают недостаток электронов, а атомы другого вещества (клемма «минус») избыток. То есть вещества клемм батарейки имеют разноимённые заряды. Если соединить их (клеммы) между собой проводником с нагрузкой, то электроны будут стремиться перейти из одного вещества в другое (от отрицательной клеммы к положительной). Это перемещение электронов и есть электрический ток. Он будет течь пока заряды веществ не уровняются.

В качестве проводника для передачи электрического тока сейчас в основном используют медные или алюминиевые провода. Возьмём, например, медную проволоку. В атоме меди вокруг ядра по четырём орбитам вращаются 29 электронов. Электроны, находящиеся на крайних орбитах, испытывают меньшую силу притяжения, чем их собратья, расположенные ближе к ядру. Поскольку атомы меди находятся очень плотно друг к другу, то дальние электроны испытывают силу притяжения не только своего, но и соседнего ядра. Они могут покинуть свой атом и перейти к другому. Такие электроны называют свободными. При подключении к проводнику внешнего электрического поля (например, батарейки) движение свободных электронов становится упорядоченным и направленным от «-» к «+» батарейки. В результате по цепи начинает течь постоянный электрический ток.

При рассмотрении принципа работы различных электронных схем принято использовать направление постоянного тока от плюса к минусу.  Этот выбор изначально был сделан не очень корректно, так как в то время о движении свободных электронов ещё не знали. За направление тока условно приняли то направление, по которому могли бы двигаться в проводнике положительные заряды. В последующем этот выбор менять никто не стал.

В любом веществе атомы располагаются на расстоянии друг от друга. В меди, алюминии и других металлах эти расстояния очень малы. Электронные оболочки соседних атомов практически соприкасаются друг с другом. Это даёт возможность электронам переходить от одного атома к другому. Поэтому металлы и ряд других веществ называют «проводниками» электрического тока. Существуют вещества, где атомы располагаются на значительном расстоянии друг от друга. Их электроны не могут преодолеть силу притяжения ядра своего атома, а сила ядра соседнего атома (куда электрон может перейти) очень мала из-за относительно большого расстояния. Даже если к такому веществу подключить электрическое поле, то электрон всё равно останется у своего атома (электрический ток не потечёт). Подобные вещества называют «диэлектриками». Они не пропускают электрический ток.

Природа явления

Изобретения электричества как такового не было, поскольку это явление природное и изучение его началось еще в Древней Греции в 7 веке до нашей эры. Философ и естествоиспытатель Фалес Милетский обратил внимание на то, что если янтарь натереть шерстью овцы, то у камня появляется способность притягивать к себе некоторые легкие предметы. Он же и сформулировал термин. Поскольку по-гречески янтарь называется «электрон», то выявленная сила была означена Фалесом «электричеством».

Явления в природе, связанные с электричеством

Природа богата явлениями электрической природы. Примерами таких явлений, которые связаны с электричеством, служат северное сияние, молния и др.

Северное сияние

Верхние слои воздушной оболочки часто накапливают мелкие частички, прилетающие из космоса. Их столкновение с атмосферой и пылью вызывает свечение на небе, которое сопровождают сполохи. Такое явление наблюдают жители полярных районов. Назвали это явление полярным сиянием. Северное свечение длится порой несколько суток, переливаясь разными цветами.

Молния

Перемещаясь с атмосферными потоками, кучевые облака вызывают трение капель и ледяных кристаллов. В результате трения в облаках накапливаются заряды. Это приводит к образованию между облаками и землей гигантских искр. Это и есть молнии. Они сопровождаются раскатами грома.

Накопление электрических зарядов в воздухе иногда вызывает образование небольших светящихся шариков или крупных искр. Эти шары и искры названы шаровым молниями. Они перемещаются с воздухом, взрываясь от контакта с отдельными предметами. Такие молнии нередко вызывают ожоги и гибель живых существ и людей, возгорание предметов. Точно объяснить причины появления молний ученые пока не могут.

Огни святого Эльма

Так называют явление, знакомое плававшим на парусниках морякам с древности. Они радовались, когда видели свечение мачт в непогоду. Моряки считали, что огни свидетельствуют о покровительстве святого Эльма.

Свечение можно наблюдать в грозу на высоких шпилях. Огоньки выглядят как свечи и кисти голубого или светло-фиолетового оттенка. Длина этих огней иногда достигает метра. Сияние порой сопровождает шипение или негромкий свист.

Моряки пытались отломить часть мачты вместе с огнем. Но это никогда не удавалось, поскольку огонь «перетекал» на мачту и поднимался по ней вверх. Пламя это холодное, от него не происходит возгорания, оно не обжигает руки. И гореть может несколько минут, иногда около часа. Современные ученые установили, что эти огни имеют электрическую природу.

Лейденская банка

В 1745 году физик из Голландии Питер ван Мушенбрук изобрел Лейденскую банку, которая стала первым электрическим конденсатором. Его создателем также является немецкий юрист и физик Эвальд Юрген фон Клейст. Оба ученых действовали параллельно и независимо друг от друга. Это открытие дает ученым полное право войти в список тех, кто создал электричество.

11 октября 1745 года Клейст произвел опыт с «медицинской банкой» и обнаружил способность хранения большого количества электрических зарядов. Затем он проинформировал об открытии немецких ученых, после чего в Лейденском университете был проведен анализ этого изобретения. Затем Питер ван Мушенбрук опубликовал свой труд, благодаря которому стала известна Лейденская банка.

Научные изыскания

Реальные научные исследования электрической природы начинались только в XVII веке в эпоху Возрождения. В Магдебурге в то время служил бургомистром Отто фон Герике, но власть не была настоящим увлечением чиновника. Все свободное время он проводил в своей лаборатории, где после тщательного изучения трудов Фалеса Милетского изобрел первую в мире электрическую машину. Правда ее применение было не практическим, а скорее научным, она позволяла изобретателю исследовать эффекты притяжения и отталкивания посредством электрической силы. Машина представляла собой стержень, на котором кружился шарик серы, в данной конструкции он заменял янтарь.

Схема на песке

Тесла придумал, как на практике использовать вращающееся магнитное поле. Это случилось в 1882 году во время прогулки по Будапешту и цитирования «Фауста» Гёте. До этого на протяжении нескольких месяцев ученого мучила странная болезнь, природой которой, скорее всего, являлось крайнее истощение организма ввиду переутомления. «Муха, садившаяся на стол в комнате, порождала в моем ухе глухой звук, напоминавший падение тяжелого тела», — писал изобретатель в своей автобиографии. Лишь прогулки и занятия гимнастикой под надзором приятеля помогли ученому выкарабкаться из затуманенного состояния.


Снимок носит иллюстративный характер. Скорее всего, на нем изображен не Тесла, а любвеобильный инструктор по плаванию

Во время одной из таких прогулок Николу в буквальном смысле озарило. В одно мгновение он понял, как будет работать его двигатель, и принялся чертить прямо на песке схему. Она изменила и судьбу самого Теслы, и мир, в котором мы живем.

Основатель электротехники

Также в конце XVII века при английском дворе трудился придворный медик и физик Уильям Гилберт. Его также вдохновили труды древнегреческого мыслителя, и он перешел к собственным исследованиям по данной тематике. Этот изобретатель разработал прибор для изучения электричества – версор. С его помощью он смог расширить знания об электрических явлениях. Так он установил, что подобными янтарю свойствами обладают сланцы, опал, алмаз, карборунд, аметист и стекло. Кроме этого, Гилберт установил взаимосвязь между пламенем и электричеством, а так же сделал ряд других открытий, которые позволили современным ученым называть его основоположником электротехники.

Машина землетрясений Теслы

Позже Тесла потерял интерес к излучению и приступил к работе с ультразвуком, о чем соседи его лаборатории узнали самым неприятным образом — ученый буквально вызвал землетрясение в Нью-Йорке. По крайней мере, он, а позже его биографы рассказывали об этом происшествии.

С лабораторией Николы соседствовали полицейский участок, различные фабрики и жилые дома итальянцев. Весенним утром 1898 года полицейский участок начал ходить ходуном: тряслась мебель, ставни и двери сами собой открывались и хлопали. В панике население района выбежало на улицу, предполагая разрушительные толчки землетрясения. Полицейские же бросились прямиком к Тесле, которого считали виновником всех громких событий.

Ученого они нашли в лаборатории с кувалдой в руках. Ею он лупил по некому прибору, прикрепленному к опоре здания. Последний удар, и прибор рассыпался, землетрясение прекратилось. Это был осциллятор Теслы — генератор механических колебаний сверхвысокой частоты, вырабатывавший ультразвук. Эти колебания вызывали внутренний резонанс в предметах, когда совпадали с частотой их собственных колебаний. В этих принципах Никола видел огромную разрушительную силу. При достаточном объеме динамита изобретатель обещал расколоть Землю надвое.

Конечно, эти рассказы для репортеров оказались всего лишь рассказами. Позднейшие эксперименты с машиной поставили под сомнение ее всемогущие способности.

Переменный ток

В начале электрической эры все потребители пользовались постоянным электрическим током. Большой вклад в развитие и распространение сетей с постоянным током внёс американский изобретатель и предприниматель Томас Алва Эдисон (1847 – 1931 гг.). Человек удивительной работоспособности. Только в США он получил 1093 патента. Если брать другие страны мира, то это ещё около трёх тысяч запатентованных изобретения. Томас Эдисон стоял у истоков широкомасштабного применения электричества. Его вариант электрической лампы накаливания с прочной нитью в колбе с вакуумом имел большой коммерческий успех. Не без влияния Томаса Эдисона на промышленных предприятиях стали заменять паровые машины на электродвигатели постоянного тока (на переменном токе электродвигателей ещё не было). Одним словом, в конце XIX века электричество начало семимильными шагами входить в жизнь людей.

К сожалению, у электрического тока в то время был обнаружен один существенный недостаток. Его очень сложно передавать на большие расстояния. Как мы знаем любой проводник оказывает сопротивление прохождению электрического тока. На маленьких расстояниях это практически незаметно, а на больших сопротивление прибавляется и потери становятся сильно ощутимы.

Единственным приемлемым выходом из этой ситуации является передача электроэнергии на повышенном напряжении (десятки и сотни тысяч вольт). Чтобы на передающей стороне повысить, а на принимающей стороне опять понизить напряжение нужны специальные трансформаторы. С постоянным током трансформаторы не работают. Соответствующее решение предложил Никола Тесла (1856 – 1943 гг.). Именно он разработал системы передачи электроэнергии посредством многофазного переменного тока, в которую входили генераторы, повышающие и понижающие трансформаторы, а также в качестве потребителей были представлены электрические машины (в том числе, изобретённый им асинхронный электродвигатель переменного тока).

Опора высоковольтной линии электропередачи

Переменный ток – электрический ток, который с течением времени изменяется по величине и направлению. Например, в обычной домашней розетке плюс с минусом на правой и левой клеммах меняются местами 50 раз в течение одной секунды. Человеческий глаз не может различать такую частоту. Поэтому, при включении дома обычной лампы накаливания мы видим ровное (без морганий) освещение. Количество изменений за 1 сек. называется частотой переменного тока и обозначается буквой F (эф). За единицу измерения частоты принят один «герц» (Гц). Такое название единица получила в честь немецкого физика Генриха Рудольфа Герца (1857 – 1894 гг.). В России, как и во многих странах мира, стандарт частоты переменного тока равен 50 Гц.

Переменный электрический ток вырабатывается на электростанциях (гидроэлектростанции, теплоэлектростанции и атомные электростанции). Принцип везде одинаков – механическое движение турбины передаётся ротору генератора, вращение которого приводит к возникновению напряжения в обмотках статора. На гидроэлектростанциях (ГЭС) турбину вращает поток воды. На теплоэлектростанциях (ТЭЦ) энергия сжигаемого топлива (бензин, керосин, дизельное топливо, газ и т.п.) нагревает в котлах воду до состояния пара, который вращает паровую турбину. На атомных электростанциях (АЭС) энергия ядерной реакции нагревает теплоноситель первого контура. Затем этим теплом до состояния пара нагревается вода второго контура, которая опять же вращает паровую турбину.

Мощность

Мощность электрического тока — количество работы, совершаемое током за одну секунду времени. Тем больше будет совершаться работы, чем больше разность потенциалов и чем большее количество электричества ежесекундно проходит через поперечное сечение проводника. За единицу измерения мощности принят один «ватт» (Вт). Такое название единица получила в честь шотландского инженера и изобретателя Джеймса Уатта (1736 — 1819 гг.). На схемах и в формулах мощность обозначается буквой «P» (п). Определение мощности можно записать в виде формулы P = I x U. Если известна мощность электроприбора (обычно указывается на специальной бирочке, прикреплённой к корпусу), то всегда можно узнать протекаемый по цепи ток, к которой будет подключено это устройство. Он рассчитывается по формуле I = P/U.

Электричество вокруг нас

Когда появилось электричество в России

Даты, когда в России началась эра использования электроэнергии, называют разные. Все зависит от критерия, по которому ее устанавливают.

Многие соотносят это событие с 1879 годом. В Петербурге тогда были установлены электрические фонари на Литейном мосту. Но есть люди, которые считают датой появления в России электричества начало 1880 года – дату создания электрического отдела в Российском техническом обществе.

Знаковой датой также можно полагать май 1883 г., время, когда рабочие выполнили иллюминацию кремлевского двора к церемонии коронования Александра ІІІ. Для этого на Софийскую набережную установили электростанцию. А чуть позже электрифицировали главную улицу в Петербурге и Зимний.

Через три года в Российской империи создали «Общество электроосвещения», которое занялось разработкой плана установки фонарей на улицах Москвы и Санкт-Петербурга. А еще через пару лет начинается всюду по империи строительство и оснащение электростанций.

Из чего состоит электроэнергия

Все, что окружает нас, в том числе и люди, состоит из атомов. Атом же состоит из положительно заряженного ядра. Вокруг этого ядра вращаются отрицательно заряженные частицы, которые называются электронами. Эти частицы нейтрализуют положительный заряд ядра. Потому атом имеет нейтральный заряд. Образуется электричество направленным перемещением электронов из одного атома на другой. Такое действие можно осуществить с помощью генератора, трения или химической реакции.

Внимание! Процесс основан на свойстве притяжения частиц, имеющих разные заряды, и отталкивания одинаковых зарядов. В результате возникает ток, который может передаваться через проводники (чаще всего металлы). Материалы, которые не способны передавать ток, называются изоляторами. Хорошие изоляторы – это дерево, пластмассовые и эбонитовые предметы.

Как образуется разное электричество

Электроэнергия бывает разной природы: переменный или постоянный ток. Кроме того, есть еще статическое электричество. Оно образуется при нарушении равновесия зарядов внутри атомов, как уже было сказано ранее.

В быту человеку постоянно приходится сталкиваться с ним, поскольку одежда синтетической природы есть в каждом доме. А она во время трения накапливает заряд. Некоторые предметы одежды при раздевании или одевании дают такой эффект.

Об этом сигнализируют искры и треск. Источники статического электричества находятся в каждой квартире. Это бытовые электроприборы и компьютеры, электризующие мельчайшую пыль, которая оседает на полу, поверхностях мебели и одежде. Она оказывает отрицательное действие на здоровье людей.

Важно! Для получения электроэнергии создают магнитное поле. Оно притягивает электроны, заставляя их двигаться по проводнику. Этот процесс перемещения частиц называется электрическим током. При стационарном магнитном поле ток течет по проводнику постоянный.

Наука электродинамика

Теория электричества содержит законы, охватывающие огромное количество электромагнитных явлений и законов взаимодействий.

Это связано с тем, что все тела состоят из заряженных частиц. Взаимодействие между ними намного сильнее гравитационных. И в настоящее время эта наука является наиболее полезной для человечества.

Основателем науки признан ученый Гильберт. До 1600 г. наука эта была на уровне знаний Фалеса. Гильберт попытался построить теорию электричества.

До него замеченные греческим ученым свойства притяжения считались только забавным фактом. Гильберт свои наблюдения проводил, используя электроскоп. Его исследования и научные основания стали основополагающим этапом в науке. А само название стало применяться с 1650 г.

Современная наука об электрических явлениях и законах называется электродинамикой. Сейчас трудно себе представить жизнь без электроэнергии. С помощью электрического тока созданы многие приборы, помогающие передавать информацию на огромные расстояния, даже в космос. Технический прогресс позволил поставить его на службу всему человечеству, все больше открывая тайны этого природного явления. Но все же в этой области науки еще содержится много неизведанного.

Откуда появилось электричество

Кто изобрел электричество

Применение электричества

Изобретение электричества по праву является величайшим открытием, ведь без него становится невозможной современная жизнь. Оно имеется почти в каждом доме и применяется для освещения, обмена информацией, приготовления пищи, обогрева, функционирования бытовых приборов. Также электроэнергия необходима для движения трамваем, троллейбусов, метро, электропоездов. Работа компьютера, сотового телефона тоже невозможна без электричества.


Источники

  • https://tvercult.ru/nauka/kogda-poyavilos-i-kto-otkryil-elektrichestvo-v-rossii
  • https://new-science.ru/kto-izobrel-elektrichestvo/
  • https://wiki2.org/ru/%D0%AD%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D1%82%D0%B2%D0%BE
  • https://amperof.ru/teoriya/kto-pridumal-elektrichestvo.html
  • https://odinelectric.ru/knowledgebase/istorija-otkrytija-jelektrichestva
  • https://rusenergetics.ru/novichku/kto-izobryol-elektrichestvo
  • https://electric-220.ru/news/kogda_pojavilos_ehlektrichestvo/2017-08-04-1330
  • https://venusian.ru/elektrichestvo/
  • https://electroadvice.ru/eto-interesno/kto-izobrel-elektrichestvo-i-v-kakom-godu/
  • https://chebo.pro/tehnologii/istoriya-otkrytiya-elektrichestva-poyavlenie-i-razvitie.html
  • https://tech.onliner.by/2017/04/23/nikola-tesla
  • https://FB.ru/article/277550/izobretenie-elektrichestva-istoriya-primenenie-poluchenie

[collapse]

Рассказ об электричестве детям

В повседневной жизни мы часто сталкиваемся с таким понятием как «электричество». Что же такое электричество, всегда ли люди знали о нём?

Без электричества представить нашу современную жизнь практически невозможно. Скажите, как можно обойтись без освещения и тепла, без электродвигателя и телефона, без компьютера и телевизора? Электричество настолько глубоко проникло в нашу жизнь, что мы порой и не задумываемся, что это за волшебник помогает нам в работе.

Этот волшебник – электричество. В чём же заключается суть электричества? Суть электричества сводится к тому, что поток заряженных частиц движется по проводнику (проводник – это вещество, способное проводить электрический ток) в замкнутой цепи от источника тока к потребителю. Двигаясь, поток частиц выполняют определённую работу.

Это явление называется «электрический ток». Силу электрического тока можно измерить. Единица измерения силы тока — Ампер, получила своё название в честь французского ученого, который первым исследовал свойства тока. Имя ученого-физика – Андре Ампер.

Открытие электрического тока и других новшеств, связанных с ним, можно отнести к периоду: конец девятнадцатого — начало двадцатого века. Но наблюдали первые электрические явления люди ещё в пятом веке до нашей эры. Они замечали, что потёртый мехом или шерстью кусок янтаря притягивает к себе лёгкие тела, например, пылинки. Древние греки даже научились использовать это явление – для удаления пыли с дорогих одежд. Ещё они заметили, что если сухие волосы расчесать янтарным гребнем, они встают, отталкиваясь друг от друга.

Вернёмся ещё раз к определению электрического тока. Ток – направленное движение заряженных частиц. Если мы имеем дело с металлом, то заряженные частицы – это электроны. Слово «янтарь» по-гречески – это электрон.

Таким образом, мы понимаем, что всем нам известное понятие «электричество» имеет древние корни.

Электричество – это наш друг. Оно помогает нам во всём. Утром мы включаем свет, электрический чайник. Ставим подогревать пищу в микроволновую печь. Пользуемся лифтом. Едем в трамвае, разговариваем по сотовому телефону. Трудимся на промышленных предприятиях, в банках и больницах, на полях и в мастерских, учимся в школе, где тепло и светло. И везде «работает» электричество.

Как и многое в нашей жизни, электричество, имеет не только положительную, но и отрицательную сторону. Электрический ток, как волшебника-невидимку, нельзя рассмотреть, учуять его по запаху. Определить наличие или отсутствие тока можно только, используя приборы, измерительную аппаратуру. Первый случай поражения электрическим током со смертельным исходом был описан в 1862 году. Трагедия произошла при непреднамеренном соприкосновении человека с токоведущими частями. В дальнейшем случаев поражения электрическим током произошло немало.

Электричество! Внимание, электричество!

Этот рассказ об электричестве – для детей. Но, само по себе, электричество — понятие далеко не детское. Поэтому, хотелось бы и в этом рассказе обратиться к мамам и папам, бабушкам и дедушкам.

Уважаемые взрослые! Рассказывая об электричестве детям, не забудьте подчеркнуть, что ток – невидим, а потому особенно коварен. Что не нужно делать взрослым и детям? Не дотрагивайтесь руками, не подходите близко к проводам и электрокомплексам. Недалеко от линий электропередач, подстанций не останавливайтесь на отдых, не разводите костров, не запускайте летающие игрушки. Лежащий на земле провод может таить в себе смертельную опасность. Электрические розетки, если в доме маленький ребёнок, – объект особого контроля.

