Как работает мотор – «Как работает ДВС?» – Яндекс.Знатоки

Содержание

Как работает двигатель автомобиля – «сердечные» дела вашей машины

Прежде, чем рассматривать вопрос, как работает двигатель автомобиля, необходимо хотя бы в общих чертах разбираться в его устройстве. В любом автомобиле установлен двигатель внутреннего сгорания, работа которого основана на преобразовании тепловой энергии в механическую. Заглянем глубже в этот механизм.

Как устроен двигатель автомобиля – изучаем схему устройства

Классическое устройство двигателя включает в себя цилиндр и картер, закрытый в нижней части поддоном. Внутри цилиндра находится поршень с различными кольцами, который перемещается в определенной последовательности. Он имеет форму стакана, в его верхней части располагается днище. Чтобы окончательно понять, как устроен двигатель автомобиля, необходимо знать, что поршень с помощью поршневого пальца и шатуна связывается с коленчатым валом.

Для плавного и мягкого вращения используются коренные и шатунные вкладыши, играющие роль подшипников. В состав коленчатого вала входят щеки, а также коренные и шатунные шейки. Все эти детали, собранные вместе, называются кривошипно-шатунным механизмом, который преобразует возвратно-поступательное перемещение поршня в круговое вращение коленчатого вала.

Верхняя часть цилиндра закрывается головкой, где расположены впускной и выпускной клапаны. Они открываются и закрываются в соответствии с перемещением поршня и движением коленчатого вала. Чтобы точно представить, как работает двигатель автомобиля, видео в нашей библиотеке следует изучить также подробно, как и статью. А пока мы попытаемся выразить его действие на словах.

Как работает двигатель автомобиля – кратко о сложных процессах

Итак, граница перемещения поршня имеет два крайних положения – верхнюю и нижнюю мертвые точки. В первом случае поршень находится на максимальном удалении от коленчатого вала, а второй вариант представляет собой наименьшее расстояние между поршнем и коленчатым валом. Для того чтобы обеспечить прохождение поршня через мертвые точки без остановок используется маховик, изготовленный в форме диска.

Важным параметром у двигателей внутреннего сгорания является степень сжатия, напрямую влияющая на его мощность и экономичность.

Чтобы правильно понять принцип работы двигателя автомобиля, необходимо знать, что в его основе лежит использование работы газов, расширенных в процессе нагревания, в результате чего и обеспечивается перемещение поршня между верхней и нижней мертвыми точками. При верхнем положении поршня происходит сгорание топлива, поступившего в цилиндр и смешанного с воздухом. В результате температура газов и их давление значительно возрастает.

Газы совершают полезную работу, благодаря которой поршень перемещается вниз. Далее через кривошипно-шатунный механизм действие передается на трансмиссию, а затем на автомобильные колеса. Отработанные продукты удаляются из цилиндра через систему выхлопа, а на их место поступает новая порция топлива. Весь процесс, от подачи топлива до вывода отработанных газов, называется рабочим циклом двигателя.

Принцип работы двигателя автомобиля – различия в моделях

Существует несколько основных видов двигателей внутреннего сгорания. Наиболее простым является двигатель с рядным расположением цилиндров. Расположенные в один ряд, они составляют в целом определенный рабочий объем. Но постепенно некоторые производители отошли от такой технологии изготовления к более компактному варианту.

Много моделей используют конструкцию V-образного двигателя. При таком варианте цилиндры расположены под углом друг к другу (в пределах 180-ти градусов). Во многих конструкциях количество цилиндров составляет от 6 до 12 и более. Это позволяет значительно сократить линейный размер двигателя и уменьшить его длину.

Таким образом, разнообразие двигателей позволяет успешно их использовать в автомобилях самого разного назначения. Это могут быть стандартные легковые и грузовые машины, а также спортивные авто и внедорожники. В зависимости от типа двигателя вытекают и определенные технические характеристики всей машины.

carnovato.ru

Как работает двигатель автомобиля? Причины поломок и неисправностей

Расскажем, как работает двигатель внутреннего сгорания, какие неполадки возникают в работе и как продлить его жизненный цикл

Цель работы двигателя — преобразование бензина в движущую силу. Преобразовывается бензин в движущую силу путем сжигания внутри движка. Поэтому он и называется двигателем внутреннего сгорания.

Запомните две вещи:

1. Есть разные виды двигателей внутреннего сгорания:

  • бензиновый двигатель;
  • дизельный;
  • дизель с турбонаддувом;
  • газовый двигатель.

Различия у них в принципах работы, плюс у каждого свои преимущества и недостатки.

2. Бывают еще двигатели внешнего сгорания. Лучший пример — паровой двигатель парохода. Топливо (уголь, дерево, масло) сгорает вне двигателя, образовывая пар, который и есть движущая сила. Двигатель внутреннего сгорания более эффективен, так как ему нужно меньше топлива на километр пути. К тому же он намного меньше эквивалентного двигателя внешнего сгорания. Это объясняет, почему на улицах сейчас не ездят автомобили с паровыми движками.

Как работает система внутреннего сгорания двигателя

Принцип, лежащий в основе работы любого поршневого двигателя внутреннего сгорания: если вы поместите небольшое количество высокоэнергетического топлива, например бензина, в небольшое замкнутое пространство, и зажжете его, то при сгорании в виде газа высвобождается большое количество энергии. Если создать непрерывный цикл маленьких взрывов, скорость которых будет, например, сто раз в минуту, и пустить получаемую энергию в правильное русло, то получим основу работы двигателя.

Автомобили используют «четырехтактный цикл сгорания» для преобразования бензина в движущую силу четырех колесного автомобиля. Четырехтактный подход также известен как цикл Отто, в честь Николауса Отто, который изобрел его в 1867 году. К четырем тактам относятся:

  • такт впуска;
  • такт сжатия;
  • такт горения;
  • такт выведения продуктов сгорания.

Поршень двигателя в этой истории главный «работяга». Он своеобразно заменяет картофельный снаряд в картофельной пушке. Поршень соединен с коленчатым валом-шатуном. Как только коленчатый вал начинает вращение, происходит эффект «разряда пушки». Рассмотрим цикл сгорания бензина в цилиндре подробнее.

  • Поршень находится сверху, затем открывается впускной клапан и поршень опускается, при этом движок набирает полный цилиндр воздуха и бензина. Это такт называется тактом впуска. Для начала работы достаточно смешать воздух с небольшой каплей бензина.
  • Затем поршень движется обратно и сжимает смесь воздуха и бензина. Сжатие делает взрыв более мощным.
  • Когда поршень достигает верхней точки, свеча испускает искры, чтобы зажечь бензин. В цилиндре происходит взрыв бензинового заряда, что заставляет поршень опуститься вниз.
  • Как только поршень достигает дна, открывается выхлопной клапан, и продукты сгорания выводятся из цилиндра через выхлопную трубу.

Теперь двигатель готов к следующему такту и цикл повторяется снова и снова.

Теперь рассмотрим составные части автомобильного мотора, работа которых взаимосвязана. Начнем с цилиндров.

Составные части двигателя

Схема № 1

Основа двигателя – это цилиндр, в котором вверх-вниз двигается поршень. Двигатель, описанный выше, имеет один цилиндр. Это характерно для большинства газонокосилок, но в автомобильных движках цилиндров четыре, шесть и восемь. В многоцилиндровых моторах цилиндры обычно размещаются тремя способами: а) в один ряд; б) однорядно с наклоном от вертикали; в) V-образным способом; г) плоским способом (горизонтально-оппозитный).

У разных способов расположения цилиндров разные преимущества и недостатки с точки зрения гладкости в работе, производственных издержек и характеристик. Эти преимущества и недостатки делают разные способы расположения цилиндров подходящими для разных видов транспорта.

Свечи зажигания

Свечи зажигания дают искру, которая воспламеняет воздушно-топливную смесь. Искра должна вспыхнуть в нужный момент для безотказной работы двигателя. Если движок начинает работать нестабильно, дергается, слышно что «пыхтит» он сильнее чем обычно, вероятно одна из свечей перестала работать, ее нужно заменить.

Клапаны (см. схему №1)

Впускные и выпускные клапаны открываются, чтобы впустить воздух и топливо и выпустить продукты сгорания. Обратите внимание, оба клапана закрыты в момент сжатия и сгорания топливной смеси, обеспечивая герметичность камеры сгорания.

Поршень

Поршень – это цилиндрический кусок металла, который движется вверх-вниз внутри цилиндра двигателя.

Поршневые кольца

Поршневые кольца обеспечивают герметичность между скользящим внешним краем поршня и внутренней поверхностью цилиндра. У кольца два назначения:

  • Во время тактов сжатия и сгорания кольца не дают утечь воздушно-топливной смеси и выхлопным газам из камеры сгорания.
  • Кольца не дают моторному маслу попасть в зону сгорания, где оно будет уничтожено.

Если автомобиль начинает «подъедать масло» и приходиться подливать его каждые 1000 километров, значит двигатель автомобиля «устал» и поршневые кольца в нем сильно изношены. Такие кольца пропускают масло в цилиндры, где оно сгорает. По всей видимости, такому двигателю требуется капитальный ремонт.

Шатун

Шатун соединяет поршень с коленчатым валом. Он может вращаться в разные стороны и с обоих концов, т.к. и поршень и коленчатый вал находятся в движении.

Коленчатый вал (распределительный вал)

Схема № 2

Круговыми движениями коленчатый вал заставляет поршень двигаться вверх-вниз.

Маслосборник

Маслосборник окружает коленчатый вал и содержит определенное количество масла, которое собирается в нижней его части (в масляном поддоне).

Причины неполадок и перебоев в двигателе

Если автомобиль с утра не заводится

Если машина с утра не заводится, этому есть три основных причины:

  • плохая топливная смесь;
  • отсутствие сжатия;
  • отсутствие искры.
Плохая топливная смесь — недостаток поступающего воздуха или бензина

Плохая топливная смесь поступает в движок в следующих случаях:

  • Закончился бензин и в двигатель поступает только воздух. Бензин не воспламеняется, сгорания не происходит.
  • Забиты воздухозаборники, и в движок не поступает воздух, который крайне необходим для такта сгорания.
  • В топливе содержатся примеси (например, вода в бензобаке), которые препятствуют горению топлива. Меняйте бензоколонку.
  • Топливная система подает слишком мало или слишком много топлива в смесь, следовательно, горение не происходит должным образом. Если смеси мало, то слабое воспламенения в цилиндре не может прокрутить цилиндр. Если смеси много, то заливает свечи и они не дают искру.

О «залитых» свечах подробнее: если машина не заводится, а бензонасос не перестает подавать топливо в цилиндры, то бензин не воспламеняется, а наоборот «тушит» свечи зажигания. Свечи с «подмоченной репутацией» нормальной искры для воспламенения смеси не дадут. Если открутив свечу обнаружите, что она «мокрая», сильно пахнет бензином — знайте, свечи «залило». Либо подсушите все 4 свечи, выкрутив их и отнеся в теплое помещение, либо посидите в незаведенной машине с нажатой педалью газа — дроссельная заслонка будет открыта и свечи немного подсохнут от поступающего воздуха.

Отсутствие сжатия

Если топливная смесь не сжимается, так как надо, то и не будет требуемого сгорания для работы машины. Отсутствие сжатия возникает по следующим причинам:

  • Поршневые кольца двигателя изношены, поэтому воздушно-топливная смесь просачивается между стенкой цилиндра и поверхностью поршня.
  • Один из клапанов неплотно закрывается, из-за чего смесь вытекает.
  • В цилиндре есть отверстие.

Часто «дырки» в цилиндре появляются в том месте, где верхушка цилиндра присоединяется к самому цилиндру. Между цилиндром и головкой цилиндра есть тонкая прокладка, которая обеспечивает герметичность конструкции. Если прокладка прохудится, то между головкой цилиндра и самим цилиндром образуются отверстия, через которые образуется утечка смеси.

Отсутствие искры

Искра может быть слабой или вообще отсутствовать в случаях:

  • Если свеча зажигания или провод, идущий к ней, изношены, то искра будет слабой.
  • Если провод перерезан или отсутствует вообще, если система, посылающая искры вниз по проводу не работает, как нужно, то искры не будет.
  • Если искра приходит в цикл слишком рано или слишком поздно, топливо не воспламениться в нужный момент, что повлияет на стабильную работу мотора.

Возможны и другие проблемы с двигателем. Например:

  • Если аккумулятор на авто разряжен, то двигатель не сделает ни одного оборота, а автомобиль не заведется.
  • Если подшипники, которые позволяют свободно вращаться коленчатому валу, изношены, коленчатый вал не провернется, а двигатель не запустится.
  • Если клапаны не будут закрываться или открываться в нужный момент цикла, то работа двигателя будет невозможна.
  • Если в автомобиле закончилось масло, поршни не смогут свободно двигаться в цилиндре, и двигатель застопорится.

В исправно — работающем двигателе описанных проблем быть не может. Если они появились, ждите беды.

Если выяснится, что аккумулятор просто разрядился, почитайте, как правильно «прикурить» от другого автомобиля.

Клапанный механизм двигателя и система зажигания

Разберем процессы происходящие в двигателе отдельно. Начнем с клапанного механизма, который состоит из клапанов и механизмов, открывающих и закрывающих проход топливным отходам. Система открытия и закрытия клапанов называется валом. На распределительном валу есть выступы, которые и двигают клапаны вверх и вниз.

Двигатели, в которых вал размещен над клапанами (бывает, что вал размещают внизу), имеют кулачки распредвала, которые регулируют порядок работы цилидров (см. схему №2). Кулачки вала воздействуют на клапаны напрямую или через очень короткие связующие звенья. Эта система настроена так, что клапаны синхронизированы с поршнями. Многие высокоэффективные двигатели имеют по четыре клапана на один цилиндр – два на вход воздуха и два на выход для продуктов сгорания, и такие механизмы требуют два распределительных вала на один блок цилиндров.

Система зажигания создает высоковольтный заряд и передает его на свечи зажигания через провода. Сначала заряд поступает в распределитель, который легко найти под капотом большинства легковых автомобилей. В центр распределителя подключен один провод, а из него выходит четыре, шесть или восемь других бронепроводов, в зависимости от количества цилиндров в двигателе. Эти провода посылают заряд на каждую свечу зажигания. Работа двигателя настроена так, что за один раз только один цилиндр получает заряд от распределителя, что гарантирует максимально плавную работу мотора.

Давайте подумаем, как заводится двигатель, как остывает и как в нем проходит циркуляция воздуха.

Система зажигания двигателя, охлаждения и набора воздуха

Система охлаждения в большинстве автомобилей состоит из радиатора и водяного насоса. Вода циркулирует вокруг цилиндров по специальным проходам, потом для охлаждения, она поступает в радиатор. В редких случаях двигатели автомобиля оснащены воздушной системой. Это делает двигатели легче, но охлаждение при этом менее эффективное. Двигатели с воздушной системой охлаждения, имеют меньший срок службы и меньшую производительность.

Существуют автомобильные двигателя с наддувом. Это когда воздух проходит через воздушные фильтры и попадает прямо в цилиндры. Наддув ставят в атмосферных движках. Для увеличения производительности некоторые двигатели оснащены турбонаддувом. Через турбонаддув воздух, который поступает в двигатель, уже находится под давлением, следовательно, в цилиндр втискивается больше воздушно-топливной смеси. За счет турбонаддува увеличивается мощь движка.

Повышение производительности автомобиля – это круто, но что же происходит, когда вы проворачиваете ключ в замке зажигания и запускаете автомобиль? Система зажигания состоит из электромотора, или стартера, и соленоида (реле стартера). Когда поворачивается ключ в замке зажигания, стартер вращает двигатель на несколько оборотов, чтобы начался процесс сгорания топлива. Чем мощнее мотор, тем сильнее нужен аккумулятор, чтобы дать ему толчок. Так как запуск двигателя требует много энергии, сотни ампер должны поступить в стартер для его запуска. Соленоид или реле стартера, это тот самый переключатель, который справляется с таким мощным потоком электричества. Когда вы проворачиваете ключ зажигания, соленоид активируется и запускает стартер.

Разберем подсистемы автомобильного мотора, отвечающие за то, что поступает в движок (масло, бензин) и за то, что из него выходит (выхлопные газы).

Смазочные жидкости двигателя, топливная, выхлопная и электрические системы

Каким образом бензин приводит в действие цилиндры? Топливная система двигателя выкачивает бензин из бензобака и смешивает его с воздухом так, чтобы в цилиндр поступила правильная воздушно-бензиновая смесь. Топливо подается тремя распространенными способами: смесеобразованием, впрыском через топливный порт и прямым впрыском.

При смесеобразовании карбюратор добавляет бензин в воздух, как только воздух попадает в двигатель.

В инжекторном движке топливо впрыскивается индивидуально в каждый цилиндр либо через впускной клапан (впрыск через топливный порт), либо напрямую в цилиндр. Называется «прямой впрыск».

Масло также играет важную роль в двигателе. Смазочная система не допускает трения жестких стальных частей друг об друга — запчасти не изнашиваются, стальная стружка внутри двигателя не летает. Поршни и подшипники – позволяющие свободно вращаться коленчатому и распределительному валу – основные части, требующие смазки в системе. В большинстве автомобилей, масло засасывается через масляный насос из маслосборника, проходит через фильтр, чтобы очиститься от песка и выработки механизмов мотора, затем, под высоким давлением впрыскивается в подшипники и на стенки цилиндра. Затем масло стекает в маслосборник, и цикл повторяется снова.

Теперь вы знаете больше о том, что поступает в двигатель автомобиля. Но давайте поговорим и том, что выходит из него. Выхлопная система крайне проста и состоит из выхлопной трубы и глушителя. Если бы не было глушителя, в салоне автомобиля были бы слышны все мини-взрывы, происходящие в двигателе. Глушитель гасит звук, а выхлопная труба выводит продукты сгорания из автомобиля.

Электрическая система автомобиля, запускающая машину

Электрическая система состоит из аккумулятора и генератора переменного тока. Генератор переменного тока подключен проводами к двигателю и вырабатывает электроэнергию, необходимую для подзарядки аккумулятора. В незаведенной машине при повороте ключа зажигания за питание всех систем отвечает аккумулятор. В заведенной — генератор. Аккумулятор нужен только, чтобы запустить электрическую систему машины, дальше в работу вступает генератор, который вырабатывает энергию за счет работы двигателя. Аккумулятор в это время заряжается от генератора и «отдыхает». Подробнее об аккумуляторах здесь.

Как увеличить производительность двигателя и улучшить его работу

Любой двигатель можно заставить работать лучше. Работа автопроизводителей над увеличением мощности движка и одновременным уменьшением расхода топлива, не прекращается ни на секунду.

Увеличение объема двигателя. Чем больше объем двигателя, тем больше его мощность, т.к. за каждый оборот двигатель сжигает больше топлива. Увеличение объема двигателя происходит за счет увеличения либо объема цилиндров, либо их количества. Сейчас 12 цилиндров – это предел.

Увеличение степени сжатия. До определенного момента, увеличение степени сжатия смеси увеличивает получаемую энергию. Однако, чем больше сжимается воздушно-топливная смесь, тем выше вероятность того, что она воспламенится раньше, чем свеча зажигания даст искру. Чем выше октановое число бензина, тем меньше вероятность преждевременного воспламенения. Поэтому высокопроизводительные автомобили нужно заправлять высокооктановым бензином, так как двигатели таких машин используют очень высокий коэффициент сжатия для получения большей мощности.

Большее наполнение цилиндра. Если в цилиндр втиснуть больше воздуха и топлива, то на выходе получается больше энергии. Турбонаддувы и наддувы нагнетают давление воздуха и эффективно втискивают его в цилиндр.

Охлаждение поступающего воздуха. Сжатие воздуха повышает его температуру. Тем не менее, хотелось бы иметь как можно более холодный воздух в цилиндре, т.к. чем выше температура воздуха, тем больше он расширяется при горении. Поэтому многие системы турбонаддува и наддува имеют интеркулер. Интеркулер – это радиатор, через который проходит сжатый воздух и охлаждается, прежде чем попасть в цилиндр.

Сделать меньшим вес деталей. Чем легче запчасти двигателя, тем лучше он работает. Каждый раз, когда поршень меняет направление, он тратит энергию на остановку. Чем легче поршень, тем меньше энергии он потребляет. Двигатель из углеродного волокна еще не придумали, но как делают этот материал, читайте тут на Zap-Online.ru.

Впрыск топлива. Система впрыска очень точно дозирует топливо поступающее в каждый цилиндр, повышая производительность двигателя и экономя топливо.

Теперь вы знаете, как работает двигатель автомобиля, а также причины его основных неполадок и перебоев. Если остались вопросы или есть замечания по изложенному материалу, добро пожаловать в комментарии.

zap-online.ru

Как устроен и как работает двигатель внутреннего сгорания?

Двигатель внутреннего сгорания Двигатель внутреннего сгорания, или ДВС – это наиболее распространённый тип двигателя, который можно встретить на автомобилях. Невзирая на тот факт, что двигатель внутреннего сгорания в современных автомобилях состоит из множества частей, его принцип работы предельно прост. Давайте подробнее рассмотрим, что же такое ДВС, и как он функционирует в автомобиле.

ДВС что это?

Двигатель внутреннего сгорания – это вид теплового двигателя, в котором преобразовывается часть химической энергии, получаемой при сгорании топлива, в механическую, приводящую механизмы в движение.

ДВС разделяются на категории по рабочим циклам: двух- и четырёхтактные. Также их различают по способу приготовления топливно-воздушной смеси: с внешним (инжекторы и карбюраторы) и внутренним (дизельные агрегаты) смесеобразованием. В зависимости от того, как в двигателях преобразовывается энергия, их разделяют на поршневые, реактивные, турбинные и комбинированные.

Основные механизмы двигателя внутреннего сгорания

Двигатель внутреннего сгорания состоит из огромного количества элементов. Но есть основные, которые характеризуют его производительность. Давайте рассмотрим строение ДВС и основных его механизмов.

1. Цилиндр – это самая важная часть силового агрегата. Автомобильные двигатели, как правило, имеют четыре и более цилиндров, вплоть до шестнадцати на серийных суперкарах. Расположение цилиндров в таких двигателях может находиться в одном из трёх порядков: линейно, V-образно и оппозитно.

Цилиндры двигателя

2. Свеча зажигания генерирует искру, которая воспламеняет топливно-воздушную смесь. Благодаря этому и происходит процесс сгорания. Чтобы двигатель работал «как часы», искра должна подаваться точно в положенное время.

3. Клапаны впуска и выпуска также функционируют только в определённые моменты. Один открывается, когда нужно впустить очередную порцию топлива, другой, когда нужно выпустить отработанные газы. Оба клапана крепко закрыты, когда в двигателе происходят такты сжатия и сгорания. Это обеспечивает необходимую полную герметичность.

4. Поршень представляет собой металлическую деталь, которая имеет форму цилиндра. Движение поршня осуществляется вверх-вниз внутри цилиндра.

Поршни ДВС 5. Поршневые кольца служат уплотнителями скольжения внешней кромки поршня и внутренней поверхности цилиндра. Их использование обусловлено двумя целями:

• Они не дают попадать горючей смеси в картер ДВС из камеры сгорания в моменты сжатия и рабочего такта.

• Они не дают попасть маслу из картера в камеру сгорания, ведь там оно может воспламениться. Многие автомобили, которые сжигают масло, оборудованы старыми двигателями, и их поршневые кольца уже не обеспечивают должного уплотнения.

6. Шатун служит соединительным элементом между поршнем и коленчатым валом.

7. Коленчатый вал преобразует поступательные движения поршней во вращательные.

Коленчатый вал ДВС 8. Картер располагается вокруг коленчатого вала. В его нижней части (поддоне) собирается определённое количество масла.

Это интересно! Самые мощные в мире ДВС выпускает фирма Wartsila. Они предназначены для кораблей. Их мощность достигает 110 000 л.с., что равно 80 мВт.

Принцип работы двигателя внутреннего сгорания

В предыдущих разделах мы рассмотрели назначение и устройство ДВС. Как вы уже поняли, каждый такой двигатель имеет поршни и цилиндры, внутри которых тепловая энергия преобразуется в механическую. Это, в свою очередь, заставляет автомобиль двигаться. Данный процесс повторяется с поразительной частотой – по несколько раз в секунду. Благодаря этому, коленчатый вал, который выходит из двигателя, непрерывно вращается.

Принцип работы ДВС Рассмотрим подробнее принцип работы двигателя внутреннего сгорания. Смесь топлива и воздуха попадает в камеру сгорания через впускной клапан. Далее она компрессируется и воспламеняется искрой от свечи зажигания. Когда топливо сгорает, в камере образуется очень высокая температура, которая приводит к появлению избыточного давления в цилиндре. Это заставляет двигаться поршень к «мёртвой точке». Он таким образом совершает один рабочий ход. Когда поршень двигается вниз, он посредством шатуна вращает коленчатый вал. Затем, двигаясь от нижней мёртвой точки к верхней, выталкивает отработанный материал в виде газов через клапан выпуска далее в выхлопную систему машины.

Такт – это процесс, происходящий в цилиндре за один ход поршня. Совокупность таких тактов, которые повторяются в строгой последовательности и за определённый период – это рабочий цикл ДВС.

Впуск

Впускной такт является первым. Он начинается с верхней мёртвой точки поршня. Он движется вниз, всасывая в цилиндр смесь из топлива и воздуха. Этот такт происходит, когда клапан впуска открыт. Кстати, существуют двигатели, у которых присутствует несколько впускных клапанов. Их технические характеристики существенно влияют на мощность ДВС. В некоторых двигателях можно регулировать время нахождения впускных клапанов открытыми. Это регулируется нажатием на педаль газа. Благодаря такой системе количество всасываемого топлива увеличивается, а после его возгорания существенно возрастает и мощность силового агрегата. Автомобиль в таком случае может существенно ускориться.

Сжатие

Рабочие циклы ДВС Вторым рабочим тактом двигателя внутреннего сгорания является сжатие. По достижении поршнем нижней мертвой точки, он поднимается вверх. За счёт этого попавшая в цилиндр смесь во время первого такта сжимается. Топливно-воздушная смесь сжимается до размеров камеры сгорания. Это то самое свободное место между верхними частями цилиндра и поршня, который находится в своей верхней мертвой точке. Клапаны в момент этого такта плотно закрыты. Чем герметичнее образованное пространство, тем более качественное сжатие получается. Очень важно, какое состояние у поршня, его колец и цилиндра. Если где-то присутствуют зазоры, то о хорошем сжатии речи быть не может, а, следовательно, и мощность силового агрегата будет существенно ниже. По величине сжатия определяется то, насколько изношен силовой агрегат.

Рабочий ход

Этот третий по счёту такт начинается с верхней мёртвой точки. И такое название он получил не случайно. Именно во время этого такта в двигателе происходят те процессы, которые двигают автомобиль. В этом такте подключается система зажигания. Она отвечает за поджог воздушно-топливной смеси, сжатой в камере сгорания. Принцип работы ДВС в этом такте весьма прост – свеча системы дает искру. После возгорания топлива происходит микровзрыв. После этого оно резко увеличивается в объёме, заставляя поршень резко двигаться вниз. Клапаны в этом такте находятся в закрытом состоянии, как и в предыдущем.

Выпуск

Двигатель автомобиля Заключительный такт работы двигателя внутреннего сгорания – выпуск. После рабочего такта поршнем достигается нижняя мёртвая точка, а затем открывается выпускной клапан. После этого поршень движется вверх, и через этот клапан выбрасывает отработанные газы из цилиндра. Это процесс вентиляции. От того, насколько чётко работают клапан, зависит степень сжатия в камере сгорания, полное удаление отработанных материалов и нужное количество воздушно-топливной смеси.

После этого такта всё начинается заново. А за счёт чего вращается коленвал? Дело в том, что не вся энергия уходит на движение автомобиля. Часть энергии раскручивает маховик, который под действием инерционных сил раскручивает коленчатый вал ДВС, перемещая поршень в нерабочие такты.

А знаете ли вы? Дизельный двигатель тяжелее, чем бензиновый, из-за более высокого механического напряжения. Поэтому конструкторы используют более массивные элементы. Зато ресурс таких двигателей выше бензиновых аналогов. Кроме того, дизельные автомобили возгораются значительно реже бензиновых, так как дизель нелетучий.

Достоинства и недостатки

ДВСМы с вами узнали, что представляет из себя двигатель внутреннего сгорания, а также каково его устройство и принцип работы. В заключение разберём его основные преимущества и недостатки.

Преимущества ДВС:

1. Возможность длительного передвижения на полном баке.

2. Небольшой вес и объём бака.

3. Автономность.

4. Универсальность.

5. Умеренная стоимость.

6. Компактные размеры.

7. Быстрый старт.

8. Возможность использования нескольких видов топлива.

Недостатки ДВС:

1. Слабый эксплуатационный КПД.

2. Сильная загрязняемость окружающей среды.

3. Обязательное наличие коробки переключения передач.

4. Отсутствие режима рекуперации энергии.

5. Большую часть времени работает с недогрузом.

6. Очень шумный.

7. Высокая скорость вращения коленчатого вала.

8. Небольшой ресурс.

Интересный факт! Самый маленький двигатель спроектирован в Кембридже. Его габариты составляют 5*15*3 мм, а его мощность 11,2 Вт. Частота вращения коленвала составляет 50 000 об/мин.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

auto.today

Как и почему работает мотор автомобиля?

 

Работа двигателя внутреннего сгорания базируется на превращении тепловой энергии, образующейся в результате сгорания топлива, в механическую энергию, которая и применяется для приведения автомобиля в движение. При этом двигатель включает в себя следующие агрегаты, детали и узлы: головка блока цилиндров, блок цилиндров, поршни, поршневые кольца, поршневые пальцы, шатуны, коленчатый вал, маховик, распределительный вал с кулачками, клапана, свечи зажигания (рис. 2.2).

Автомобили малого и среднего класса оборудуются обычно четырехцилиндровыми двигателями внутреннего сгорания. Именно такими моторами оснащались «Москвичи» и «Жигули» — самые известные представители советского автопрома. Машины среднего и большого класса могут оснащаться и шести-, и восьми-, и двенадцатицилиндровыми моторами. Здесь прослеживается следующая закономерность: чем больше цилиндров — тем мощнее мотор, но, с другой стороны, и тем больше топлива он будет расходовать.

Чтобы лучше уяснить принцип работы двигателя внутреннего сгорания, рассмотрим его на примере одноцилиндрового бензинового мотора. Его главной частью является цилиндр, внутренняя поверхность которого отполирована до зеркального состояния. Наглядно представить цилиндр очень просто — достаточно перевернуть вверх дном простой стакан. На цилиндре установлена съемная головка, а внутри его располагается поршень (рис. 2.3).

Поршень двигается внутри цилиндра вертикально — вверх-вниз. Снаружи по окружности поршня в специальных канавках расположены поршневые кольца. Дело в том, что поршень не прилегает плотно к внутренней поверхности цилиндра, а поршневые кольца, во-первых, препятствуют попаданию вниз газа, образующегося при работе двигателя, а во-вторых — не «пускают» моторное масло в камеру сгорания (она находится над верхним положением поршня).

Поршень монтируется на шатуне с помощью поршневого пальца, а шатун, в свою очередь — на кривошипе коленчатого вала (рис. 2.4).

При сгорании горючей смеси образующиеся газы расширяются и давят на поверхность поршня, в результате чего он движется вниз и через шатун передает свою энергию на коленчатый вал, заставляя его вращаться. На конце коленвала находится маховик — массивный металлический диск. Он обеспечивает инерционное вращение коленчатого вала, благодаря чему совершаются подготовительные такты рабочего цикла двигателя.

Горючая смесь, представляющая собой смесь паров бензина и воздуха, поступает в камеру сгорания через впускной клапан, а после сгорания превращается в выхлопные газы и выходит через выпускной клапан. И впускной, и выпускной клапана открываются тогда, когда их толкает соответствующий кулачок распределительного вала, и вновь плотно закрывают отверстие с помощью мощных пружин, когда кулачок уходит.

Распределительный вал приходит в движение от коленчатого вала. В головке блока цилиндров есть специальное отверстие с резьбой, в которое вкручивается свеча; именно она дает искру, от которой воспламеняется горючая смесь. На каждый цилиндр двигателя приходится одна свеча (следовательно, у четырехцилиндрового двигателя имеется четыре свечи, у восьмицилиндрового — восемь и т. д.).

При движении вверх-вниз поршень поочередно достигает двух крайних положений — верхнего и нижнего: в этих положениях он максимально удален от центральной оси коленчатого вала. Верхнее крайнее положение поршня называется верхней мертвой точкой, а нижнее крайнее его положение — нижней мертвой точкой(сокращенно соответственно ВМТ и НМТ). Расстояние между верхней и нижней мертвыми точками называется ходом поршня.

Когда поршень находится в верхней мертвой точке, над ним остается пространство, которое называется камера сгорания; именно в этом пространстве воспламеняется и сгорает горючая смесь. В результате воспламенения образуется нечто вроде минивзрыва, который отталкивает поршень вниз — именно в этот момент происходит превращение тепловой энергии в механическую: двигаясь вниз, поршень толкает коленчатый вал, от которого крутящий момент передается на ведущие колеса автомобиля (более подробно о том, как это происходит, вы узнаете позже). Объем, занимаемый камерой сгорания, так и называется — объем камеры сгорания.

Объем, который находится в пространстве между ВМТ и НМТ, называется рабочим объемом цилиндра. Если сложить объем камеры сгорания и рабочий объем цилиндра, получится полный объем цилиндра.

Сумма полных объемов всех цилиндров двигателя внутреннего сгорания называется рабочим объемом двигателя.

Рабочий цикл двигателя внутреннего сгорания — это определенная последовательность процессов, периодически совершающихся в каждом цилиндре.

Важно.

Каждый из рабочих процессов происходит в течение одного хода поршня и называется тактом.

Все двигатели внутреннего сгорания делятся на две категории: четырехтактные и двухтактные. Как нетрудно догадаться, в первом случае один рабочий цикл совершается за четыре хода поршня, а во втором — за два хода поршня. Отметим, что современные автомобили, за редким исключением, оснащаются четырехтактными моторами. А двухтактные двигатели устанавливаются обычно на мотоциклах, мопедах, моторных лодках и т. п.

Рабочий цикл четырехтактного двигателя внутреннего сгорания включает в себя следующие такты: впуск, сжатие, рабочий ход и выпуск.

Начинается рабочий цикл с первого такта — впуска горючей смеси в цилиндр двигателя. Отметим, что топливо сгорает в камере сгорания не в чистом виде, а в виде смеси его паров с воздухом. Для подготовки топливно-воздушной смеси предназначен специальный прибор, который называется карбюратор (но в современных машинах карбюраторы, как правило, не используются — там эти функции возложены на специальные электронные приборы).

Смесь попадает в цилиндр в результате открытия впускного клапана, на который оказывает необходимое воздействие соответствующий кулачок распределительного вала. Знайте, что в этот момент поршень непременно располагается в ВМТ и начинает движение вниз в направлении НМТ. Получается, что, двигаясь вниз, поршень засасывает в цилиндр горючую смесь через открывшийся впускной клапан. Этот процесс продолжается, пока поршень не достигнет НМТ: одновременно с этим впускной клапан герметично закрывается под воздействием соответствующих пружин.

 

Важно.

При заполнении цилиндра горючей смесью она смешивается с остатками находящихся там выхлопных газов (они удаляются из цилиндра не полностью). После этого смесь называется рабочей смесью.

Пока совершается первый такт работы двигателя, коленвал проворачивается на пол-оборота.

После того как поршень достиг НМТ, впускной клапан плотно закрылся, а цилиндр заполнился рабочей смесью, начинается второй такт. В течение второго такта поршень поднимается вверх — от НМТ к ВМТ, сильно сжимая при этом рабочую смесь. В соответствии с законами физики температура рабочей смеси при сжатии существенно повышается. В тот момент, когда поршень достигает ВМТ, температура этой смеси составляет порядка 300–400 градусов по Цельсию. Второй такт завершается в момент максимального сжатия рабочей смеси, т. е. когда поршень достигает ВМТ. Пока совершается второй такт, коленвал проворачивается еще на пол-оборота. Получается, что за первые два такта работы двигателя коленвал делает один полный оборот.

Во время третьего такта работы двигателя тепловая энергия преобразуется в механическую. Когда поршень достигает ВМТ и рабочая смесь становится максимально сжатой, между электродами свечи зажигания проскакивает электрическая искра — и смесь воспламеняется. Сразу после этого она начинает активно расширяться и сильно давит на поршень, который находится в ВМТ. Другого выхода для энергии сгорания нет, так как оба клапана плотно закрыты. Под давлением поршень вынужден двигаться вниз, передавая свое движение через шатун на коленвал (а именно — на свой кривошип), заставляя его вращаться. Именно это вращение и заставляет в конечном итоге двигаться автомобиль. Коленвал за время совершения третьего такта проворачивается еще на пол-оборота.

Последний, четвертый такт рабочего цикла двигателя — выпуск отработанных (выхлопных) газов. Он начинается в тот момент, когда после третьего такта поршень достигает НМТ и вновь начинает подниматься вверх. При этом под воздействием соответствующего кулачка распредвала открывается выпускной клапан, и двигающийся вверх поршень выдавливает отработанные газы из цилиндра. После этого выпускной клапан под воздействием пружин закрывается. Затем выхлопные газы через глушитель и выхлопную трубу выводятся в атмосферу.

Завершается четвертый такт, когда поршень достигает ВМТ и закрывается выпускной клапан. За время совершения этого такта коленвал проворачивается еще на пол-оборота. Соответственно, за четыре такта работы двигателя внутреннего сгорания (т. е. за один рабочий цикл) коленчатый вал делает два полных оборота. После этого вновь начинается первый такт и т. д.

Смазочные жидкости двигателя, топливная, выхлопная и электрические системы

Когда дело доходит до ежедневного использования автомобиля, первое, о чем вы заботитесь это наличие бензина в бензобаке. Каким образом этот бензин приводит в действие цилиндры? Топливная система двигателя выкачивает бензин из бензобака и смешивает его с воздухом таким образом, чтобы в цилиндр поступила правильная воздушно-бензиновая смесь. Топливо подается тремя распространенными способами: смесеобразованием, впрыском через топливный порт и прямым впрыском.

При смесеобразовании, прибор под названием карбюратор, добавляет бензин в воздух, как только воздух попадает в двигатель.

В инжекторном движке топливо впрыскивается индивидуально в каждый цилиндр либо через впускной клапан (впрыск через топливный порт), либо непосредственно в цилиндр (прямой впрыск).

Масло также играет важную роль в двигателе. Смазочная система гарантирует, что в каждую из движущихся частей двигателя поступает масло для плавной работы. Поршни и подшипники (которые позволяют свободно вращаться коленчатому и распределительному валу) – основные части, которые имеют повышенную потребность масла. В большинстве автомобилей, масло засасывается через масляный насос и маслосборника, проходит через фильтр, чтобы очиститься от песка, затем, под высоким давлением впрыскивается в подшипники и на стенки цилиндра. Далее масло стекает в маслосборник, и цикл повторяется снова.

Теперь вы знаете немного больше о тех вещах, которые поступают в двигатель вашего автомобиля. Но давайте поговорим и том, что выходит из него. Выхлопная система. Она крайне проста и состоит из выхлопной трубы и глушителя. Если бы не было глушителя, вы бы слышали звук всех тех мини-взрывов, которые происходят в двигателе. Глушитель гасит звук, а выхлопная труба выводит продукты сгорания из автомобиля.

Теперь поговорим об электрической системе автомобиля, которая тоже приводит его в действие. Электрическая система состоит из аккумулятора и генератора переменного тока. Генератор переменного тока подключен проводами к двигателю и вырабатывает электроэнергию, необходимую для подзарядки аккумулятора. В свою очередь, аккумулятор предоставляет электроэнергию всем системам автомобиля, которые в ней нуждаются.

Теперь вы знаете все о главных подсистемах двигателя. Давайте рассмотрим, каким способом вы можете увеличить мощность двигателя своего автомобиля.

 

Как увеличить производительность двигателя и улучшить его работу?

Используя всю вышеприведенную информацию, вы, должно быть, обратили внимание на то, что есть возможность заставить двигатель работать лучше. Производители автомобилей постоянно играют с этими системами с одной лишь целью: сделать двигатель более мощным и сократить расход топлива.

Увеличение объема двигателя. Чем больше объем двигателя, тем больше его мощность, т.к. за каждый оборот двигатель сжигает больше топлива. Увеличение объема двигателя происходит за счет увеличения либо самих цилиндров, либо их количества. В настоящее время 12 цилиндров – это предел.

Увеличение степени сжатия. До определенного момента, высшая степень сжатия производит больше энергии. Однако, чем больше вы сжимаете воздушно-топливную смесь, тем выше вероятность того, что она воспламенится раньше, чем свеча зажигания даст искру. Чем выше октановое число бензина, тем меньше вероятность преждевременного воспламенения. Именно поэтому высокопроизводительные автомобили нужно заправлять высокооктановым бензином, так как двигатели таких машин используют очень высокий коэффициент сжатия для получения большей мощности.

Большее наполнение цилиндра. Если в цилиндр определенного размера можно втиснуть больше воздуха (и, следовательно, топлива), то вы сможете получить больше энергии от каждого цилиндра. Турбонаддувы и наддувы нагнетают давление воздуха и эффективно вталкивают его в цилиндр.

Охлаждение поступающего воздуха. Сжатие воздуха повышает его температуру. Тем не менее, хотелось бы иметь как можно более холодный воздух в цилиндре, т.к. чем выше температура воздуха, тем он расширяется при горении. Поэтому многие системы турбонаддува и наддува имеют интеркулер. Интеркулер – это радиатор, через который проходит сжатый воздух и охлаждается, прежде чем попасть в цилиндр.

Сделать меньшим вес деталей. Чем легче часть двигателя, тем лучше он работает. Каждый раз, когда поршень меняет направление, он тратит энергию на остановку. Чем легче поршень, тем меньше энергии он потребляет.

Впрыск топлива. Система впрыска топлива позволяет очень точное дозирование топлива, которое поступает в каждый цилиндр. Это повышает производительность двигателя и существенно экономит топливо.

Теперь вы знаете практически все о том, как работает двигатель автомобиля, а также причины основных неполадок и перебоев в машине.

ПОХОЖИЕ СТАТЬИ:

  • Фольксваген каравелла Т6 2016 комплектации и цены обзор описание характеристики фото видео.
  • Терминология, которая встречается в литературе по авторемонту.
  • Opel Omega A: описание,обзор,фото,видео,комплектация,отзывы.
  • Ауди 80 б3: технические характеристики,тюнинг,фото,видео,модификации
  • Опель вектра а описание обзор фото видео характеристики ремонт обслуживание
  • Новый Mercedes-Benz CLA Coupe
  • Хорошое состояние автомобиля и его влияние на безопасное движение на дорогах.
  • Что такое газораспределительный механизм в автомобиле?
  • Внезапная остановка двигателя: причины,проблемы,советы и решения.
  • Проверка технического состояния стартера.
  • Aуди q8: обзор,описание,технические характеристики,фото,видео,цена.
  • Как поменять лампочку в фаре или указателе поворота.
  • Skoda Fabia — о плюсах и минусах чешской машины.
  • Что думают владельцы о тормозных колодках TRW?
  • Что делает автосервис, хорошим?

seite1.ru

Устройство и принцип работы электродвигателя

Электродвигатель – это электротехническое  устройство для преобразования электрической энергии в механическую. Сегодня повсеместно применяются электромоторы в промышленности для привода различных станков и механизмов. В домашнем хозяйстве они установлены в стиральной машине, холодильнике, соковыжималке, кухонном комбайне, вентиляторах, электробритвах и т. п. Электродвигатели приводят в движение, подключенные к ней устройства и механизмы.

В этой статье Я расскажу о самых распространенных видах и принципах работы электрических двигателей переменного тока, широко используемых в гараже, в домашнем хозяйстве или мастерской.

Содержание статьи

Как работает электродвигатель

Двигатель работает на основе эффекта, обнаруженного Майклом Фарадеем еще в 1821 году. Он сделал открытие, что при взаимодействии электрического тока в проводнике и магнита может возникнуть непрерывное вращение.

Если в однородном магнитном поле расположить в вертикальном положении  рамку и пропустить по ней ток, тогда вокруг проводника возникнет электромагнитное поле, которое будет взаимодействовать с полюсами магнитов. От одного рамка будет отталкиваться, а к другому притягиваться.

В результате рамка повернется в горизонтальное положения, в котором будет нулевым воздействие магнитного поля на проводник. Для того что бы вращение продолжилось необходимо добавить еще одну рамку под углом или изменить направление тока в рамке в подходящий момент.

На рисунке это делается при помощи двух полуколец, к которым примыкают контактные пластины от батарейки. В результате после совершения полуоборота меняется полярность и вращение продолжается.

В современных электродвигателях вместо постоянных магнитов для создания  магнитного поля используются катушки индуктивности или электромагниты. Если разобрать любой мотор, то Вы увидите намотанные витки проволоки, покрытой изоляционным лаком. Эти витки и есть электромагнит или как их еще называют обмотка возбуждения.

В быту же постоянные магниты используются в детских игрушках на батарейках.

В других же более мощных двигателях используются только электромагниты или обмотки. Вращающаяся часть с ними называется ротор, а неподвижная- статор.

Виды электродвигателей

Сегодня существуют довольно много электродвигателей разных конструкций и типов. Их можно разделить по типу электропитания:

  1. Переменного тока, работающие напрямую от электросети.
  2. Постоянного тока, которые работают от батареек, АКБ, блоков питания или других источников постоянного тока.

По принципу работы:

  1. Синхронные, в которых есть обмотки на роторе и щеточный механизм для подачи на них электрического тока.
  2. Асинхронные, самый простой и распространенный вид мотора. В них нет щеток и обмоток на роторе.

Синхронный мотор вращается синхронно с магнитным полем, которое его вращает, а у асинхронного ротор вращается медленнее вращающегося магнитного поля в статоре .

Принцип работы и устройство асинхронного электродвигателя

 

В корпусе асинхронного двигателя укладываются обмотки статора (для 380 Вольт их будет 3), которые создают вращающееся магнитное поле. Концы их для подключения выводятся на специальную клеммную колодку. Охлаждаются обмотки, благодаря вентилятору, установленному на вале в торце электродвигателя.

Ротор, являющиеся одним целым с валом, изготавливается из металлических стержней, которые замыкаются  между собой с обоих сторон, поэтому он и называется короткозамкнутым.
Благодаря такой конструкции отпадает необходимость в частом периодическом обслуживании и замене токоподающих щеток, многократно увеличивается надежность, долговечность и безотказность.

Как правило, основной причиной поломки асинхронного мотора является износ подшипников, в которых вращается вал.

Принцип работы. Для того что бы работал асинхронный двигатель необходимо, что бы ротор вращался медленнее электромагнитного поля статора, в результате чего наводится ЭДС (возникает электроток) в роторе. Здесь важное условие, если бы ротор вращался с такой же скоростью как и магнитное поле, то в нем по закону электромагнитной индукции не наводилось бы ЭДС и, следовательно не было бы вращения. Но в реальности, из-за трения подшипников или нагрузки на вал, ротор всегда будет вращаться медленнее.

Магнитные полюса постоянно вращаются в обмотках мотора, и постоянно меняется направление тока в роторе. В один момент времени, например направление токов в обмотках статора и ротора изображено схематично в виде крестиков (ток течет от нас) и точек (ток на нас). Вращающееся магнитное поле изображено изображено пунктиром.

Например, как работает циркулярная пила. Наибольшие обороты у нее без нагрузки. Но как только мы начинаем резать доску, скорость вращения уменьшается и одновременно с этим ротор начинает медленнее вращаться относительно электромагнитного поля и в нем по законам электротехники начинает наводится еще большей величины ЭДС. Вырастает потребляемый ток мотором и он начинает работать на полной мощности. Если же нагрузка на вал будет столь велика, что его застопорит, то может возникнуть повреждение короткозамкнутого ротора из-за максимальной величины наводимой в нем ЭДС. Вот почему важно подбирать двигатель, подходящей мощности. Если же взять большей, то неоправданными будут энергозатраты.

Скорость вращения ротора зависит от количества полюсов. При 2 полюсах скорость вращения будет равна скорости вращения магнитного поля, равного максимум 3000 оборотов в секунду при частоте сети 50 Гц. Что бы понизить скорость вдвое, необходимо увеличить количество полюсов в статоре до четырех.

Весомым недостатком асинхронных двигателей является то, что они подаются регулировке скорости вращения вала только при помощи изменения частоты электрического тока. А так не возможно добиться  постоянной частоты вращения вала.

Принцип работы и устройство синхронного электродвигателя переменного тока

Данный вид электродвигателя используется в быту там, где необходима постоянная скорость вращения, возможность ее регулировки, а так же если необходима скорость вращения более 3000 оборотов в минуту (это максимум для асинхронных).

Синхронные моторы устанавливаются в электроинструменте, пылесосе, стиральной машине и т. д.

В корпусе синхронного двигателя переменного тока расположены обмотки (3 на рисунке), которые также намотаны и на ротор или якорь (1). Их выводы припаяны к секторам токосъемного кольца или коллектора (5), на которые при помощи графитовых щеток (4) подается напряжение. При чем выводы расположены так, что щетки всегда подают напряжение только на одну пару.

Наиболее частыми поломками коллекторных двигателей является:

  1. Износ щетокили их плохой их контакт из-за ослабления прижимной пружины.
  2. Загрязнение коллектора.Чистите либо спиртом или нулевой наждачной бумагой.
  3. Износ подшипников.

Принцип работы. Вращающий момент в электромоторе создается в результате взаимодействия между током тока якоря и магнитным потоком в обмотке возбуждения. С изменением направления переменного тока будет меняться и направление магнитного потока одновременно в корпусе и якоре, благодаря чему вращение всегда будет в одну сторону.

Регулировка скорости вращения меняется методом изменения величины подаваемого напряжения. В дрелях и пылесосах для этого используется реостат или переменное сопротивление.

Изменение направления вращения происходит также как и у двигателей постоянного тока, о которых Я расскажу в следующей статье.

Самое главное о синхронных двигателях Я постарался изложить, более подробно Вы можете прочитать на них на Википедии.

 

Понравилась статья? Поделиться с друзьями:

elektro-enot.ru

Принцип работы электродвигателя. Простыми словами о сложном

Принцип работы электродвигателя основывается на эффекте обнаруженном Майклом Фарадеем еще в 1821 году. Он сделал открытие, что при взаимодействии электрического тока в проводнике и магнита, может возникнуть непрерывное вращение.

   Принцип работы электродвигателя постоянного тока

Если в однородном магнитном поле расположить в вертикальном положении  рамку и пропустить по ней ток, тогда вокруг проводника возникнет электромагнитное поле, которое будет взаимодействовать с полюсами магнитов. От одного рамка будет отталкиваться, а к другому притягиваться. В результате рамка повернется в горизонтальное положение, в котором будет нулевым воздействие магнитного поля на проводник. Для того что бы вращение продолжилось необходимо добавить еще одну рамку под углом или изменить направление тока в рамке в подходящий момент.  На рисунке выше это делается при помощи двух полуколец, к которым примыкают контактные пластины от батарейки. В результате после совершения полуоборота меняется полярность и вращение продолжается.

 

В современных электродвигателях вместо постоянных магнитов для создания магнитного поля используются катушки индуктивности или электромагниты. Если разобрать любой мотор, то Вы увидите намотанные витки проволоки, покрытой изоляционным лаком. Эти витки и есть электромагнит или как их еще называют обмотка возбуждения.

Простыми словами о сложном

На самом деле там векторное произведение, дифференциалы и т.п. но это детали, а у нас упрощённый случай. И так…

 

   Рис. 1 Основа работы электрического двигателя

Направление силы ампера определяется правилом левой руки.

 

   Рис. 2  Правило левой руки

Мысленно ставим левую ладонь на верхний рисунок и получаем направление сил Ампера. Она типа растягивают рамку с током в том положении как нарисовано на рис.1. И никуда вертеться тут ничего не будет, рамка в равновесии, устойчивом.

А если рамка с током повернута по-другому, то вот что будет:

   Рис. 3  Рамка

Здесь уже равновесия нет, сила Ампера разворачивает противоположные стенки так, что рамка начинает вращаться. Появляется механическое вращение. Это основа электрического двигателя, самая суть, дальше только детали.

Далее.

Теперь что будет делать рамка с током на рис.3?. Если система идеальная, без трения, то очевидно будут колебания. Если трение присутствует, то колебания постепенно затухнут, рамка с током стабилизируется и станет как на рис.1.

Но нам нужно постоянное вращение и достичь его можно двумя принципиально разными способами и отсюда и возникает разница между двигателями постоянного и переменного трёхфазного тока.

Принцип работы электродвигателя постоянного тока

Способ 1. Смена направления тока в рамке.

Этот способ используется в двигателях постоянного тока и его потомках.

Наблюдаем за картинками. Пусть наш двигатель обесточен и рамка с током ориентирована как-то хаотично, вот так например:

   Рис. 4.1 Случайно расположенная рамка

На случайно расположенную рамку действует сила Ампера и она начинает вращаться.

 
   Рис. 4.2

В процессе движения рамка достигает угла 90°. Момент (момент пары сил или вращательный момент) максимальный.

   Рис. 4.3

И вот рамка достигает положения, когда момента вращения нет. И если сейчас не отключить ток, то сила Ампера будет уже тормозить рамку и в конце полуоборота рамка остановится и начнёт вращение в противоположном направлении. Но нам ведь этого не надо.

Поэтому мы на рис.3 делаем хитрый ход – меняем направление тока в рамке.

   Рис. 4.4

И вот после пересечения этого положения, рамка с поменянным направлением тока уже не тормозится, а снова разгоняется.

   Рис. 4.5

А когда рамка подходит к следующему положению равновесия, мы меняем ток ещё раз.

   Рис. 4.6

И рамка опять продолжает ускоряться куда нам надо.

Вот так и получается постоянное вращение. Красиво? Красиво. Нужно только менять направление тока два раза за оборот и всего делов.

А делает это, т.е. обеспечивает смену тока специальный узел – щёточно-коллекторный узел. Принципиально он устроен так:

   Рис. 5

Рисунок понятен и без пояснений. Рамка трётся то об один контакт, то об другой и так вот ток и меняется.

Очень важная особенность щёточно-коллекторного узла – его малый ресурс. Из-за трения. Например, вот движок ДПР-52-Н1 – минимальная наработка 1000 часов. В то же время срок службы современных бесколлекторных двигателей более 10000 часов, а двигателей переменного тока (там тоже нет ЩКУ) более 40000 часов.

Принцип работы электродвигателя переменного тока

Способ 2. Вращается магнитный поток, т.е. магнитное поле.

Вращающееся магнитное поле получают с помощью переменного трёхфазного тока. Вот есть статор.

   Рис. 6  Статор электродвигателя

А есть значит 3 фазы переменного тока.

   Рис. 7

Между ними как видно на Рис. 7 120 градусов, электрических градусов.

Эти три фазы укладывают в статор специальным образом, чтобы они геометрически были повернуты друг к дружке на 120°.

 
   Рис. 8

И тогда при подаче трёхфазного питания получается само собой за счёт складывания магнитных потоков от трёх обмоток вращающееся магнитное поле.

   Рис. 9  Вращающееся магнитное поле

Далее вращающееся магнитное поле влияет силой Ампера на нашу рамку и она вращается.

Но здесь есть тоже различия, два разных способа.

Способ 2а. Рамка запитывается (синхронный двигатель).

Подаём значит на рамку напряжение (постоянное), рамка выставляется по магнитному полю. Помните рис.1 из самого начала? Вот так рамка и становится.

   Рис. 10  (Рис.1)

Но поле магнитное у нас тут вращается, а не просто так висит. Рамка чего будет делать? Тоже будет вращаться, следуя за магнитным полем.

Они (рамка и поле) вращаются с одинаковой частотой, или синхронно, поэтому такие двигатели называются синхронными двигателями.

Способ 2б. Рамка не запитывается (асинхронный двигатель).

Фишка в том, что рамка не запитывается, совсем не запитывается. Просто проволока такая замкнутая.

Когда мы начинаем вращать магнитное поле, по законам электромагнетизма в рамке наводится ток. От этого тока и магнитного поля получается сила Ампера. Но сила Ампера будет возникать только если рамка движется относительно магнитного поля (известная история с опытами Ампера и его походами в соседнюю комнату).

Так что рамка всегда будет отставать от магнитного поля. А то, если она его вдруг почему-то догонит, то пропадёт наводка от поля, пропадёт ток, пропадёт сила Ампера и всё вообще пропадёт. То есть, в асинхронном двигателе рамка всегда отстаёт от поля и частота у них значит разная, то есть вращаются они асинхронно, поэтому и двигатель называется асинхронным.

 

Смотрите также по этой теме:

   Как работает электродвигатель. Преимущества и недостатки разных видов.

   Асинхронный двигатель. Устройство и принцип работы.

 

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

powercoup.by

Как работает двигатель автомобиля, виды и основные узлы

Двигатель — сердце. Как много сегодня означает это слово. Без двигателя не работает ни одно устройство, двигатель дает жизнь любому агрегату. В данной статье рассмотрим, что такое двигатель, какие виды бывают, как работает двигатель автомобиля.

Основная задача любого двигателя – превратить топливо в движение. Одним из способов достичь такого можно с помощью сжигания топлива внутри мотора. Отсюда и название двигатель внутреннего сгорания.

Но, кроме ДВС следует различать и двигатель внешнего сгорания. Примером служит паровой двигатель теплохода, когда его топливо (дерево, уголь) сгорают за пределами мотора, генерируя пар, являющийся движущей силой. Двигатель внешнего сгорания не так эффективен как внутреннего.

На сегодняшний день широкого распространения получил двигатель внутреннего сгорания, которым укомплектованы все автомобили. Несмотря на то, что КПД ДВС не близко к отметке 100 %, лучшие ученые и инженеры трудятся над доведением до совершенства.

По видам двигателя делятся:

• Бензиновые: могут быть как карбюраторными так и инжекторными, используется система впрыска.

• Дизельные: работают на основе дизельного топлива, которое под давлением распыляется в камере сгорания топливной форсункой.

• Газовые: работают на основе сжиженного или сжатого газа, произведённого от переработки угля, торфа, дерева.
Итак, перейдем к начинке мотора.

• Основным механизмом является блок цилиндров, он же часть корпуса механизма. Блок состоит из различных каналов внутри себя, что служит для циркуляции охлаждающей жидкости, снижая температуру механизма, в народе называется рубашка охлаждения.

• Внутри блока цилиндров расположены поршни, их количество зависит от конкретного двигателя. На поршень одеваются в верхней части компрессионные кольца, а в нижней маслосъемные. Компрессионные кольца служат для создания герметичности при сжатии для воспламенения, а маслосъемные для забора смазывающей жидкости со стенки блока цилиндров и предотвращения попадания масла в камеру сгорания.

• Кривошипно-шатунный механизм: передает вращательный момент от поршня к коленвалу. Состоит из поршней, цилиндров, головок, поршневых пальцев, шатунов, картера, коленвала.

Алгоритм работы двигателя достаточно прост: топливо распыляется форсункой в камере сгорания, где перемешивается с воздухом и под воздействием искры образованная смесь воспламеняется.

Образованные газы толкают поршень вниз и вращательный момент передается коленвалу, который передает вращение трансмиссии. С помощью шестеренного механизма происходит движение колес.

Если сотворить бесперебойный цикл воспламенений горючей смеси за определенное количество времени, то получим примитивный двигатель.

Современные моторы основаны на четырехтактном цикле сгорания для превращения топлива в движение транспорта. Иногда такой такт называют в честь немецкого ученого Отто Николауса, сотворивший в 1867 году такт, состоящий из таких циклов: впуск, сжатие, горение, выведение продуктов сгорания.

Описание и предназначение систем:

• Система питания: дозирует образованную смесь воздуха и топлива и подает ее в камеры сгорания — цилиндры двигателя. В карбюраторном варианте состоит из карбюратора, воздушного фильтра, впускного трубоканала, фланца, топливного насоса с отстойником, бензобака, топливопровода.

• Система газораспределения: балансирует процессы впуска горючей смеси и выпуска отработанных газов. Состоит из шестерен, кулачкового вала, пружины, толкателя, клапана.

• Система зажигания: предназначена для подачи тока на контакт свечи для воспламенения рабочей смеси.

• Система охлаждения: уберегает мотор от перегрева, путем циркуляции и охлаждения жидкости.

• Система смазки: подает смазывающую жидкость к трущимся деталям, с целью минимизации трения и износа.

В данной статье рассмотрены понятие двигателя, его виды, описание и назначение отдельных систем, такт и его циклы.

Многие инженеры работают на тем, чтобы минимизировать рабочий объем мотора и существенно увеличить мощность, сократив потребление топлива. Новинки автопрома в очередной раз подтверждают рациональность конструкторских разработок.

autovogdenie.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *