Кислородные датчики: подробное руководство | Denso AM
Вы наверняка знаете, что в вашем автомобиле установлен кислородный датчик (или даже два!)… Но зачем он нужен и как он работает? На часто задаваемые вопросы отвечает Стефан Верхоеф (Stefan Verhoef), менеджер DENSO по продукту (кислородные датчики).
B: Какую работу выполняет датчик кислорода в автомобиле?
O: Датчики кислорода (также называемые лямбда-зондами) помогают контролировать расход топлива вашего автомобиля, что способствует снижению объема вредных выбросов. Датчик непрерывно измеряет объем несгоревшего кислорода в выхлопных газах и передает эти данные в электронный блок управления (ЭБУ). На основании этих данных ЭБУ регулирует соотношение топлива и воздуха в топливовоздушной смеси, поступающей в двигатель, что помогает каталитическому нейтрализатору (катализатору) работать более эффективно и уменьшать количество вредных частиц в выхлопных газах.
B: Где находится датчик кислорода?
O: Каждый новый автомобиль и большинство автомобилей, выпущенных после 1980 г. , оснащены датчиком кислорода. Обычно датчик установлен в выхлопной трубе перед каталитическим нейтрализатором. Точное местоположение датчика кислорода зависит от типа двигателя (V-образное или рядное расположение цилиндров), а также от марки и модели автомобиля. Для того чтобы определить, где расположен датчик кислорода в вашем автомобиле, обратитесь к руководству по эксплуатации.
В: Почему состав топливовоздушной смеси нужно постоянно регулировать?
O: Соотношение «воздух — топливо» крайне важно, поскольку оно влияет на эффективность работы каталитического нейтрализатора, который снижает содержание оксида углерода (CO), несгоревших углеводородов (CH) и оксида азота (NOx) в выхлопных газах. Для его эффективной работы необходимо наличие определенного количества кислорода в выхлопных газах. Датчик кислорода помогает ЭБУ определить точное соотношение «воздух — топливо» в смеси, поступающей в двигатель, передавая в ЭБУ быстроизменяющийся сигнал напряжения, который меняется в соответствии с содержанием кислорода в смеси: слишком высокого (бедная смесь) или слишком низкого (богатая смесь). ЭБУ реагирует на сигнал и изменяет состав топливовоздушной смеси, поступающей в двигатель. Когда смесь слишком богатая, впрыск топлива уменьшается. Когда смесь слишком бедная — увеличивается. Оптимальное соотношение «воздух — топливо» обеспечивает полное сгорание топлива и использует почти весь кислород из воздуха. Оставшийся кислород вступает в химическую реакцию с токсичными газами, в результате которой из нейтрализатора выходят уже безвредные газы.
В: Почему на некоторых автомобилях устанавливаются два кислородных датчика?
O: Многие современные автомобили дополнительно кроме датчика кислорода, расположенного перед катализатором, оснащаются и вторым датчиком, установленным после него. Первый датчик является основным и помогает электронному блоку управления регулировать состав топливовоздушной смеси. Второй датчик, установленный после катализатора, контролирует эффективность работы катализатора, измеряя содержание кислорода в выхлопных газах на выходе. Если весь кислород поглощается химической реакцией, происходящей между кислородом и вредными веществами, то датчик выдает сигнал высокого напряжения. Это означает, что катализатор работает нормально. По мере износа каталитического нейтрализатора некоторое количество вредных газов и кислорода перестает участвовать в реакции и выходит из него без изменений, что отражается на сигнале напряжения. Когда сигналы станут одинаковыми, это будет указывать на выход из строя катализатора.
В: Какие бывают датчики?
О: Существует три основных типа лямбда-сенсоров: циркониевые датчики, датчики соотношения «воздух — топливо» и титановые датчики. Все они выполняют одни и те же функции, но используют при этом различные способы определения соотношения «воздух — топливо» и разные исходящие сигналы для передачи результатов измерений.
Наибольшее распространение получила технология на основе использования циркониево-оксидных датчиков (как цилиндрического, так и плоского типов). Эти датчики могут определять только относительное значение коэффициента: выше или ниже соотношение «топливо — воздух» коэффициента лямбда 1.00 (идеальное стехиометрическое соотношение). В ответ ЭБУ двигателя постепенно изменяет количество впрыскиваемого топлива до тех пор, пока датчик не начнет показывать, что соотношение изменилось на противоположное. С этого момента ЭБУ опять начинает корректировать подачу топлива в другом направлении. Этот способ обеспечивает медленное и непрекращающееся «плавание» вокруг коэффициента лямбда 1.00, не позволяя при этом поддерживать точный коэффициент 1.00. В итоге в изменяющихся условиях, таких как резкое ускорение или торможение, в системах с циркониево-оксидным датчиком подается недостаточное или избыточное количество топлива, что приводит к снижению эффективности каталитического нейтрализатора.
Датчик соотношения «воздух — топливо» показывает точное соотношение топлива и воздуха в смеси. Это означает, что ЭБУ двигателя точно знает, насколько это соотношение отличается от коэффициента лямбда 1. 00 и, соответственно, насколько требуется корректировать подачу топлива, что позволяет ЭБУ изменять количество впрыскиваемого топлива и получать коэффициент лямбда 1.00 практически мгновенно.
Датчики соотношения «воздух — топливо» (цилиндрические и плоские) впервые были разработаны DENSO для того, чтобы обеспечить соответствие автомобилей строгим стандартам токсичности выбросов. Эти датчики более чувствительны и эффективны по сравнению с циркониево-оксидными датчиками. Датчики соотношения «воздух — топливо» передают линейный электронный сигнал о точном соотношении воздуха и топлива в смеси. На основании значения полученного сигнала ЭБУ анализирует отклонение соотношения «воздух — топливо» от стехиометрического (то есть Лямбда 1) и корректирует впрыск топлива. Это позволяет ЭБУ предельно точно корректировать количество впрыскиваемого топлива, моментально достигая стехиометрического соотношения воздуха и топлива в смеси и поддерживая его. Системы, использующие датчики соотношения «воздух — топливо», минимизируют возможность подачи недостаточного или избыточного количества топлива, что ведет к уменьшению количества вредных выбросов в атмосферу, снижению расхода топлива, лучшей управляемости автомобиля.
Титановые датчики во многом похожи на циркониево-оксидные датчики, но титановым датчикам для работы не требуется атмосферный воздух. Таким образом, титановые датчики являются оптимальным решением для автомобилей, которым необходимо пересекать глубокий брод, например полноприводных внедорожников, так как титановые датчики способны работать при погружении в воду. Еще одним отличием титановых датчиков от других является передаваемый ими сигнал, который зависит от электрического сопротивления титанового элемента, а не от напряжения или силы тока. С учетом данных особенностей титановые датчики могут быть заменены только аналогичными и другие типы лямбда-зондов не могут быть использованы.
В: Чем отличаются специальные и универсальные датчики?
O: Эти датчики имеют разные способы установки. Специальные датчики уже имеют контактный разъем в комплекте и готовы к установке. Универсальные датчики могут не комплектоваться разъемом, поэтому нужно использовать разъем старого датчика.
B: Что произойдет, если выйдет из строя датчик кислорода?
O: В случае выхода из строя датчика кислорода ЭБУ не получит сигнала о соотношении топлива и воздуха в смеси, поэтому он будет задавать количество подачи топлива произвольно. Это может привести к менее эффективному использованию топлива и, как следствие, увеличению его расхода. Это также может стать причиной снижения эффективности катализатора и повышения уровня токсичности выбросов.
B: Как часто необходимо менять датчик кислорода?
O: DENSO рекомендует заменять датчик согласно указаниям автопроизводителя. Тем не менее следует проверять эффективность работы датчика кислорода при каждом техобслуживании автомобиля. Для двигателей с длительным сроком эксплуатации или при наличии признаков повышенного расхода масла интервалы между заменами датчика следует сократить.
Ассортимент кислородных датчиков
• 412 каталожных номеров покрывают 5394 применения, что соответствует 68 % европейского автопарка.
• Кислородные датчики с подогревом и без (переключаемого типа), датчики соотношения «воздух — топливо» (линейного типа), датчики обедненной смеси и титановые датчики; двух типов: универсальные и специальные.
• Регулирующие датчики (устанавливаемые перед катализатором) и диагностические (устанавливаемые после катализатора).
• Лазерная сварка и многоэтапный контроль гарантируют точное соответствие всех характеристик спецификациям оригинального оборудования, что позволяет обеспечить эффективность работы и надежность при длительной эксплуатации.
В DENSO решили проблему качества топлива!
Вы знаете о том, что некачественное или загрязненное топливо может сократить срок службы и ухудшить эффективность работы кислородного датчика? Топливо может быть загрязнено присадками для моторных масел, присадками для бензина, герметиком на деталях двигателя и нефтяными отложениями после десульфуризации. При нагреве свыше 700 °C загрязненное топливо выделяет вредные для датчика пары. Они влияют на работу датчика, образуя отложения или разрушая его электроды, что является распространенной причиной выхода датчика из строя. DENSO предлагает решение этой проблемы: керамический элемент датчиков DENSO покрыт уникальным защитным слоем оксида алюминия, который защищает датчик от некачественного топлива, продлевая срок его службы и сохраняя его рабочие характеристики на необходимом уровне.
Дополнительная информация
Более подробную информацию об ассортименте кислородных датчиков DENSO можно найти в разделе Кислородные датчики, в системе TecDoc или у представителя DENSO.
Устройство и принцип работы кислородного датчика
Содержание:
- Роль коэффициента отработки воздуха в системе ДВС
- Значения коэффициента избыточности воздуха. «Богатая» и «бедная» смеси
- Лямбда-зонд: назначение
- Назначение и устройство датчика кислорода
- Где располагаются запчасти?
- Устройство и принцип работы кислородного датчика
- Устройство лямдба-зонда
- Принцип работы лямбда-зонда для авто
- Лямбда-зонд: виды
- Виды материалов лямбда-зонда
- Кислородный датчик из циркония
- Титановый лямбда-зонд
- Форма лямбда-зонда
- Особенности применения широкополосных лямбда-зондов
- Период работы и выявление недостатков
- Почему ломается лямбда-зонд?
В современных автомобилях есть приборы, которые позволяют оценить влияние работы транспортного средства на окружающую среду.
Роль коэффициента отработки воздуха в системе ДВС
Как известно, принцип работы автомобильного транспортного средства базируется на системе двигателя внутреннего сгорания: за счет потребления (расхода) сгораемого топлива автомобиль черпает энергию, помогающую ему управлять всеми двигательными процессами.
В работе системы ДВС учитывается пропорционное соотношение воздуха и топлива. Идеальное значение получило название стехиометрическое. При таком соотношении топливо в системе ДВС сгорает на 100%. Это не только обеспечивает безупречное движение и работу взаимосвязанных с ним систем, но еще и благоприятно сказывается на влиянии деятельности автомобиля на окружающую среду.
При стехиометрическом соотношении газы авто практически не влияют на загрязнение природы, а потому машина может эксплуатироваться долго и регулярно. Но чтобы обеспечить такое соотношение, производителям автомобиля следует исследовать показатели топливоподачи.
В стехиометрическом соотношении учитываются следующие параметры: 14,7:1, где 14,7 кг – это объем воздуха, а 1 кг – количество топлива, которое требуется для его идеального сгорания. В естественных условиях эксплуатации автомобиля очевидно, что невозможно обеспечить одновременное поступление в ДВС именно такого объема воздушной смеси. Поэтому создатели транспортных средств должны предусмотреть такой уровень топливоподачи, при котором соблюдение этого соотношения будет достигнуто в максимально короткий период.
Значения коэффициента избыточности воздуха. «Богатая» и «бедная» смеси
При расчете топливоподачи учитывают значение коэффициента избыточности воздуха. Он определяется как соотношение поступившего в двигатель газа к объему топливной смеси, необходимому для его полного сгорания. Этот коэффициент обозначается особым символом лямбда («λ»). Значения коэффициента:
Лямбда равна нулю. В таком случае речь идет о достижении стехиометрического соотношения, при котором топливо полностью сгорает в системе двигателя, обеспечивая оптимальные ходовые качества транспортному средству.
Лямбда больше нуля. Здесь речь идет о так называемой «богатой», или перенасыщенной смеси. Причем под «богатым» понимается превышение доли топлива над количеством кислорода, используемого для сгорания этого топлива.
Лямбда меньше нуля. И наоборот: если воздуха в топливовоздушной смеси больше, чем требуется для полного сгорания топлива, смесь считается «бедной».
В зависимости от получившихся расчетов используются 3 системы двигателей, каждая из которых направлена на оптимизацию ходовой активности авто и уменьшение негативного влияния машины на окружающую среду, которое осуществляется за счет выброса газов – результатов переработки топливовоздушной смеси. Виды двигателей, применяемых в зависимости от значения коэффициента избыточности:
1 тип – экономия топлива;
2 тип – интенсивное ускорение подачи топлива;
3 тип – снижение доли вредных примесей в составе топливовоздушной смеси.
Учитывая, какое важное влияние оказывает соотношение отдельных элементов топливовоздушной смеси, в автомобилях используется отдельный прибор, задача которого – определить, правильно ли соблюдаются пропорции. Этот прибор носит название лямбда-зонд, которое связано непосредственно с символом, обозначающим значение коэффициента избыточности воздуха.
Лямбда-зонд: назначение
Лямбда-зонд создан, чтобы определять уровень кислорода в газах после сгорания топливной смеси. Передача информации осуществляется через электронный блок, созданный для управления системой ДВС.
Еще одно предназначение, объясняющее, как работает лямбда-зонд, связано с подготовкой смеси для фильтрации в катализаторе. Так как лямбда-зонд измеряет соотношение уровня кислорода и топлива в ДВС, то при разбалансировке в электронный блок подается соответствующий сигнал о том, что нужно увеличить или, наоборот, уменьшить количество топлива в системе. Когда пропорции идеальные, то есть наблюдается стехиометрическое соотношение, двигатель работает в оптимальном режиме, а потому нагрузка на катализатор снижается.
В конечном итоге выброс вредных веществ, которые появляются при сгорании переизбытков топлива в ДВС, сводится к минимуму. Это положительно сказывается на уровне загрязнения окружающей среды: воздействие выхлопных газов уменьшается.
Назначение и устройство датчика кислорода
Учитывая многозадачность современных транспортных средств, во многих устройствах используется не один, а 2 или даже 4 лямбда-зонда. Чем они отличаются и для чего требуется сразу несколько приборов:
Основная задача первого лямбда-зонда сводится к расчету соотношения уровня горючего и кислорода в ДВС. То есть, первичный кислородный датчик выполняет свою прямую функцию – измерение пропорций и стремление к достижению стехиометрического соотношения.
Второй лямбда-зонд нужен для упрощения работы катализатора. Учитывая возможные «погрешности», которые могут возникать при избытке или недостатке топлива в смеси, второй лямбда-зонд осуществляет повторную проверку соотношения, тем самым подготавливая смесь для катализатора.
Если второй кислородный датчик отсутствует, то все обязанности берет на себя единственное устройство. В таком случае нельзя с уверенностью сказать, что катализатор будет работать на полную мощность: случаи, когда этот прибор выходил из строя раньше положенного срока, не являются редкостью. Поэтому в тех автомобилях, где установлено 2 лямбда-зонда, объем вредных выхлопных газов минимален, а сам катализатор работает максимально продолжительный срок (при отсутствии заводских дефектов и разрушающих факторов).
Учитывая принцип работы обоих устройств, то есть первого и второго лямбда-зондов, первый располагается непосредственно перед нейтрализатором, а второй – после. Симбиоз устройств обеспечивает слаженную работу ДВС и катализатора, что положительно сказывается на работе всего автомобиля.
В некоторых автомобилях количество лямбда-зондов еще больше. Максимально в настоящее время встречается 4 устройства в составе одного транспортного средства. Количество приборов напрямую связано с тем, каков объем мотора. В машине с объемом мотора 2 литра и менее, как правило, располагается 2 устройства. Если у двигателя объем превышает 2 литра, то используются целых 4 прибора.
Один прибор встречается крайне редко. Его можно увидеть на устаревших моделях бюджетных марок, которые были выпущены 15-20 лет назад. У более старых, но дорогих автомобилей, как правило, уже установлено 2 и более приборов.
Где располагаются запчасти?
Чтобы узнать, сколько лямбда-зондов предусмотрено в модели вашего автомобиля, изучите инструкцию по эксплуатации или журналы, рассказывающие про самостоятельный ремонт транспортных средств. Проверку запчастей также можно осуществить в ближайшей мастерской.
Тем, кто хочет самостоятельно найти этот прибор, следует сделать следующее:
Откройте капот автомобиля.
Перейдите к месту, где располагается двигатель. Его несложно отыскать: устройство обычно располагается в центральной части под капотом, в специальной коробке с плотно закрытой крышкой.
Изучите приводящие к двигателю элементы. Обратите внимание на выпускной коллектор. Это большие массивные трубы, располагающиеся в непосредственной близости от двигателя.
В нижней части трубы следует поискать небольшой элемент цилиндрической формы. Он и представляет собой лямбда-зонд, который вы ищите. Если таких приборов несколько, то они будут располагаться рядом друг с другом. Расположение второго прибора не так просто найти. Он будет в нижней части автомобиля, в выпускной системе.
Соответственно, там, где предусмотрено целых 4 детали, вы увидите симметрично расположенные 4 элемента. Главное – не пытаться самостоятельно исправить работу приборов, если нет навыка в ремонте транспортных средств. Выход из строя кислородного датчика негативно сказывается на работе многих систем, поэтому лучше доверить решение этого вопроса профессиональным мастерам.
Устройство и принцип работы кислородного датчика
Чтобы понять, что представляет собой этот элемент, какую роль он играет в работе всей системы двигателя внутреннего сгорания, следует изучить его составляющие и их взаимосвязь с другими элементами.
Устройство лямдба-зонда
В зависимости от вида кислородного датчика его устройство, внешний вид и специфика работы будут незначительно различаться. Самый популярный вид прибора – циркониевый, его структура следующая:
Электроды. У классического устройства их два. Один контактирует с окружающей средой, другой предоставляет доступ к внутренней системе агрегата. Основной объем работы выполняет внешний элемент. Именно через него происходит контакт запчастей с выхлопными газами, которые сами по себе являются разрушающим элементом. Внутренний электрод контактирует с кислородом, который высвобождается или, напротив, заполняет смесь в случае недостатка/избытка топлива.
Нагревательный элемент. Самые первые датчики выпускались без него. Но сейчас все современные лямбда-зонды оснащены этим агрегатом. Нагревательный элемент позволяет устройству быстро достичь оптимальной температуры, которая требуется для запуска его системы. В зависимости от вида лямбда-зонда есть различные типы элементов. В нашем случае используется нагреватель, который должен прогреть деталь минимум до 300°C. Если температура будет недостаточно низкой, кислородный датчик будет показывать некорректное значение.
Электролит – диоксид циркония. Он является важнейшим элементом, который проводит ток, необходимый для обеспечения работы лямбда-зонда. В иных приборах роль электролита выполняет титановый сплав.
Кожух наконечника. На его поверхности предусмотрена специальная перфорация, которая улучшает проникновение отработанных газов в катализатор.
Корпус. Обычно изготавливается из стали с уплотнителями на концах.
Зная состав и структуру лямбда-зонда, можно понять, каким образом осуществляется контроль над состоянием газа и топлива. Эти сведения помогают водителям своевременно «считывать» тревожные сигналы, возникающие при выходе запчастей из строя.
Если лямбда-зонд работает в полную силу, то сгорание топлива осуществляется наиболее эффективно. Это отражается на ходовой характеристике и плавности движения. И напротив: малейшие отклонения в кислородном датчике могут привести к тому, что автомобиль становится чересчур инертным, резким, слишком медленным и т.д.
Принцип работы лямбда-зонда для авто
Основной принцип работы лямбда-зонда базируется на следующем:
оценка уровня топлива в смеси;
передача данных в электрический блок;
корректировка уровня кислорода в смеси;
высвобождение газов и их подготовка к катализатору;
защита катализатора от агрессивного воздействия продуктов горения.
Основной принцип работы этого устройства базируется на том, чтобы определить соотношение топлива и кислорода в топливовоздушной смеси. Если уровень одного из элементов не находится в рамках норматива (стехиометрическое соотношение), лямбда-зонд подает сигнал в электронный блок для корректировки проблемы.
После подачи сигнала осуществляется высвобождение излишнего кислорода или, напротив, насыщение воздухом. Такой способ позволяет поддерживать оптимальный баланс в системе ДВС, что положительно сказывается на работе мотора.
Лямбда-зонд: виды
Кислородные датчики бывают нескольких видов. Они классифицируются по ряду признаков:
Материал.
Форма.
Конструкция.
Благодаря такой классификации можно без труда определить, какой тип устройства используется в вашем автомобиле. Это может пригодиться в том случае, если требуется срочная замена элемента или кратковременный ремонт. Лицам с навыками автомобильного мастера не составит труда исправить погрешность под капотом автомобиля, но только в том случае, если они будут знать, как устроены детали и чем они отличаются от остальных элементов.
Виды материалов лямбда-зонда
Среди материалов, используемых при создании лямбда-зонда, выделяют титан и цирконий. Самым распространенным видом кислородного датчика считается лямбда-зонд, изготовленный из циркония. В составе материала (база) – диоксид циркония. Также при создании используется другой элемент – оксид иттрия. На поверхности лямбда-зонда располагаются мелкие электроды. Они выполнены из платины. Этот материал идеально подходит для реакций окислительно-восстановительного характера.
Кислородный датчик из циркония
Циркониевый лямбда-зонд довольно устойчив к воздействию внешних факторов. Его оболочка находится в непосредственном контакте с окружающей средой, которая состоит из газов, полученных в результате реакций в ДВС. Внутренняя часть прибора взаимодействует с воздухом. В сам кислородный датчик воздух также попадает, что является нормой. Это необходимо для обеспечения оптимальной работы системы.
В составе элемента также есть нагревательный прибор, который представляет собой керамический изолятор. Без этого прибора кислородный датчик будет попросту неисправен, так как для обеспечения оптимального функционирования запчастей требуется достижение определенной температуры. Она составляет 300-400°C. Если керамический изолятор с функцией нагревания не позволит достигнуть указанных параметров температурного режима, не исключено, что система будет выдавать ошибку (например, показывать недостаточный уровень топлива в составе топливовоздушной смеси).
Несмотря на жесткие требования к соблюдению температурного режима, необходимого для корректной работы устройства, не нужно допускать его перегрева. Если температура зонда достигнет 950°C, устройство попросту выйдет из строя. В таком случае ремонт будет бессилен: придется менять неисправный элемент на новый, так как при такой температуре важнейшие элементы лямбда-зонда сгорают.
При эксплуатации и замене неисправного либо устаревшего лямбда-зонда стоит учитывать, что циркониевый элемент не предусматривает присоединение дополнительных приводящих проводов. Это приведет к появлению дисбаланса: по новым каналам будет поступать дополнительный кислород, что скажется на качестве сигнала и работы запчастей. Иными словами, если мастер по ошибке решить присоединить к кислородному циркониевому датчику дополнительные провода, то он попросту перестанет показывать корректную информацию, что приведет к неправильному соотношению уровня топлива и кислорода, увеличению потребления топлива и росту объемов выхлопа загрязняющих веществ.
Титановый лямбда-зонд
Второй вид материала, используемый при создании кислородного датчика, – это титан. По своему внешнему виду и принципу работы он во многом схож с предыдущей моделью, однако базу составляет диоксид не циркония, а титана.
Информация о соотношении элементов в системе топливовоздушной смеси передается благодаря изменению уровня проводимости. Эти сведения поступают в электронный блок, который затем распределяет необходимое количество топлива для корректировки получившегося значения.
Еще одно различие между титановым и циркониевым лямбда-зондом заключается в том, что для работы первого устройства требуется более высокая температура. Чтобы привести прибор в действие, он должен нагреться минимум на 700°C. Также устройство осуществляет свою работу без дополнительного контакта с кислородом, за исключением процессов, которые происходят внутри самого датчика (анализ соотношения топлива и кислорода и отправка полученных сведений).
Титановый датчик считается менее удобным. Он дольше нагревается, требует более высокой температуры, а потому используется лишь в нескольких авто. В большинстве моделей современных транспортных средств используется циркониевый вариант.
Форма лямбда-зонда
Кислородные датчики классифицируются в зависимости от ширины, поэтому среди них выделяют широко- и узкополосные запчасти. В первом случае речь идет о приборе современного плана. Он используется и на входе, и на выходе, а потому считается универсальным.
Особенности такого лямбда-зонда – выявление цифровых отклонений от нормы. То есть, широкополосный лямбда-зонд предназначен для точного расчета соотношения между кислородом и топливом. Он позволяет с легкостью определить, является ли смесь «богатой» или «бедной», а также подает сигналы в электрический блок, какая именно корректировка позволит достичь стехиометрического соотношения.
Такие элементы могут быть установлены и на двигатели, которые используют «обедненную» смесь. Благодаря своим свойствам широкополосные датчики нагреваются так же, как и титановые. Их средняя температура для активации работы составляет 650°C.
Основное преимущество такого датчика – своевременная регулировка смеси. За счет наличия насосной и измерительной систем осуществляется замер показателей, а затем их корректировка. Как это работает:
Прибор измеряет состав смеси.
Показатели сравниваются с рекомендованными значениями. У каждого транспортного средства есть свои особенности работы системы ДВС, поэтому у некоторых автомобилей данные могут почти всегда быть в норме, в то время как у других – «скакать» в том или ином направлении.
Если смесь «бедная», то осуществляется высвобождение излишне накопившегося воздуха из системы.
При избытке топлива датчик подает сигнал к электронному блоку, в результате чего осуществляется обогащение кислородом из окружающей среды.
Реакция в системе происходит благодаря измерению напряжения тока. В случае «бедной» смеси, в составе которой преобладает кислород, напряжение увеличивается. И, напротив, для «обогащенной» смеси является нормой снижение уровня напряжения, что является свидетельством того, что пора пополнять запасы газа из внешних источников.
Учитывая сложность процессов, чтобы перемещение кислорода из системы и обратно происходило быстро и без проблем, откачка и наполнение воздухом осуществляется через специальное отверстие. Оно называется диффузионным зазором. Когда кислород высвобождается (а также при обратном процессе), направление тока меняется, как и напряжение в устройстве.
Последние 5 лет преимущественно используются широкополосные датчики. Они более точные и надежные, так как оснащены сверхчувствительными элементами на поверхности лямбда-зонда. Узкополосные зонды учитывают лишь значимые изменения в составе смеси. Если кислород или топливо имеют малый дефицит, прибор все равно будет показывать, что показатели находятся в пределах нормы. Поэтому катализаторы, рядом с которыми установлены узкополосные лямбда-зонды, служат меньше, чем элементы с широкополосными системами.
Особенности применения широкополосных лямбда-зондов
Несмотря на то, что широкополосные устройства показывают определенный уровень напряжения, который принимается за норму, на самом деле в самих датчиках напряжение отсутствует. Продемонстрированные данные – не что иное, как внутренняя система измерителей. То есть прибор попросту отображает определенный норматив, именуемый напряжением, при отклонении от которого происходит некорректная работа в системе ДВС.
За отклонение принимается «обеднение» или «перенасыщение» топливом. И то, и иное не является нормой и подлежит немедленной корректировке, если владелец авто не хочет в будущем иметь проблемы с работой двигателя и его негативным влиянием на окружающую среду.
Чтение напряжения, которое показывает лямбда-зонд, – процесс субъективный. Здесь имеет значение, о каком автомобиле идет речь, какой тип двигателя используется. Все это влияет на исходные данные, которые будет показывать система. Поэтому не следует сравнивать значение, полученное на автомобиле российской марки, с показателями иномарок и наоборот.
Узнать, какое значение лямбда-зонда является нормативом можно в инструкции. Опытные автомобильные мастера, которые специализируются на решении проблем с системой ДВС и ее прилегающими элементами, помогут разобраться со значением для владельцев старых, эксклюзивных или неисправных автомобилей.
Период работы и выявление недостатков
Зная, как работает лямбда-зонд, можно без труда определить состояние этого агрегата в случае отклонения от нормы. В среднем, менять прибор нужно каждые 100 тыс. км пробега. Но порой замена элемента требуется уже через 50 тыс.
Быстрый выход из строя можно назвать особенностью этого агрегата. Так как кислородный датчик регулярно контактирует с газами, получившимися в результате горения топлива, это негативно сказывается на состоянии самого прибора.
Учитывая тот факт, что электронное управление автомобиля находится в тесной взаимосвязи с этим устройством, узнать о возникновении проблем с лямбда-зондом несложно. Если он вышел из строя, на экране появится соответствующая ошибка – загорится лампа Check Engine. Однако лампа может загореться и при выходе из строя иных запчастей, поэтому для моментального и максимального точного определения проблемы можно использовать специальный сканер. Пример — Scan Tool Pro Black Edition. Он подключается к электронному блоку и позволяет «считать» информацию о том, какие именно запчасти требуют срочного ремонта или замены.
Кроме основного признака, позволяющего определить неисправность этого прибора, есть и косвенные факторы. Среди них стоит упомянуть:
падение мощности двигателя в процессе нажатия на педаль газа. Нельзя считать появление этого признака свидетельством того, что лямбда-зонд вышел из строя. Иногда работа ДВС может быть нарушена банальным скачком в электросети, отсутствием достаточного уровня топлива, перегревом и иными факторами, которые можно исправить спустя некоторое время, дав автомобилю отдохнуть без движения;
снижение уровня чувствительности акселератора. Зачастую этот фактор проявляется одновременно с предыдущим признаком. Когда нажатие на газ осуществляется с задержкой, возможно, это связано со снижением уровня работы лямбда-зонда;
«скачки» на дороге, не связанные с наличием плохого дорожного полотна. Так называемое «рваное движение» — один из явных признаков того, что в работе системы ДВС есть определенные сбои. Также этот признак может указывать на проблемы с лямбда-зондом, который нужно менять каждые 50-150 тыс. км пробега.
Наличие одного признака не является гарантией, что ваш кислородный датчик вышел из строя. Но если все факторы имеют место быть, а также загорается лампочка электронного блока, с уверенностью 80% можно сказать, что следует посмотреть состояние лямбда-зонда.
Почему ломается лямбда-зонд?
Причин выхода из строя этого элемента несколько. Среди самых распространенных:
Естественное старение прибора. Кислородный датчик рассчитан на определенное количество циклов. Если система работает слаженно, то есть автомобиль эксплуатируется на допустимой мощности, не возникает перегрузок или сбоев, то можно использовать лямбда-зонд на протяжении 150 тыс. км пробега и даже больше. Но у старых авто или машин с явными недостатками в работе ДВС срок применения этого агрегата обычно ниже в 2-3 раза и может составлять всего 45-50 тыс. км.
Проблемы с электричеством. Когда цепь обрывается, связь с устройством может быть потеряна. Зачастую это случается при ДТП или затоплении автомобиля. В обоих случаях необходимо сразу позаботиться о замене неисправного элемента.
Попадание инородных тел. Несмотря на то, что кислородный датчик в основном контактирует с газами после процесса горения, некоторые его виды осуществляют взаимодействие и с внешними газами – то есть кислородом из окружающей среды. Если диффузионный заслон загрязняется, это приводит к ухудшению работы системы и требует немедленной очистки.
Независимо от причины, которая привела к выходу устройства из строя, следует заняться его ремонтом или заменой в кратчайшие сроки. Этот агрегат играет важную роль в системе ДВС. Он не только «подает сигналы» в блок управления, но и контролирует соотношение топлива и кислорода. Правильная балансировка обеспечивает оптимальный уровень сгорания, при котором количество выделяемых в атмосферу примесей сводится к минимуму, и при этом двигатель осуществляет свою работу более слаженно.
Выбрать инструктора:
- Автоинструктор Юрий
- Автоинструктор Дмитрий
- Автоинструктор Екатерина
- Автоинструктор Ася
- Автоинструктор Дмитрий
- Автоинструктор Лариса
- Автоинструктор Михаил
- Автоинструктор Виктор
- Автоинструктор Юлия
- Автоинструктор Марина
Отзывы:
Все отзывы
Как работает кислородный датчик в двигателе?
Технически кислород жизненно важен для двигателя. Он определяет правильную работу двигателя. Так, для достижения правильного соотношения воздух-топливо производители используют кислородные датчики в выхлопных системах. Кроме того, датчик кислорода в выхлопных газах также известен как «лямбда-зонд». Он расположен перед каталитическим нейтрализатором в выхлопной трубе. Датчик генерирует напряжение в зависимости от количества кислорода в отработавших газах. Таким образом, он обеспечивает обратную связь о составе смеси с системой управления двигателем в режиме реального времени.
Кроме того, производители калибруют систему управления двигателем (EMS). В результате он обеспечивает оптимальную мощность двигателя, выбросы и экономичность во всем рабочем диапазоне двигателя. Кислородный датчик помогает EMS контролировать оптимальные выбросы выхлопной системы. Таким образом достигается идеальное соотношение воздух-топливо 14,7:1.
Модель:
Кроме того, кислородный датчик состоит из гальванической батареи. Датчик содержит два пористых платиновых электрода. Кроме того, между ними находится керамический электролит (двуокись циркония). Кислородный датчик генерирует напряжение в диапазоне от 100 мВ (0,1 В) до максимум 9 В.00 мВ (0,9 вольта). Однако это зависит от уровня кислорода в выхлопных газах. Кроме того, лямбда-зонд сравнивает атмосферный кислород, обычно примерно 21%, с количеством кислорода в выхлопных газах.
Как правило, богатая смесь содержит больше топлива на одну часть кислорода. Таким образом, это означает, что он имеет 0% кислорода. Таким образом, датчик выдает высокое напряжение около 900 мВ. С другой стороны, бедная смесь имеет меньше топлива на часть кислорода. Он может содержать от 3% до 4% кислорода. Итак, датчик выдает низкое напряжение 100 мВ. Однако среднее напряжение датчика составляет ~ 450 мВ, что дает идеальное соотношение смеси 14,7:1.
Критерии:
Богатая смесь – значительная разница между уровнями кислорода в атмосфере и выхлопных газах. Это приводит к высокой проводимости между электродами. Следовательно, выходное напряжение высокое, около 900 мВ.
Бедная смесь – незначительная разница между уровнями кислорода. Это приводит к меньшей проводимости и меньшему выходному напряжению, обычно около 100 мВ.
Нормальная смесь – когда уровень смеси составляет примерно 14,7:1. Тогда выход датчика кислорода будет около 450 мВ.
Характеристики датчика кислорода:
- Он имеет проволоку из нержавеющей стали. В результате он обеспечивает лучшую устойчивость к коррозии и термическим нагрузкам.
- Производители используют позолоченные клеммы на штырьках сигнального и эталонного разъемов. Кроме того, он обеспечивает превосходный контакт даже для мельчайших сигналов напряжения/тока.
- Двойной сварной лазером корпус датчика предотвращает попадание влаги на чувствительный элемент/нагреватель.
- Производители проводят функциональное испытание на качество датчиков O2 при температуре 1000°C.
- Производители также тестируют керамический наперсток под давлением 420 бар, чтобы убедиться в его целостности.
- Измерительный элемент датчика кислорода проходит испытания на «газопроницаемость» при изготовлении.
Датчик кислорода Функция:
Кроме того, кислород необходим для человеческого организма.
Кроме того, компании AC Delco, Bosch, Denso и Hitachi являются одними из ведущих мировых производителей датчиков O2.
Примечание: Изображения (любезно предоставлены соответствующими производителями)
Посмотрите на датчик кислорода в действии:
Подробнее: Как работают датчики двигателя?>>
О команде CarBikeTech
CarBikeTech — это технический блог. Члены команды CarBikeTech имеют более чем 20-летний опыт работы в автомобильной сфере.
Симптомы неисправности кислородного датчика | Firestone Complete Auto Care
Хотя вы, вероятно, уже слышали термин «кислородный датчик», вы можете не знать, что это такое и зачем он вам нужен. Этот компонент является одним из самых важных датчиков в вашем автомобиле и помогает поддерживать производительность двигателя и экологическую безопасность.
Продолжайте читать, чтобы узнать, как работает кислородный датчик, каковы симптомы неисправного кислородного датчика и почему ездить с неисправным кислородным датчиком — плохая идея.
Что делает датчик кислорода?
Датчики O2 измеряют уровень кислорода в выхлопных газах, чтобы оценить «эффективность» двигателя.
Газовые двигатели работают за счет сжигания топливно-воздушной смеси в цилиндрах двигателя. Эта смесь должна быть сожжена в точном соотношении, чтобы работать максимально эффективно. Если это соотношение выключено, смесь в двигателе считается «богатой», если в смеси недостаточно кислорода, или «бедной», если кислорода слишком много — и то, и другое может вызвать вредные выбросы и потенциально повредить ваш двигатель.
Датчик кислорода определяет богатую или обедненную смесь и сообщает модулю управления силовым агрегатом (PCM) о необходимости отрегулировать соотношение. Затем PCM впрыскивает большее или меньшее количество топлива в двигатель.
Многие стандартные автомобили оснащены как минимум двумя кислородными датчиками. Второй датчик также измеряет кислород в потоке выхлопных газов, но только после того, как выхлопные газы прошли через каталитический нейтрализатор. Каталитические нейтрализаторы преобразовывают некоторые нежелательные выхлопные газы, помогая контролировать выброс токсичных веществ. Этот второй датчик O2 расположен после каталитического нейтрализатора, чтобы измерить, насколько эффективно он преобразует выхлопные газы.
Кислородный датчик: принцип работы
Большинство лямбда-зондов генерируют электрический сигнал, который сообщает модулю управления силовым агрегатом вашего автомобиля, насколько нужно изменить топливно-воздушную смесь. Для этого каждый датчик постоянно измеряет уровень кислорода в выхлопном потоке и сравнивает его с уровнем кислорода в наружном воздухе.
Кислородные датчики обычно устанавливаются непосредственно на выхлопной трубе. Одна часть датчика O2 находится в потоке горячих выхлопных газов, а другая контактирует с наружным воздухом. Разница в уровнях кислорода между этими двумя частями вызывает химическую реакцию, в результате которой возникает напряжение низкого уровня от 0,1 до 0,9.вольт. Показание выше 0,45 В указывает на то, что топливо сгорает богато, а значение ниже 0,45 указывает на то, что оно сгорает на обедненной смеси.
Симптомы неисправности кислородного датчика
Кислородные датчики не требуют регулярного обслуживания или замены, как тормозные колодки или моторное масло. Обычно они служат от 30 000 до 100 000 миль и должны быть заменены, как только они выходят из строя. Когда ваш датчик кислорода выходит из строя, это только вопрос времени, когда вы начнете испытывать некоторые из следующих симптомов:
Горящая лампочка проверки двигателя
Хотя лампочка проверки двигателя может указывать на множество различных проблем, одной из наиболее распространенных причин является неисправный датчик кислорода. Как только на приборной панели загорится индикатор проверки двигателя, назначьте встречу в местном сервисном центре Firestone Complete Auto Care для диагностики двигателя. Если вы водите автомобиль с большим пробегом, скорее всего, виноват кислородный датчик.
Однако несколько других распространенных отказов механических или электрических компонентов могут привести к слишком большому или слишком малому количеству воздуха или топлива. Итак, пусть профессионал диагностирует основную причину, а не просто заменяет датчик O2.
Низкий расход бензина (плюс неприятные запахи и черный дым)
Когда датчик кислорода выходит из строя, ваш автомобиль может компенсировать это, впрыскивая больше топлива в двигатель. Это не только приводит к перерасходу топлива и плохой экономии топлива, но также может привести к ряду неприятных побочных эффектов. Избыток несгоревшего топлива, оставшегося в двигателе, может вызвать запах тухлых яиц и даже вызвать появление черного дыма из выхлопной трубы. В некоторых случаях несгоревшее топливо может начать перегревать каталитический нейтрализатор.
Следите за тем, как часто вам приходится заправлять бензобак, и следите за черным дымом из выхлопной трубы. Если причиной является неисправный датчик O2, вы можете не пройти тесты на выбросы во время следующей государственной проверки.
Плохая работа двигателя
Будет ли неисправный датчик O2 вызывать неровный холостой ход и потерю мощности двигателя? Вы держите пари. Кроме того, вы также можете заметить плохое ускорение, пропуски зажигания и даже остановку двигателя. Плохие кислородные датчики нарушают все основные функции двигателя, включая синхронизацию двигателя, интервалы сгорания и соотношение воздух-топливо.
Если вы заметили, что ваш двигатель не работает должным образом, не откладывайте доставку автомобиля на проверку. Замена кислородного датчика намного дешевле, чем замена двигателя.
Можно ли ездить с неисправным кислородным датчиком?
Короткий ответ: «Да», двигатель вашего автомобиля может работать без кислородных датчиков. Но без них ваш PCM не будет знать, сколько топлива впрыскивать в двигатель. В зависимости от того, как он выйдет из строя, вы можете получить чрезмерно богатую топливную смесь, что резко снизит экономию топлива и забьет каталитический нейтрализатор избыточным несгоревшим топливом. Этот избыток может сгореть в каталитическом нейтрализаторе, повышая его температуру и потенциально сокращая срок его службы.
Примечание. Замена кислородного датчика намного дешевле, чем замена каталитического нейтрализатора.
Нужны ли кислородные датчики? Да. Хотя поначалу ущерб может показаться небольшим, чем дольше вы ездите с неисправным кислородным датчиком, тем больше будет ущерб. В конце концов, вы можете столкнуться с грубым холостым ходом, плохим ускорением, пропусками зажигания в двигателе, горящим индикатором проверки двигателя и неудачными тестами на выбросы.
Позвольте нам разобраться в проблемах с датчиком O2
Не задерживайте дыхание в ожидании устранения проблем с датчиком O2.