Главное требование, предъявляемое к взрослым — не только самим соблюдать правила безопасности, но и постоянно информировать детей о том, насколько может быть коварен электрический ток.

Заключение

Физики «дали доступ» человечеству к электричеству. Ради будущего учёные шли на лишения, тратили состояния, чтобы вершить великие открытия и дарить результаты своих трудов людям.

Будем бережно относится к трудам физиков, к электричеству, будем помнить о той опасности, которую оно потенциально несёт в себе.

Басню про электричество можно посмотреть здесь

Автор рассказа: Ирис Ревю

Как было покорено электричество: от молнии до ГОЭЛРО

Электричество присутствовало в истории человечества всегда, поскольку это такое же природное явление, как огонь. Оно было обнаружено довольно давно и в сознании человека тесно связывалось с другим природным явлением — магнетизмом.

До промышленной революции

Отто фон Герике

Еще в 1672 году немецкий физик Отто фон Герике построил электрическую машину, функционирующую от трения: он натирал руками шар из серы, и возникавший электрический заряд заставлял его светиться в темноте.

С 1752 года, благодаря эксперименту Бенджамина Франклина с воздушным змеем, запущенным в грозу, мы знаем, что молния — это ни что иное, как природное электричество.

Чуть позже, в 1772 Алессандро Вольта сконструировал первую батарею, где электричество вызывалось химической реакцией. Его именем названа единица измерения напряжения тока.

Еще через полвека Андре-Мари Ампер исследовал связь между магнетизмом и электричеством. Именем этого ученого названа единица измерения силы тока.

Эпоха промышленной революции

Современная лампа

С приходом промышленной революции электричество стало использоваться и в повседневной жизни, правда, сначала только для освещения улиц. Родоначальником уличного электрического освещения стал русский ученый Павел Яблочков, изобретший удачную модификацию угольной дуговой лампы. Она была презентована в 1878 году на Всемирной Выставке в Париже и получила название «свечи Яблочкова». Впоследствии это изобретение, правда, весьма доработанное, служило для освещения центральных улиц европейских столиц и основных достопримечательностей. Заголовки газет в то время были такими: «Свет появляется из России», «Россия — колыбель электричества». Также Павел Яблочков изобрел и запатентовал трансформатор и генератор. После того, как Джозеф Уилсон Суон в том же 1878 году изобрел электрическую лампочку, электрический свет пришел и в частные дома.

Павел Яблочков и его лампа

Пионером в области электрификации и использования электроэнергии для управления машинами был Вернер фон Сименс. Его патент на динамомашину зарегистрирован в 1866 году. Без этой машины вряд ли бы когда-нибудь был разработан электродвигатель.

Однако в то время еще не существовало обширной энергосистемы. Кроме того, все еще использовался постоянный, а не переменный ток, как это происходит сегодня.

Постоянный ток уступает место переменному

Еще в 1881 году одно изобретение впервые позволило транспортировать электроэнергию на большие расстояния: трансформатор. Еще раньше, в 1876 году, русский ученый-изобретатель Александр Лодыгин запатентовал во многих странах (но не в Америке) привычную сегодня лампу накаливания.

Томас Эдисон и его лампа

Все эти изобретения были собраны и оптимизированы американцем Томасом Эдисоном. А в 1880 году он запатентовал свои собственные лампы накаливания и даже держал электростанции для своих локальных сетей постоянного тока.

Предприниматель Джордж Вестингауз, соперник Эдисона, построил в 1886 сеть переменного тока. Однако у него не было патента на производство лампочек. Он запатентовал собственное изобретение, предлагая для своей сети только лицензированные лампочки.

Сначала судьба не благоволила начинаниям Вестингауза. Во время метели 1888 года в Нью-Йорке произошел трагический несчастный случай из-за повреждения высоковольтных линий электропередач. После этого события стал активно обсуждаться вопрос электробезопасности, а ток приобрел дурную славу.

В том же году в Нью-Йорке была впервые проведена смертная казнь с использованием электрического стула, что дало толчок к развитию одной из компаний Эдисона. Однако Вестингауз не сдавался, а продолжал сопротивляться. Наконец, ему было поручено обеспечить электричеством Всемирную ярмарку 1893 года в Чикаго. Переменный ток как источник электроэнергии окончательно утвердился.

Электрический путь России

До Первой Мировой Войны и Революции электротехническое развитие России не отставало от Запада. Однако, несмотря на собственные изобретения и создание ТЭС и даже ГЭС, в 1909 году до 85% этого сектора работали за счет зарубежных инвестиций. И хотя к началу войны, в связи с охлаждением политики по отношению к Западу, многие западные компании вышли с русского электрического рынка, доля европейского и американского капитала все равно превышала 70%.

Революция и последовавшая за ней гражданская война повергли страну в экономическую разруху, и, конечно, средств на электрификацию не было, да и некому было ею заниматься. Тем не менее, первый экономический план, принятый большевиками в 1921 году, касался именно электрификации. Это был план ГОЭЛРО (Государственная комиссия по электрификации России). Традиционно считается, что авторами этого плана были Ленин и Кржижановский, а в работе комиссии участвовали более 200 инженеров со всей страны, однако есть предположения, что план тотальной электрификации России был разработан значительно раньше, еще до Первой Мировой. В любом случае, ГОЭЛРО был комплексным планом развития всей экономики, в рамках которого строились предприятия, обеспечивающих электроэнергетиков всем необходимым. Параллельно реализовывался план развития территорий. К примеру, в 1927 году был заложен Сталинградский тракторный завод, ставший не только градообразующим предприятием, но и обеспечивший инженеров, работавших в рамках ГОЭЛРО транспортом. Также в этот период активно осваивался Кузнецкий угольный бассейн.

Карта электрификации СССР

Итак, за 15 лет были выстроены 30 районных электрических станций (20 ТЭС и 10 ГЭС) общей мощностью 1,75 млн кВт. Параллельно было проведено экономическое районирование, создан транспортно-энергетический каркас территории страны. План ГОЭРЛО охватывал 8 основных экономических районов. Одновременно велось развитие транспортной системы страны.

Этот проект положил основу индустриализации в России, причем планы были перевыполнены уже к 1931 году. Выработка электроэнергии в 1932 году по сравнению с 1913 годом увеличилась не в 4,5 раза, как планировалось, а почти в 7 раз: с 2,0 до 13,5 млрд кВт/ч.

Фото: компании-производители, pixabay.com, Wiki

Читайте также: 

Система электрического освещения — Национальный исторический парк Томаса Эдисона (Служба национальных парков США)

Копия первой лампочки Томаса Эдисона.

NPS Photo

Томас Альва Эдисон не изобрел первую лампочку. Удивлен? Еще до рождения Эдисона ученые экспериментировали с изготовлением лампочек. Эти лампочки перегорели через несколько минут.

Эдисон изобрел первую лампу накаливания , которая была практичной , , которая могла светить часами.Ему и его «мусорщикам» также пришлось изобрести сотни других деталей, чтобы лампочки в вашем доме работали. Выключатели света, электросчетчики, проводка — все это тоже нужно было изобрести. На это потребовалось несколько лет экспериментов. Людвиг Бём из Германии тщательно продул стекло, чтобы сделать лампочки. Чарльз Бэтчелор из Великобритании проверял одно за другим, чтобы сделать нить, крошечную нить, которая светится внутри лампочки. Платина, резина, даже черная сажа от керосиновых ламп — Бэтчелор перепробовал тысячи материалов.Фонари все равно не горели достаточно долго. Осенью 1879 года мусорщики испытали небольшую хлопковую нить в качестве нити накала. (В некоторых книгах указана дата 21 октября, но новое исследование доказало, что это ложь.) Сначала они обугили его, обожгли, чтобы он стал твердым. Поместили его внутрь стакана, осторожно вытеснили воздух специальным вакуумным насосом и запечатали колбу. Все месяцы экспериментов окупились! Лампочка горела не менее 13 часов. (В некоторых книгах говорится, что он горел еще дольше.)

Эдисон и его гадалки имели долговечную лампочку.В течение следующих нескольких лет глушители строили и испытывали различные части электроэнергетической системы. Джон Крузи из Швейцарии разработал динамо-машину, вырабатывающую электроэнергию, «Мэри-Энн с длинной талией». Бэтчелор нашел даже лучшую нить, чем хлопчатобумажную, — бамбук из Японии.

В 1882 году Эдисон помог создать компанию Edison Electric Illuminating Company в Нью-Йорке, которая доставляла электрический свет в районы Манхэттена. Но прогресс был медленным. Большинство американцев еще пятьдесят лет освещали свои дома газовыми лампами и свечами.Только в 1925 году половина всех домов в США была электричеством.

Back to For Kids Фонограф

Изобретение электрического освещения — Электричество и альтернативные источники энергии

  • Фазовые наконечники копья Хлодвига, используемые в современной Альберте.

    острия фазового копья Хлодвига представляют собой старейшую охотничью технологию в Альберте, да и во всей Северной Америке. Эти рифленые, зазубренные каменные наконечники прикреплялись к кости или деревянному стержню и использовались для охоты на огромную добычу, такую ​​как мамонты и мастодонты.
    Источник: Отдел управления историческими ресурсами, Археологическая служба

    .
  • Технология Atlatl (метание копья) появляется в современной Альберте.

    Атлатлы использовались ранними охотниками для увеличения скорости метательного оружия. Копья или дротики, брошенные атлатлем, могли нанести животному разрушительные раны, позволяя охотнику убить животное с безопасного расстояния.
    Источник: любезно предоставлено Head-Smashed-In Buffalo Jump

  • Технологии лука и стрел достигают современной Альберты.

    Технологии лука и стрел в Северной Америке, похоже, сначала развивались в Арктике, а затем распространились на юг по всему континенту. Лук и стрела идеально подходили для использования на широких открытых пространствах Великих равнин и получили широкое распространение по всему региону.
    Источник: любезно предоставлено Head-Smashed-In Buffalo Jump

  • «Конная революция» начинается в современной Альберте.

    Лошадей завезли в Северную Америку испанские колонисты в шестнадцатом веке.Из испанской колонии Нью-Мексико лошади распространились по Северной Америке, достигнув современной Альберты в 1730-х годах. Принятие лошади оказало значительное влияние на способы охоты / передвижения коренных народов равнин.
    Источник: Королевский музей Альберты

  • Национальный парк Скалистых гор основан канадским правительством.

    Одной из главных достопримечательностей нового парка были природные горячие источники.Роскошный отель Banff Springs, построенный канадской Тихоокеанской железной дорогой в 1888 году, закачивал воду из горячих источников в свои бассейны и процедурные кабинеты. Туристы стекались сюда, чтобы воспользоваться предполагаемыми лечебными свойствами воды.
    Источник: Музей Уайта в канадских Скалистых горах, v263-na-3562

    .
  • Calgary Water Power Company открывает первую гидроэлектростанцию ​​в Альберте.

    Компания принадлежала предпринимателю Питеру Принсу, который также управлял компанией Eau Claire & Bow River Lumber Company.С 1894 по 1905 год компания была основным поставщиком электроэнергии для города Калгари.
    Источник: Архивы Гленбоу, NA-4477-44

    .
  • Город Эдмонтон покупает компанию Edmonton Electric Lighting Company.

    Решение в пользу государственной собственности было принято после неоднократных перебоев в работе частного коммунального предприятия. Эдмонтон был первым крупным городским центром в Канаде, у которого была собственная электроэнергетическая компания.
    Источник: Архивы Гленбоу, NC-6-271

  • Образована компания Calgary Power Company.

    Основатель компании Макс Эйткен изначально был привлечен в регион его огромным гидроэнергетическим потенциалом. Компания превратится в крупнейшее коммунальное предприятие Канады, принадлежащее инвесторам. В 1981 году компания сменила название на TransAlta Utilities Corporation, чтобы лучше отразить ее провинциальный охват.
    Источник: Фото любезно предоставлено TransAlta

    .
  • Первая гидроэлектростанция в Альберте открывается у водопада Подкова.

    Принадлежащая и управляемая Calgary Power, плотина Horseshoe Falls была первым из двух подобных сооружений, построенных в системе Bow River до Первой мировой войны.Вторая гидроэлектростанция начала работу на водопаде Кананаскис в 1913 году.
    Источник: Glenbow Archives NA-3544-28

  • Начало работы Призрачной плотины гидроэлектростанции

    Это массивное сооружение было самой большой плотиной гидроэлектростанции в Альберте на момент ее строительства. Электростанция Ghost Power Plant более чем вдвое увеличила объем электроэнергии, вырабатываемой компанией Calgary Power, которая уже была основным поставщиком энергии в провинции.
    Источник: Архивы Гленбоу, NA-5663-44

    .
  • Первая Сельская Ассоциация Электрификации (REA) в Альберте основана в Спрингбанке.

    В течение следующих двух десятилетий в провинции будет создано в общей сложности 416 REA. Эти организации сыграют решающую роль в распространении электроэнергии в сельских районах Альберты.
    Источник: Архивы Гленбоу, NA-4160-20

    .
  • Избиратели Альберты категорически отвергают предложение о государственной собственности на электроэнергетические компании.

    Провинциальные выборы 1948 года включали плебисцит по вопросу владения электроэнергетическими предприятиями в Альберте.Сельские районы в основном проголосовали за государственную собственность, в то время как городские избиратели (особенно на юге Альберты) поддержали сохранение частной собственности. В конце концов, голосование было очень близким: общественная собственность проиграла всего лишь 151 голосом.
    Источник: Изображение любезно предоставлено Peel ’Prairie Provinces, цифровой инициативой Библиотеки Университета Альберты

  • Ветряная электростанция Коули-Ридж начинает работу возле Пинчер-Крик.

    Cowley Ridge была первой коммерческой ветряной электростанцией в Канаде.Всего в 1993-94 гг. Было установлено 52 ветряных турбины. В 2000 году проект был расширен за счет добавления пятнадцати новых (и гораздо более мощных) турбин.
    Источник: Фото любезно предоставлено TransAlta

    .
  • Открытие солнечного сообщества Drake Landing около Окотокса, Альберта.

    Drake Landing — первое полностью интегрированное солнечное сообщество в Северной Америке. В этой отмеченной наградами инициативе используется технология солнечного отопления, чтобы удовлетворить большинство потребностей населения в отоплении помещений и горячей воде.
    Источник: Wikimedia Commons / CA-BY-SA-3.0

  • Город Эдмонтон объявляет о запуске проекта «Преобразование отходов в биотопливо».

    В рамках проекта по переработке отходов в биотопливо мусор будет превращаться в биотопливо путем сбора углерода из отходов. В проект входит Центр перспективных энергетических исследований, который открылся в 2012 году.
    Источник: Фото предоставлено Enerkem

  • Вспоминая отца электричества: 7 неизвестных фактов о Майкле Фарадее

    Майкл Фарадей

    Отец электричества Майкл Фарадей родился 22 сентября 1791 года.Английский ученый, ответственный за открытие электромагнитной индукции, электролиза и диамагнетизма, происходил из бедной семьи кузнецов. Из-за слабой финансовой поддержки Фарадей получил только базовое образование.

    В возрасте 14 лет он работал учеником в книжном магазине на Бландфорд-стрит в Лондоне. Именно в этом магазине он получил возможность заниматься самообразованием. Он проявил большой интерес к науке об электричестве, которая оказалась чрезвычайно полезной не только для него, но и для будущего человечества.

    Мы представляем вам 7 неизвестных фактов об Отце Электричества:
    • Майкл Фарадей отвечает за обширное исследование электромагнетизма, области, которая изменила образ жизни людей на этой планете. Чтобы отдать дань уважения ему, Фарад, устройство, используемое для измерения электрической емкости, названо в честь Фарадея

    • В 1826 году Фарадей основал Королевский институт лондонских знаменитых лондонских вечерних бесед и рождественских лекций.Обе эти практики продолжаются и по сей день.
    Источник: Википедия
    • Электромагнитная индукция — принцип, лежащий в основе электрического трансформатора и генератора, была открыта Фарадеем в 1831 году.
    • . . Он сказал, что любой газ можно сжать до жидкой формы, а затем выпустить в виде пара, что заставит газ действовать как хладагент.
    • Бензол, важный нефтехимический продукт, используемый при производстве пластика, был открыт Майклом Фарадеем.Он нашел его в маслянистых остатках газовых фонарей в Лондоне.
    • Вы когда-нибудь задумывались, почему вы не получаете удар током во время полета во время шторма? Это потому, что самолет построен по концепции клетки Фарадея. Майкл Фарадей изобрел ограждение, которое могло препятствовать проникновению любого электрического заряда внутрь, защищая объект в клетке.

    Заинтересованы в общих знаниях и текущих делах? Щелкните здесь, чтобы быть в курсе событий и узнавать, что происходит в мире с нашим G.К. и раздел «Текущие события».

    Чтобы получить дополнительную информацию о текущих событиях, отправьте свой запрос по почте на адрес [email protected]

    Щелкните здесь, чтобы получить полный охват IndiaToday.in о пандемии коронавируса.

    Освещение Революция: предпосылки XIX века

    Предпосылки для Эдисона Лампа

    «Если я видел дальше [чем другие], то это стоя на плечах Гиганты ».
    Исаак Ньютон, в письме Роберту Гуку, 1675 г.

    Спустя почти семьдесят лет после своей смерти Томас Эдисон остается иконой изобретения. Его рекорд в 1093 патента по-прежнему остается самым выдающимся любому физическому лицу. Три основные книги, телефильм, а только в 90-е годы вышло 4 тома его статей. А 1999 год Time-Life публикация даже назвала Эдисона самым важным лицом мимо 1000 лет. Тем не менее, несмотря на все свои достижения, Эдисон не начинал с нуля.

    К 1869 году, когда Эдисон объявил о своем намерении стать профессиональным изобретателем, электротехническая промышленность уже была создана.Телеграфия обеспечила работой Эдисон и возможность узнать об электрических технологиях. Новаторская работа Франклин, Фарадей, Вольта, Морс и многие другие заложили фундамент, на котором Эдисон построен. Некоторые из наиболее важных предшествующих разработок показаны ниже.

    Аккумуляторы


    Гальваническая свая
    S.I. image # 79-9465.28

    Самым захватывающим изобретением в области электротехники начала XIX века был аккумулятор.Он производил постоянный электрический ток, открывая путь многим другим открытия и изобретения; он также обеспечивал питание телеграфа и телефона отрасли.

    В 1800 году Алессандро Вольта объявил о своем изобретении батареи, подобной той. показано справа. «Гальваническая куча» работает путем размещения кусков ткани, смоченных в соленой воде. между чередующимися цинковыми и медными дисками. Контакт между двумя металлами произведен электрический ток. К 1870-м годам было внесено множество усовершенствований, которые удлинили время автономной работы и решены проблемы типа «поляризация.»

    Двигатели


    Двигатель Colton
    S.I. image # 79-9464.18

    Через год после того, как Ханс К. Эрстед обнаружил связь между электричеством и Магнетизм, Майкл Фарадей использовал эти знания для создания простого двигателя. Больше, чем Однако пройдет 50 лет, прежде чем моторы станут полезными — в основном из-за необходимости для сильного источника тока.

    В 1847 году Гардинер Колтон, врач из Нью-Йорка, построил этот двигатель, чтобы проиллюстрировать его научные лекции.Он двигался по небольшой круговой дорожке.

    Генераторы


    Магнитогенератор Pixii
    S.I. image # 44,552

    В 1831 году Майкл Фарадей обнаружил, что перемещение магнита рядом с проволочной петлей произвел электрический ток в проводе. Это основной принцип работы генератор. Ипполит Пиксий построил этот «магнитогенератор» вскоре после Фарадея. объявление. Термин «магнето» означает, что магнитная сила создается постоянный магнит.В машине Pixii магнит вращается под катушками проволоки.

    Критический прорыв, «самовозбуждающаяся динамо-машина», возник в результате работы Чарльз Уитстон и Вернер Сименс в 1867 году. Работая независимо, оба изобретателя разработали генераторы, в которых катушка из проволоки вращается между полюсами электромагнит, который получает электричество от самой машины. Динамо-машина могла производят гораздо больше электроэнергии, чем магнето, и, таким образом, делают возможным эффективное использование двигателей и систем освещения.

    Метры


    Гальванометр Нобили
    S.I. image # 79-9465.06

    Ученые, изучающие электричество, быстро осознали необходимость в точных и надежных счетчиках. Позже телеграфисты и другие потребители электроэнергии сочли необходимым разработать счетчики для их особые потребности.

    В 1825 году Леопольдо Нобили сконструировал первый прецизионный прибор для измерения электрический Текущий. Ток в катушке создает магнитное поле, которое заставляет иглу внутри катушку крутить.Величина скручивания — это мера силы тока. Вставлена ​​вторая игла вне катушки позволяет устройству учитывать магнитное поле земли.

    Электромагниты


    Электромагнит Генри
    S.I. image # 79-9466.32

    Электромагнит оказался важным элементом в большинстве крупных изобретений в области электротехники. в 19 век. Моторы, генераторы, телеграфы и телефоны были главными примерами.Любой электрический ток производит магнитный эффект. Уильям Стерджен сделал электромагнита в 1825 году, пропуская ток через оголенный провод, намотанный на Железный стержень.

    Джозеф Генри сконструировал мощные электромагниты, используя множество обмоток изолированные провода. Показанный здесь железный сердечник взят из экспериментов Генри 1827 года. Позже Генри стал первым секретарем Смитсоновского института, главным образом благодаря его международная научная репутация.

    Дуговые лампы


    Щеточная дуговая лампа
    S.I. image # 79-9469.25

    Хамфри Дэви продемонстрировал Королевскому обществу в 1806 году, что мощный свет может быть производится путем создания электрической дуги между двумя угольными стержнями. Его эксперименты, питание от батарей батарей не привело к практическим осветительным приборам. Но появление хороших генераторов в 1860-х и 1870-х годах способствовало изобретательству и применение самых разнообразных дуговых ламп.

    Дуговые лампы, подобные этой запатентованной модели Brush 1870-х годов, предоставили многим городам свои первые электрические уличные фонари.Работа с дуговой лампой была трудоемкой, поскольку угольные стержни расходились по мере того, как лампа горела, и их приходилось часто заменять. Свет был таким ярким Однако мощные дуговые лампы продолжали использоваться и в 20 веке.

    Эдисон поставил перед собой цель «разделить свет» дуговой лампы, то есть разработать фонарь который дает небольшое количество света, подходящего для использования в помещении. В идеале много маленьких фонариков будет работать на том же токе, что и одна дуговая лампа, и может включаться и выключаться при будут.



    Alliant Kids — Кто изобрел электричество? и другие факты об энергетике

    Большинство отключений электроэнергии вызвано погодными условиями.

    Сильный ветер, ледяная буря и сильный снегопад могут сломать деревья и опоры электропередач, которые упадут и сломают линии. Когда это происходит, энергетические компании работают быстро, чтобы восстановить подачу электроэнергии, как только это станет безопасным.

    В случае отключения электричества линейные рабочие — герои. Это люди, которые устанавливают, обслуживают и ремонтируют линии электропередач.Они идут навстречу опасности — включая снежные бури и даже ураганы и торнадо — чтобы восстановить энергию.

    Отключение электричества никогда не бывает забавным (отвратительно от невозможности использовать телевизор для видеоигр), но в определенных ситуациях это особенно опасно. Подумайте о больницах, в которых нужно заботиться сотням людей и которым нужен свет, чтобы видеть. Или пожилые люди, которые живут одни и могут нуждаться в кислородных устройствах, чтобы выжить.

    Иногда энергетическая компания планирует отключение электроэнергии в определенной области для выполнения необходимых работ.Этот тип сбоев встречается редко и затрагивает только небольшое количество людей одновременно. Люди, которых затронул этот тип отключения, уведомляются заранее.

    Процесс восстановления электроэнергии Alliant Energy

    • Убедитесь, что у критически важных служб, таких как полиция, пожарные депо и больницы, есть электричество.
    • Проверьте объекты генерации, чтобы определить, работает ли все еще исходный источник энергии.
    • Ремонт линий электропередачи от генерирующих станций к подстанциям.
    • Ремонтные подстанции, на которых снижается мощность ЛЭП для бытового использования.
    • Ремонт распределительных линий, по которым электроэнергия идет от подстанций в каждый квартал.
    • Отремонтируйте водопроводные линии, обслуживающие от 20 до 300 домов и предприятий.
    • Повторное подключение линий к отдельным клиентам — это самый сложный и трудоемкий этап в процессе восстановления.

    Вот 9 самых важных электрических изобретений за всю историю

    Открытие и использование электричества были одними из самых важных достижений в истории человечества.Электрификация и взрыв электроприборов изменили жизнь во многих странах до неузнаваемости.

    СВЯЗАННЫЕ С: 7 ИСКРЕННЫХ ЧУДОВ ЭЛЕКТРОТЕХНИКИ, КОТОРЫЕ СДЕЛАЛИ НАШУ ТЕКУЩУЮ ЖИЗНЬ ВОЗМОЖНОСТЬЮ

    Каковы последние изобретения в электронике?

    По данным таких сайтов, как Astrodyne TDI, вот некоторые из последних инноваций в области электротехники:

    • Высокоэффективные фотоэлектрические элементы
    • Экологически чистая энергия Преобразователь электроэнергии
    • Виртуальная реальность
    • Технология отслеживания взгляда
    • Беспроводные носимые устройства

    Кто изобрел электричество и в каком году?

    Электричество, будучи естественным явлением, было открыто, а не изобретено в результате работы многих великих умов на протяжении всей истории.Ранние работы над электрическими рыбками проводились в Древней Греции и Риме такими философами, как Плиний Старший.

    Но только в 1600-х и 1700-х годах он был изучен с научной точки зрения. Первым, кто придумал термин «электричество», был британский ученый Уильям Гилберт, изучавший влияние электричества и магнетизма на янтарь.

    Фактически, само слово «электричество» происходит от нового латинского слова Гилберта electricus , означающего «янтарь» или «подобный янтарь».Но некоторые из наиболее важных работ были выполнены Бенджамином Франклином в 18 веке.

    Дальнейшая работа Вольта, Фарадея, Ома и многих других великих ученых способствовала нашему пониманию этого явления и позволила нам обуздать и использовать его сегодня.

    Кто открыл постоянный ток?

    Постоянный ток, или сокращенно DC, был впервые искусственно произведен Алессандро Вольта в начале 1800-х годов. Но потребуются дальнейшие исследования таких авторов, как Андре-Мари Ампер и Ипполит Пикси, чтобы постулировать, что электрический ток движется в одном направлении между полюсами.

    Позднее он будет использоваться и генерироваться на электростанциях в конце 1870-х годов при значительном вкладе и разработках Томаса Эдисона.

    Кто на самом деле изобрел лампочку?

    Основной принцип, лежащий в основе лампы накаливания, можно проследить до работы сэра Хамфри Дэви более двухсот лет назад. Он обнаружил, что, пропуская электрический ток через тонкий провод, он нагревается и испускает свет.

    Но он отметил, что для практического использования необходимо найти дешевые материалы, которые могут служить долго. Уоррен де Ла Рю разработал одну из первых практичных лампочек в 1830-х годах, но его выбор платины для нити накала не был коммерчески выгоден.

    Позже, в 1878 году, другому британскому химику, Джозефу Свону, удалось создать и публично продемонстрировать электрическую лампочку на основе углеродных нитей. Но его нити относительно быстро сгорели и, следовательно, не были коммерчески жизнеспособными.

    Углеродные лампы накаливания Swan. Источник: Ulfbastel / Wikimedia Commons

    Но в 1879 году Томас Эдисон путем проб и ошибок нашел сочетание тонкой углеродной нити накала с лучшими пылесосами, которые оказались правильными. Это сделало его первым человеком, решившим как научные, так и коммерческие проблемы конструкции лампочек.

    Какие самые важные изобретения в области электротехники?

    Вот 9 самых важных и интересных изобретений в области электротехники всех времен.Этот список явно не составлен в определенном порядке и далеко не исчерпывающий.

    1. Скромная лампочка была революционной.

    Источник: Джо Голдберг / Flickr

    Изобретение лампочки было одним из самых значительных достижений в истории человечества. Практически в мгновение ока он позволил обществам во всем мире увеличить продолжительность рабочего дня и практически «прогнать ночь».

    До своего развития искусственный свет обеспечивался за счет сжигания различных веществ, включая свечи, газовые фонари и масляные лампы.Они были очень неэффективными и требовали более высокого уровня обслуживания по сравнению с лампочками.

    Его разработка также помогла открыть век электроники и сделала улицы во всем мире более безопасными в ночное время.

    2. Интернет навсегда изменил мир

    Источник: History Computer

    Интернет, несомненно, является одним из самых важных изобретений в области электротехники всех времен. Он изменил мир и образ нашей жизни до неузнаваемости до своего развития.

    То, как мы работаем, получаем доступ к информации, совершаем покупки и общаемся, полностью изменилось благодаря сети. Но это не «новое» изобретение, как таковое .

    Истоки Интернета восходят к 1960-м годам. В последующие десятилетия были достигнуты медленные, но важные успехи, кульминацией которых стала новаторская работа Тима Бернерса-Ли в конце 1980-х годов.

    Сегодня она стала практически всеобъемлющей, создавая новые отрасли и позволяя людям подключаться и работать в любой точке мира с подключением к Интернету.Это могло быть самым важным изобретением в распространении данных со времен печатного станка Гутенберга.

    3. Переменный ток изменил все

    Переменный ток, или переменный ток, был еще одним из самых важных изобретений в области электротехники всех времен. Открытый Никола Тесла, переменный ток оказался революционным в том, как мы генерируем и используем электричество.

    Переменный ток оказался безопаснее и эффективнее (на больших расстояниях), чем постоянный ток.Переменный ток позволил осуществить массовую электрификацию многих стран по всему миру и может рассматриваться как наиболее важная предпосылка для других изобретений, упомянутых в этом списке.

    Благодаря этому стали реальностью такие вещи, как электродвигатели и трансформаторы. Сегодня AC ежедневно используют миллионы людей по всему миру.

    4. MP3-плееры изменили то, как мы все слушаем музыку

    MPMan. Источник: Мишель М. Ф. / Wikimedia Commons

    MP3-плееры навсегда изменили то, как миллионы людей будут слушать музыку и другой звук.Их развитие практически в одночасье означало конец старым формам СМИ, таким как кассеты и компакт-диски.

    Следуя их развитию до конца 1970-х, MP3-плееры стали коммерчески жизнеспособными в конце 1990-х. Один из первых прототипов технологии MP3 был разработан южнокорейской компанией Saehan Information Systems.

    Их 1997 «MPMan» был флэш-плеером, вмещавшим от шести до 12 песен. Другие компании вскоре осознали этот потенциал, когда Apple выпустила свой новаторский iPod в 2001 году.

    5. Транзисторы жизненно важны для современной жизни

    Транзисторы — еще одно из самых важных изобретений в области электротехники всех времен. Некоторые утверждают, что они могут быть одним из самых важных открытий в инженерии в целом.

    Транзисторы — это в основном электронные переключатели, которые позволяют включать и выключать ток по требованию. Сегодня они являются важным компонентом многих современных электронных устройств.

    «Транзисторы изменили лицо технологий по всей планете — без них у нас не было бы компьютеров, смартфонов и только очень простых средств связи (и это лишь некоторые из них).У нас определенно не было бы систем распределения энергии! »- Rubberbox.com.

    6. Системы глобального позиционирования были революционными

    Начиная с 1960-х годов как сверхсекретный военный проект, GPS изменил систему координат.

    К 1995 году система стала полностью работоспособной благодаря главным образом трем людям, стоящим за проектом: Роджеру Л. Истону, Ивану А. Геттингу и Брэдфорду Паркинсону. современные автомобильные приборные панели и смартфоны.Настолько, что многие люди во всем мире давно отказались от своих надежных бумажных карт прошлых лет.

    7. Цифровые камеры — еще одно важное изобретение.

    Источник: Уэйд Брукс / Flickr

    В концепции «беспленочных камер» нет ничего нового, поскольку первые разработки были сделаны в 1960-х годах. Но к 1975 году Стивен Сассон из Eastman Kodak разработал одну из первых электронных «цифровых» камер.

    Первоначально предназначенные для научных, а затем и военных целей, цифровые фотоаппараты стали обычным явлением только в середине-конце 90-х годов.

    Сегодня большинство новых камер являются цифровыми, и почти каждый смартфон имеет хотя бы одну в стандартной комплектации.

    8. Электромобили были новаторскими.

    Ранние электромобили, около 1912 года. Источник: City of Toronto Archives / Wikimedia Commons

    Электромобили, вы, возможно, удивитесь, услышав, на самом деле имеют довольно долгую историю. Некоторые из самых ранних моделей были разработаны в конце 1880-х годов, но вскоре они были предвосхищены развитием альтернативных двигателей внутреннего сгорания.

    Интерес к ним ненадолго возродился в 1970-х и 1980-х, но последнее десятилетие или около того стало эпохой de facto для электромобилей. Достижения в области аккумуляторных технологий и систем управления энергопотреблением делают электромобили еще более эффективными и привлекательными для массового рынка.

    9. Электродвигатели навсегда изменили многие отрасли промышленности

    Электродвигатели, неразрывно связанные с предыдущей статьей, являются еще одним из самых важных электронных изобретений всех времен.Преобразуя электрическую энергию в механическую, электродвигатели навсегда изменили облик многих отраслей промышленности.

    Электродвигатель оказался настолько эффективным, что практически в одиночку заменил паровые двигатели на заводах и в других крупных отраслях промышленности.

    Кто создал электричество? | Vivint Solar Blog

    Как и в случае с большинством научных открытий, ни один человек не может быть признан тем, кто «создал» электричество. Фактически, электричество всегда было естественным явлением.

    Человечество озадачили вспышки электричества в мире. Со временем и в результате многих часов научных наблюдений и экспериментов природа электричества была понята. По мере того как ученые все больше понимали электрические поля, магнетизм и потоки токов, сила электричества была использована и стала полезной.

    Теперь электрическое освещение, питание и резервное копирование управляют системой нашего мира, и на них почти не обращают внимания, пока мы не столкнемся с неожиданным отключением электроэнергии.

    В этом посте мы рассмотрим некоторые из самых ранних открытий на пути к пониманию электричества, развитие этого понимания в практических приложениях и то, где мы сейчас находимся.

    Кто создал электричество?

    Люди в древнем мире заметили, что они стали свидетелями огромной силы электричества в небе во время гроз. Некоторые видели вспышку молниеносных жуков, торпедных рыб, электрических угрей и задавались вопросом, как эти два природных явления могли быть связаны.1

    Древние греки были первыми известными приверженцами статического электричества в 600 году до нашей эры. Они обнаружили, что трение ископаемой смолы сосны и меха вместе создает электрический заряд.Это раннее открытие, известное как трибоэлектричество, происходит потому, что мех накапливает отрицательно заряженные электроны, а смола теряет электроны, создавая положительный заряд.2

    Археологические раскопки в 1936 году обнаружили, что, возможно, были ранними моделями батарей в древнем Вавилоне, который находится почти сейчас. день Багдад. Эти глиняные горшки содержат медный цилиндр, железный стержень и асфальтовую пробку и датируются периодом между 248 г. до н.э. и 226 г. н.э.

    Раннее использование электроэнергии

    Хотя эти ранние приложения были началом использования электроэнергии, тысячи лет спустя их было гораздо больше.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *