Как протекает рабочий цикл четырехтактного карбюраторного двигателя: Рабочий цикл четырехтактного карбюраторного двигателя — Общее устройство и работа двигателя — Двигатель — Автомобиль

Содержание

Рабочий цикл четырехтактного карбюраторного двигателя — Общее устройство и работа двигателя — Двигатель — Автомобиль

8 июня 2011г.

Рабочий цикл четырехтактного карбюраторного двигателя (смотрите цветной рисунок) состоит из следующих тактов: впуск, сжатие, рабочий ход (сгорание — расширение), выпуск.


Схема рабочего цикла четырехтактного карбюраторного двигателя

Схема рабочего цикла четырехтактного карбюраторного двигателя:

А — такты рабочего цикла;
Б — индикаторная диаграмма.


Впуск. Поршень перемещается от в.м.т. к н.м.т., впускной клапан открыт, в цилиндре образуется разрежение, вследствие чего в него поступает горючая смесь, которая перемешивается с отработавшими газами, оставшимися в небольшом количестве в цилиндре от предыдущего цикла, и образует рабочую смесь. Температура смеси в конце впуска равна 100 — 130° С, а давление примерно 70 — 80 кн/м2 (0,7 — 0,8 кгс/см2). На индикаторной диаграмме процесс впуска изображен линией rа.

Сжатие. Поршень перемещается от н.м.т. к в.м.т. Оба клапана закрыты, рабочая смесь сжимается, и температура ее повышается, благодаря чему улучшается испарение и перемешивание бензина с воздухом.

К концу такта сжатия давление в цилиндре повышается до 800 — 1200 кн/м2 (8 — 12 кгс/см2), температура смеси достигает 280 — 480°G. На индикаторной диаграмме процесс сжатия показан линией ас.

Рабочий ход (сгорание — расширение). Рабочая смесь в цилиндре воспламеняется электрической искрой и сгорает за 0,001 — 0,002 сек, выделяя при этом большое количество теплоты. Оба клапана закрыты. Температура в конце сгорания достигает свыше 2000° С, а давление — 3,5 — 4,0 Мн/м2 (35 — 40 кгс/см2). На индикаторной диаграмме процесс сгорания изображен линией cz. Под действием силы давления газов поршень перемещается к н.м.т., вращая через шатун коленчатый вал, В процессе расширения внутренняя энергия преобразуется в механическую работу. В конце расширения давление в цилиндре падает до 300 — 400 кн/м2 (3 — 4 кгс/см2), а температура снижается до 800 — 1100 °С. На индикаторной диаграмме процесс расширения газов характеризуется линией zb.

Выпуск. Открывается выпускной клапан. Поршень перемещается к в.м.т. и очищает цилиндр от отработавших газов, выталкивая их в атмосферу. Давление к концу такта выпуска снижается до 105 — 115 кн/м2 (1,05 — 1,15 кгс/см2), а температура — до 300 — 400 °С. На индикаторной диаграмме процесс выпуска отработавших газов изображен линией br.

Рабочий процесс четырехтактного двигателя протекает за четыре хода поршня, т. е. за два оборота коленчатого вала.

Из четырех тактов рабочий ход является основным, остальные три
— вспомогательными. Поэтому одноцилиндровый двигатель работает неравномерно. Для обеспечения равномерности вращения коленчатого вала автомобильные двигатели изготовляют с несколькими цилиндрами.

«Автомобиль», под. ред. И.П.Плеханова

Рабочий цикл четырехтактного карбюраторного двигателя

При рассмотрении рабочего цикла двигателя условно принято, что каждый такт начинается и заканчивается при нахождении поршня в ВМТ или НМТ.

Первый такт — впуск.

Поршень перемещается с ВМТ в НМТ. Освобождающаяся над поршневая полость цилиндра заполняется горючей смесью через открытый впускной клапан из-за возникающего разрежения. Горючая смесь, поступая в цилиндр, смешивается с остатками отработавших газов от предыдущего цикла, образует рабочую смесь. В конце такта давление в цилиндре составляет 0,07—0,95 МПа, температура — 350—390 К, коэффициент наполнения цилиндра — 0,6—0,7.

 

Работа четырехтактного одноцилиндрового карбюраторного двигателя

а — впуск в цилиндр горючей смеси; б — сжатие горючей смеси; в — расширение газов; г- выпуск отработавших газов; 1 — коленчатый вал; 2 — распределительный вал; 3-поршень; 4 — цилиндр; 5— впускной трубопровод; 6 — карбюратор; 7— впускной клапан; 8 — свеча зажигания; 9 — выпускной клапан; 10 — выпускной трубопровод; 11-шатун; 12 — поршневой палец; 13 — поршневые кольца

Второй такт — сжатие.

Поршень движется от НМТ к ВМТ, впускной и выпускной клапаны закрыты. Объем над поршневой полости уменьшается. Рабочая смесь сжимается. Сжатие сопровождается повышением давления и температуры. Степень сжатия регламентируется детонационной стойкостью топлива. В конце такта давление составляет 1,2—1,7 МПа, а температура — 600—700 К.


Третий такт — расширение.

В начале такта при сгорании рабочей смеси, которая ооспл а меняется от искровою разряда свечи зажигания, выделяется значительное количество теплоты, резко увеличивается температура и давление. Вследствие давления газон поршень перемешается от ВМТ к НМТ. Газы расширяются и совершают полезную работу. В начале расширения давление газов составляет 4—6 МПа, температура — 2500—2800 К. В конце расширения давление н цилиндре составляет 0,3—0.5 МПа, температура — 1100-1800 К.


Четвертый такт     выпуск.

Поршень перемешается oт НМТ к ВМТ Через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра в выпускной трубопровод и в окружаюшую среду, В конце выпуска давление в цилиндре составляет 0,105—0,12 МПа, а температура — 85O-120O К.


Степень очистки цилиндра от отработавших газов характеризуется коэффициентом остаточных газов (отношение массы остаточных газов к массе свежего заряда). Для современных ДВС коэффициент остаточных газов составляет 0,08—0,2, он возрастает при увеличении частоты вращения коленчатого вала.


Рабочий цикл двигателя заканчивается четвертым тактом — выпуском. При дальнейшем движении поршня цикл повторяется в той же последовательности. Коленчатый вал в течение четырех тактов поворачивается на 720°, т. с. совершает два оборота.
В двигателях, работающих по четырехтактному циклу, полезная работа совершается только в период такта расширения (рабочего хода), когда поршень перемещается пол действием расширяющихся газов, поворачивая коленчатый вал на 180е Остальные три такта являются подготовительными и выполняются при поворачивании коленчатого вата на 540° за счет инерции маховика И работы других цилиндров (в многоцилиндровых двигателях).

Работа двигателя, рабочий цикл

Рабочий цикл четырехтактного карбюраторного двигателя устройство легкового автомобиля диагностика устранение неисправностей ремонт и обслуживание автомобиля

 

Раздел I.

устройство автомобиля

Глава 2. Двигатель

1. Общее устройство и рабочий цикл двигателя

Рабочий цикл четырехтактного карбюраторного двигателя

 Процесс, происходящий в цилиндре за один ход поршня, называется тактом. Таких тактов четыре: впуск бензино-воздушной смеси, ее сжатие, расширение газов при сгорании (рабочий ход), выпуск продуктов сгорания. Совокупность тактов называется рабочим циклом.

Если рабочий цикл совершается за четыре хода поршня, т. е. за два оборота коленчатого вала, то двигатель называют четырехтактным.

Рис. 5. Рабочий цикл четырехтактного карбюраторного двигателя: а — впуск; б — сжатие; в — рабочий ход; г — выпуск

Табл. 2. Краткие технические характеристики двигателей автомобилей ГАЗ-24 и их модификаций и УАЗ ( УМЗ — Ульяновский моторный завод)

Первый такт — впуск: поршень перемещается от ВМТ к НМТ, впускной клапан 1 (рис. 5, а) открыт, выпускной клапан 3 закрыт. В цилиндре создается разрежение (0,7-0,9 кгс/см2), и горючая смесь, состоящая из паров бензина и воздуха, поступает в цилиндр. Горючая смесь смешивается с продуктами сгорания, оставшимися в цилиндре от предшествующего цикла, и образует рабочую смесь. Температура смеси в конце впуска 75-125° С.

Количество поступившей в цилиндр бензино-воздушной смеси определяет количество сжигаемого топлива, а следовательно, величину получаемой в цилиндре работы за цикл. Поэтому чем лучше наполнение цилиндра бензино-воздушной смесью, тем выше мощность двигателя.

Поступающая в цилиндр бензино-воздушная смесь подогревается от нагретых внутренних стенок цилиндра. Это, с одной стороны, улучшает испарение бензина, а с другой ухудшает наполнение цилиндров из-за понижения плотности смеси.

Второй такт — сжатие: поршень перемещается от НМТ к ВМТ (рис. 5, б), оба клапана закрыты. Давление в цилиндре и температура рабочей смеси повышаются. В конце такта давление достигает 9-15 кгс/см2, а температура 350-500° С.

Третий такт — расширение или рабочий ход. В конце такта, сжатия рабочая смесь воспламеняется в результате искрового разряда в свече 2 зажигания, происходит быстрое сгорание смеси (рис. 5, в). Максимальное давление при сгорании достигает 35- 50 кгс/см2, а температура 2200-2500° С. Давление газов передается на поршень 4, далее через поршневой палец 5 и шатун 6 на коленчатый вал 7, создавая крутящий момент, заставляющий вал вращаться. В конце такта открывается выпускной клапан 3, отработавшие газы начинают выходить в выпускной трубопровод, давление и температура в цилиндре снижаются.

Очистка  карбюратора, замена и промывка жиклеров, промывочные жидкости

Четвертый такт — выпуск (рис. 5, г): поршень перемещается от НМТ к ВМТ, выпускной клапан 3 открыт.

Отработавшие газы из цилиндра поступают в выпускной трубопровод и далее через глушитель в атмосферу. Процесс выпуска протекает при давлении выше атмосферного. К концу такта давление в цилиндре снижается до 1,1-1,2 кгс/см2, а температура до 700-800° С.

Далее процессы, происходящие в цилиндре, повторяются в указанной выше последовательности. Рабочим является только один такт — расширение, впуск и сжатие являются подготовительными тактами, выпуск — заключительным.

При пуске двигателя его коленчатый вал вращается электродвигателем — стартером. Когда двигатель начнет работать, такты впуска, сжатия и выпуска происходят за счет энергии, накопленной маховиком двигателя при рабочем ходе.

На легковых автомобилях ГАЗ-24 «Волга», а также автомобилях УАЗ устанавливают четырехцилиндровые четырехтактные карбюраторные двигатели с вертикальным расположением цилиндров. Диаметр цилиндра и ход поршня равны 92 мм, литраж 2,445 л.

Двигатели отличаются степенью сжатия и величиной наибольшей эффективной мощности, а также некоторыми конструктивными решениями (табл. 2).

Главная страница сайта

Рубрикатор статей

На предыдущую страницу  Читать книгу сначала На следующую страницу

О компании О документах О рекламе Меню Карата

 

Как протекает рабочий цикл четырехтактного карбюраторного двигателя?

Рабочий цикл четырехтактного карбюраторного двигателя

Двигатели внутреннего сгорания отличаются друг от друга рабочим циклом,по которому они работают.

Рабочий цикл –это комплекс последовательных рабочих процессов, периодически повторяющихся в каждом цилиндре при работе двигателя.

Рабочий процесс,происходящий в цилиндре за один ход поршня, называется тактом.

По числу тактов,составляющих рабочий цикл, двигатели делятся на два вида:

четырехтактные,в которых рабочий цикл совершается за четыре хода поршня,

двухтактные,в которых рабочий цикл совершается за два хода поршня.

На легковых автомобилях, как правило, применяются четырехтактныедвигатели, а на мотоциклах и моторных лодках – двухтактные.О путешествиях по водным просторам поговорим как-нибудь потом, а с четырьмя тактами работы автомобильного двигателя разберемся сейчас.

Рабочий цикл четырехтактного карбюраторного двигателя состоит из следующих тактов:

– впуск горючей смеси,

– сжатие рабочей смеси,

– выпуск отработавших газов.

Рис. 8. Рабочий цикл четырехтактного карбюраторного двигателя:а) впуск; б) сжатие; в) рабочий ход; г) выпуск

Первый такт – впуск горючей смеси(рис. 8а).

Горючей смесьюназывается смесь мелко распыленного бензина с воздухом в определенной пропорции. Приготовлением смеси в двигателе занимается карбюратор или форсунка, о чем мы поговорим чуть позже. А пока следует знать, что соотношение бензина к воздуху примерно 1:15считается оптимальным для обеспечения нормального процесса сгорания.

При такте впуска поршень от верхней мертвой точки перемещается к нижней мертвой точке. Объем над поршнем увеличивается. Цилиндр заполняется горючей смесью через открытый впускной клапан. Иными словами, поршень всасывает горючую смесь.

Впуск смеси продолжается до тех пор, пока поршень не дойдет до нижней мертвой точки. За первый такт работы двигателя кривошип коленчатого вала поворачивается на пол-оборота.

В процессе заполнения цилиндра горючаясмесь перемешивается с остатками отработавших газов и меняет свое название, теперь эта смесь называется рабочая.

Второй такт – сжатие рабочей смеси(рис. 8б).

При такте сжатия поршень от нижней мертвой точки перемещается к верхней мертвой точке. Оба клапана плотно закрыты, поэтому рабочая смесь сжимается.

Из школьной физики всем известно, что при сжатии газов их температура повышается. Давление в цилиндре над поршнем в конце такта сжатия достигает 9–10 кг/см², а температура 300–400°С.

В заводской инструкции к автомобилю можно увидеть один из параметров двигателя с названием – “степень сжатия” (например 8,5). А что это такое?

Степень сжатияпоказывает, во сколько раз полный объем цилиндра больше объема камеры сгорания (Vn/Vc –см. рис. 7). У бензиновых двигателей в конце такта сжатия объем над поршнем уменьшается в 8–11 раз.

В процессе такта сжатия коленчатый вал двигателя поворачивается на очередные пол-оборота. От начала первого такта и до окончания второго, он повернется уже на один оборот.

Третий такт – рабочий ход(рис. 8в).

Во время третьего такта происходит преобразование выделяемой при сгорании рабочей смеси энергии в механическую работу. Давление от расширяющихся газов передается на поршень и затем, через шатун и кривошип, на коленчатый вал.

Вот откуда берется та сила, которая заставляет вращаться коленчатый вал двигателя и, в конечном итоге, ведущие колеса автомобиля.

В самом конце такта сжатия рабочая смесь воспламеняется от электрической искры, проскакивающей между электродами свечи зажигания. В начале такта рабочего хода сгорающая смесь начинает активно расширяться. Поскольку впускной и выпускной клапаны все еще закрыты, то расширяющимся газам остается только один единственный выход – давить на подвижный поршень.

Под действием давления, достигающего величины 50 кг/см², поршень начинает перемещаться к нижней мертвой точке. При этом на всю площадь поршня давит сила в несколько тонн, которая через шатун передается на кривошип коленчатого вала, создавая крутящий момент.

При такте рабочего хода температура в цилиндре достигает более 2000 градусов.

Коленчатый вал при рабочем ходе делает очередные пол-оборота.

Четвертый такт – выпуск отработавших газов(рис. 8г).

При движении поршня от нижней мертвой точки к верхней мертвой точке открывается выпускной клапан (впускной все еще закрыт), и отработавшие газы с огромной скоростью выбрасываются из цилиндра двигателя.

Вот почему слышен тот сильный грохот, когда по дороге движется автомобиль без глушителя, но об этом позже. А пока обратим внимание на коленчатый вал двигателя – при такте выпуска он делает еще пол-оборота. И всего, за четыре такта рабочего цикла, он сделал два полных оборота.

После такта выпуска начинается новый рабочий цикл, и все повторяется: впуск – сжатие – рабочий ход – выпуск. и так далее.

Теперь, интересно, кто из вас обратил внимание на то, что полезная механическая работа совершается одноцилиндровым двигателем только в течение одного такта – такта рабочего хода!Остальные три такта (выпуск, впуск и сжатие) являются лишь подготовительными и совершаются они за счет кинетической энергии вращающихся по инерции коленчатого вала и маховика.

Маховик(рис. 9)это массивный металлический диск, который крепится на коленчатом валу двигателя. Во время рабочего хода поршень через шатун и кривошип раскручивает коленчатый вал двигателя, который передает маховику запас энергии вращения.

Рис. 9. Коленчатый вал двигателя с маховиком:1 шатунная шейка; 2 – противовес; 3 – маховик с зубчатым венцом; 4 – коренная (опорная) шейка; 5 – коленчатый вал двигателя

Запасенная в массе маховика энергия вращения позволяет ему в обратном порядке через коленчатый вал, шатун и поршень осуществлять подготовительные такты рабочего цикла двигателя. Поршень движется вверх (при такте выпуска и сжатия) и вниз (при такте впуска) именно за счет отдаваемой маховиком энергии.

Если двигатель имеет несколько цилиндров, работающих в определенном порядке, то подготовительные такты в одних цилиндрах совершаются за счет энергии, развиваемой в других, ну и маховик, конечно, тоже помогает.

В детстве у вас наверняка была игрушка, которая называлась волчок. Вы раскручивали его энергией своей руки (рабочий ход) и радостно наблюдали за тем, как долго он вращается. Точно так же и массивный маховик двигателя – раскрутившись, он запасает энергию, но только значительно большую, чем детская игрушка, а затем эта энергия используется для перемещения поршня в подготовительных тактах.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9662 – | 7399 – или читать все.

Рабочий цикл четырехтактного карбюраторного двигателя

В четырехтактном карбюраторном двигателе рабочий цикл совершается за два полных оборота коленчатого вала, или четыре хода поршня, и состоит из тактов впуска, сжатия, расширения (рабочий ход) и выпуска.

Такт впуска. Во время такта впуска цилиндр заполняется горючей смесью. При этом кривошип коленчатого вала поворачивается на пол- оборота, а поршень перемещается от в. м. т. до н. м. т.; впускной клапан от­крыт, а выпускной закрыт. При движении поршня вниз объем над ним уве­личивается и в цилиндре получается разрежение, вследствие чего в цилиндр всасывается горючая смесь. Горючая смесь, поступающая в цилиндр двигателя, смешивается с отработавшими газами, оставшимися в небольшом количестве в камере сгорания от предыдущего цикла. Смесь, получившаяся при этом, называется рабочей смесью.

Когда кривошип приходит в нижнее положение, а поршень дойдет до н. м. т., впускной клапан закрывается.

Вследствие сопротивления впускной системы потоку смеси и некоторых других причин в конце такта впуска давление в цилиндре получается ниже атмосферного и равно примерно 0,7—0,8 кг/см 2 , уменьшаясь при увеличении числа оборотов двигателя. Это ограничивает полноту заполнения полости ци­линдра смесью.

Такт сжатия. При такте сжатия происходит сжатие рабочей смеси для обеспечения более быстрого ее сгорания и получения большего давления га­зов в цилиндре.

При сжатии смеси поршень перемещается от н. м. т. до в. м. т. Впускной и выпускной клапаны при этом закрыты. Чем больше степень сжа­тия, тем сильнее сжимается рабочая смесь и тем выше при сгорании давление газов на поршень и экономичнее работа двигателя.

Однако предельные значения степени сжатия для карбюраторных дви­гателей ограничиваются свойствами применяемого топлива (бензина) и в ос­новном его антидетонационной стойкостью.

Чрезмерно высокая степень сжатия может привести к особому детонацион­ному воспламенению смеси и нарушению нормального процесса ее сгорания, которое будет происходить с очень большими скоростями и резкими местными повышениями давления в цилиндре. Все это нарушит нормальную работу двигателя, снизит его мощность и экономичность и повысит износы,двигателя.

Во избежание нарушения нормальных условий сгорания рабочей смесц в карбюраторных двигателях рабочая смесь сжимается не более чем в 6—9 раз, т. е. степень сжатия равна 6—9. Причем для более высоких степеней сжа­тия требуется применение топлива с хорошими антидетонационными свойст­вами, т. е. с высоким октановым числом.

Повышение степени сжатия двигателя также возможно за счет повышения числа его оборотов, уменьшения рабочего объема цилиндров, улучшения формы камеры сжатия и применения для изготовления деталей: двигателя (поршней и головки) легких алюминиевых сплавов, способствующих хоро­шему отводу тепла из полости камеры сжатия.

К концу такта сжатия давление в цилиндре возрастает примерно до 8—12 кГ/см 2 , а температура смеси доходит до 450—500°С.

Такт расширения (рабочий ход). При рабочем ходе поршень в Цилиндре перемещается под действием давления газов, приводя во вращение коленча­тый вал двигателя.

В конце такта сжатия, когда поршень приходит в в. м. т., в цилиндр по­дается электрическая искра, поджигающая сжатую рабочую смесь. Смесь сгорает очень быстро, с выделением большого количества тепла. При этом вследствие сильного нагревания газов, получившихся при сгорании, давление в цилиндре резко возрастает, и поршень с большой силой перемещается вниз от в. м. т. до н. м. т., приводя во вращение через шатун коленчатый вал. Впускной и выпускной клапаны при этом закрыты.

В момент сгорания рабочей смеси температура газов повышается до 1800— 2000°С, а давление до 25—30 кГ/см 2 . При движении поршня к н. м. т. газы расширяются и давление и температура их в цилиндре постепенно умень­шаются. В конце рабочего хода давление в цилиндре падает до 3—4 кГ1см 2 г а температура снижается до 1100—800°С.

Такт выпуска. При такте выпуска происходит очищение цилиндра от от­работавших газов. При этом поршень перемещается от н. м. т. до в. м. т., впускной клапан закрыт, а выпускной открыт. При движении пор­шня к в. м. т. оставшиеся в цилиндре после сгорания и расширения отработав­шие газы выталкиваются через выпускной клапан в атмосферу. Так как удалить полностью отработавшие газы из цилиндра не представляется возможным, давление в конце такта выпуска доходит до 1,05—1,15 кГ/см 2 . Температура отработавших газов составляет 700—800°С.

При дальнейшем вращении коленчатого вала снова происходит такт впу­ска, затем такт сжатия, рабочий ход и такт выпуска и т. д. Таким образом, при работе двигателя все указанные такты будут беспрерывно чередоваться в такой же последовательности.

Таким образом, в четырехтактном одноцилиндровом двигателе колен­чатый вал вращается под действием давления газов только при рабочем ходе. При совершении же вспомогательных тактов противодавление действующих на поршень газов создает сопротивление вращению вала, для преодоления второго необходимо к валу приложить внешнее вращающее усилие.

Для повышения равномерности вращения коленчатого вала и осуществле­ния вспомогательных тактов на коленчатом валу устанавливают маховик, представляющий собой тяжелый чугунный диск, закрепленный на конце коленчатого вала.

Так как маховик имеет значительный вес, он накапливает энергию при рабочем ходе и продолжает вращаться по инерции и после окончания рабо­чего хода. Вместе с маховиком вращается и коленчатый вал, который перемещает поршень в течение всех вспомогательных тактов: выпуска, впуск и сжатия рабочей смеси. При последующем рабочем ходе маховик снова накап­ливает механическую энергию и отдает ее при следующих вспомогательных тактах, вращаясь по инерции. При наличии маховика вращение коленчатого вала совершается более равномерно. Маховик способствует также переводу деталей кривошипно-шатунного механизма через положения, соответствую­щие мертвым точкам поршня.

Как протекает рабочий цикл четырехтактного карбюраторного двигателя?

Двигатели, применяемые на автомобилях и тракторах, работают преимущественно по четырехтактному циклу. При этом цикле процессы впуска горючей смеси, сжатия, сгорания, расширения и выпуска отработавших газов совершаются за четыре такта (хода поршня) — впуск, сжатие, рабочий ход (расширение), выпуск, что соответствует двум оборотам коленчатого вала. Один из этих тактов является рабочим, а остальные три вспомогательными.

Такт впуска. При этом такте поршень движется от ВМТ к НМТ , создавая разрежение в полости цилиндра над собой. Впускной клапан открыт, и через впускной трубопровод в цилиндр под влиянием разности давлений поступает смесь топлива с воздухом (горючая смесь), приготовленная в карбюраторе. Горючая смесь, перемешавшись с отработавшими газами, оставшимися в камере сгорания от предыдущего цикла, образует рабочую смесь.

Давление в цилиндре во время такта впуска меньше давления окружающей среды и зависит от сопротивления впускного тракта и частоты вращения коленчатого вала. Величина его лежит в пределах 0,08—0,095 МПа. Температура рабочей смеси при этом также вследствие контакта ее с нагретыми деталями двигателя и смешивания с остаточными раскаленными газами составляет 90—120 °С.

Рекламные предложения на основе ваших интересов:

Такт сжатия. При дальнейшем вращении коленчатого вала поршень движется от НМТ к ВМТ . В это время впускной и выпускной клапаны закрыты, поэтому поршень сжимает находящуюся в цилиндре рабочую смесь, которая нагревается и дополнительно хорошо перемешивается. Давление рабочей смеси достигает максимума в тот момент, когда поршень доходит до ВМТ и зависит в основном от степени сжатия. Для различных карбюраторных двигателей оно колеблется от 0,8—1,2 МПа. Температура смеси в конце такта сжатия повышается до 300—450 °С. Чем выше степень сжатия, тем больше температура и давление смеси, тем больше мощность и экономичность двигателя. Однако увеличение степени сжатия карбюраторных двигателей допустимо лишь в известных пределах, так как чрезмерное повышение степени сжатия может привести к нежелательному детонационному характеру сгорания. Предельное значение величины степени сжатия должно быть таким, чтобы температура в конце такта была ниже температуры самовоспламенения топлива. Степень сжатия современных карбюраторных двигателей составляет 6—10.

Такт расширения. Этот такт состоит из двух последовательно происходящих процессов — сгорания смеси и расширения газов (продуктов сгорания смеси) и совершается при закрытых клапанах. Рабочая смесь в конце такта сжатия воспламеняется электрической искрой, проскакивающей между электродами свечи зажигания и сгорает, когда поршень находится около ВМТ . В результате сграния смеси температура и давление образующихся в цилиндре газов возрастают. Под действием давления продуктов сгорания поршень движется вниз и с помощью шатуна вращает коленчатый вал, совершая при этом механическую работу.

Давление газов в начале такта расширения составляет примерно 4—6 МПа и к концу такта расширения снижается до 0,4—0,5 МПа. Температура в начале такта расширения составляет 2000— 2500 °С, а в конце снижается до 900— 1100 °С.

Такт выпуска. Этот такт начинается при подходе поршня к НМТ при открытом выпускном клапане. Отработавшие газы под собственным давлением 0,4—0,5 МПа выходят из цилиндра в атмосферу через выпускной трубопровод и глушитель. Далее поршень движется от НМТ к ВМТ и выталкивает из цилиндра оставшуюся часть отработавших газов под давлением, несколько превышающем атмосферное (0,11 — 0,12 МПа). Температура выпускных газов равна 700—800 С. После подхода поршня к ВМТ выпускной клапан закрывается, впускной клапан открывается и начинается повторение рабочего цикла.

Таким образом, в четырехтактном одноцилиндровом двигателе коленчатый вал вращается под действием давления газов при такте расширения. Для вращения коленчатого вала в течение трех остальных вспомогательных тактов на валу закрепляется тяжелое маховое колесо (маховик), инерция которого обеспечивает вывод поршней из мертвых точек и совершение трех нерабочих ходов поршня.

Рабочий процесс четырехтактного газового двигателя протекает так же, как и у четырехтактного карбюраторного, но газовоздушная смесь готовится не карбюратором, а карбюратором-сме-сителем или специальным газовым смесителем.

При рассмотрении цикла условно примем, что каждый такт начинается и заканчивается в одной из мертвых точек.

Первый такт — впуск. При вращении коленчатого вала поршень перемещается из в. м. т. в н. м. т. и в верхней части цилиндра создается разрежение. Распределительный вал через детали газораспределительного механизма открывает впускной клапан, который через впускной трубопровод 5 соединяет цилиндр с карбюратором. Горючая смесь, поступающая под действием разрежения из карбюратора по впускному трубопроводу, заполняет цилиндр. В конце такта впуска, при работе двигателя с полной мощностью, давление в цилиндре составляет 80—90 кН/м2 (0,8— 0,9 кгс/см2), а температура рабочей смеси равна 80—120 °С (у прогретого двигателя).

Второй такт — сжатие. Такт впуска заканчивается, когда поршень приходит в н. м. т. (рис. 2, б). При дальнейшем повороте коленчатого вала поршень перемещается из н. м. т. в в. м. т. и сжимает рабочую смесь. В течение такта сжатия оба клапана остаются закрытыми. Объем смеси при сжатии уменьшается, а давление внутри цилиндра увеличивается и достигает 1000—1200 кН/м2 (10—12 кгс/см2). Повышение давления сопровождается увеличением температуры смеси до 300—400 °С.

Третий такт — расширение, или рабочий ход. Оба клапана закрыты (рис. 2, в). При подходе поршня в конце такта сжатия к в. м. т. между электродами свечи зажигания проскакивает электрическая искра. Сжатая рабочая смесь воспламеняется и быстро сгорает, образуя большое количество горячих газов. Газы давят на поршень, который под их давлением перемещается от в. м. т. до н. м. т. и через шатун вращает коленчатый вал. Это основной такт, так как расширяющиеся газы совершают полезную работу. С момента воспламенения смеси давление газов быстро возрастает, а затем по мере движения поршня вниз и увеличения объема давление снижается. В конце сгорания и начале расширения давление достигает 3000—4000 кН/м2 (30—40 кгс/см2) при температуре 2000—2200 °С, а в конце расширения снижается до 350—450 кН/м2 (3,5—4,5 кгс/см2) при температуре 1200—1500 °С.

Четвертый такт — выпуск. Поршень (рис. 2, г) движется от н. м. т. до в. м. т. и через открытый выпускной клапан вытесняет отработавшие газы в выпускной трубопровод, глушитель и далее в атмосферу. При такте выпуска не удается достигнуть полной очистки цилиндра от отработавших газов и часть их остается в цилиндре (остаточные газы). В конце выпуска давление равно 105—120 кН/м2 (1,05—1,2 кгс/см2), а температура 700— 900° С. После окончания такта выпуска рабочий цикл двигателя повторяется в рассмотренной выше последовательности.

На заднем конце коленчатого вала устанавливают тяжелый диск — маховик, который во время рабочего хода накапливает энергию, а затем продолжает вращаться по инерции. При этом вместе с маховиком вращается и коленчатый вал, который перемещает поршень в течение остальных (вспомогательных) тактов. В одноцилиндровом двигателе, работающем очень неравномерно, маховик должен обладать большим моментом инерции.

Типичные неисправности автомобиля

Рабочий цикл четырехтактного карбюраторного двигателя

При рассмотрении рабочего цикла двигателя условно принято, что каждый такт начинается и заканчивается при нахождении поршня в ВМТ или НМТ.

Первый такт — впуск.

Поршень перемещается с ВМТ в НМТ. Освобождающаяся над поршневая полость цилиндра заполняется горючей смесью через открытый впускной клапан из-за возникающего разрежения. Горючая смесь, поступая в цилиндр, смешивается с остатками отработавших газов от предыдущего цикла, образует рабочую смесь. В конце такта давление в цилиндре составляет 0,07—0,95 МПа, температура — 350—390 К, коэффициент наполнения цилиндра — 0,6—0,7.

Работа четырехтактного одноцилиндрового карбюраторного двигателя

а — впуск в цилиндр горючей смеси; б — сжатие горючей смеси; в – расширение газов; г- выпуск отработавших газов; 1 — коленчатый вал; 2 — распределительный вал; 3-поршень; 4 — цилиндр; 5— впускной трубопровод; 6 — карбюратор; 7— впускной клапан; 8 — свеча зажигания; 9 — выпускной клапан; 10 — выпускной трубопровод; 11-шатун; 12 – поршневой палец; 13 – поршневые кольца

Второй такт — сжатие.

Поршень движется от НМТ к ВМТ, впускной и выпускной клапаны закрыты. Объем над поршневой полости уменьшается. Рабочая смесь сжимается. Сжатие сопровождается повышением давления и температуры. Степень сжатия регламентируется детонационной стойкостью топлива. В конце такта давление составляет 1,2—1,7 МПа, а температура — 600—700 К.

Третий такт – расширение.

В начале такта при сгорании рабочей смеси, которая ооспл а меняется от искровою разряда свечи зажигания, выделяется значительное количество теплоты, резко увеличивается температура и давление. Вследствие давления газон поршень перемешается от ВМТ к НМТ. Газы расширяются и совершают полезную работу. В начале расширения давление газов составляет 4—6 МПа, температура — 2500—2800 К. В конце расширения давление н цилиндре составляет 0,3—0.5 МПа, температура – 1100-1800 К.


Четвертый такт выпуск.

Поршень перемешается oт НМТ к ВМТ Через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра в выпускной трубопровод и в окружаюшую среду, В конце выпуска давление в цилиндре составляет 0,105—0,12 МПа, а температура — 85O-120O К.

Степень очистки цилиндра от отработавших газов характеризуется коэффициентом остаточных газов (отношение массы остаточных газов к массе свежего заряда). Для современных ДВС коэффициент остаточных газов составляет 0,08—0,2, он возрастает при увеличении частоты вращения коленчатого вала.

Рабочий цикл двигателя заканчивается четвертым тактом – выпуском. При дальнейшем движении поршня цикл повторяется в той же последовательности. Коленчатый вал в течение четырех тактов поворачивается на 720°, т. с. совершает два оборота.
В двигателях, работающих по четырехтактному циклу, полезная работа совершается только в период такта расширения (рабочего хода), когда поршень перемещается пол действием расширяющихся газов, поворачивая коленчатый вал на 180е Остальные три такта являются подготовительными и выполняются при поворачивании коленчатого вата на 540° за счет инерции маховика И работы других цилиндров (в многоцилиндровых двигателях).

TheSenyaDit › Блог › Принцип работы ДВС. Рабочие циклы двигателя (Изучаем вместе)

На автомобилях устанавливают поршневые двигатели внутреннего сгорания (ДВС), у которых топливо сгорает внутри цилиндра. В основу их действия положено свойство газов расширяться при нагревании. Рассмотрим принцип устройства и работы двигателя внутреннего сгорания (ДВС), а также его рабочие циклы.

🔧 Рабочий цикл четырехтактного бензинового двигателя

Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу. Если рабочий цикл совершается за два хода поршня, т.е. за один оборот коленчатого вала, то такой двигатель называется двухтактным.

Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения (рабочего хода) и выпуска.

• Принцип работы ДВС (для просмотра нажмите на кнопку иллюстрации — Фото 2-5

Крайние положения поршня, при которых он наиболее удален от оси коленчатого вала или приближен к ней, называются верхней и нижней «мертвыми» точками (ВМТ и НМТ). Подробнее в статье “как устроены бензиновые и дизельные двигатели”.

Впуск. По мере того, как коленчатый вал двигателя делает первый полуоборот, поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разряжение, вследствие чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной газопровод в цилиндр и, смешиваясь с остаточными отработавшими газами, образует рабочую смесь.

Сжатие. После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала (второй полуоборот) поршень перемещается от НМТ к ВМТ при закрытых клапанах. По мере уменьшения объема температура и давление рабочей смеси повышаются.

Расширение или рабочий ход. В конце такта сжатия рабочая смесь воспламеняется от электрической искры и быстро сгорает, вследствие чего температура и давление образующихся газов резко возрастает, поршень при этом перемещается от ВМТ к НМТ. В процессе такта расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип приводит во вращение коленчатый вал.

При расширении газы совершают полезную работу, поэтому ход поршня при третьем полуобороте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня, при нахождении его около НМТ открывается выпускной клапан, давление в цилиндре снижается до 0.3 — 0.75 МПа, а температура до 950 — 1200оС.

Выпуск. При четвертом полуобороте коленчатого вала поршень перемещается от НМТ к ВМТ. При этом выпускной клапан открыт, и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной газопровод.

🔧 Рабочий цикл четырехтактного дизеля

В отличие от бензинового двигателя, при такте “впуск” в цилиндры дизеля поступает чистый воздух. Во время такта “сжатие” воздух нагревается до 600оС. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.

Впуск. При движении поршня от ВМТ к НМТ вследствие образующегося разряжения из воздушного фильтра в цилиндр через открытый впускной клапан поступает атмосферный воздух. Давление воздуха в цилиндре составляет 0.08 — 0.095 МПа, а температура 40 — 60°С.

Сжатие. Поршень движется от НМТ к ВМТ; впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает поступивший воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. При ходе поршня к ВМТ цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом.

Расширение или рабочий ход. Впрыснутое в конце такта сжатия топливо, перемешиваясь с нагретым воздухом, воспламеняется, и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. При этом максимальное давление газов достигает 6 — 9 МПа, а температура 1800 — 2000°С. Под действием давления газов поршень перемещается от ВМТ в НМТ — происходит рабочий ход. Около НМТ давление снижается до 0.3 — 0.5 МПа, а температура до 700 — 900оС.

Выпуск. Поршень перемещается от НМТ в ВМТ и через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра. Давление газов снижается до 0.11 — 0.12 МПа, а температура до 500-700оС. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.

🔧 Принцип работы многоцилиндровых двигателей

На автомобилях устанавливают многоцилиндровые двигатели. Чтобы многоцилиндровый двигатель работал равномерно, такты расширения должны следовать через равные углы поворота коленчатого вала (т. е. через равные промежутки времени).

Последовательность чередования одноименных тактов в цилиндрах называют порядком работы двигателя. Порядок работы большинства четырехцилиндровых двигателей 1-3-4-2 или 1-2-4-3. Это означает, что после рабочего хода в первом цилиндре следующий рабочий ход происходит в третьем, затем в четвертом и, наконец, во втором цилиндре. Определенная последовательность соблюдается и в других многоцилиндровых двигателях.

• Диаграмма работы двигателя по схеме 1-2-4-3 Фото 6

Многоцилиндровые двигатели бывают рядными и V-образными. В рядных двигателях цилиндры расположены вертикально, а в V-образных — под углом. Последние характеризуются меньшей габаритной длиной по сравнению с первыми. Современные восьмицилиндровые двигатели выполняют двухрядными с V-образным расположением цилиндров.

Источники:

http://aboutavtobus.ru/rabochij-tsikl-karbyuratornogo-dvigatelya/

http://stroy-technics.ru/article/rabochii-tsikl-chetyrekhtaktnogo-karbyuratornogo-dvigatelya

http://www.autoezda.com/neisprav/5

http://www.drive2.ru/b/2037426/

http://avtodvigateli.com/sovety-po-ehkspluatacii/sliv-masla-s-dvigatelya.html

Рабочий цикл четырехтактного карбюраторного двигателя

Такие чугуны работают при высоких температурах и их широко применяют в двигателестроении и металлургической промышленности. Сфера применения износостойких и жаропрочных чугу-нов представлена на рис. 26. Например, температура газов внутри цилиндра автотракторных двигателей в момент сгорания топлива достигает 2800°С, а температура рабочего цикла четырехтактного карбюраторного двигателя колеблется в широком диапазоне  [c.62]
Рабочий цикл четырехтактного карбюраторного двигателя представлен схемой (рис. 2.4). В течение первого такта (рис. 2.4, а) приводимый коленчатым валом I через шатун 2 поршень 4 перемещается вниз, всасывая в рабочую полость цилиндра 5 через открытый впускной клапан 6 топливо-воздушную смесь из паров бензина и воздуха, поступающую из карбюратора — специального устройства для ее приготовления. На втором такте (рис. 2.4, б) поршень, также приводимый коленчатым валом, перемещается снизу вверх, сжимая находящуюся в цилиндре рабочую смесь при закрытых впускном 6 и выпускном 8 клапанах. Вследствие сжатия рабочей смеси ее давление и темпе-  [c.27]

Какую энергию преобразуют двигатели внутреннего сгорания в механическое движение Какие типы двигателей внутреннего сгорания применяют в приводах строительных машин На каких видах топлива они работают Что такое рабочий цикл или рабочий процесс двигателя внутреннего сгорания Что такое такт Опишите рабочий цикл четырехтактного карбюраторного двигателя. Чем отличается от него рабочий цикл дизеля Для чего в конструкциях двигателей внутреннего сгорания применяют несколько рабочих цилиндров Каков порядок их работы Каково назначение маховика в конструкции двигателя внутреннего сгорания  [c.75]

Рабочий цикл четырехтактного карбюраторного двигателя (рис. 5) протекает примерно так же, как и в четырехтактном дизеле. Он совершается за два оборота коленчатого вала или за четыре хода поршня. Разница заключается в том, что в цилиндр поступает не чистый воздух, а заранее приготовленная горючая смесь и зажигание смеси принудительное, при помощи электрической искры. Степень сжатия у карбюраторных двигателей примерно  [c.13]

На рис. 1 показаны индикаторные диаграммы рабочего цикла четырехтактного карбюраторного двигателя (рис. 1,а) и четырехтактного дизеля (рис. 1,6). По вертикальным осям диаграмм откладывается давление газов в цилиндре р кг см ), а по горизонтальной оси объем в цилиндре над поршнем V (см ). Вертикальные линии на диаграмме отмечают объемы, соответствующие нахождению поршня в верхней мертвой точке (в.м.т.) и нижней мертвой точке (н.м.т.), а горизонтальная линия ро — атмосферное давление. Индикаторные диаграммы двухтактных двигателей, карбюраторного и дизеля, показаны на рис. 1,ей 1,г.  [c.6]
На рис. 1 изображена индикаторная диаграмма рабочего цикла четырехтактного карбюраторного двигателя, снятая при работе его иа максимальной мощности. Здесь по горизонтальной оси отложен объем цилиндра V в см (или ход поршня), а по вертикальной оси — давление р в кг/см» . Изменение давлений в цилиндре при разных тактах цикла может быть определено по положению наиболее важных точек на индикаторной диаграмме.  [c.8]

Рабочий цикл четырехтактного карбюраторного двигателя начинается с такта впуска и происходит следующим образом.  [c.106]

Изменение давления и температуры по ходу рабочего цикла четырехтактного карбюраторного двигателя  [c.37]

Карбюраторные двигатели. Рассмотрим рабочий цикл четырехтактного карбюраторного двигателя.  [c.217]

Полный рабочий цикл у большинства карбюраторных двигателей совершается в каждом цилиндре за два оборота коленчатого вала, т. е. за четыре такта. Рабочий цикл четырехтактного карбюраторного двигателя состоит из трех вспомогательных и одного рабочего тактов впуска, сжатия, расширения (рабочий такт), выпуска (выхлопа).  [c.21]

Из каких тактов состоит рабочий цикл четырехтактного карбюраторного двигателя  [c.25]

Рабочий цикл четырехтактного карбюраторного двигателя отличается от рабочего цикла дизеля следующим  [c.181]

Задание. Выполнить расчет рабочего цикла четырехтактного карбюраторного двигателя с водяным охлаждением для малолитражного легкового автомобиля.  [c.394]

Каковы порядок работы и характеристика тактов (давление, температура) рабочего цикла четырехтактного карбюраторного и дизельного двигателей  [c.16]

Рабочий цикл четырехтактного дизельного двигателя подобен карбюраторному и состоит из четырех тактов.  [c.13]

Рабочий цикл четырехтактного газового двигателя протекает так же, как у четырехтактного карбюраторного, но газо-воздушная смесь готовится не карбюратором, а карбюратором-смесителем или специальным газовым смесителем.  [c.20]

Рабочий цикл четырехтактного дизельного двигателя проходит в той же последовательности, что и цикл четырехтактного карбюраторного двигателя. Отличие заключается в характере протекания рабочего цикла, в способе смесеобразования и воспламенения топлива.-  [c.20]

Идеализируя рабочий цикл как двухтактных, так и четырехтактных карбюраторных двигателей, т. е. двигателей быстрого сгорания, получают термодинамический цикл, называемый часто циклом Отто (рис. 8.4,а). В этом цикле процесс сжатия рабочей смеси происходит по адиабате /—2. Изохора 2—3 соответствует горению топлива, воспламененного от электрической искры, и подводу теплоты рь Рабочий ход, осуществляемый при адиабатном расширении продуктов сгорания, изображен линией 3—4. Отвод теплоты Ц2 осуществляется по изо-хоре 4—/, соответствующей в четырехтактных двигате-  [c.197]

Рассмотрим по индикаторной диаграмме четырехтактного карбюраторного двигателя его рабочий цикл. На горизонтальной оси диаграммы откладываются объемы, Б л (дм ), занимаемые газом в цилиндре при различ-  [c.4]


Рабочий цикл четырехтактного дизеля происходит в той же последовательности, что и у карбюраторного двигателя. Отличие работы дизеля состоит в следующем.  [c.107]

Рабочий цикл четырехтактного дизеля состоит из тех же тактов, что и рабочий цикл карбюраторного двигателя. Но происходящие во время этих тактов процессы внутри цилиндров различны.  [c.24]

Четырехтактный карбюраторный двигатель — двигатель, в котором рабочий цикл совершается за четыре хода поршня т. е. за два оборота коленчатого вала.  [c.39]

Двигатели могут различаться по способу образования горючей смеси и ее воспламенения — с внешним смесеобразованием и принудительным воспламенением от электрической искры (карбюраторные и газовые), с внутренним смесеобразованием и воспламенением от соприкосновения с нагретым в результате сильного сжатия воздухом (дизельные) способу осуществления рабочего цикла (четырехтактные и двухтактные) по конструктивному исполнению (рядные, У-образные) способу охлаждения (с жидкостным и воздушным охлаждением). На изучаемых автомобилях устанавливаются четырехтактные карбюраторные и дизельные двигатели с жидкостным охлаждением.  [c.7]

Четырехтактный рабочий цикл. На рис. 1 изображена индикаторная диаграмма четырехтактного карбюраторного двигателя, снятая при работе его с максимальной мощностью. Здесь по горизонтальной оси отложен объем цилиндра V в кубических сантиметрах (или ход поршня), а по вертикальной оси — давление газов в цилиндре р в килограммах на квадратный сантиметр. Изменение давления газов в цилиндре при разных тактах цикла можно проследить по положению основных точек индикаторной диаграммы,  [c.7]

Протекание рабочих циклов разных карбюраторных двухтактных двигателей с кривошипно-камерной продувкой сильнее различается, чем рабочие циклы четырехтактных двигателей. Это объясняется более сложными процессами наполнения, продувки и выпуска, а также тем, что эти процессы зависят от степени сжатия  [c.158]

Рабочий цикл в четырехтактном карбюраторном двигателе осуществляется при.мерно так же. как и в дизеле. Разница заключается в том. что в цилиндр карбюраторного двигателя поступает не возду.ч из атмосферы, как у дизеля, а заранее приготовленная  [c.12]

В четырехтактном карбюраторном двигателе рабочий цикл совершается за два полных оборота коленчатого вала, или четыре хода поршня, и состоит из тактов впуска, сжатия, расширения (рабочий ход) и выпуска.  [c.33]

Трехгранный поршень-ротор разделяет внутреннюю часть статора на три полости, объем которых изменяется при вращении ротора. В каждой полости совершаются процессы рабочего цикла, как в четырехтактном поршневом карбюраторном двигателе. Когда поршень находится в положении, показанном на рис. 15, а, в объеме в ограниченном гранью ВС, совершается рабочий ход, т. е. происходит расширение газов. Давление газов, воспринимаемое ротором-поршнем, приводит во вращение ротор и вал двигателя. В это же время из объема а, ограниченного гранью С А, отработавшие газы вытеснены через канал 5 в атмосферу, а в объеме б (грань АВ поршня) начинается сжатие рабочей смеси. При дальнейшем повороте ротора-поршня продолжается расширение в объеме е (рис. 15, б), в увеличивающемся объеме г происходит впуск свежей горючей смеси из карбюратора через канал б, а в уменьшающемся объеме д —сжатие рабочей смеси.  [c.29]

В нем изложены устройство, принципы работы и рабочие циклы многоцилиндровых четырехтактных и двухтактных двигателей с воспламенением от сжатия, а также карбюраторных двигателей. Приведены их основные энергетические и экономические показатели. Описаны системы питания, смазки и охлаждения двигателей.  [c.2]

Повысить мощность двигателя можно, используя двухтактный цикл (т = 2). Теоретически при прочих равных условиях двухтактный цикл сравнительно с четырехтактным обеспечивает увеличение литровой мощности двигателя в 2 раза. Однако в действительности литровая мощность двухтактных двигателей по сравнению с литровой мощностью соответствующих четырехтактных двигателей больше всего лишь на 40—70%. Это объясняется потерей части рабочего объема цилиндра из-за продувочных окон, затратой некоторой мощности на сжатие продувочного воздуха или смеси и потерей в карбюраторных двигателях части горючей смеси при очистке цилиндров от продуктов сгорания.  [c.60]

Впрыск бензина в четырехтактные двигатели сообщает рабочим циклам некоторые особенности, которых трудно добиться при карбюраторном смесеобразовании. К числу этих особенностей можно отнести следующие  [c.290]

Рис. 6. Рабочий цикл четырехтактного карбюраторного двигателя а — впуск, б — сжатие, в — рабочий ход, г — выпуск / — поршень, — выпускной клапан, 5 — карбюратор, 4 —свеча,- 6 — впускной клапан, 5 — шатун, 7 — маковик, в — коленчатый вал
В четырехтактном карбюраторном двигателе цикл рабочего процесса совершается за два оборота коленчатого вала и включает в себя следунодие такты 1) впуск горючей смеси, 2) сжатие смеси, 3) сгорание и расширение и 4) выпуск.  [c.30]

Рабочий цикл четырехтактного дизеля, как и рабочий цикл чегырехгакт-ного карбюраторною двигателя, состоит из четырех повторяющихся тактов впуска, сжатия, расширения газов или рабочего хода и выпуска. Однако ра-  [c.19]


Внедрение двухтактного цикла в двигатели со внешним смесеобразованием (газовые, карбюраторные) осложняется в связи сосвойственными им потерями значительного количества рабочей, смеси, выдуваемой из цилиндра с отработавшими газами. Увеличение числа рабочих ходов в двухтактных двигателях по сравнению с четырехтактными ставит в более тяжелые уаювия их поршни, вследствие чего уменьшается надежность их работы,»так кш средняя температура газов за один цикл в этом случае значительно выше, чем в четырехтактном двигателе.  [c.278]

Рабочий цикл четырехтактногол двухтактного карбюраторных двигателей. Ряд последовательных процессов, периодически повторяющихся в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу, называется циклом. Большинство автомобильных двигателей работает по четырехтактному циклу, при котором процессы, происходящие в цилиндре, последовательно повторяются через каждые четыре хода поршня или два оборота коленчатого вала. Цикл состоит из пяти рабочих процессов впуска, сжатия, горения, расширения и выпуска. Эти пять процессов составляют четыре такта впуск, сжатие, рабочий ход и выпуск. Таким образом, рабочий ход состоит из двух рабочих процессов горения и расширения.  [c.17]

Дизели так же, ка и бензиновые двигатели, делятся по рабочему циклу на четырехтактные и двухтактные и имеют основной рабочий механизм, механизм газораспределения, топливоподающие механизмы, систему смазки, органы управления и прочие узлы и детали. Многие узлы и детали дизелей по своему устройству и принципу действия аналогичны таким же узлам и деталям бензиновых двигателей. Главное отличие их от бензиновых двигателей состоит в том, что степень сжатия у дизелей значительно выше. Например, у дизельных двигателей, применяемых на радиотрансляционных узлах, степень сжатия составляет 15—18. Это суш,ест-венно повышает кпд двигателя. Но в результате высокого сжатия газы внутри цилиндров нагреваются до температуры 600—700°С. Поэтому во избежание преждевременного воспламенения в цилиндре дизеля нельзя сжимать готовую горючую смесь топлива с воздухом. По этой причине у всех дизелей в цилиндрах сжимается только воздух. Топливо подается под большим давлением в распыленном виде непосредственно в цилиндр дизеля в конце такта сжатия. Следовательно, у дизелей, в отличие от бензиновых карбюраторных двигателей, смесеобразование топлива с воздухом происходит внутри цилиндра. Подаваемое в цилиндр дизеля топливо от соприкосновения с находяшимся там раскаленным воздухом воспламеняется и сгорает, не требуя никаких приборов зажигания.  [c.38]


Рабочий цикл четырехтактного двигателя — Энциклопедия по машиностроению XXL

Рабочий цикл четырехтактного двигателя совершается за два оборота коленчатого вала (рис. 5.10). В крышке цилиндра двигателя расположены клапаны впуска 1 свежего заряда и выпуска 2 продуктов сгорания, форсунки или свечи зажигания и другие устройства. Клапаны удерживаются в закрытом состоянии силой упругости пружин и избыточным давлением в цилиндре. Открытие клапанов в нужные моменты производится с помощью газораспределительного механизма. Этот механизм обычно состоит из рычагов, штанг и толкателей, на которые воздействуют кулачки распределительного вала. Последний приводится в движение от коленчатого вала двигателя и имеет частоту вращения  [c.231]
В 1824 г. основоположник термодинамики С. Карно предсказал теоретический рабочий цикл четырехтактного двигателя внутреннего сгорания (ДВС), соответствующий четырем ходам поршня I — всасывание воздуха  [c.95]

Рабочий цикл четырехтактного двигателя (рис. 6) начинается с такта впуска (а), затем следуют такты сжатия (б), расширения (в) (рабочий ход) и выпуска (г).  [c.11]

Таким образом, в рабочем цикле четырехтактного двигателя только один такт — такт расширения — является рабочим, остальные три такта вспомогательные и требуют затраты энергии. Эту энергию накапливает и расходует маховик.  [c.12]

Из четырех тактов, составляющих рабочий цикл четырехтактного двигателя, такты сжатия и расщирения могут быть названы основными, а такты впуска и выпуска являются вспомогательными, так как они предназначаются для периодической смены рабочего тела в цилиндре.  [c.272]

Рассматривая рабочий цикл четырехтактного двигателя, замечаем, что только один такт является рабочим, а остальные три— подготовительными (вспомогательными). В одноцилиндровых двигателях подготовительные такты выполняются за счет энергии, накопленной маховиком при рабочем ходе, а в многоцилиндровых — за счет рабочих ходов, происходящих в это время в других цилиндрах.  [c.14]

Объясните рабочий цикл четырехтактного двигателя.  [c.18]

Рабочий цикл четырехтактного двигателя происходит следующим образом.  [c.15]

Рабочий цикл четырехтактного двигателя  [c.9]

РАБОЧИЕ ЦИКЛЫ ЧЕТЫРЕХТАКТНЫХ ДВИГАТЕЛЕЙ С ВОСПЛАМЕНЕНИЕМ ОТ СЖАТИЯ  [c.27]

РАБОЧИЕ ЦИКЛЫ ЧЕТЫРЕХТАКТНЫХ ДВИГАТЕЛЕЙ С ПРИНУДИТЕЛЬНЫМ ЗАЖИГАНИЕМ  [c.37]

Четырехтактные двигатели. Рассмотрим рабочий цикл четырехтактного двигателя с внешним смесеобразованием.  [c.193]

Протекание рабочих циклов разных карбюраторных двухтактных двигателей с кривошипно-камерной продувкой сильнее различается, чем рабочие циклы четырехтактных двигателей. Это объясняется более сложными процессами наполнения, продувки и выпуска, а также тем, что эти процессы зависят от степени сжатия  [c.158]

Сила К, перенесенная на шатунную шейку, в свою очередь, может быть разложена на силу Z, направленную по кривошипу к центру коленчатого вала и называемую нормальной силой, и на тл/ Т, действующую перпендикулярно оси кривошипа и назы-вае.мую тангенциальной силой. Эта сила создает крутящий. момент и вызывает вращение вала. На рис. 21. г показано из.менение тангенциальной силы Т одного цилиндра за один рабочий цикл четырехтактного двигателя.  [c.61]

Совокупность перечисленных тактов, происходящих в цилиндре, в зависимости от конструкции двигателя может совершаться за один или два оборота коленчатого вала, т. е. за два или четыре полных хода поршня. За два оборота коленчатого вала совершается рабочий цикл четырехтактного двигателя, а за один оборот — двухтактного.  [c.128]


Шестерня 2 распределительного вала 3 имеет в два раза больше зубьев, чем шестерня 1 коленчатого вала, поэтому распределительный вал вращается в два раза медленнее, чем коленчатый. Это необходимо для того, чтобы клапаны открывались один раз за два оборота коленчатого вала, в течение которых протекает рабочий цикл четырехтактного двигателя.  [c.136]

В течение рабочего цикла четырехтактного двигателя мощность выделяется только при такте расширения. Для того чтобы двигатель не остановился во время тактов выпуска, впуска и сжатия, на коленчатом валу укрепляют тяжелый маховик, который, получив энергию во время такта расширения, продолжает вращаться по инерции, преодолевает сопротивление тактов выпуска, впуска и сжатия и сохраняет необходимую энергию до следующего такта расширения.  [c.15]

Р и с. 6. Рабочий цикл четырехтактного двигателя  [c.17]

Рис. 3.3. Схема рабочего цикла четырехтактного двигателя а — впуск б — сжатие в—рабочий ход, в — выпуск
Распределительный вал имеет столько же кулачков, сколько клапанов у всех цилиндров дизеля. Распределительный вал (см. рис. 5.1) вращается вдвое медленнее коленчатого вала, тa как за два оборота последнего, в течение которых протекает рабочий цикл четырехтактного двигателя, клапаны в каждом цилиндре должны открываться и закрываться только один раз.  [c.42]

Работа любого двигателя внутреннего сгорания связана с периодически повторяющимися и последовательно осуществляемыми в его цилиндрах процессами впуска, сжатия, сгорания, расширения (рабочего хода) и выпуска. Совокупность этих процессов представляет собой рабочий цикл двигателя. Рабочий цикл четырехтактного двигателя осуществляется за четыре хода поршня или за два оборота коленчатого вала, а двухтактного двигателя — за два хода поршня или за один оборот коленчатого вала.  [c.67]

В двухтактных двигателях рабочий цикл состоит из тех же процессов, что и рабочий цикл четырехтактных двигателей. Однако при осуществлении рабочего цикла в двухтактном двигателе поршень совершает всего два хода (такта). Основные зависимости, полученные для четырехтактных двигателей, справедливы и для двухтактных двигателей.  [c.405]

РАБОЧИЙ ЦИКЛ ЧЕТЫРЕХТАКТНОГО ДВИГАТЕЛЯ  [c.44]

Такие чугуны работают при высоких температурах и их широко применяют в двигателестроении и металлургической промышленности. Сфера применения износостойких и жаропрочных чугу-нов представлена на рис. 26. Например, температура газов внутри цилиндра автотракторных двигателей в момент сгорания топлива достигает 2800°С, а температура рабочего цикла четырехтактного карбюраторного двигателя колеблется в широком диапазоне  [c.62]

Особенность протекания рабочего цикла двухтактного двигателя, отличающая его от четырехтактного, состоит в том, что в нем заполнение цилиндра зарядом (смесью) осуществляется в начале хода сжатия, а очищение цилиндра — в конце хода расширения, т. е. процессы впуска и выпуска рабочего тела не требуют самостоятельных ходов поршня. Процессы впуска и выпуска в четырехтактном двигателе занимают более 50% продолжительности цикла, а в двухтактном двигателе эти процессы протекают за время, составляющее 25—30% продолжительности цикла.  [c.418]

Рабочий цикл четырехтактного карбюраторного двигателя представлен схемой (рис. 2.4). В течение первого такта (рис. 2.4, а) приводимый коленчатым валом I через шатун 2 поршень 4 перемещается вниз, всасывая в рабочую полость цилиндра 5 через открытый впускной клапан 6 топливо-воздушную смесь из паров бензина и воздуха, поступающую из карбюратора — специального устройства для ее приготовления. На втором такте (рис. 2.4, б) поршень, также приводимый коленчатым валом, перемещается снизу вверх, сжимая находящуюся в цилиндре рабочую смесь при закрытых впускном 6 и выпускном 8 клапанах. Вследствие сжатия рабочей смеси ее давление и темпе-  [c.27]


Какую энергию преобразуют двигатели внутреннего сгорания в механическое движение Какие типы двигателей внутреннего сгорания применяют в приводах строительных машин На каких видах топлива они работают Что такое рабочий цикл или рабочий процесс двигателя внутреннего сгорания Что такое такт Опишите рабочий цикл четырехтактного карбюраторного двигателя. Чем отличается от него рабочий цикл дизеля Для чего в конструкциях двигателей внутреннего сгорания применяют несколько рабочих цилиндров Каков порядок их работы Каково назначение маховика в конструкции двигателя внутреннего сгорания  [c.75]

Рабочий цикл четырехтактного дизельного двигателя. В четырехтактном дизельном двигателе рабочий цикл (рис. 3) совершается за два оборота коленчатого вала или за четыре хода поршня и состоит из тактов впуска, сжатия, расширения или рабочего хода и выпуска. В камере сжатия установлены впускной 1 и выпускной 3 клапаны и форсунка 2.  [c.11]

Рабочий цикл четырехтактного карбюраторного двигателя (рис. 5) протекает примерно так же, как и в четырехтактном дизеле. Он совершается за два оборота коленчатого вала или за четыре хода поршня. Разница заключается в том, что в цилиндр поступает не чистый воздух, а заранее приготовленная горючая смесь и зажигание смеси принудительное, при помощи электрической искры. Степень сжатия у карбюраторных двигателей примерно  [c.13]

На рис. 1 показаны индикаторные диаграммы рабочего цикла четырехтактного карбюраторного двигателя (рис. 1,а) и четырехтактного дизеля (рис. 1,6). По вертикальным осям диаграмм откладывается давление газов в цилиндре р кг см ), а по горизонтальной оси объем в цилиндре над поршнем V (см ). Вертикальные линии на диаграмме отмечают объемы, соответствующие нахождению поршня в верхней мертвой точке (в.м.т.) и нижней мертвой точке (н.м.т.), а горизонтальная линия ро — атмосферное давление. Индикаторные диаграммы двухтактных двигателей, карбюраторного и дизеля, показаны на рис. 1,ей 1,г.  [c.6]

На рис. 1 изображена индикаторная диаграмма рабочего цикла четырехтактного карбюраторного двигателя, снятая при работе его иа максимальной мощности. Здесь по горизонтальной оси отложен объем цилиндра V в см (или ход поршня), а по вертикальной оси — давление р в кг/см» . Изменение давлений в цилиндре при разных тактах цикла может быть определено по положению наиболее важных точек на индикаторной диаграмме.  [c.8]

Рабочий цикл четырехтактного карбюраторного двигателя начинается с такта впуска и происходит следующим образом.  [c.106]

Рабочий цикл четырехтактного дизеля происходит в той же последовательности, что и у карбюраторного двигателя. Отличие работы дизеля состоит в следующем.  [c.107]

По способу осуществления рабочего цикла различают двигатели четырехтактные и двухтактные. Под тактом понимают ход поршня от одного крайнего положения до другого, во время которого происходит один или несколько процессов рабочего цикла. В четырехтактных двигателях все процессы рабочего цикла осуществляются за четыре хода поршня, соответствующих двум оборотам коленчатого вала, в двухтактных — за два хода поршня или один оборот коленчатого вала.  [c.7]

Изменение давления и температуры по ходу рабочего цикла четырехтактного карбюраторного двигателя  [c.37]

Карбюраторные двигатели. Рассмотрим рабочий цикл четырехтактного карбюраторного двигателя.  [c.217]

Полный рабочий цикл у большинства карбюраторных двигателей совершается в каждом цилиндре за два оборота коленчатого вала, т. е. за четыре такта. Рабочий цикл четырехтактного карбюраторного двигателя состоит из трех вспомогательных и одного рабочего тактов впуска, сжатия, расширения (рабочий такт), выпуска (выхлопа).  [c.21]

Рабочий цикл четырехтактного дизеля состоит из тех же тактов, что и рабочий цикл карбюраторного двигателя. Но происходящие во время этих тактов процессы внутри цилиндров различны.  [c.24]

Порядок работы многоцилиидрового двигателя. Из характеристики тактов рабочего цикла четырехтактного двигателя следует, что для равномерного вращения коленчатого вала и плавной работы многоцилиндрового двигателя нужно установить такую последовательность чередования тактов, чтобы рабочие ходы в отдельных цилиндрах чередовались через равные углы поворота коленчатого вала. Такая последовательность чередова-  [c.22]

Газораспределительный механизм с нижним расположением клапанов (рис. 26, ж) работает аналогично описанному выше, но конструкция его проще, так как отсутствуют штанги, коромысла,и детали, на которых монтируются коромысла. При работе этого механизма движение от толкателя 2 передается непосредственно клапану 10. В двигателях с предкамерно-факельным зажиганием коромысло 5 впускного калапана (см. рис. 8) управляет одновременно впускными клапанами 7 основной камеры и 6 предкамеры 3. В течение одного рабочего цикла четырехтактного двигателя происходит одно открытие впускного и выпускного клапанов. Для.этого распределительный вал за цикл должен сделать один оборот, а коленчатый — два.  [c.49]


Часть рабочего цикла, со1вершаемого в течение одного хода поршня, называется ТАКТОМ. Такт именуется по названию основного процесса, происходящего на данном участке цикла. Рабочий цикл четырехтактного двигателя совершается за четыре такта — впуска, сжатия, расширения (рабочего хода) и выпуска — и за два оборота коленчатого вала или четыре хода поршня. Полезная работа создается только во время рабочего хода. Все другие такты являются подготовительны.ми и на их совершение затрачивается часть работы, полученной в такте рабочего хода.  [c.11]

Рассмогрим теперь последовательно отдельные процессы действительного рабочего цикла четырехтактного двигателя.  [c.443]

Рис. 6. Рабочий цикл четырехтактного карбюраторного двигателя а — впуск, б — сжатие, в — рабочий ход, г — выпуск / — поршень, — выпускной клапан, 5 — карбюратор, 4 —свеча,- 6 — впускной клапан, 5 — шатун, 7 — маковик, в — коленчатый вал

Рабочие циклы четырехтактных двигателей

Рабочий цикл карбюраторного четырехтактного двигателя

Рассмотрим подробно каждый такт цикла.

Такт впуска

Поршень 4 движется от в.м.т. к н.м.т. Над ним в полости цилиндра 1 создается разрежение. Впускной клапан 6 при этом открыт, цилиндр через впускную трубу 7 и карбюратор 8 сообщается с атмосферой. Под влиянием разности давлений воздух устремляется в цилиндр. Проходя через карбюратор, воздух распыливает топливо и, смешиваясь с ним, образует горючую смесь, которая поступает в цилиндр. Заполнение цилиндра 1 горючей смесью продолжается до прихода поршня в н.м.т. К этому времени впускной клапан закрывается.

Такт сжатия

При дальнейшем повороте коленчатого вала 10 поршень движется от н.м.т. к в.м.т. В это время впускной 6 и выпускной 3 клапаны закрыты, поэтому поршень сжимает находящуюся в цилиндре рабочую смесь. В такте сжатия составные части рабочей смеси хорошо перемешиваются и нагреваются. В конце такта сжатия между электродами свечи 5 возникает электрическая искра, от которой рабочая смесь воспламеняется. В процессе сгорания топлива выделяется большое количество теплоты, давление и температура газов повышаются.

Такт расширения

Оба клапана закрыты. Под давлением расширяющихся газов поршень движется от в.м.т. к н.м.т. (рисунок в) и при помощи шатуна 9 вращает коленчатый вал 10, совершая полезную работу.

Такт выпуска

Когда поршень подходит к н.м.т., открывается выпускной клапан 3 и отработавшие газы под действием избыточного давления начинают выходить из цилиндра в атмосферу через выпускную трубу 2. Далее поршень движется от н.м.т. к в.м.т. (рисунок г) и выталкивает из цилиндра отработавшие газы.

Далее рабочий цикл повторяется.

Рисунок. Рабочий цикл одноцилиндрового четырехтактного карбюраторного двигателя:
а — такт впуска; б — такт сжатия; в — такт расширения; г — такт выпуска; 1 — цилиндр, 2 — выпускная труба; 3 — выпускной клапан; 4 — поршень; 5 — искровая зажигательная свеча; 6 — впускной клапан; 7 — впускная труба; 8 — карбюратор; 9 — шатун; 10 — коленчатый вал.

Рабочий цикл четырехтактного дизеля

В отличие от карбюраторного двигателя в цилиндр дизеля воздух и топливо вводятся раздельно.

Такт впуска

Поршень движется от в.м.т. к н.м.т. (рисунок а), впускной клапан открыт, в цилиндр поступает воздух.

Такт сжатия

Оба клапана закрыты. Поршень движется от н.м.т. к в.м.т. (рисунок б) и сжимает воздух. Вследствие большой степени сжатия (порядка 14…18) температура воздуха становится выше температуры самовоспламенения топлива.

Рисунок. Рабочий цикл одноцилиндрового четырехтактного дизеля: а — такт впуска; б — такт сжатия; в — такт расширения; г — такт выпуска

В конце такта сжатия при положении поршня, близком к в.м.т., в цилиндр через форсунку начинает впрыскиваться жидкое топливо. Устройство форсунки обеспечивает тонкое распыливание топлива в сжатом воздухе.

Топливо, впрыснутое в цилиндр, смешивается с нагретым воздухом и оставшимися газами, образуется рабочая смесь. Большая часть топлива воспламеняется и сгорает, давление и температура газов повышаются.

Такт расширения

Оба клапана закрыты. Поршень движется от в.м.т. к н.м.т. (рисунок в). В начале такта расширения сгорает остальная часть топлива.

Такт выпуска

Выпускной клапан открывается. Поршень движется от н.м.т. к в.м.т. (рисунок г) и через открытый клапан выталкивает отработавшие газы в атмосферу.

Далее рабочий цикл повторяется.

У описанных двигателей в течение рабочего цикла только в такте расширения поршень перемещается под давлением газов и посредством шатуна приводит коленчатый вал во вращательное движение. При выполнении остальных тактов — выпуске, впуске и сжатии — нужно перемещать поршень, вращая коленчатый вал. Эти такты являются подготовительными и осуществляются за счет кинетической энергии, накопленной маховиком в такте расширения. Маховик, обладающий значительной массой, крепят на конце коленчатого вала.

Дизель по сравнению с карбюраторным двигателем имеет следующие основные преимущества:

  • на единицу произведенной работы расходуется в среднем на 20…25 % (по массе) меньше топлива
  • работа на более дешевом топливе, которое менее пожароопасно

Недостатки дизеля:

  • более высокое давление газов в цилиндре требует повышенной прочности деталей, а это приводит к увеличению размеров и массы дизеля
  • пуск его затруднен, особенно в зимнее время

Хорошие экономические показатели дизелей обусловили их широкое применение в качестве двигателей для тракторов, грузовых и легковых автомобилей.

Рабочие циклы двигателей

Рабочий цикл четырехтактного карбюраторного двигателя

Работа двигателя внутреннего сгорания может быть представлена в виде систематически повторяющихся процессов, которые принято называть рабочими циклами. Рабочим циклом двигателя называется ряд последовательных, периодических повторяющихся процессов в цилиндрах, в результате которых тепловая энергия топлива преобразуется в механическую работу. При этом каждый полный рабочий цикл может быть разделен на одинаковые (повторяющиеся) части – такты.

Часть рабочего цикла, совершаемого за время движения поршня от одной мертвой точки до другой, т. е. за один ход поршня, называется тактом . Двигатели, рабочий цикл которых совершается за четыре хода поршня (два оборота коленчатого вала), называются четырехтактными.
В головке блока цилиндров, над камерой сгорания (рис. 1) карбюраторного двигателя устанавливаются впускной 4 и выпускной 6 клапаны, управляемые газораспределительным механизмом, а также свеча зажигания 5.

Рабочий цикл карбюраторного четырехтактного двигателя состоит из последовательных тактов впуска, сжатия, расширения и выпуска.

Такт впуска

В результате вращения коленчатого вала при пуске двигателя (вручную или с помощью специального устройства — например, заводной рукоятки или электродвигателя — стартера) поршень совершает движение от верхней мертвой точки (ВМТ) к нижней мертвой точке (НМТ). При этом впускной клапан 4 открыт, а выпускной клапан 6 закрыт.
Так как объем цилиндра при движении поршня вниз (к НМТ) быстро увеличивается, давление над поршнем уменьшается до 0,07. 0,09 МПа, т. е. внутри цилиндра создается вакуум – избыточное разрежение.
Впускной клапан 3 сообщается со специальным устройством – карбюратором, который приготавливает горючую смесь из топлива и воздуха. Вследствие разности давлений в карбюраторе и цилиндре горючая смесь всасывается через открытый впускной клапан в цилиндр двигателя.

Если двигатель уже работает, то горючая смесь, попадая в цилиндр из карбюратора, смешивается с остаточными продуктами сгорания от предыдущего цикла, и образует рабочую смесь. Смешиваясь с остаточными продуктами сгорания и соприкасаясь с нагретыми деталями цилиндра, рабочая смесь нагревается до температуры 75. 125 ˚С.

Такт сжатия

При подходе поршня к НМТ впускной клапан закрывается. Далее поршень начинает перемещаться вверх (к ВМТ), сжимая смесь воздуха, топлива и остаточных продуктов сгорания, которые не были удалены из цилиндра при выпуске. При движении поршня от НМТ к ВМТ вследствие сокращения объема цилиндра при закрытых клапанах повышаются давление, при этом возрастает температура рабочей смеси (в соответствии с законом Гей-Люссака).
В конце такта сжатия давление внутри цилиндра повышается до 0,9…1,5 МПа, а температура смеси достигает 270-480 ˚С.
В этот момент к электродам свечи зажигания 5 подводится высокое напряжение, которые вызывает между ними искровой разряд, результате чего рабочая смесь воспламеняется и сгорает.
В процессе сгорания топлива выделяется большое количество теплоты, из-за чего температура газов (продуктов сгорания) повышается до 2200-2500 ˚С, и давление внутри цилиндра достигает 3,0…4,5 МПа. Газы начинают расширяться, перемещая поршень вниз, к НМТ.

Такт расширения (рабочий ход)

Под давлением расширяющихся газов поршень движется от ВМТ к НМТ (при этом оба клапана закрыты). В этот промежуток времени (такт) происходит преобразование тепловой энергии в полезную работу, поэтому ход поршня в такте расширения называют рабочим ходом.
При движении поршня к НМТ объем цилиндра увеличивается, вследствие чего давление уменьшается до 0,3…0,4 МПа, а температура газов снижается до 900…1200 ˚С.

Такт выпуска

При подходе поршня к НМТ открывается выпускной клапан 6, в результате чего продукты сгорания рабочей смеси вырываются наружу из цилиндра.
При дальнейшем вращении коленчатого вала поршень начинает перемещаться от НМТ к ВМТ. Выталкивая отработавшие газы через открытый выпускной клапан, выпускной канал 7 и выпускную трубу в окружающую среду. К концу такта выпуска давление в цилиндре составляет 0,11…0,12 МПа, а температура – 600…900 ˚С.

При подходе поршня к ВМТ выпускной клапан закрывается, впускной открывается и начинается такт впуска, дающий начало новому рабочему циклу.

Рабочий цикл четырехтактного дизеля

Рабочий цикл дизельного двигателя принципиально отличается от цикла карбюраторного двигателя тем, что рабочая смесь (смесь топлива, воздуха и остаточных продуктов сгорания) приготовляется внутри цилиндра, поскольку воздух подается в цилиндр отдельно, а топливо отдельно – через форсунку. В дизельном двигателе нет специального устройства для поджигания рабочей смеси – она самовозгорается в результате высокой степени сжатия.
Т. е. в дизеле, в отличие от карбюраторного двигателя, через впускной клапан подается не горючая смесь, а атмосферный воздух, а топливо впрыскивается через форсунку в конце такта сжатия. В цилиндре, как и в случае с карбюраторным двигателем, остаются продукты сгорания рабочей смеси, которые не удалось удалить продувкой.
Смесеобразование (перемешивание воздуха, топлива и остаточных продуктов сгорания) в дизеле протекает внутри цилиндра, что и обуславливает основные отличия череды тактов, составляющих рабочий цикл.

Высокая степень сжатия приводит к тому, что поступивший в цилиндр через впускной клапан воздух, смешивается с остаточными газами и раскаляется (в буквальном смысле этого слова) до высоких температур. И в это время в цилиндр впрыскивается топливо, которое вспыхивает и начинает гореть.

Рабочие процессы в дизельном двигателе протекают в следующей последовательности (рис. 2) :

Такт впуска

В период такта впуска поршень 2 движется от НМТ к ВМТ. При этом впускной клапан 5 открыт, выпускной клапан 6 закрыт. В цилиндре 7 из-за разности давлений в окружающей среде и в цилиндре в конце такта впуска возникает разрежение 0,08. 0,09 МПа, при этом температура внутри цилиндра не превышает 40…70 ˚С.

Такт сжатия

В процессе такта сжатия оба клапана закрыты. Поршень 2 движется от НМТ к ВМТ, сжимая смесь воздуха и отработавших газов. Давление в конце такта сжатия достигает 3…6 МПа, а температура – 450…650 ˚С (превышает температуру самовоспламенения топлива).

При подходе поршня к ВМТ, в цилиндр через форсунку 3 впрыскивается распыленное жидкое топливо. Топливо подается к форсунке (через трубку высокого давления) топливным насосом 1 высокого давления (ТНВД). Форсунка обеспечивает тонкое распыление топлива в сжатом воздухе. Распыленное топливо самовоспламеняется и сгорает. В результате сгорания температура в цилиндре достигает 1600…1900 ˚С, давление – 6…9 МПа.

Такт расширения (рабочий ход)
Такт выпуска

При подходе к нижней мертвой точке (НМТ) выпускной клапан 6 открывается и большая часть отработавших газов под воздействием высокого давления вырывается из цилиндра в атмосферу. Поршень начинает перемещение от НМТ к ВМТ и через открытый выпускной клапан выталкивает оставшиеся в цилиндре отработавшие газы в окружающую среду. К концу такта давление газов в цилиндре составляет 0,11…0,12 МПа, а температура – 600. 700 ˚С.
Далее рабочий цикл повторяется.

Таким образом, в четырехтактном двигателе только один такт – рабочий ход является полезным с точки зрения совершения полезной работы, остальные три вспомогательные, они осуществляются за счет кинетической энергии маховика, закрепленного на конце коленчатого вала.

Рабочий цикл двухтактного двигателя

В двухтактных ДВС рабочий цикл осуществляется за один оборот коленчатого вала.
Схема двухтактного дизеля представлена на рис. 3 .
Воздух насосом 3 нагнетается через впускное (продувочное) окно 4 в цилиндр. В нижней части цилиндра напротив впускного окна имеется выпускное окно 7. В головке 5 блока цилиндра установлены форсунки 6.

Первый такт (рис. 3, а) совершается при движении поршня от НМТ к ВМТ за счет кинетической энергии маховика двигателя. Оба окна открыты. Нагнетаемый через впускное окно 4 воздух вытесняет из цилиндра оставшиеся в нем отработавшие газы, которые выходят через выпускное окно 7. Таким образом происходит очистка цилиндра от отработавших газов (продувка) и заполнение его свежим зарядом.

Движущийся вверх поршень 8 сначала закрывает впускное окно, а затем выпускное окно. С этого момента начинается процесс сжатия, в конце которого через форсунку 6 впрыскивается топливо.
Таким образом, за первую половину оборота коленчатого вала совершаются процессы наполнения и сжатия, и начинается сгорание топлива.

Второй такт (рис. 3. б) происходит при движении поршня ВМТ к НМТ. В результате выделения теплоты при сгорании топлива повышается температура и давление внутри цилиндра. Поршень перемещается вниз, совершая полезную работу.
Как только поршень открывает выпускное окно, отработавшие газы под давлением начинают выходить в окружающую среду. К моменту открытия впускного окна давление внутри цилиндра снижается на столько, что возможна очистка цилиндра путем вытеснения отработавших газов свежим зарядом воздуха, подаваемым в цилиндр насосом 3.
Этот процесс называется продувкой цилиндра. При этом одновременно с вытеснением отработавших газов происходит наполнение цилиндра свежим зарядом. Далее все процессы повторяются в той же последовательности.

Рабочий цикл двухтактного карбюраторного двигателя аналогичен рабочему циклу двухтактного дизеля. Отличие состоит в том, что в цилиндр поступает не чистый воздух, а горючая смесь, и в конце процесса сжатия в цилиндре посредством свечи зажигания подается искра, в результате чего происходит воспламенение горючей смеси.

Одним из преимуществ двухтактного двигателя по сравнению с четырехтактным является то, что каждый рабочий ход здесь протекает в период одного оборота коленчатого вала, а не двух. Очевидно, что снижение количества тактов должно привести к повышению КПД из-за уменьшения паразитических процессов . А поскольку в четырехтактном двигателе за два оборота коленчатого вала протекают четыре такта, из которых полезным является лишь такт рабочего хода (т. е. остальные три такта являются паразитическими), то естественно предположить, что КПД четырехтактного двигателя должен быть ниже, чем КПД четырехтактного двигателя.

Существенными недостатками двухтактных двигателей является их низкая топливная экономичность и меньший срок службы по сравнению с четырёхтактными двигателями. Объясняется этот недостаток тем, что при продувке цилиндра (или цилиндров) свежая горючая смесь частично удаляется вместе с отработавшими газами, поскольку, в отличие от четырехтактного двигателя, выпуск и впуск газов протекает одновременно.
Этими недостатками, а также большей токсичностью отработавших газов объясняется ограниченное применение двухтактных двигателей на автомобилях.

Рабочий цикл авто с дизельным двигателем отличается тем, что при такте впуска в цилиндр двигателя поступает очищенный воздух, а не горючая смесь, как в карбюраторном двигателе.

Первый такт — впуск.

Устройство двигателя современного

автомобиля, устройство систем и механизмов

Поршень перемещается от ВМТ к НМТ, через открытый впускной клапан в цилиндр поступает очищенный воздух (из-за разрежения, создаваемого поршнем). Воздух перемешивается с небольшим количеством оставшихся от предыдущего цикла отработавших газов, температура повышается и в конце такта впуска достигает 300—320 К, а давление 0.08—0.09 МПа. Коэффициент наполнения цилиндра 0,9 и выше, т. е. больше, чем у карбюраторного двигателя.

Работа четырехтактного одноцилиндрового дизельного двигателя:

а — впуск воздуха; б — сжатие; в — рабочий ход; г — выпуск отработавших газов; 1— цилиндр; 2 — топливный насос, 3 — поршень: 4 — форсунка, 5 — впускной клапан, 6 — выпускной клапан

Второй такт — сжатие.

Как устроен простейший двигатель?

Устройство двигателя для детей

Поршень движется от НМТ к ВМТ, впускной и выпускной клапаны закрыты. Давление и температура воздуха увеличиваются и в конце такта составляют соответственно 3—5 МПа и 800—900 К. Степень сжатия регламентируется исправностью деталей КШМ и равна 17—21.

Третий такт — рабочий ход.

В конце такта сжатия (20—30 градусов угла поворота коленчатого вала ло прихода поршня в ВМТ) с помощью насоса через форсунку в цилиндр под высоким давлением (15—20 МПа) в мелкораспыленном виде впрыскивается порция топлива. Топливо от соприкосновения с нагретым воздухом испаряется, его пары перемешиваются с нагретым воздухом и воспламеняются. При сгорании топлива, вследствие подвода большого количества теплоты, резко увеличиваются лишение и температура образовавшихся газов. В начале такта расширения давление газов составляет 7—8 МПа. а температура 2100—2300 К. Под действием давления поршень перемешается от ВМТ к НМТ, совершая полезную работу. Объем цилиндра увеличивается, давление и температура газов снижаются и при подходе поршня к НМТ составляют 0,2-0,4 МПа .

Четвертый такт — выпуск.

Поршень перемещается от НМТ к ВМТ. Через открытый выпускной клапан отработавшие газы выталкиваются через выпускной трубопровод в окружающую среду. В конце такта выпуска давление газов равно 0,11 -0,12 МПа, температура 850—1200. После этого рабочий цикл дизеля повторяется.
В двухтактных двигателях время, отводимое на рабочий цикл, используется более полно, так как процессы выпуска и впуска совмещены по времени с процессами сжатия и рабочего хода. Рабочий цикл происходит за 360 градусов (один оборот коленчатого вала).

При движении поршня от ВМТ к НМТ одновременно происходят процессы расширения и выпуска с продувкой цилиндра, а при обратном движении от НМТ к ВМ1 впуск и сжатие. Изменения параметров цикла (давление и температура) соответствуют изменениям параметров четырехтактного двигателя.
Сравнение рабочих циклов четырех- , двухтактных двигателей показывает, что при одинаковых размерах цилиндра и частоте вращения коленчатого вала мощность двухтактных двигателей выше в 1.5—1,7 раза. Он проще по конструкции и компактнее.
К недостаткам двухтактного двигателя следует отнести ограниченное время газообмена, что ухудшает очистку цилиндра от отработавших газов, увеличивает потери части свежею заряда, снижает экономичность.

Тактвпуска: При движении поршня от ВМТ к НМТ вследствие разряжения из воздухоочистителя в полость цилиндра через открытый клапан (впускной) поступает атмосферный воздух. Давление воздуха в цилиндре 0,08-0.95 МПа. а t — 40-60° С.

Такт сжатия: Поршень движется от НМТ к ВМТ. Впускной и выпускной кла-паны закрыты, вследствие чего поршень сжимает имеющийся в цилиндре воздух.. Для воспламенения топлива необходимо, чтобы температуря сжатого воздуха была выше температуры самовоспламенения топлива. Из-за высокой степени сжатия температура воздуха достигает 500-700С при давлении внутри цилиндра 4.0-5,0 МПа.

Такт расширения: При подходе поршня к ВМТ в цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом. Топливо перемешивается с нагретым воздухом, самовоспламеняется и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давлением. Давление газов достигает 6-9 кПа, а температура 1800-2000’С. Под действием давления поршень перемешается от ВМТ к НМТ, где давление снижается от 0,3-0,5 МПа. а температура до 700-900 0 .

Такт выпуска: Поршень от НМТ перемещается к ВМТ и через открытий выпускной клапан отработавшие газы выталкиваются наружу. Давления газа снижается до 0,11-0, 12 МПа. а температура до 500-700° С. При дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.

Наибольшее распространение имеют 6-ти и 8-й цилиндровые дизельные двигатели. Порядок работы:

6-ти цилиндрового двигателя: 1-4-2-5-3-6

8-ми цилиндрового двигателя: 1-5-4-2-6-3-7-8

Преимущества: меньшая высота и габаритная длина.

Недостаток: сложная отливка блока и увеличение габарита по ширины (по отношению к разным двигателям).

Основные неисправности двигателя:

падение мощности, повышенный расход масла, дымный выпуск, снижение давления конца сжатия (компрессия), стуки в двигателе.

К основным системам дизельного двигателя относятся — система охлаждения, питания топливом, воздухом, система смазки, система электрооборудования.

Система охлаждения:

Жидкостная, закрытого типа, с принудительной циркуляцией охлаждающей жидкости. Основными элементами являются водяной насос, крыльчатка вентилятора, гидромуфта привода вентилятора, термостаты, выключатель гидромуфты, расширительный бачок, соединительные трубы, радиатор и жалюзи.

Во время работы двигателя циркуляция охлаждающей жидкости в системе создается центробежным насосом. Жидкость нагнетается в полость охлаждения левого ряда цилиндров и через соединительную трубку в полость охлаждения правого ряда цилиндров. Омывая наружные поверхности гильз цилиндров, жидкость попадает в полости охлаждения голо­вок цилиндров. Из головок цилиндров горячая жидкость по водосборным трубам поступает в коробку термостатов, из которой в зависимости от температуры направляется в радиатор или на вход водяного насоса. Номинальная температура охлаждающей жидкости в системе при работе двигателя 75-98 С. Тепловой режим поддерживается автоматически термостатами и выключателем гидромуфты привода вентилятора, которые управляют направлением потока жидкости и работой вентилятора к зависимости от температуры жидкости в двигателе.

Гидромуфта привода вентилятора передает крутящий момент от коленчатого вала к вентилятору и гасит инерционные нагрузки, возникающие при резком изменении частоты вращения коленчатого вала. Передача крутящего момента от ведущего колеса на ведомое осуществляется при заполнении рабочей полости. Масло поступает через выключатель. имеющий три положения ; ; ;

“ П » — постоянно включен;

» А » — автоматический режим

Основной режим работы — автоматический. При отказе выключателя гид­ромуфты в автоматическом режиме (перегрев двигателя) следует включить режим постоянной работы .

Термостаты с твердым наполнением и прямым ходом клапана предназначены для автоматического регулирования теплового режима двигателя, размешены в коробки, закрепленной на переднем торце правого ряда блока цилиндров.

Система смазки

Комбинированная, с «мокрым» картером. Масло под давлением подается к коренным и шатунным подшипникам коленчатого вала, к подшипникам распределительного вала, втулкам коромысел, топливному насосу, компрессору. Предусмотрена пульсирующая подача масла к верхним сферическим опорам штанг толкателей.

Система смазки включает масляный насос, фильтр очистки масла, центробежный фильтр очистки масла, масляный картер двигателя, воздушно-масляный радиатор, масляные каналы в блоке и головках цилиндров, перед­ней крышке и картере маховика клапаны для обеспечения нормальной работы системы, контрольные приборы, масляные трубопроводы и маслозаливную горловину.

Масло у картера через маслоприемник поступает в секции масляного насоса. далее в полнопоточный фильтр очистки масла, где очищается двумя фильтрующими элементами. Далее по главной магистрали масло подается к подшипникам коленчатого и распределительного валов, втулкам коромысел и верхним наконечникам тяг толкателей: через клапаны в задней стенке блока цилиндров и картере маховика поступает к компрессору. Другая секция насоса направляет масло к центробежному фильтру, далее в радиатор и в картер.

Масляный насос— закреплен на нижней плоскости блока цилиндров. В корпусах секций установлены предохранительные клапаны, отрегулированные на давление открытия 8.5- 9,5 кгс/см и предназначены для ограничения максималь­ного давления на выходе из секций насоса, а также клапан системы смазки, поддерживает давление 4,0- 5,5 кгс/см в главной магистрали.

Фильтр очистки масла— установлен на правой стороне блока цилиндров, состоит из корпуса, двух колпаков и сменных фильтрующих элементов. В корпусе имеется перепускной клапан с сигнализатором засоренности фильтрующих элементов, а также два отверстия для установки датчиков давления и сигнализации о недопустимом снижении давления (0,7 кгс/см). Клапан пропускает неочищенное масло в главную магистраль при низких температурах или значительном засорении фильтрующих элементов при перепадах давления ни элементах 2,5- 3,0 кгс/см.

Система питания топливом (см. слайд № __ схема 2.8).

Обеспечивает очистку топлива и равномерное распределение его по цилиндрам двигателя строго дозированными порциям. Система питания (КАМАЗ) разделенная, состоящая из топливного насоса высокого давления о регулятором частоты вращения и автоматической муфтой опережения подачи топлива, форсунок, фильтров грубой и тонкой очистки, топливного насоса низкого давления, ручного топливоподкачивающего насоса, топливопроводов высокого и низкого давления, топливных баков, электромагнитного клапана и факельных свечей, электрофакельного пускового уст­ройства.

Работа осуществляется следующим образом: топливо из бака через фильтр грубой очистки засасывается топливоподкачивающимся насосом и через фильтр тонкой очистки по топливопроводам низкого давления подается к топливному насосу высокого давления, который в соответствии с порядком работы двигателя распределяет топливо по топливопроводам высокого давления к форсункам. Форсунки распыляют и впрыскивают топливо в камеры сгорания избыточное количество топлива, а также воз­дух через перепускной клапан топливного насоса высокого давления и клапан-жиклер фильтра тонкой очистки по дренажным трубкам отводятся в топливный бак.

Топливный насос высокого давления (ТНДВ)– расположен в развале блока цилиндров.

В корпусе насоса установлены восемь секций, каждая состоит из корпуса, втулки плунжера, плунжера, поворотной втулки, нагнетательного клапана. Плунжер совершает возвратно-поступательное движение кулачка вала и пружины. Для увеличения подачи топлива плунжер поворачивают втулкой, соединенной через ось с рейкой насоса. На переднем торце насоса име­ется перепускной клапан, открытие которого осуществляется при давлении 0.6-0.8кгс/см.

Топливоподкачивающий насос низкого давления— поршневого типа предназначен для подачи топлива от бака через фильтры грубой и тонкой очистки к впускной полости насоса высокого давления. Насос установлен на задней крышке регулятора и приводится от эксцентрика кулачкового вала топливного насоса высокого давления.

Топливоподкачивающий насос (ручной)— поршневого типа закреплен на фланце топливного насоса низкого давления и служит для заполнения системы питания топливом и удаления из нее воздуха.

Автоматическая муфта опережения впрыска топлива — изменяет начало подачи топлива в зависимости от частоты вращения коленчатого вала двигателя. Применение муфты обеспечивает оптимальное для рабочего процесса начало подачи топлива по всему диапазону скоростных режимов. При увеличении частоты вращения коленчатого вяля происходит поворот ведомой полумуфты относительно ведущей в направлении вращения кулачкового вала, что вызывает увеличение угла опережения впрыска топлива. При уменьшении частоты вращения коленчатого вала ведомая полумуфта, под действием пружин, поворачивается вместе с валом насоса в сторону, противоположную направлению вращения вала, что вызывает уменьшение угла опережения подачи топлива.

Система питания воздухом

Cостоит из воздушного фильтра, уплотнителя, воздухозаборника. патрубков и труб, соединяющих воздухозаборник с воздушным фильтром и впускными коллекторами. Воздушный фильтр сухого типа, двухступенчатый, предназначен для очистки поступающего воздуха от пыли.

Четырехтактный цикл

— обзор

13.18 Цикл Отто

Циклы внешнего сгорания газа Стерлинга и Эрикссона изначально были разработаны для борьбы с опасными котлами высокого давления первых паровых двигателей. Двигатель внутреннего сгорания Ленуара был проще, меньше по размеру и использовал более удобное топливо, чем любой из этих двигателей, но имел очень низкий тепловой КПД. Брайтону удалось повысить тепловой КПД двигателя внутреннего сгорания, обеспечив процесс сжатия перед сгоранием с использованием двухпоршневой техники Стирлинга и Эрикссона с отдельной камерой сгорания.Но конечной целью разработки коммерческих двигателей внутреннего сгорания было объединение всех основных процессов впуска, сжатия, сгорания, расширения (мощности) и выпуска в одном поршневом цилиндре. Это было окончательно достигнуто в 1876 году немецким инженером Николаусом Августом Отто (1832–1891). Основные элементы модели ASC цикла Отто показаны на рисунке 13.48. Он состоит из двух изохорных процессов и двух изоэнтропических процессов.

Рисунок 13.48. Стандартный цикл воздуха Отто.

После нескольких лет экспериментов Отто наконец построил успешный двигатель внутреннего сгорания, который позволил всем основным процессам протекать в пределах одного поршневого цилиндра. Для завершения термодинамического цикла двигателя Отто требовалось четыре хода поршня и два оборота коленчатого вала, но он работал плавно, был относительно тихим и очень надежным и эффективным. Двигатель Отто имел немедленный успех, и к 1886 году было продано более 30 000 экземпляров. Они стали первым серьезным конкурентом паровой машины на рынке двигателей малого и среднего размера.

Первоначально двигатель Отто использовал осветительный газ (метан) в качестве топлива, но к 1885 году многие двигатели с циклом Отто уже были преобразованы в двигатели, работающие на жидких углеводородах (бензине). Разработка гениального карбюратора с поплавковой подачей для испарения жидкого топлива в 1892 году немцем Вильгельмом Майбахом (1847–1929) ознаменовала начало автомобильной эры. Немецкому инженеру Карлу Фридриху Бенцу (1844–1929) обычно приписывают создание в 1885 году первого практичного автомобиля с низкооборотным двигателем цикла Отто, работающим на жидком углеводородном топливе.Он использовал тепло выхлопных газов двигателя для испарения топлива перед его подачей в двигатель.

Кто изобрел цикл «Отто»?

Николаус Отто не знал, что четырехтактный двигатель внутреннего сгорания был запатентован в 1860-х годах французским инженером Альфонсом Эженом Бо де Роша (1815–1893). Однако Рошас на самом деле не строил и не тестировал двигатель, который он запатентовал. Поскольку Отто был первым, кто фактически сконструировал и эксплуатировал двигатель, цикл назван в его честь, а не в честь Роша.

В 1878 году шотландский инженер Дугальд Клерк (1854–1932) разработал двухтактную версию цикла Отто, производящую один оборот коленчатого вала за термодинамический цикл (это было похоже на двигатель Ленуара, но с предварительным сжатием).В 1891 году Клерк продолжил разработку концепции наддува двигателя внутреннего сгорания. Это увеличило тепловой КПД двигателя за счет дальнейшего сжатия индукционного заряда перед зажиганием.

Хотя двухтактный двигатель Клерка по своей природе был менее экономичен, чем четырехтактный двигатель Отто, он давал более равномерную выходную мощность (что важно только для одно- или двухцилиндровых двигателей) и имел почти вдвое большую мощность по сравнению с массой. передаточное отношение двигателя Отто. Двухтактный двигатель с циклом Отто (он никогда не стал известен как цикл Клерка) стал успешным в качестве небольшого и легкого двигателя для лодок, газонокосилок, пил и т. Д.

Тепловой КПД цикла Отто определяется как

(ηT) Otto = (W˙out) netQ˙H = Q˙H− | Q˙L | Q˙H = 1− | Q˙L | Q˙ H

, где из рисунка 13.48 | Q˙L | = m˙ (u2s − u3) и Q˙H = m˙ (u1 − u4s).

Тогда термический КПД Otto hot ASC составляет

(ηT) Ottohot ASC = 1 − u2s − u3u1 − u4s

Для Otto hot ASC , таблица C.16a или C.16b в термодинамических таблицах для сопровождения современной инженерной термодинамики используются для определения значений удельной внутренней энергии.Поскольку процессы от 1 до 2 с и от 3 до 4 с являются изоэнтропическими, мы используем столбцы v r в этих таблицах, чтобы найти

v3v4s = vr3vr4 = v2sv1 = vr2vr1 = CR

, где CR = v3 / v4s — степень изоэнтропического сжатия. Если температура и давление на входе ( T 3 и p 3 ) известны, мы можем найти u 3 и v r 3 из таблицы.Затем, если мы знаем степень сжатия (CR), мы можем найти

vr4 = vr3CR и vr2 = vr1 × CR

Теперь мы можем найти u 4 s и T 4 s из таблиц. Однако, чтобы найти u 1 , T 1 , u 2s и T 2s , нам необходимо знать больше информации о системе. Следовательно, теплота сгорания ( Q H / м = Q˙H / m˙), максимальное давление ( p 1 ) или максимальная температура ( T 1 ) в цикле обычно дается полный анализ.

Для Otto холодный ASC ,

| Q˙L | = m˙ (u2s − u3) = m˙cv (T2s − T3) и Q˙H = m˙ (u1 − u4s) = m˙cv (T1 − T4s).

Тогда

(ηT) Ottocold ASC = 1 − T2s − T3T1 − T4s = 1− (T3T4s) (T2s / T3−1T1 / T4s − 1)

Процесс с 1 по 2 с и процесс 3 по 4 с изоэнтропичны, поэтому

T1 / T2s = T4s / T3 = (v1 / v2s) 1 − k = (v4s / v3) 1 − k = (p1 / p2s) (k − 1) / k = ( p4s / p3) (k − 1) / k

Так как T1 / T4s = T2s / T3,

(13.30) (ηT) Ottocold ASC = 1 − T3 / T4s = 1 − PR (1 − k) / k = 1 − CR1 − k

, где CR = v3 / v4s — степень изоэнтропического сжатия, а PR = p4s / p3 — степень изоэнтропического давления.

Поскольку T3 = TL, но T4s T 1 и T 3 ). Поскольку цикл Отто требует процесса сгорания с постоянным объемом, его можно эффективно проводить только в пределах поршневого цилиндра или другого устройства с фиксированным объемом с помощью почти мгновенного процесса быстрого сгорания.

Пример 13.14

Изэнтропическая степень сжатия бензинового двигателя с циклом Отто новой газонокосилки составляет 8.От 00 до 1, а температура входящего воздуха составляет T 3 = 70,0 ° F при давлении p 3 = 14,7 фунтов на кв. Дюйм. Определите

а.

Температура воздуха в конце такта изоэнтропического сжатия T 4 с .

б.

Давление в конце такта изоэнтропического сжатия перед воспламенением p 4 s .

г.

Тепловой КПД двигателя Otto cold ASC.

Решение
a.

Степень изоэнтропического сжатия для двигателя с циклом Отто определяется как

CR = v3v4s = (T3T4s) 11 − k

, откуда получаем

T4s = T3CR1 − k = T3 × CRk − 1 = (70,0 + 459,67 R ) (8,00) 0,40 = 1220 R

б.

Для цикла Отто изоэнтропическое давление и степени сжатия связаны соотношением PR = CR k , где PR = p4s / p3 и CR = v 3 / v 4 s .Тогда

p4s = p3CRk = (14,7 фунтов на кв. Дюйм) (8,00) 1,40 = 270. psia

c.

Уравнение (13.30) дает тепловой КПД холодного ASC Отто как

(ηT) Ottocold ASC = 1 − T3T4s = 1 − PR1 − kk = 1 − CR1 − k = 1− (8,00) 1−1,40 = 0,565 = 56,5%

Упражнения
40.

Если газонокосилку в примере 13.14 оставляют на улице в холодный день, когда температура T 3 понижается с 70,0 ° F до 30,0 ° F, определите новую температура в конце такта изоэнтропического сжатия.Предположим, что все остальные переменные не изменились. Ответ : T 4 с = 1130 R.

41.

Если зазор на газонокосилке в Примере 13.14 уменьшен таким образом, что степень сжатия увеличится с 8,00 до 8,50 до 1, определите новое давление в конце такта изоэнтропического сжатия. Предположим, что все остальные переменные не изменились. Ответ : p 4 s = 294.1 фунт / кв. Дюйм.

42.

Если максимальная температура в цикле ( T 4 с ) составляет 2400 R, определите тепловой КПД этого двигателя для цикла Отто hot ASC . Предположим, что все остальные переменные не изменились. Ответ : ( η T ) Otto hot ASC = 52,8%.

Фактическая диаграмма давление-объем для двигателя, работающего на газовом или паросиловом цикле, называется индикаторной диаграммой , 10 , а замкнутая площадь равна чистой реверсивной работе, производимой внутри двигателя. среднее эффективное давление (МПа) поршневого двигателя — это среднее эффективное давление , действующее на поршень во время его перемещения. Значение , указанное на (или реверсивном) рабочем выходе (WI) из поршня, представляет собой чистую положительную площадь, ограниченную индикаторной диаграммой, как показано на рисунке 13.49, и равно произведению mep и смещения поршня, V̶2− V̶1 = π4 (Диаметр отверстия) 2 (Ход), или

(13,31) (WI) out = mep (V̶2 − V̶1)

Рисунок 13.49. Соотношение среднего эффективного давления (mep) и индикаторной диаграммы.

Номер обозначил выходную мощность (Вт˙I) — это чистая (реверсивная) мощность, развиваемая внутри всех камер сгорания двигателя, содержащего n цилиндров, и составляет

(13,32) (Вт˙I) вне = mep (n) (V̶2 − V̶1) (N / C)

, где N — частота вращения двигателя, а C — количество оборотов коленчатого вала за рабочий такт ( C = 1 для двух -тактный цикл и C = 2 для четырехтактного цикла).Фактическая выходная мощность двигателя , измеренная динамометром, называется выходной мощностью тормоза (Вт˙Б), а разница между указанной мощностью и мощностью торможения известна как мощность трения (т. Е. Мощность рассеивается на внутреннем трении двигателя) W˙F, или

(W˙I) out = (W˙B) out + W˙F

, следовательно, механический КПД двигателя η м просто равен ( см. таблицу 13.2)

(13,33) ηm = W˙actualW˙reversible = (W˙B) out (W˙I) out = 1 − W −F (W˙I) out

Из уравнения.(13.31) можно записать

mep = (WI) out / (V̶2 − V̶1) = ((WI) out / ma) / v2 − v1 = [(W˙I) out / m˙a] / (v2 −v1)

, где m a и m˙a — масса воздуха в цилиндре и массовый расход воздуха в цилиндре, соответственно. ASC (т.е. реверсивный или указанный, см. Таблицу 13.2) тепловой КПД любого двигателя внутреннего или внешнего сгорания теперь можно записать как

(ηT) ASC = (W˙out) reversibleQ˙in = (W˙1) outQ˙fuel = (W˙1) out / m˙aQ˙fuel / m˙a

, где Q˙in = Q˙fuel — теплотворная способность топлива.Объединение этих уравнений дает

mep = (ηT) ASC (Q˙fuel / m˙a) v2 − v1 = (ηT) ASC (Q˙fuel / m˙fuel) (A / F) (v2 − v1)

где A / F = m˙a / m˙fuel — соотношение воздух-топливо в двигателе. Теперь

v2 − v1 = v1 (v2 / v1−1) = RT1 (CR − 1) / p1

, поэтому уравнение. (13.32) становится

(13.34) (W˙1) out = (ηT) ASC (Q˙ / m˙) топливо (DNp1 / C) (A / F) (RT1) (CR − 1)

где D = n (V̶2 − V̶1) = π4 (Диаметр цилиндра) 2 × (Ход) × (Количество цилиндров) — общий рабочий объем поршня двигателя. Уравнение (13.34) позволяет нам определить выходную мощность идеального двигателя внутреннего сгорания без трения, и, когда доступны фактические данные динамометрических испытаний, уравнение.(13.33) позволяет определить механический КПД двигателя.

Пример 13,15

Шестицилиндровый четырехтактный двигатель внутреннего сгорания с циклом Отто имеет полный рабочий объем 260, 3 и степень сжатия от 9,00 до 1. Он работает на бензине с удельной теплотворной способностью 20,0 × 10 3 БТЕ / фунт-метр и представляет собой впрыскиваемое топливо с массовым соотношением воздух-топливо от 16,0 до 1. Во время динамометрического испытания давление и температура на впуске оказались равными 8,00 фунт / кв.дюйм и 60.0 ° F, в то время как двигатель выдавал 85,0 л. С. На торможении при 4000 об / мин. Для холодного ASC Отто с k = 1,40 определите

a.

Холодный ASC тепловой КПД двигателя.

б.

Максимальное давление и температура цикла.

г.

Указанная выходная мощность двигателя.

г.

Механический КПД двигателя.

e.

Фактический тепловой КПД двигателя.

Решение
a.

Из уравнения. (13.30), используя k = 1,40 для холодного ASC,

(ηT) Ottocold ASC = 1 − CR1 − k = 1−9,00−0,40 = 0,585 = 58,5%

b.

Из рисунка 13.48 a ,

Q˙H = Q˙fuel = (m˙cv) a (T1 − T4s) = m˙fuel (A / F) (cv) a (T1 − T4s)

и

T1 = Tmax = T4s + (Q˙ / m˙) топливо (A / F) масса (cv) a

Поскольку процесс с 3 по 4 с является изоэнтропическим, уравнение. (7.38) дает

T4s = T3CRk − 1 = (60,0 + 459.67) (9,00) 0,40 = 1250 R

Тогда

Tmax = 20,0 × 103 Btu / lbm топлива (16,0 lbm air / lbm fuel) [0,172 Btu / (lbm air · R)] + 1250 R = 8520 R

Поскольку процесс 4 с до 1 является изохорическим, уравнение состояния идеального газа дает

pmax = p1 = p4s (T1 / T4s)

и, поскольку процесс 3–4 с является изоэнтропическим,

T4s / T3 (p4s / p3) (k − 1) / k

или

p4s = p3 (T4s / T3) k / (k − 1) = (8,00 psia) (1250 R520 R) 1,40 / 0,40 = 172 psia

, тогда

pmax = (172 фунтов на кв. дюйм) [(8520 R) / 1250 R] = 1170 фунтов на квадратный дюйм

c.

Уравнение (13.34) дает указанную мощность как

| W˙I | out = (0,585) (20,0 × 103 БТЕ / фунт) (260 дюймов3 / об) (4000 об / мин) (1170 фунт-сила / дюйм2) / 2 (16,0) [0,0685 БТЕ / (фунт · м · R)] (8520 R) (9,00-1) (12 дюймов / фут) (60 с / мин) = (132,00 ft⋅lbf / s) (1 л.с. 550 фут · фунт-сила / с) = 241 л.с.

d.

Уравнение (13.33) дает механический КПД двигателя как

ηm = (W˙B) out (W˙I) out = 85,0 л.с. 241 л.с. = 0,353 = 35,3%

e.

Наконец, фактический тепловой КПД двигателя может быть определен по формулам.(7,5) и (13,33) как

(ηT) Ottoactual = (W˙B) outQ˙fuel = (ηm) (W˙I) outQfuel = (ηm) (ηT) Ottocold ASC = (0,353) (0,585 ) = 0,207 = 20,7%

Упражнения
43.

Если у двигателя с циклом Отто, описанного в примере 13.15, степень сжатия увеличится до 10,0: 1, какова будет его новая тепловая эффективность холодного ASC? Предположим, что все остальные переменные остаются неизменными. Ответ : ( η T ) Отто холодный ASC = 60.2%.

44.

Найдите p max и T max для двигателя с циклом Отто, обсуждаемого в примере 13.15, когда степень сжатия уменьшена с 9,00 до 8,00 до 1. Предположим, что все другие переменные остаются неизменными. . Ответ : p max = 1040 psia и T max = 8460 R.

45.

Определите указанную мощность в Примере 13.15, если рабочий объем двигателя увеличился с 260.в 3 до 300. в 3 . Предположим, что все остальные переменные остаются неизменными. Ответ : (W˙I) из = 280. л.с.

46.

Определите механический КПД двигателя цикла Отто в Примере 13.15, если фактическая тормозная мощность составляет 88,0 л.с. вместо 85,0 л.с. Предположим, что все остальные переменные остаются неизменными. Ответ : η м = 36,3%.

Предыдущий пример показывает, что анализ холодного ASC Отто обычно предсказывает термический КПД, который намного превышает фактический тепловой КПД.Типичные двигатели с циклом Отто IC имеют фактический рабочий тепловой КПД в диапазоне 15-25%. Большая разница между тепловым КПД холодного АСК (который содержит хотя бы один изоэнтропический процесс) и фактическим тепловым КПД обусловлена ​​влиянием второго закона термодинамики за счет большого количества тепловых и механических необратимостей, присущих этому типу поршневого поршня. -цилиндровый двигатель. Для повышения фактического теплового КПД необходимо уменьшить тепловые потери при сгорании и количество движущихся частей в двигателе.

Какой двигатель внутреннего сгорания самый маленький?

Модель авиадвигателя Cox Tee Dee .010 (рис. 13.50) имеет самый маленький двигатель внутреннего сгорания, когда-либо производившийся в производстве. Этот удивительный маленький двигатель весит чуть меньше унции и работает со скоростью 30 000 об / мин. Топливо представляет собой 10–20% касторового масла плюс 20–30% нитрометана, смешанного с метанолом. С отверстием 0,237 дюйма (6,02 мм) и ходом 0,226 дюйма (5,74 мм) он имеет выходную мощность около 5 Вт.

Рисунок 13.50. Двигатель Cox Tee.

Что это такое и как они работают?

1) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

2) Для получения информации о результатах программы и другой информации посетите сайт www.uti.edu/disclosures.

3) Приблизительно 8000 из 8400 выпускников UTI в 2019 году были готовы к трудоустройству. На момент составления отчета около 6700 человек были трудоустроены в течение одного года после даты выпуска, в общей сложности 84%. В эту ставку не входят выпускники, которые недоступны для трудоустройства из-за непрерывного образования, военной службы, состояния здоровья, заключения, смерти или статуса иностранного студента.В ставку включены выпускники, прошедшие программы повышения квалификации для конкретных производителей, и те, кто работал на должностях, полученных до или во время обучения в области ИМП, где основные должностные обязанности после окончания обучения соответствуют образовательным и учебным целям программы. UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

5) Программы UTI готовят выпускников к карьере в различных отраслях промышленности с использованием предоставленного обучения, в первую очередь, для специалистов по автомобилям, дизельным двигателям, ремонту после столкновений, мотоциклетным и морским техникам.Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от в качестве технического специалиста, например: специалист по запчастям, специалист по обслуживанию, изготовитель, лакокрасочный отдел и владелец / оператор магазина. UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

6) Достижения выпускников ИТИ могут различаться. Индивидуальные обстоятельства и заработная плата зависят от личных качеств и экономических факторов. Опыт работы, отраслевые сертификаты, местонахождение работодателя и его программы компенсации влияют на заработную плату.ИМП образовательное учреждение и не может гарантировать работу или заработную плату.

7) Для завершения некоторых программ может потребоваться более одного года.

10) Финансовая помощь и стипендии доступны тем, кто соответствует требованиям. Награды различаются в зависимости от конкретных условий, критериев и состояния.

11) См. Подробную информацию о программе для получения информации о требованиях и условиях, которые могут применяться.

12) На основе данных, собранных из Бюро статистики труда США, прогнозы занятости (2016-2026), www.bls.gov, просмотрено 24 октября 2017 г. Прогнозируемое количество годовых Вакансии по классификации должностей: Автомеханики и механики — 75 900; Специалисты по механике автобусов и грузовиков и по дизельным двигателям — 28 300 человек; Ремонтники кузовов и связанных с ними автомобилей, 17 200. Вакансии включают вакансии в связи с ростом и чистые замены.

14) Программы поощрения и соответствие критериям для сотрудников остаются на усмотрение работодателя и доступны в определенных местах. Могут применяться особые условия.Поговорите с потенциальными работодателями, чтобы узнать больше о программах, доступных в вашем районе.

15) Оплачиваемые производителем программы повышения квалификации проводятся Группой специального обучения UTI от имени производителей, которые определяют критерии и условия приемки. Эти программы не являются частью аккредитации UTI.

16) Не все программы аккредитованы ASE Education Foundation.

20) Льготы VA могут быть доступны не на всех территориях университетского городка.

21) GI Bill® является зарегистрированным товарным знаком U.S. Департамент по делам ветеранов (VA). Более подробная информация о льготах на образование, предлагаемых VA, доступна на официальном веб-сайте правительства США.

22) Грант «Приветствие за служение» доступен всем ветеранам, имеющим право на участие, на всех кампусах. Программа «Желтая лента» одобрена в наших кампусах в Эйвондейле, Далласе / Форт-Уэрте, Лонг-Бич, Орландо, Ранчо Кукамонга и Сакраменто.

24) Технический институт NASCAR готовит выпускников к работе в качестве технических специалистов по обслуживанию автомобилей начального уровня.Выпускники, которые сдают факультативные программы NASCAR, также могут иметь возможность трудоустройства в отраслях, связанных с гонками. Из тех выпускников 2019 года, которые взяли факультативы, примерно 20% нашли возможности, связанные с гонками. Общий уровень занятости в NASCAR Tech в 2019 году составил 84%.

25) Расчетная годовая средняя заработная плата для специалистов по обслуживанию автомобилей и механиков в Службе занятости и заработной платы Бюро статистики труда США, май 2019 г. Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве автомобильных техников.Некоторые выпускники UTI получают работу в рамках своей области обучения на должностях, отличных от технических, например, сервисный писатель, смог. инспектор и менеджер по запчастям. Информация о заработной плате для Содружества Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве техников и механиков по обслуживанию автомобилей в Содружестве Массачусетс (49-3023) составляет от 29 050 до 45 980 долларов (данные по Массачусетсу, данные за май 2018 г., просмотр за 10 сентября 2020 г.). Информация о зарплате в Северной Каролине: The U.S. Согласно оценке Министерства труда США, средняя почасовая оплата в размере 50% квалифицированных автомобильных техников в Северной Каролине, опубликованная в мае 2019 года, составляет 19,52 доллара США. Бюро статистики труда не публикует данные начального уровня. данные о зарплате. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 13,84 и 10,60 долларов соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г. и Механика, просмотр 14 сентября 2020 года.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

26) Расчетная годовая средняя зарплата сварщиков, резчиков, паяльщиков и паяльщиков в Бюро трудовой статистики США по занятости и заработной плате, май 2019 г. Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве техников-сварщиков. Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от технических специалистов, например, сертифицированный инспектор и контроль качества.Информация о заработной плате в штате Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих сварщиками, резчиками, паяльщиками и брейзерами в штате Массачусетс (51-4121), составляет от 33 490 до 48 630 долларов. (Данные по Массачусетсу и развитию трудовых ресурсов за май 2018 г., просмотр за 10 сентября 2020 г.). Зарплата в Северной Каролине информация: Министерство труда США оценивает почасовую заработную плату в среднем 50% для квалифицированных сварщиков в Северной Каролине, опубликованную в мае 2019 года, и составляет 19 долларов.77. Бюро статистики труда не публикует данные о заработной плате начального уровня. Однако 25-е и 10-й процентиль почасовой оплаты труда в Северной Каролине составляют 16,59 и 14,03 доллара соответственно. (Бюро статистики труда, Министерство труда, занятости и заработной платы США, май 2019 г. Сварщики, резаки, паяльщики и брейзеры, просмотрено в сентябре 14, 2020.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

28) Расчетная годовая средняя заработная плата специалистов по ремонту кузовов и связанных с ними автомобилей в США.С. Занятость и заработная плата Бюро статистики труда, май 2019 г. Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве техников по ремонту после столкновений. Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от технических, например оценщик, оценщик. и инспектор. Информация о заработной плате для Содружества Массачусетса: средний годовой диапазон заработной платы начального уровня для лиц, занятых в качестве ремонтников автомобилей и связанных с ними ремонтных работ (49-3021) в Содружестве Массачусетса, составляет от 31 360 до 34 590 долларов США (Массачусетс по труду и развитию рабочей силы, данные за май 2018 г. просмотрено 10 сентября 2020 г.).Зарплата в Северной Каролине информация: Департамент труда США оценивает почасовую заработную плату в размере 50% для квалифицированных специалистов по борьбе с авариями в Северной Каролине, опубликованную в мае 2019 года, и составляет 21,76 доллара США. Бюро статистики труда не публикует данные о заработной плате начального уровня. Тем не мение, 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 16,31 и 12,63 доллара соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2018 г. 14 сентября 2020.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

29) Расчетная годовая средняя заработная плата механиков автобусов и грузовиков и специалистов по дизельным двигателям в Службе занятости и заработной платы Бюро статистики труда США, май 2019 г. Программы UTI готовят выпускников к карьере в отраслях с использованием предоставленного обучения, в первую очередь в качестве дизельных техников . Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от дизельных. техник по грузовикам, например техник по обслуживанию, техник по локомотиву и техник по морскому дизелю.Информация о заработной плате для штата Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве механиков автобусов и грузовиков. и специалистов по дизельным двигателям (49-3031) в штате Массачусетс составляет от 29 730 до 47 690 долларов США (Массачусетс, штат Массачусетс, данные за май 2018 г., просмотрено 10 сентября 2020 г.). Информация о зарплате в Северной Каролине: согласно оценке Министерства труда США, средняя почасовая оплата квалифицированных дизельных техников в Северной Каролине составляет около 50%, опубликованная в мае 2019 года, и составляет 22 доллара.04. Бюро статистики труда. не публикует данные о заработной плате начального уровня. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 18,05 и 15,42 доллара соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2018. Механики автобусов и грузовиков и специалисты по дизельным двигателям, просмотр 14 сентября 2020 г.) UTI является образовательным учреждением и не может гарантировать трудоустройство или заработную плату.

30) Расчетная средняя годовая зарплата механиков мотоциклистов в США.С. Занятость и заработная плата Бюро статистики труда, май 2019 г. Программы MMI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве техников мотоциклов. Некоторые выпускники MMI получают работу в рамках своей области обучения на должностях, отличных от технических, например, сервисный писатель, оборудование. обслуживание и запчасти. Информация о заработной плате для Содружества Массачусетса: Средняя годовая заработная плата начального уровня для лиц, работающих в качестве механиков мотоциклов (49-3052) в Содружестве Массачусетса, составляет 28700 долларов (данные по Массачусетсу, данные за май 2018 г., просмотренные 10 сентября 2020 г.) .Информация о зарплате в Северной Каролине: по оценке Министерства труда США почасовая оплата составляет 50% в среднем для Стоимость квалифицированных специалистов по мотоциклам в Северной Каролине, опубликованная в мае 2019 года, составляет 16,92 доллара. Бюро статистики труда не публикует данные о заработной плате начального уровня. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 13,18 и 10,69 долларов. соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г., Motorcycle Mechanics, дата просмотра 14 сентября 2020 г.).) MMI является образовательным учреждением и не может гарантировать работу или заработную плату.

31) Расчетная годовая средняя заработная плата механиков моторных лодок и техников по обслуживанию в Службе занятости и заработной платы Бюро статистики труда США, май 2019 г. Программы MMI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве морских техников. Некоторые выпускники MMI получают работу в рамках своей области обучения на должностях, отличных от технических специалистов, например, в сфере обслуживания оборудования, инспектор и помощник по запчастям.Информация о заработной плате для Содружества Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве механиков моторных лодок и техников по обслуживанию (49-3051) в Содружестве Массачусетса. составляет от 31 280 до 43 390 долларов (данные за май 2018 г., Массачусетс, США, 10 сентября 2020 г.). Информация о зарплате в Северной Каролине: по оценке Министерства труда США почасовая оплата в среднем 50% для квалифицированного морского техника в Северной Каролине, опубликованная в мае 2019 года, составляет 18 долларов.56. Бюро статистики труда не публикует данные начального уровня. данные о зарплате. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 14,92 доллара и 10,82 доллара соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г. Специалисты по обслуживанию, просмотр 2 сентября 2020 г.) MMI является образовательным учреждением и не может гарантировать работу или заработную плату.

34) Расчетная годовая средняя заработная плата операторов компьютерных инструментов с числовым программным управлением в США.С. Занятость и заработная плата Бюро статистики труда, май 2019 г. Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве техников по обработке с ЧПУ. Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от технических, например, оператор ЧПУ, подмастерье. слесарь и инспектор по обработанным деталям. Информация о заработной плате для штата Массачусетс: средняя годовая заработная плата начального уровня для лиц, работающих в качестве операторов станков с компьютерным управлением, металла и пластика (51-4011) в Содружестве штата Массачусетс составляет 36 740 долларов (данные за май 2018 г., данные за май 2018 г., данные за 10 сентября, штат Массачусетс, 2020).Информация о зарплате в Северной Каролине: по оценке Министерства труда США почасовая оплата в среднем 50% для квалифицированных станков с ЧПУ в Северной Каролине, опубликованная в мае 2019 года, составляет 18,52 доллара. Бюро статистики труда не публикует данные начального уровня. данные о зарплате. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 15,39 и 13,30 долларов соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г. Операторы инструмента, просмотр 14 сентября 2020 г.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

38) Курсы Power & Performance не предлагаются в Техническом институте NASCAR. UTI является образовательным учреждением и не может гарантировать работу или заработную плату. Информацию о результатах программы и другую информацию можно найти на сайте www.uti.edu/disclosures.

41) На основе данных, собранных из Бюро статистики труда США, прогнозов занятости (2019-2029), www.bls.gov, просмотренных 8 сентября 2020 года. Прогнозируемое среднее количество вакансий в год, Классификация должностей: Автомеханики и механики — 61 700 человек.Вакансии включают вакансии, связанные с ростом и чистым замещением.

42) На основе данных, собранных из Бюро статистики труда США, прогнозов занятости (2019-2029), www.bls.gov, просмотренных 8 сентября 2020 года. Прогнозируемое среднее количество рабочих мест в год. вакансий по классификации должностей: сварщики, резаки, паяльщики и паяльщики — 43 400 человек. Вакансии включают вакансии, связанные с ростом и чистым замещением.

43) На основе данных, собранных из Бюро статистики труда США, прогнозы занятости (2019-2029), www.bls.gov, просмотрено 8 сентября 2020 г. вакансий по классификации должностей: Механики автобусов и грузовиков и специалисты по дизельным двигателям, 24 500 человек. Вакансии включают вакансии, связанные с ростом и чистым замещением.

46) Студенты должны иметь средний балл не ниже 3.5 и посещаемость 95%.

Универсальный технический институт штата Иллинойс, Inc. одобрен Отделом частного бизнеса и профессиональных школ Совета по высшему образованию штата Иллинойс.

Различные части 4-тактного двигателя

4-тактный двигатель — это тип небольшого двигателя внутреннего сгорания, в котором для завершения одного рабочего цикла используются четыре различных хода поршня. Во время этого цикла коленчатый вал дважды поворачивается, а поршень дважды поднимается и опускается, чтобы запустить свечу зажигания.

Перечень деталей 4-тактного двигателя

Части 4-тактного двигателя малого объема включают:

  • Поршень
  • Коленчатый вал
  • Распредвал
  • Свеча зажигания
  • Цилиндр
  • Клапаны
  • Карбюратор
  • Маховик
  • Шатун
  • Форсунки топливные

Циклы 4-тактного двигателя

Вот детали и функции 4-тактного дизельного двигателя.

1. Ход всасывания

Малые двигатели получают топливо и воздух через карбюратор. Затем карбюратор объединяет топливо и воздух для сгорания. Во время такта впуска впускной клапан между камерой сгорания и карбюратором открывается, что позволяет атмосферному давлению выталкивать топливно-воздушную смесь в цилиндр, когда поршень движется вниз.

2. Ход сжатия

Впускной и выпускной клапаны закрыты в такте сжатия. По мере того, как поршень движется вверх, он сжимает топливно-воздушную смесь.Сжатие облегчает воспламенение свечой зажигания топливно-воздушной смеси в рабочем такте.

3. Рабочий ход

Когда поршень достигает вершины, он находится в оптимальной точке для воспламенения топлива. Свеча зажигания создает высокое напряжение, необходимое для зажигания. Тепло, создаваемое искрой, воспламеняет газ, который затем заставляет поршень вернуться в цилиндр.

4. Ход выхлопа

Когда поршень достигает дна, открывается выпускной клапан.Когда поршень движется обратно вверх, он вытесняет выхлопные газы из цилиндра. Как только поршень достигает вершины, выпускной клапан снова закрывается. Впускной клапан снова открывается, и 4-тактный процесс повторяется.

Свяжитесь с Prime Source Parts and Equipment сегодня

В Prime Source Parts and Equipment мы предлагаем решения по поддержке продукции и стремимся помочь нашим клиентам найти именно те детали, которые нужны. Благодаря нашей обширной сети поставщиков у нас есть беспрецедентный доступ к лучшим запасным частям.

Если вам нужны мелкие детали для двигателей или услуги, свяжитесь с нами сегодня. Наши опытные сотрудники и технические специалисты помогут вам точно определить, какие решения лучше всего подходят для ваших нужд.

2-тактный Vs. 4-тактные двигатели: в чем разница?

Автомобильные двигатели с годами трансформировались, но остались две основные конструкции бензиновых двигателей внутреннего сгорания: 2-тактный и 4-тактный. Хотя мы уверены, что вы хотя бы слышали эти термины раньше, знаете ли вы разницу между ними? Как они работают и что лучше? Читайте дальше, чтобы узнать ответы!

Как работают двигатели внутреннего сгорания и что вообще такое «инсульт»?

Чтобы понять, чем отличаются эти два двигателя, сначала необходимо ознакомиться с основами.

Во время цикла сгорания двигателя поршень перемещается вверх и вниз внутри цилиндра. Термины «верхняя мертвая точка» (ВМТ) и «нижняя мертвая точка» (НМТ) относятся к положению поршня в цилиндре. ВМТ — это его позиция, ближайшая к клапанам, а НМТ — это ее позиция, наиболее удаленная от них. Ход — это когда поршень перемещается из ВМТ в НМТ или наоборот. A c сгорание r evolution или c сгорание c ycle — это полный процесс всасывания газа и воздуха в поршень, его воспламенения и вытеснения выхлопных газов:

  1. Впуск: Поршень движется вниз по цилиндру, позволяя смеси заката и воздуха попасть в камеру сгорания
  2. Компрессия: Поршень движется обратно вверх по цилиндру; впускной клапан закрыт для сжатия газов в пределах
  3. Горение: Искра от свечи зажигания воспламеняет газ
  4. Выпускной клапан: Поршень поднимается вверх по цилиндру, и выпускной клапан открывается

Разница между двухтактным и четырехтактным двигателем

Разница между 2-тактным и 4-тактным двигателями заключается в том, насколько быстро происходит этот процесс цикла сгорания, в зависимости от того, сколько раз поршень перемещается вверх и вниз в течение каждого цикла.

4-тактный:

В 4-тактном двигателе поршень совершает 2-тактный ход за каждый оборот: один такт сжатия и один такт выпуска, за каждым из которых следует обратный ход. Свечи зажигания срабатывают только один раз за каждый второй оборот, а мощность вырабатывается через каждые 4 такта поршня. Эти двигатели также не требуют предварительного смешивания топлива и масла, поскольку имеют отдельный отсек для масла.

Посмотрите это короткое видео, чтобы подробнее узнать, как работает 4-тактный двигатель:

2-тактный:

В двухтактном двигателе весь цикл сгорания завершается всего одним ходом поршня: тактом сжатия, за которым следует взрыв сжатого топлива.Во время обратного хода выхлоп выпускается, и в цилиндр поступает свежая топливная смесь. Свечи зажигания срабатывают один раз за каждый оборот, а мощность вырабатывается за каждые 2 такта поршня. Двухтактные двигатели также требуют предварительного смешивания масла с топливом.

Посмотрите это короткое видео, чтобы подробнее узнать, как работает двухтактный двигатель:

За и против:

Итак, что «лучше»? Вот несколько плюсов и минусов обеих конструкций двигателей:

  • Что касается эффективности, 4-тактный двигатель, безусловно, выигрывает.Это связано с тем, что топливо расходуется раз в 4 такта.
  • Четырехтактные двигатели тяжелее; они весят на 50% больше, чем сопоставимый двухтактный двигатель.
  • Обычно 2-тактный двигатель создает больший крутящий момент при более высоких оборотах, в то время как 4-тактный двигатель создает более высокий крутящий момент при более низких оборотах.
  • 4-тактный двигатель также намного тише, 2-тактный двигатель значительно громче и издает характерный пронзительный «жужжащий» звук.
  • Поскольку двухтактные двигатели предназначены для работы на более высоких оборотах, они также имеют тенденцию изнашиваться быстрее; 4-тактный двигатель обычно более долговечен.При этом двухтактные двигатели более мощные.
  • Двухтактные двигатели имеют гораздо более простую конструкцию, что упрощает их ремонт. У них нет клапанов, а скорее порты. В четырехтактных двигателях деталей больше, поэтому они дороже и ремонт обходится дороже.
  • Двухтактные двигатели требуют предварительного смешивания масла и топлива, а четырехтактные — нет.
  • Четырехтактные более экологически чистые; в двухтактном двигателе сгоревшее масло также выбрасывается в воздух вместе с выхлопными газами.

Двухтактные двигатели обычно используются в небольших приложениях, таких как автомобили с дистанционным управлением, инструменты для газонов, бензопилы, лодочные моторы и внедорожники. Четырехтактные двигатели используются во всем: от картингов, газонокосилок и мотоциклов, вплоть до типичного двигателя внутреннего сгорания в вашем автомобиле. Вам решать, какой движок вы предпочитаете и для чего.

В Berryman Products мы стремимся предоставлять быстрое индивидуальное обслуживание и производить продукцию, соответствующую высочайшим стандартам качества, надежности и экологической ответственности.Посетите наш веб-сайт и страницу в Facebook для получения точной информации и качественных продуктов, необходимых для решения наиболее распространенных проблем с автомобилем.

Рабочие циклы поршневого двигателя

| Aircraft Systems


Ход впуска

Во время такта впуска поршень в цилиндре тянется вниз за счет вращения коленчатого вала. Это снижает давление в цилиндре и заставляет воздух под атмосферным давлением проходить через карбюратор, который дозирует правильное количество топлива.Топливно-воздушная смесь проходит через впускные трубы и впускные клапаны в цилиндры. Количество или вес заправки топливом / воздухом зависит от степени открытия дроссельной заслонки.

Впускной клапан открывается значительно раньше, чем поршень достигает ВМТ на такте выпуска, чтобы вызвать большее количество топлива / воздуха в цилиндр и, таким образом, увеличить мощность в лошадиных силах. Однако расстояние, на которое клапан может быть открыт до ВМТ, ограничено несколькими факторами, такими как возможность того, что горячие газы, оставшиеся в цилиндре от предыдущего цикла, могут вернуться во впускную трубу и систему впуска.


Во всех авиационных двигателях большой мощности впускные и выпускные клапаны находятся вне седел клапанов в ВМТ в начале такта впуска. Как упоминалось выше, впускной клапан открывается перед ВМТ на такте выпуска (ход клапана), а закрытие выпускного клапана значительно задерживается после того, как поршень прошел ВМТ и начал такт впуска (запаздывание клапана). Эта синхронизация называется перекрытием клапанов и предназначена для помощи в охлаждении цилиндра изнутри за счет циркуляции холодной поступающей топливно-воздушной смеси, для увеличения количества топливно-воздушной смеси, вводимой в цилиндр, и для помощи в удалении побочных продуктов сгорания. из цилиндра.

Впускной клапан закрывается примерно на 50–75 ° после НМТ на такте сжатия, в зависимости от конкретного двигателя, чтобы позволить импульсу поступающих газов более полно заряжать цилиндр. Из-за сравнительно большого объема цилиндра над поршнем, когда поршень находится вблизи НМТ, небольшое перемещение поршня вверх в это время не оказывает большого влияния на набегающий поток газов. Это позднее время может зайти слишком далеко, потому что газы могут быть вытеснены обратно через впускной клапан и нарушить цель позднего закрытия.

Ход сжатия

После закрытия впускного клапана продолжающееся движение поршня вверх сжимает топливно-воздушную смесь для получения желаемых характеристик горения и расширения. Заряд запускается с помощью электрической искры при приближении поршня к ВМТ. Время зажигания варьируется от 20 ° до 35 ° до ВМТ, в зависимости от требований конкретного двигателя, чтобы обеспечить полное сгорание заряда к тому времени, когда поршень немного пройдет мимо положения ВМТ.

Многие факторы влияют на угол опережения зажигания, и производитель двигателя потратил много времени на исследования и испытания, чтобы определить наилучшую настройку. Все двигатели имеют устройства для регулировки угла опережения зажигания, и очень важно, чтобы система зажигания была синхронизирована в соответствии с рекомендациями производителя двигателя.

Рабочий ход

Когда поршень движется через положение ВМТ в конце такта сжатия и начинает опускаться на рабочем такте, он толкается вниз за счет быстрого расширения горящих газов в головке блока цилиндров с силой, которая может быть больше 15 тонн (30 000 фунтов на квадратный дюйм) при максимальной выходной мощности двигателя.Температура этих горящих газов может составлять от 3000 до 4000 ° F. Поскольку поршень прижимается вниз во время рабочего хода под давлением горящих газов, оказываемых на него, коленчатый вал меняет движение вниз шатуна на вращательное движение. Затем вращательное движение передается на карданный вал, приводящий в движение воздушный винт. Когда горящие газы расширяются, температура падает до безопасных пределов, прежде чем выхлопные газы выйдут через выхлопное отверстие.

Момент открытия выпускного клапана определяется, среди прочего, желательностью использования как можно большей расширяющей силы и как можно более полной и быстрой продувки цилиндра. Клапан открывается значительно перед НМТ на рабочем ходе (на некоторых двигателях при 50 ° и 75 ° перед НМТ), в то время как в цилиндре все еще сохраняется некоторое давление. Это время используется для того, чтобы давление могло как можно скорее вытеснить газы из выпускного отверстия.Этот процесс освобождает цилиндр от отработанного тепла после достижения желаемого расширения и позволяет избежать перегрева цилиндра и поршня. Тщательная продувка очень важна, потому что любые продукты выхлопа, остающиеся в цилиндре, разбавляют поступающий заряд топлива / воздуха в начале следующего цикла.

Такт выпуска

По мере того, как поршень проходит через НМТ при завершении рабочего такта и начинает движение вверх на такте выпуска, он начинает выталкивать сгоревшие отработавшие газы из выпускного отверстия.Скорость выхлопных газов, выходящих из цилиндра, создает в цилиндре низкое давление. Это низкое или пониженное давление ускоряет поток свежего топлива / воздуха в цилиндр, когда впускной клапан начинает открываться. Открытие впускного клапана должно происходить под углом от 8 ° до 55 ° до ВМТ на такте выпуска на различных двигателях.

Двухтактный цикл

Двухтактный двигатель снова используется в сверхлегких, легких спортивных и многих экспериментальных самолетах. Как следует из названия, двухтактным двигателям требуется только один ход поршня вверх и один ход вниз, чтобы завершить требуемую серию событий в цилиндре.Таким образом, двигатель завершает рабочий цикл за один оборот коленчатого вала. Функции впуска и выпуска выполняются во время одного хода. Эти двигатели могут иметь воздушное или водяное охлаждение и обычно требуют наличия корпуса редуктора между двигателем и гребным винтом.

Цикл вращения

Цикл вращения имеет трехсторонний ротор, который вращается внутри эллиптического корпуса, совершая три из четырех циклов за каждый оборот. Эти двигатели могут быть однороторными или многороторными с воздушным или водяным охлаждением.Они используются в основном с экспериментальными и легкими самолетами. Вибрационные характеристики также очень низкие для этого типа двигателя.

Дизельный цикл

Дизельный цикл зависит от высокого давления сжатия, обеспечивающего воспламенение топливно-воздушного заряда в цилиндре. Поскольку воздух втягивается в цилиндр, он сжимается поршнем, и при максимальном давлении топливо распыляется в цилиндре. В этот момент из-за высокого давления и температуры в цилиндре топливо сгорает, увеличивая внутреннее давление в цилиндре.Это опускает поршень, поворачивая или приводя в движение коленчатый вал. В двигателях с водяным и воздушным охлаждением, которые могут работать на топливе JETA (керосин), используется вариант дизельного цикла. Существует много типов дизельных циклов, включая двухтактные и четырехтактные.


СВЯЗАННЫЕ ЗАПИСИ

2-4-тактные двигатели и потребности в смазке

2-тактные и 4-тактные двигатели

работают в разных условиях, требуя разных методов смазки.

Двухтактные и четырехтактные двигатели работают в разных условиях, требуя разных методов смазки.

Двигатели внутреннего сгорания, двухтактные или четырехтактные, преобразуют химическую энергию, содержащуюся в топливе, в механическую энергию, используемую для приведения в действие транспортного средства или другого оборудования.

Они достигают этого посредством события сгорания, которое включает в себя четыре различных цикла: впуск , сжатие , мощность и выпуск .

Двигатель втягивает воздух / топливо в цилиндр, сжимает его для подготовки к сгоранию, воспламеняет его, чтобы произвести взрыв, который толкает поршень вниз, и, наконец, вытесняет выхлопные газы перед новым запуском цикла.

Различия между 2-тактными и 4-тактными двигателями
Каждое движение поршня вверх или вниз называется ходом . Термины «2-тактный» и «2-тактный», а также «4-тактный» и «4-тактный» часто меняют местами.Основное различие между 2-тактными и 4-тактными двигателями заключается в том, как они удаляют выхлопные газы после сгорания и вводят свежую смесь для следующего цикла.

Конструкция камеры четырехтактного двигателя
Для достижения этой цели в четырехтактном двигателе используются впускные и выпускные отверстия, расположенные в верхней части камеры сгорания. Впускные и выпускные клапаны управляют открытием и закрытием портов для управления входящими и выходящими газами. Впускной канал контролирует поступающий воздух, который вступает в реакцию с топливом при воспламенении.Выхлопное отверстие выводит сгоревшие газы из камеры сгорания.

Цикл сгорания четырехтактного двигателя
Для четырехтактного цикла требуется два полных оборота коленчатого вала для завершения тактов впуска, сжатия, мощности и выпуска. Во время первого оборота топливно-воздушная смесь втягивается в камеру сгорания через впускной канал и сжимается. При втором обороте происходит воспламенение топливно-воздушной смеси и выделяются сгоревшие газы.

1. Ход всасывания

Когда поршень движется вниз по цилиндру, он создает вакуум в пространстве над ним и втягивает воздух в цилиндр через открытый впускной клапан.

2. Ход сжатия

Впускной и выпускной клапаны закрываются, когда поршень движется вверх и сжимает топливно-воздушную смесь, готовясь к сгоранию.

3. Рабочий ход

Во время рабочего такта впускные и выпускные клапаны закрываются, поскольку свеча зажигания воспламеняет топливно-воздушную смесь.Взрыв толкает поршень вниз, вращая коленчатый вал.

4. Такт выпуска

По мере продвижения вверх поршень вытесняет сгоревшие газы через открытый выпускной клапан, подготавливая цилиндр к свежей заправке воздуха и топлива.

Конструкция с двухтактной камерой
Работа двухтактного двигателя намного проще, поскольку в двухтактных двигателях используются отверстия по обе стороны от поршня для контроля газов, которые входят и выходят из цилиндра.Движущийся поршень закрывает и открывает порты, так же как клапаны открываются и закрываются в 4-тактном двигателе.

Цикл сгорания двухтактного двигателя
Двухтактному двигателю требуется всего один оборот коленчатого вала для завершения процесса сгорания. Двигатель срабатывает каждый раз при вращении коленчатого вала, увеличивая вдвое количество взрывов по сравнению с 4-тактным двигателем и вырабатывая больше мощности.

1. Такт впуска-зажигания

Впускной канал открыт при движении поршня вверх.Это создает вакуум в пространстве под поршнем, в результате чего воздух устремляется в картер. Когда воздух проходит через карбюратор, он забирает дозу топлива и масла.

По мере продвижения поршня вверх уже находящаяся в цилиндре топливно-воздушная смесь сжимается. Когда поршень достигает верхней мертвой точки (ВМТ), свеча зажигания воспламеняется, вызывая взрыв топливно-воздушной смеси.

2. Такт сжатия-выпуска

Поршень сжимается взрывом топливовоздушной смеси.Когда поршень движется вниз, сгоревшие газы выпускаются через выхлопное отверстие. Топливно-масляная смесь в картере двигателя находится под давлением, когда поршень движется вниз, и выталкивается через передаточное отверстие в цилиндр. Поступающий заряд выталкивает оставшиеся пары газа из цилиндра.

Двухтактные и четырехтактные двигатели
Еще одно ключевое различие между конструкциями двигателей состоит в том, что двухтактные двигатели дешевле в изготовлении, легче и предлагают более высокое отношение мощности к массе, чем четырехтактные двигатели. .

По этим причинам двухтактные двигатели идеально подходят для ручных приложений, таких как бензопилы, триммеры для струн и рюкзачные воздуходувки. Двухтактные мотоциклы для бездорожья также возвращаются благодаря конструкции двигателей, которые обеспечивают снижение выбросов и более удобный диапазон мощности. Двухтактные двигатели также легче запускать при низких температурах, что делает их идеальными для использования в снегоходах.

С другой стороны, четырехтактные двигатели создают больший крутящий момент на более низких оборотах, обычно обеспечивают большую долговечность оборудования, чем двухтактные двигатели с высокими оборотами, а также обеспечивают лучшую топливную экономичность и меньшие выбросы.По этим причинам 4-тактные двигатели идеально подходят для таких применений, как мотоциклы, квадроциклы / UTV, морские двигатели и гидроциклы.

Смазка для четырехтактных двигателей
Для смазки четырехтактных двигателей используется масло, находящееся в масляном картере. Масло распределяется по двигателю за счет смазки разбрызгиванием или с помощью системы смазочного насоса под давлением; эти системы можно использовать по отдельности или вместе.

Смазка разбрызгиванием достигается частичным погружением коленчатого вала в масляный поддон.Импульс вращающегося коленчатого вала разбрызгивает масло на другие компоненты двигателя, такие как кулачки, пальцы и стенки цилиндров.

Смазка под давлением использует масляный насос для создания пленки смазки под давлением между движущимися частями, такими как основные подшипники, подшипники штока и подшипники кулачка. Он также перекачивает масло в направляющие клапана двигателя и коромысла.

Смазка для двухтактных двигателей
Двухтактные двигатели собирают немного масла под коленчатым валом; однако в 2-тактных двигателях используется система смазки с полным отсутствием смазки, которая сочетает масло и топливо для обеспечения как энергии, так и смазки двигателя.Масло и топливо смешиваются во впускном тракте цилиндра и смазывают важные компоненты, такие как коленчатый вал, шатуны и стенки цилиндра.

Двухтактные двигатели с впрыском масла впрыскивают масло непосредственно в двигатель, где оно смешивается с топливом, в то время как для двухтактных двигателей с предварительным смешиванием требуется смесь топлива и масла, которая смешивается перед установкой в ​​топливный бак. Как правило, двухтактные двигатели изнашиваются быстрее, чем четырехтактные, потому что у них нет специального источника смазки; однако высококачественное масло для 2-тактных двигателей значительно снижает износ двигателя.

Разработка четырехтактного оппозитно-поршневого двигателя с искровым зажиганием

Целью этого проекта была разработка недорогого четырехтактного бензинового двигателя OP путем соединения двух одноцилиндровых поршневых двигателей внутреннего сгорания с боковыми клапанами на блоке, снятием головок. Выбранный двигатель — модель EY15 фирмы Robin America. Соединение этих двух блоков цилиндров позволило создать двигатель с оппозитными поршнями (OPE) с двумя коленчатыми валами. В этом новом двигателе камера сгорания ограничена пространством внутри цилиндра между головками поршней и камерой между клапанами.Поршни движутся по оси цилиндра в противоположных направлениях, что характерно для двигателей с оппозитными поршнями. После сборки двигателя параметры, характерные для OPE, такие как частота вращения, крутящий момент, расход топлива и выбросы, были измерены на динамометре для измерения вихревых токов. На основании собранных данных были рассчитаны мощность, удельный расход и общий КПД, что позволило сделать вывод о том, что двигатель с оппозитно-поршневой конфигурацией дешевле и более мощный. Разработка двигателя с оппозитными поршнями в этом проекте показала, что возможно построить один двигатель из другого, уже используемого, что снизит затраты на производство и разработку.Кроме того, можно получить более высокую мощность при более высоком удельном расходе топлива и меньшей вибрации.

1 Введение

В начале разработки этой конструкции двигателя с противоположным поршнем было обнаружено, что есть основания для дальнейших исследований в этой области. Противоположные поршневые двигатели успешно использовались почти во всех гражданских и военных областях, где они установили рекорды низкого потребления и высокой удельной мощности, которые сохраняются и многие годы спустя, несмотря на несомненный прогресс в этой области [1].Однако возникли два основных препятствия: первое связано с ограничениями, налагаемыми на выбросы двигателей внутреннего сгорания (двухтактные двигатели с противоположными поршнями значительно превышают действующие законодательные ограничения, что в течение некоторого времени привело к незначительной заинтересованности в его разработке. [2]), а второй обусловлен текущим экономическим кризисом и временами жесткой экономии, навязанной международной ситуацией (создающей трудности в инвестировании в исследования двигателей этого типа). После анализа потенциала двигателей этого типа было решено преодолеть два основных препятствия.Было принято решение разработать двигатель внутреннего сгорания, четырехтактный, с искровым зажиганием, с противоположными поршнями. Поскольку были доступны ограниченные материальные ресурсы, было решено разработать одноцилиндровый двигатель с несколько устаревшей технологией, поскольку цели были: показать жизнеспособность двигателя, сделать возможным открытие возможных путей развития этого типа двигателей и попытаться найти ответ на вопрос «почему поршневые двигатели внутреннего сгорания с четырехтактным искровым зажиганием были вытеснены по характеристикам традиционными двигателями?».При разработке желательно сосредоточить внимание на легком и компактном двигателе, который будет использоваться в некоторых авиационных приложениях для замены доминирующих на рынке оппозитных двигателей мощностью до 8 кВт (что подразумевает двухтактный двигатель). Однако выбросы привели к тому, что выбор пал на двигатель с 4-тактным циклом вместо 2-тактного, хотя это сделало бы его тяжелее и менее компактным, чем было бы желательно для применения в авиации. Тем не менее, во время Второй мировой войны большинство поршневых двигателей были 4-тактными [3], и с точки зрения удельной мощности они достигли значений, которые до сих пор трудно сопоставить.Этот выбор также обеспечивает совместимость с широко известными системами очистки газовых стоков.

2 Предшественники

Противоположные поршневые двигатели, которые легли в основу этого альтернативного четырехтактного альтернативного поршневого двигателя с искровым зажиганием и которые оказали наибольшее влияние на его развитие, были: Четырехтактный двигатель Gobron Brillié с искровым зажиганием (успешно использовался в автомобилях в начале двадцатого века. ) и двухтактный двигатель Junkers Jumo 205 с воспламенением от сжатия (который, возможно, был самым успешным поршневым двигателем оппозиции, использовавшимся в авиации до конца Второй мировой войны в гражданских и военных целях).Этот последний двигатель вдохновил в 30-х, 40-х и даже 50-х годах 20 века на разработку двигателей этого типа по обе стороны Атлантики от бывшего Советского Союза до Соединенных Штатов Америки почти для всех видов применения. В ходе исследования поршневых двигателей с противоположным расположением поршней было обнаружено, что с тех пор, как двухтактные дизельные двигатели с противоположными поршнями стали пользоваться успехом, четырехтактные поршневые двигатели с оппозитным зажиганием, которые в начале 20 века успешно применялись производство автомобилей (в частности, французского автомобиля Gobron-Brillié) прекращено.Автомобиль этой марки стал первым автомобилем, преодолевшим мифическую отметку 100 миль в час [4]. Двигатель Gobron-Brillié представлял собой двухцилиндровый четырехпоршневой двигатель с одним коленчатым валом. Два поршня классическим образом соединялись с коленчатым валом шатуном, а два других находились наверху цилиндров. Два последних были соединены перемычкой, соединенной с коленчатым валом двумя очень длинными боковыми шатунами, передающими движение двух верхних поршневых штоков на коленчатый вал.Похоже, что этот двигатель был вдохновлен противоположным поршневым двигателем, приписываемым Wittig 1878 [2], одним из первых успешных противоположных поршневых двигателей и двигателем Robson 1890, работающим аналогичным образом. Между прочим, эти два первых двигателя с противоположными поршнями работали по 4-тактному циклу с впускным и выпускным отверстиями, расположенными в камере сгорания. Двигатель Junkers Jumo 205, разработанный в Германии в 1930-х годах, отличался легкой, компактной конфигурацией с двумя кривошипами, работающей с двухтактным воспламенением от сжатия.Этот двигатель оказал значительное влияние на гражданское и военное авиационное применение, так что он производился по лицензии несколькими производителями для гражданского применения. Это был единственный двухтактный дизельный двигатель, который регулярно использовался в авиации и производился в больших количествах [5]. Даже сегодня он продолжает считаться наиболее эффективным поршневым двигателем, используемым в авиации [1]. Следует отметить, что с 1910 года двигатели с конфигурацией с двумя коленчатыми валами стали более широко использоваться, поскольку они позволяли значительно более компактные рядные конструкции, чем конфигурации с одним коленчатым валом.Этот тип конфигурации затем использовался большинством производителей, что продемонстрировало семейство двигателей Junkers Jumo, Fairbanks Morse 38D, Rolls Royce K60, Leyland L60, Climax Coventry h40 и Харьков Морозов 6TD в широком диапазоне. областей применения.

3 Краткое описание происхождения двигателя

После этого начального этапа исследований была рассмотрена гипотеза построения двигателя из противоположных поршней с двумя коленчатыми валами. Тем не менее, было сочтено более подходящим выбрать 4-тактный двигатель с циклом Отто вместо 2-тактного дизельного двигателя, который мог бы работать от более чем одного топлива при минимально возможных затратах.Для этого была рассмотрена возможность сконструировать двигатель с противоположными поршнями из другого, уже существующего, уменьшив таким образом стоимость производства [6]. Был выбран бензиновый или керосиновый двигатель с боковым клапаном марки Robin America, модель EY15, или водяной насос, см. Рис. 1, даже если он имел несколько устаревшую конфигурацию.

Рисунок 1

Внешний вид и схематическое изображение двигателя [7].

4 Характеристики исходного двигателя

В своей первоначальной конфигурации двигатель EY15 от Robin America, Inc. работает как обычный 4-тактный бензиновый двигатель Otto. Рабочее положение — вертикальное, с рабочим объемом 143 куб. См и максимальной мощностью 3,5 л.с. при 4000 об / мин, питание от карбюратора, с боковыми клапанами в блоке, смазкой разбрызгиванием и зажиганием от транзисторного магнето.

5 Разработка оппозитного поршневого двигателя

Поршневой двигатель внутреннего сгорания, разработанный в ходе этой работы, на стыке двух блоков двигателя Robin EY15, работает в соответствии с 4-тактным циклом с искровым зажиганием.Он имеет рабочий объем 286 куб. См и развивает максимальную мощность 7,3 л.с. при 4000 об / мин. Была принята конфигурация с двойным коленчатым валом, аналогичная двигателю Junkers Jumo 205, но работающая в горизонтальном положении. Синхронизация распределения и передачи мощности обеспечивалась зубчатой ​​передачей, состоящей из четырех зубчатых колес с правыми зубьями (модуль 1,5 мм, две центральные шестерни по 65 зубьев и два приводных вала с 56 зубьями). Двигатель работает на бензине и оснащен двумя оригинальными карбюраторами модели EY15, расположенными с обеих сторон двигателя.Система смазки разбрызгиванием и зажигание от магнето с промежуточным хранением также остались от оригинального двигателя. В центральной части цилиндра расположена камера сгорания объемом 60 куб. См, состоящая из пространства между верхними мертвыми точками обоих поршней и боковой камерой, в которой расположены впускной и выпускной клапаны и свеча зажигания (аналогично той, что случилось с двигателем Gobron Brillié). Первый шаг в конструкции двигателя с противоположным поршнем заключался в снятии головок двух Robin EY15, чтобы два блока можно было соединить вместе в области прокладки головки.Это соединение позволяет обоим поршням располагаться лицом к лицу и двигаться в противоположных направлениях. В этой конфигурации ось одного цилиндра совмещена с осью другого цилиндра, так что два цилиндра в сборе функционируют как один цилиндр, с одним блоком выпускного клапана перед впускным клапаном другого, в пространстве между два блока двигателя. Это позволило уменьшить пространство камеры сгорания, поскольку открытие впускного клапана и закрытие выпускного клапана происходит почти одновременно.Чтобы двигатель работал в этой конфигурации, необходимо решить некоторые проблемы. Во-первых, размещение свечи зажигания (одна из самых больших технических трудностей), во-вторых, пространство между двумя блоками вызывало некоторые вопросы (значение степени сжатия), в-третьих, как соединить два двигателя, чтобы оси цилиндров оставались идеальными. выровнены с камерой сгорания, и, в-четвертых (возможно, самый сложный), как организовать их синхронизацию (чтобы поршни двигались в противоположных направлениях, в то время как система распределения позволяла одновременно открывать оба впускных клапана и, следовательно, одновременное движение оба выпускных клапана).Система синхронизации также должна гарантировать, что коленчатые валы сохраняют свое первоначальное направление вращения и поддерживают передачу мощности от двух коленчатых валов. Наконец, необходимо было снова поставить карбюраторы в вертикальное положение, с впускным каналом в горизонтальном положении и расположить так, чтобы управлять двумя карбюраторами одновременно с помощью одной и той же команды, отказавшись от исходного регулятора скорости. Свеча зажигания, первоначально установленная на головке двигателя, была установлена ​​в одном из блоков двигателя в пространстве между седлом клапана и цилиндром, как показано на рисунке 2.

Рисунок 2

Свеча зажигания в сборе, вид сбоку и сверху.

Поскольку пространство для размещения свечи зажигания было очень маленьким, была использована свеча зажигания меньшего диаметра, чтобы она могла помещаться между цилиндром и клапанами, не создавая помех другим компонентам двигателя. Чтобы гарантировать необходимое пространство для открытия клапанов (без ущерба для степени сжатия и обеспечения газообмена в центральной зоне цилиндра), алюминиевая прокладка, должным образом выпрямленная на параллельных поверхностях, с 5.Между двумя блоками цилиндров разместили толщину 3 мм. Сохранились прокладки оригинальной головки, толщина которых составляла 1,5 мм. Эти прокладки сохраняли исходное положение, помещая между ними алюминиевую прокладку. Высота камеры сгорания составляла 8,3 мм. Чтобы обеспечить выравнивание цилиндров по общей оси двух блоков цилиндров, три направляющих были вставлены в исходное отверстие болтов M8, которыми была затянута исходная головка (см. Рисунок 3). На основании блоков изготовлены две опоры из конструкционной стали и сварены МИГ.Когда блоки были выровнены, были использованы 6 стержней из нержавеющей стали (AISI 304L) диаметром 10 мм с резьбой M10 для обеспечения соединения двух блоков двигателя, как показано на фотографии на Рисунке 3.

Рисунок 3

Деталь алюминиевой проставки, прокладки головки двигателя и направляющих штуцеров.

Зубчатая передача, состоящая из 4 прямозубых шестерен с модулем 1,5 мм, использовалась для синхронизации двух коленчатых валов. Звездочки, используемые в обоих приводных валах, имеют 56 зубьев, а две промежуточные шестерни имеют 65 зубьев.Четырехзвездочная зубчатая передача позволяет поршню одного коленчатого вала перемещаться в направлении, противоположном поршню другого, гарантируя, что распределение перемещается в нужное время как впускной, так и выпускной клапаны, и что оба коленчатых вала сохраняют направление вращения оригинальный двигатель. Для этой зубчатой ​​передачи были выбраны зубчатые колеса с правыми зубьями, как в случае двигателя Junkers Jumo 205, чтобы обеспечить передачу мощности на карданный вал, не вызывая осевых нагрузок на коленчатые валы, размер которых не рассчитан для этого.Для крепления промежуточных валов использовалась стальная пластина, прикрепленная к блоку с помощью восьми болтов М8, что также помогает удерживать блоки вместе. Затем эта стальная пластина была усилена L-образной заслонкой, на которую была вкручена прозрачная крышка из полиэтилентерефталата, чтобы уменьшить шум шестерен и предотвратить разбрызгивание смазки, используемой в шестернях. Следует отметить, что затем часть этой крышки была разрезана, чтобы позволить передавать мощность на приводной вал в верхнем правом углу, как показано на рисунке 4.Чтобы установить карбюраторы вертикально, был построен канал из нержавеющей стали с внутренним диаметром 20 мм (немного меньший диаметр, чем у впускного коллектора). Воздуховод имеет изгиб под углом 90 ° и горизонтальную трубку достаточной длины, чтобы установить карбюратор в вертикальное положение, не вызывая каких-либо неудобств и не подвергаясь воздействию потока горячего воздуха из системы охлаждения двигателя или выпускного коллектора. Карбюраторы располагались по обе стороны от двигателя. Чтобы управлять обоими карбюраторами одновременно и одной командой, было решено использовать систему, состоящую из стального троса, тяги, соединенной со стальным тросом, троса, шкива и ручки переключения передач велосипеда.

Рисунок 4

Окончательная установка ВОМ поршневого двигателя для данной конструкции.

6 Опытная установка

Экспериментальная установка состоит из испытательного стенда двигателя марки STEM-ISI Impianti, модель TD340, оборудованного вихретоковым тормозом Borghi и Saveri, модели FE 150 и аналоговым контроллером Borghi и Saveri, модель A03, STEM-ISI. (1992), инфракрасный газоанализатор от Tecnotest, модель MULTIGAS 488, для бензиновых двигателей, выхлопная система, дополнительный вентилятор охлаждения и система измерения расхода топлива (состоящая из калиброванного топливного бака, топливного бака, цифровой электронной шкалы с разрешение 0.01 г и цифровой таймер с разрешением 0,01 с). На рисунке 5 показан двигатель OP на динамометрическом испытательном стенде, установка и все оборудование.

Рисунок 5

Обзор динамометрического испытательного стенда и встречного поршневого двигателя.

7 Характерные параметры двигателей внутреннего сгорания (ДВС)

Обзор характерных параметров поршневых двигателей внутреннего сгорания будет использован для поддержки презентации и обсуждения экспериментальных результатов.Крутящий момент, мощность и общие характеристики — три наиболее важных характеристических параметра любого двигателя внутреннего сгорания. Эффективная тормозная мощность (в кВт) определяется уравнением (1).

(1) W ˙ б знак равно B 2 π п 60 10 — 3

Где B — крутящий момент, а n — частота вращения двигателя в оборотах в минуту.Расход топлива или массовый расход топлива определяется уравнением (2)

(2) м ˙ ж знак равно м ж Δ т

Где: f — масса топлива, а Δt — временной интервал. Общий КПД определяется соотношением между эффективной тормозной мощностью и тепловой мощностью, подаваемой на двигатель, выраженной в уравнении (3).В свою очередь, тепловая мощность определяется произведением массового расхода топлива на меньшую теплотворную способность того же топлива.

(3) η грамм знак равно W ˙ б м ˙ ж ЧАС V

Где: b — эффективная мощность торможения, f — массовый расход топлива и HV — нижняя теплотворная способность топлива.В данном случае в качестве топлива используется бензин. Для расчетов было принято значение 44000 кДж / кг для бензина с низкой теплотворной способностью [8].

В свою очередь, удельный расход топлива C SF определяется уравнением (4). Этот параметр связывает расход топлива с эффективной тормозной мощностью и позволяет получить хороший срок сравнения между двигателями.

(4) C s ж знак равно м ˙ ж W ˙ б

В технической литературе удельный расход топлива обычно выражается в г / кВтч.Соответственно, уравнение 4 было переформулировано, как представлено в уравнении (5).

(5) C s ж знак равно м ˙ ж час W ˙ б

Где: fh — массовый расход (г / ч).

Расход топлива (в час) или массовый расход топлива в г / ч определяется уравнением (6).

(6) м ˙ ж час знак равно м ж Δ т 3600

Объемный КПД η V , уравнение (7) [9], связывает количество воздуха, фактически вводимого в цилиндр за цикл, с теоретической емкостью заполнения цилиндра в том же цикле.Это один из наиболее важных параметров при характеристике и моделировании четырехтактных двигателей внутреннего сгорания.

(7) η V знак равно м а м а т знак равно м а ρ а я V d

Где: м a — масса, которая фактически входит в цилиндр в каждом цикле, м при — масса, которая теоретически заполняет цилиндр, ρai , плотность воздуха (или смеси ) при атмосферных условиях и V d , перемещаемый объем.Теоретически масса свежего заряда в каждом цикле должна быть равна произведению плотности воздуха (или смеси), оцененной в атмосферных условиях вне двигателя, на смещение, , то есть ., на объем, вытесняемый поршнем. . Однако из-за сокращения времени, доступного для впуска и потерь нагрузки из-за существующих ограничений потока, только меньшее количество от теоретического количества свежего заряда, поступающего в цилиндр при атмосферных условиях [10], в конечном итоге попадает в цилиндр.Значение объемного КПД зависит от нескольких переменных двигателя, таких как частота вращения двигателя, давление во впускном и выпускном коллекторах и геометрия системы [11]. В этом случае уравнение (8) представлено как отношение между фактически допустимым расходом в цилиндре и массовым расходом, который теоретически допустим для этой скорости вращения.

(8) η V знак равно η р м ˙ а ρ а я V d η

Где: η R представляет количество оборотов за цикл, а ṁ a — массовый расход, который фактически поступает в цилиндр.На практике значение объемного КПД получается из типа цикла, крутящего момента, отношения количества топлива к воздуху, плотности воздуха, вытесненного объема, общего КПД и более низкой теплотворной способности топлива, как показано в уравнении (9), которое получается из комбинация уравнений (1) и (4), среди прочего.

(9) η V знак равно η р 60 м ˙ ж А F ρ а я V d η

Где: AF представляет соотношение топлива и воздуха с учетом значения 14.7. Соотношение топливо-воздух ( AF ), уравнение (10), связывает массу воздуха с массой топлива м f . Эти отношения также могут быть представлены как отношения между массовыми расходами.

(10) А F знак равно м а м ж знак равно м ˙ а м ˙ ж

8 Представление результатов

Данные, относящиеся к частоте вращения двигателя (об / мин), крутящему моменту (Н.м), масса израсходованного топлива (г) и время (с) расхода топлива, собранные во время динамометрических испытаний при полной нагрузке двигателя, в сочетании с предыдущими уравнениями, позволяют представить результаты (Рисунок 6). Этот график является результатом наложения двух графиков, первый, где представлена ​​мощность, а второй, где представлены мощность и удельное потребление. На обоих графиках по горизонтальной оси отложена скорость вращения двигателя (об / мин). Вертикальная ось слева соответствует тормозной мощности (кВт), правая ось — значениям тормозного момента (Н.м). В нижней части правой оси можно прочитать значения удельного расхода тормоза (г / кВтч). Оранжевые точки представляют собой результаты эффективной тормозной мощности, синие точки — данные крутящего момента, а удельное потребление отображается красным внизу. Соответствующие строки являются результатом полиномиальной интерполяции второго порядка, выполненной в программе Excel. Кривые следуют ожидаемой тенденции, однако следует отметить, что снижение крутящего момента с 2400 об / мин до 2800 больше не проверяется на 3200 и 3600.Фактически, только на 4000 об / мин снова замечается снижение крутящего момента. Значения, полученные при 2800 об / мин, кажутся необычными даже для конкретного расхода, который представляет собой значения выше, чем значения тестов на более близкой скорости.

Рисунок 6

Характеристики двигателя.

На графике на Рисунке 7 можно увидеть результаты глобальной эффективности и ее полиномиальную кривую тренда второго порядка, построенную в Excel.На этом графике показана потеря эффективности при 2800 об / мин, при этом наилучший общий выход будет выявлен в следующем тесте при 3200 об / мин.

Рисунок 7

Кривая общей производительности двигателя.

График на Рисунке 8 показывает результаты объемного КПД и его полиномиальную кривую тренда второго порядка, построенную в Excel. Можно заметить, что кривая тенденции показывает небольшое снижение от 1600 об / мин до значения 2800 об / мин, от которого кажется почти незаметное снижение.Если выбрать линейную линию тренда, разница будет практически незначительной.

Рисунок 8

Кривая объемного КПД как функция скорости вращения.

9 Выводы

Разработка встречно-поршневого двигателя в результате соединения двух идентичных двигателей показала, что возможно построить один двигатель из существующего, тем самым снизив затраты на его производство и разработку.Кроме того, OPE обеспечивает более высокую мощность, лучшее удельное потребление и более высокую пропускную способность. Результаты разработки этого двигателя с противоположными поршнями также позволили идентифицировать области, в которых этот двигатель превзошел и где может быть широкий диапазон возможностей развития при исследовании этого типа двигателей, а именно в улучшении сгорания. условия. Среди различных возможностей — модернизация системы управления и питания двигателя с использованием электронного управления зажиганием, непосредственного впрыска топлива, наддува и строительства более компактной камеры сгорания, способствующей усилению турбулентного движения после воспламенения смеси. .

Настоящее исследование частично финансировалось Fundação para a Ciência e Tecnologia (FCT) в рамках проекта UID / EMS / 00151/2013 C-MAST, со ссылкой на POCI-01-0145-FEDER-007718.

Ссылки

[1] Бройо Ф., Сантос А., Грегорио Дж. (30 июня — 2 июля 2010 г.). Вычислительный анализ продувки двухтактного дизельного двигателя с оппозитными поршнями. Процедуры всемирных инженерных конгрессов 2010 Том II, WCE 2010, (Лондон, Соединенное Королевство): 1448-1453. Искать в Google Scholar

[2] Pirault J-P., Флинт М. (2009). Противоположные поршневые двигатели: эволюция, использование и будущее применение, Warrendale: SAE International. Искать в Google Scholar

[3] Fernandes A. (2008). Compêndio de Motores Alternativos, Centro de Formação Militar e Técnica, Португалия: Força Aérea Portuguesa, Ministério da Defesa Nacional. Искать в Google Scholar

[4] The Autocar. Справочник Autocar, Справочник по автомобилю (9-е издание), Лондон: Илифф и сыновья. Искать в Google Scholar

[5] Gonçalves R.(2014). 3D CFD-моделирование четырехтактного оппозитно-поршневого двигателя с холодным потоком (кандидатская диссертация). Ковильян: Universidade da Beira Interior. Ищите в Google Scholar

[6] Алвес, Ф. (2011), Rendimento volumétrico de ummotor de pigões opostos a quatro tempos (магистерская диссертация). Ковильян: Университет внутренних дел Бейры. Искать в Google Scholar

[7] Service Manual EY15-3, EY20-3 Engines (2001), Robin America, Inc. Искать в Google Scholar

[8] Martins J., Motores de Combustão Interna (2005), Porto : Publindustria.Ищите в Google Scholar

[9] Хейвуд Дж., Основы внутреннего сгорания (1988), Нью-Йорк: McGraw-Hill International Editions. Искать в Google Scholar

[10] Пешич Р., Давинич А., Петкович С., Таранович Д., Милорадович Д. (2013). Аспекты измерения объемного КПД поршневых двигателей. Тепловые науки 17-1, 35-48. Искать в Google Scholar

[11] Николау Г., Скаттолини Р., Сивьеро К. (1996). Моделирование объемного КПД двигателей с интегральной схемой: параметрические, непараметрические и нейронные методы. Инженерная практика управления 4-10, 1405-1415. Искать в Google Scholar

Поступила: 13.03.2018

Принято: 09.07.2018

Опубликовано в сети: 03.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *