Какой ток вырабатывает генератор: Генераторы тока: переменного и постоянного

Содержание

Генераторы тока: переменного и постоянного

Отсутствие электричества сегодня не становится проблемой как в быту, так и в промышленности. Широкий ассортимент генераторов тока позволяет решить проблему быстро, с минимальными трудозатратами. Резервные источники питания незаменимы в современной реальности — всему нужна электроэнергия. Гарантии, что подачу электроэнергии не прекратят в самый неподходящий момент – не может дать ни она организация. Поэтому резервная электростанция на базе генератора постоянного или переменного тока  — важное, а зачастую незаменимое оборудование, которое обеспечивает непрерывность производства, комфорт в бытовой сфере, безопасность и непрерывность технологических процессов.

Что такое генератор тока

Когда нет электрической энергии, требуется получить её из другого источника. Наши предки, например, использовали силу ветра, течения рек. Впрочем, сегодня подобную энергию применяют, если не жалко времени и сил на возведение плотин и ветряков.

Генераторы тока стандартно «работают» на топливе, за счет вращения обмотки в магнитном поле преобразовывая механическую энергию вращения в электричество. Ток возникает в замкнутом контуре, протекает по обмоткам, когда к электростанции подключается потребитель — именно так работает генератор тока.
В зависимости от того, как вращается магнитное поле (при неподвижном или подвижном проводнике) различают два типа этих электрических машин — генераторы постоянного или переменного тока.

В чем разница между постоянным и переменным током

Вспоминаем уроки физики. Электроток — заряженные микрочастицы, которые «бегут» в определенном направлении. У постоянного тока частицы движутся по прямой, в одном направлении от минуса к плюсу. У переменного движение электронов идет по синусоиде с определенной частотой (полярность между проводами меняется несколько раз за заданный промежуток времени).

Разница между движением заряженных частиц заложена в принцип работы генераторов электрического тока.

Для простого обывателя можно сказать так: в розетке — переменный, в батарейке — постоянный. В качестве частного случая, с очень большим упрощением, можно сказать так: всё что с напряжением до 48 Вольт — всё постоянный, всё что от 100 до 500 Вольт — переменный.

Автор статьи и специалисты Mototech прекрасно осведомлены о том, что и постоянный ток может иметь практически любое напряжение (например, 380 Вольт на шине постоянного тока в ИБП), так же как и переменный ток для узких задач.

В чем конструктивная разница между генераторами

Несмотря на то, что конечный результат работы электростанций один — потребитель получает электроэнергию, методы преобразования механической энергии в электродвижущую силу и электричество различаются. Элементы (комплектующие) также отличны.

Особенности конструкции генераторов переменного тока

Электростанция такого типа состоит из:

  • Внешней силовой рамы, изготовленной из высокопрочных сплавов. Корпус рассчитан на интенсивную нагрузку, возникающую при передаче магнитного потока от полюса к полюсу. Проще говоря: чугунный кожух не «пробивается» разрядами тока.
  • Магнитных полюсов, закрепленные на корпусе болтами или шпильками. На «плюс» и «минус» монтируется обмотка.
  • Статора. Остов с катушкой возбуждения изготавливают из ферромагнитных материалов, на сердечнике устанавливают магнитные полюса, которые и образуют магнитное поле.
  • Вращающегося ротора (якоря). Задача магнитопровода — снизить вихревые токи и повысить КПД генератора постоянного тока.
  • Коммутационного узла, оснащенного щетками (обычно изготовленными из графита) и коллекторными пластинами из меди.

Полюсов может быть несколько (число минусов и плюсов всегда идентично). Поэтому сегодня потребитель может купить электростанцию необходимой мощности и обеспечить электричеством как дом, так и промышленный объект.

Особенности конструкции генератора переменного тока

Конструктивной разницы в статоре и роторе между устройствами постоянного и переменного тока нет. Практически идентичны и силовые рамы. Существенное отличие в комплектации коммуникационного узла. Каждый выход механизма помимо щеток оснащен токопроводящими кольцами. «Закольцованный» ток движется по синусоиде и несколько раз в секунду достигает пика мощности. По типу устройства, характеристикам и принципу работы современные генераторы переменного тока делятся на синхронные и асинхронные.


Специфика синхронного устройства: скорость вращения ротора равна скорости вращения магнитного поля в рабочем зазоре.

Асинхронным машинам характерны:

  • Отсутствие электрической связи с ротором;
  • Вращение якоря под воздействием остаточного механизма статора;
  • Измененная электрическая нагрузка на статоре.

Такие агрегаты могут быть однофазными и трехфазными.

Принцип работы генератора постоянного тока

Простейший  по конструкции генератор работает следующим образом:

  • Рамка вращается вокруг оси, расположенная на корпусе обмотка регулярно проходит через «минус» и «плюс» полюсов.
  • Каждый раз при достижении разнополюсных точек, происходит смена направления тока на противоположное.
  • Выходной цепи благодаря полукольцу, расположенному на коллекторном узле, создается постоянный ток.
  • С помощью щеток с положительного или отрицательного полюса снимается потенциал и по схеме передается потребителю.

Такая схема работает в простейшей конструкции, с одним плюсом и минусом, если положительных/отрицательных точек больше, ЭДС и ориентировочное количество электроэнергии рассчитываются по формуле.


К преимуществам генераторов постоянного тока относят:

  • Небольшой вес и компактность агрегата;
  • Возможность использовать в экстремальных условиях;
  • Отсутствие потерь, связанных с вихревыми токами.

Минус: на большую мощность при использовании устройств такого типа рассчитывать не стоит.

Принцип работы генератора переменного тока

Устройства такого типа преобразуют механику в электроэнергию, вращая проволочную катушку в магнитном поле. Ток вырабатывается, когда силовые линии пересекают обмотку. До тех пор, пока магнитное поле соприкасается с проводником, в нем индуцируется электроток.

Идентичный принцип действует и в случае, если рамка вращается относительно магнита, пересекая силовые линии.

Основные достоинства генераторов переменного тока

В электростанциях с синусоидальной подачей тока отсутствует реактивная мощность. То есть весь запас электроэнергии (с вычетом потерь на проводах) расходуется на нужды потребителя, а не на поддержание работоспособности устройства.

Плюсами использования генераторов переменного тока являются:

  • Большая выходная мощность при одинаковых габаритах устройств постоянного и переменного тока;
  • Выработка электроэнергии на низких скоростях вращения ротора;
  • Проще конструкция и схема, соответственно, меньше узлов, нуждающихся в техобслуживании и ремонте;
  • Конструкция токосъемного узла отличается большей надежностью;
  • Больше эксплуатационный ресурс и меньше эксплуатационные затраты.

Дополнительное преимущество: агрегаты с трехфазным питанием можно использовать для питания высоковольтных потребителей.

Где применяются генераторы постоянного и переменного тока

Оба вида генераторов популярны в бытовой и промышленной сфере. Станции постоянного тока нашли применение в сфере транспорта. Так, в трамваях, троллейбусах обычно установлены двигатели, работающие на постоянном токе. Низковольтные устройства незаменимы для питания систем освещения в местах, где нет доступа к централизованной подачи электроэнергии. Например, на борту самолетов. Если большая мощность — не основополагающая характеристика электростанции, то генераторы постоянного тока отлично справятся с питанием оборудования в учебных, медицинских учреждениях, лабораториях. Полноценные дизельные электростанции постоянного тока используются на аэродромах для зарядки и питания бортовых систем летной техники. 

Электростанции переменного тока необходимы практически для всего остального. 99% того, что питается от централизованной сети — это устройства переменного тока. Соответственно, аварийное питание этих объектов так же должно осуществляться от соответствующего оборудования. 

Мototech специализируется на продаже электростанций различного типа. Поможем выбрать оптимальный вариант электростанции мощностью от 5 до 6000 кВА и конечно же, это будут электростанции переменного тока. Мы обеспечим сопроводительные строительные и электромонтажные работы, грамотную пуско-наладку и обслуживание устройств. С клиентами работают сотрудники с энергетическим образованием, поэтому квалифицированную информацию, ответы на вопросы и правильные расчеты характеристик в соответствии с вашими потребностями гарантируем.


Что такое Генератор и как он устроен

Как генератор создает электроэнергию?

Генераторы являются полезными устройствами, которые снабжают электрической энергией во время прекращения подачи электроэнергии и предотвращают нарушение обычной деятельности человека, которая случается из-за отсутствия электроэнергии. Генераторы имеют различные электрические и физические конфигурации для использования, которое вам необходимо. Дальше мы рассмотрим, как именно функционирует генератор, его основные компоненты, и как электрогенератор действует в роли вторичного источника электричества, в случае его использование в жилых домах или на промышленных предприятиях.

Как работает генератор?

Электрический генератор – это устройство, которое конвертирует механическую энергию, полученную из внешнего источника, в электрическую энергию. Важно понимать, что в целом генератор не «создает» электрическую энергию. Вместо этого, он использует механическую энергию, которая снабжается им, для усиления движения электрических зарядов, находящихся в проводе его обмотки через внешнюю электрическую цепь (кольцо циркуляции). Этот поток электрических зарядов составляет электрический выходной ток, поступающий от генератора. Этот механизм можно понять, проведя аналогию электростанции с водяной помпой, которая вызывает своими действиями поток воды, но в действительности не «создает» его.
Современный электрогенератор работает по принципу электромагнитной индукции, обнаруженной Майклом Фарадеем в 1831-1832 годах. Фарадей открыл, что поток электрических зарядов может быть вызван перемещением электрического проводника, таким как например провод, который содержит электрические заряды, в магнитном поле. Такое передвижение создает разность напряжений между двумя концами провода или электрического проводника, который в свою очередь вызывает электрические заряды в поток, таким образом генерируя электрический ток.

Основные компоненты электростанции

Можно провести такую классификацию основных компонентов электрогенератора:
(1) Двигатель 
(2) Синхронный генератор (или генератор переменного тока)
(3) Система подачи топлива
(4) Регулятор напряжения
(5) Система выпуска и охлаждения двигателя
(6) Система смазки
(7) Зарядное устройство
(8) Панель управления
(9) Основная сборка / Конструкция

(1) Двигатель электростанции

Двигатель является источником подачи механической энергии миниэлектростанции. Размер двигателя прямо пропорционален максимальной мощности, которую генератор может производить. Есть несколько факторов, которые нужно обязательно знать при оценке двигателя вашего генератора.

(а) вид используемого топлива – двигатели электростанции работают на различном топливе, таких как дизельное топливо, бензин, пропан или природный газ. Чаще всего маленькие генераторы для дома работают на бензине, тогда как большие промышленные Электростанции на дизельном топливе, жидком пропане, природном газе или пропановом газе. Определенные двигатели также могут работать на двух видах топлива таких как дизельное топливо и газ.

(b) двигатели с верхним расположением клапанов OHV – такие двигатели отличаются от других тем что, впускные и выпускные клапаны у них расположены в верхушке (головке) цилиндра двигателя, а не на блоке цилиндров. Двигатели с верхним расположением клапанов более дорогие, но имеют некоторые преимущества перед другими двигателями:

— компактный дизайн 
— более простой механизм работы 
— долговечность
— удобный для пользования в работе 
— низкий уровень шума во время работы 
— низкий уровень выбросов 

(с) чугунная гильза в цилиндре двигателя – это своего рода подкладка в цилиндре двигателя. Она сокращает изнашивание и обеспечивает долговечность двигателя. Большинство двигателей с верхним расположением клапанов оснащены такой гильзой в цилиндре, но все равно необходимо проверять это в двигателе. Чугунная гильза не дорога, но играет очень важную роль в долговечности двигателя, особенно если вам необходимо часто использовать генератор.

(2) Синхронный генератор 

Синхронный генератор (или генератор переменного тока) является частью электростанции, который вырабатывает электрическую мощность от механической, подаваемой двигателем. Он содержит в себе неподвижные и подвижные детали, монтированные в корпус. Компоненты работают вместе, вызывая тем самым относительное движение между магнитными и электрическими полями, что в свою очередь вырабатывает электроэнергию.

(а) Ротор – это подвижная деталь, которая создает вращающееся магнитное поле одним из таких трех способов: 

(i) индукцией – известен как синхронный бесщеточный генератор и обычно используется в больших генераторах.
(ii) Постоянными магнитами – зачастую используется в маленьких генераторах 
(iii) С помощью задающего генератора (возбудителя) – задающий генератор является маленьким источником постоянного тока, который активизирует ротор через сборку токопроводящих контактных колец и щеток.

Ротор вырабатывает движущееся магнитное поле вокруг статора, которое вызывает разность напряжений между обмоткой статора. Это создает переменный ток на выходе генератора. 

Вот следующие факторы, которые нужно знать при оценке синхронного генератора

(а) металлический или пластиковый корпус – металлический дизайн обеспечит долговечность генератора. Пластиковый корпус деформируется со временем из-за чего его движущиеся части могут подпадать под негативное воздействие внешних факторов. Это может вызвать изнашивание и что еще важно опасность для пользователя. 
(b) шариковый или игольчатый подшипник – предпочтение отдается шариковым подшипникам, тем более что они будут дольше вам служить.  
(c) бесщеточный генератор – синхронный генератор, который не использует щетки, требует меньшего технического обслуживания и также производит более чистую энергию. 

(3) Система подачи топлива 

Топливный бак обычно имеет достаточную способность поддерживать электрогенератор в рабочем состоянии от 6 до 8 часов в среднем. В случае если минигенератор, топливный бак крепится на верхней части корпуса электростанции. Для промышленного применения необходимо устанавливать наружный топливный бак. 

Представляем вам следующие характеристики системы подачи топлива:

(а) соединение трубопроводов от топливного бака к двигателю – линия питания направляет топливо от бака к двигателю и обратный провод направляет топливо от двигателя к баку.
(b) вентиляционная труба для топливного бака – топливный бак имеет вентиляционную трубу для предотвращения повышения давления во время повторного заполнения или слива топливного бака. Когда вы заполняете бак, обеспечьте контакт металлических поверхностей между соплом наполнителя и топливным баком для избежания искр. 
(с) сливное соединение от топливного бака к дренажной трубе – это необходимо для того, чтобы при любом сливе во время повторного заполнения бака не случилась утечка жидкости на генераторной установке. 
(d) топливный насос – он перемещает топливо от основного бака-хранилища до бака периодического действия (временного бака). Топливный насос как правило имеет электропривод.
(е) топливный водный разделитель / топливный фильтр – он отделяет воду и неизвестные вещества с топливной жидкости для защиты других компонентов генератора от коррозии и загрязнения. 
(f) топливный инжектор – он автоматизирует топливную жидкость и распыляет необходимое количество топлива в камеру сгорания двигателя. 

(4) Регулятор напряжения AVR

Эта составляющая регулирует выходное напряжение генератора. Далее будет описаны компоненты регулятора напряжения, которые занимают неотъемлемую часть в его работе.

(1) Регулятор напряжения: изменение переменного напряжения в постоянный ток – регулятор напряжения берет на себя малую часть выходного переменного напряжения и конвертирует его в постоянный ток. Регулятор напряжения затем подает постоянный ток на вторичную обмотку в статоре, известному как возбудитель обмотки (или обмотка задающего генератора).
(2) Возбудитель обмотки: изменение постоянного тока в переменный – возбудитель обмотки функционирует так же, как и основная обмотка статора и генерирует небольшое количество переменного тока. Возбудитель обмотки связан с таким понятием как вращающийся выпрямитель тока.
(3) Вращающийся выпрямитель тока: изменение переменного тока в постоянный – он выпрямляет переменный ток, который генерируется возбудителем обмотки, и конвертирует его в постоянный ток. Этот постоянный ток в свою очередь подается на ротор для создания электромагнитного поля в дополнение к вращающемуся магнитному полю ротора.
(4) Ротор: изменение постоянного тока в переменное напряжение – ротор индуцирует большое количество переменного напряжения через обмотку статора, которую генератор производит как большое количество выходного переменного напряжения.

Этот цикл происходит до тех пор, пока генератор начинает вырабатывать выходное напряжение, соответствующее его полной работоспособности. Когда производительность (или выходная мощность) генератора увеличивается, регулятор напряжения вырабатывает меньше постоянного тока. Если генератор достигает полной рабочей мощности, регулятор напряжения достигает состояния равновесия и вырабатывает достаточно постоянного тока для поддержания выходной мощности генератора на полном рабочем уровне.

При добавлении нагрузки на электростанцию, его выходное напряжение немного уменьшается. Это побуждает регулятор напряжения начать действовать. Цикл продолжается до тех пор, пока выходная мощность генератора не увеличиться до ее первоначальной работоспособности.

(5) Система выхлопа и охлаждения двигателя электростанции

(а) Система охлаждения электрогенератора
Продолжительное использование миниэлектростанции приводит к тому, что различные его компоненты нагреваются. Поэтому в таком случае необходимо иметь охлаждающую и вентиляционную систему для прекращения нагрева. Вода иногда используется как охлаждающая жидкость для генераторов, но это ограничивается определенными ситуациями, например, когда у вас маленький генератор для дачи или городских условий или очень большой генератор около 2250 кВт и т.д.
Водород иногда может использоваться как охладитель для обмотки статора в больших электростанциях, так как он более эффективно поглощает тепло. Водород убирает тепло от генератора и переносит его через теплообменник во вторичный контур охлаждения, который имеет деминирализованную воду как охлаждающая жидкость. Вот почему рядом с большими генераторами и маленькими электростанциями всегда находится большая охлаждающая башня (или стояк). Для всех других использований, как на предприятии, так и в жилых условиях, стандартный радиатор и вентилятор устанавливаются на генератор и работают в основном как охлаждающая система. Очень важно проверять уровень охлаждения генератора каждый день. Охлаждающая система и помпа с неочищенной водой должны промываться каждые 600 часов и теплообменник также должен очищаться каждые 2400 часов работы мини генератора. Генератор должен быть помещен в открытую и проветриваемую область. По национальным правилам установки оборудования устанавливается, что минимальное расстояние по сторонам генератора должно быть равно 3 футам для обеспечения свободного потока свежего воздуха.

(b) Система выхлопа
 Отработаный газ, выпущенный генератором, содержит в себе высокотоксичные химикаты, с которые нужно надлежащим образом отвести. Поэтому необходимо установить соответствующую вытяжную систему для ликвидации отработаных газов. Иногда люди даже и не думают об этом, хотя отравление угарным газом остается одним из самых распространенных случаев смертей. Вытяжные трубы чаще всего изготавливаются из чугуна, кованого железа или стали. Они должны быть автономными и не должны поддерживаться двигателем генератора. Чаще всего выхлопные трубы прикрепляются к двигателю с использованием гибких соединителей для минимизации вибраций и предотвращения разрушения вытяжной системы генератора. Вытяжные трубы заканчиваются на открытом воздухе и ведут от дверей, окон и других открывающихся приспособлений, к дому или другому строению. Вы должны быть уверены, что вытяжная система вашего генератора не соединена с другим оборудованием.

(6) Система смазки

Так как генератор состоит из движущихся частей в его двигателе, необходимо смазывание для обеспечения длительности срока службы и плавной обработки на долгое время. Двигатель мини-электростанции смазывается маслом, которое находится в помпе. Необходимо проверять уровень смазывающего масла каждые 8 часов работы генератора. Кроме этого в проверке нуждается любая утечка масла и его изменения каждые 500 часов работы бензогенератора.

(7) Зарядное устройство

Запуск генератора изначально производится от аккумулятора. Зарядное устройство сохраняет батарею генератора заряженной, снабжая ее точным «плавающим» напряжением. Если такое напряжение очень низкое, батарея останется незаряженной. Если напряжение очень высокое, оно сократит срок работы батареи. Зарядные устройства обычно изготавливаются из нержавеющей стали для предотвращения коррозии. Также такие устройства полностью автоматизированы и не требуют каких-либо корректировок или изменений в параметрах. Постоянное выходное напряжение зарядного устройства устанавливается на 2.33 Вольт на ячейку, что является точным напряжением для свинцово-кислотной батареи. Зарядное устройство имеет отдельное постоянное напряжение, что препятствует нормальному функционированию электрогенератора.

(8) Панель управления электростанцией

Это пользовательский интерфейс портативной электростанции и он содержит положения об элементах управления. Разные производители предлагают разные панели управления для генераторов. Описание некоторых из них рассмотрим подробней.
(а) электрическое включение и выключение – такие панели управления автоматически включают ваш генератор во время прекращения подачи электроэнергии, следят за электростанцией во время ее работы и автоматически выключают ее, когда она больше не нужена.
(b) механическое устройство прибора (датчик) – различные приборы указывают на важные параметры, таки как давление масла, температура охлаждения, напряжение батареи, скорость вращения двигателя и длительность работы. Непрерывный контроль таких параметров позволяет автоматически выключить генератор, если один из них превысит свои показатели.
(с) датчики мини генератора – панель управления также имеет датчики для измерения выходного тока и напряжения и рабочей частоты.
(d) другие виды контроля – фазовый селекторный переключатель, переключатель частоты, и переключатель управления двигателем (ручной режим или авто режим) и др.

(9) Рама / Корпус

Все генераторы, переносные или стационарные, имеют установленную под заказ раму или корпус, который обеспечивает основную поддержку.

Использование генераторов для промышленного и бытового применения

Хотя основной принцип работы генерирования электроэнергии остается практически одинаковым для всех генераторов, механизм включения питания устройства при использовании электрической мощности, отличается в разных системах.

Переносной генератор

Такие генераторы обычно используются для бытовых целей, когда нужно подключить несколько домашних приборов во время отключения подачи электроэнергии или на строительных площадках, где отсутствует источник электрической энергии и необходимо подключить различные строительные приборы. В таких случаях обычно необходима мощность электрогенератор по крайней мере 4 кВт.

Использование удлинителя:
Одним из наиболее экономичных путей является обеспечение электроснабжения во время отсутствия подачи электроэнергии через использование удлинителя для прямого соединения переносного генератора с теми устройствами, которые вы хотите подключить.
Использование сетевого переключателя:
Безопасным путем при использовании переносного генератора для дома является использование сетевого переключателя мощности, который установлен и соединен с основной электрической сетью вашего дома. Такой выключатель способен переключаться от основного источника питания, зачастую это городская электросеть, к вторичному или даже третичному источнику питания, такому как генератор, когда питание от основного источника прерывается. Ручные переключатели работают через непосредственное управление или через использование удаленного пульта управления. Во время отсутствия электроэнергии переключатель перекидывает питание от второстепенных источников питания и подключает ее к генератору.
В таких случаях мини-генератор может быть присоединен к панели через удлинитель. Электрическая мощность от генератора может подаваться через основной автоматический выключатель и использоваться для необходимых областей. Критические и некритические электроприборы могут быть сгруппированы индивидуально таким образом, что переносный минигенератор будет обслуживать только необходимые приборы. Изолируя линию питания от питания генератора, вы также устраняете риск «обратной связи». Такой является поток электрической мощности от миниэлектростанции в линию питания, что может быть фатальным для электриков, работающих над линией питания во время отсутствия электроэнергии.

Резервный генератор

Переносные генераторы не практичны, так как они могут обслуживать только несколько приборов. Аварийная резервная система может использоваться для поставки мощности на весь дом, а не только на отдельные приборы, и может даже сохранять рабочими кондиционеры во время отсутствия электроэнергии. Также вы можете выбрать меньшие резервные блоки для обеспечения работы только некоторых приборов, таких как холодильник, свет и вентиляторы. Обычно такие устройства колеблются в потреблении от 6 кВт до 40 кВт.

Использование автоматического ввода резерва:
Резервные генераторы обычно устанавливаются вне дома и подсоединяются к основной электрической сети через автоматический переключатель. Система автоматически возобновляет питание в доме в пределах 20 секунд после отключения такого питания без какого-либо ручного вмешательства.

Коммерческий резервный генератор / Промышленные электростанции

Промышленные генераторы используются на коммерческих предприятиях, таких как офисы, производственные фабрики, добыча полезных ископаемых, больницы и др., которые просто не могут позволить себе риск нарушения непрерывности работы во время отсутствия электроэнергии. Зачастую промышленные электростанции – это стационарная установка, которая производит от 50 до 200 кВт мощности. Большинство маленьких и бытовых генераторов являются однофазными (120 Вольт), но коммерческие генераторы практически всегда трехфазные (120, 240 или 480 Вольт).

Использование автоматического ввода резерва:
Также как и бытовые резервные мини генераторы, коммерческие резервные электростанции подключены к электрической сети здания через автоматический переключатель и активизируются автоматически во время отсутствия электроэнергии. Они специально сконструированы так, что переключение между первичным и вторичным источником питания занимает долю секунды и позволяет без замедлений обеспечивать необходимые устройства электроэнергией.

Google

Как работает генератор переменного тока?

Генератор превращает механическую энергию в электрическую путем вращения проволочной катушки в магнитном поле. Электрический ток вырабатывается и тогда, когда силовые линии движущегося магнита пересекают витки проволочной катушки {рисунок справа). Электроны {голубые шарики) перемещаются по направлению к положительному полюсу магнита, а электрический ток течет от положительного полюса к отрицательному. До тех пор, пока силовые линии магнитного поля пересекают катушку (проводник), в проводнике индуцируется электрический ток.

Аналогичный принцип работает и при перемещении проволочной рамки относительно магнита {дальний рисунок справа), т. е. когда рамка пересекает силовые линии магнитного поля. Индуцированный электрический ток течет таким образом, что его поле отталкивает магнит, когда рамка приближается к нему, и притягивает, когда рамка удаляется. Каждый раз, когда рамка изменяет ориентацию относительно полюсов магнита, электрический ток также изменяет свое направление на противоположное. Все то время, пока источник механической энергии вращает проводник (или магнитное поле), генератор будет вырабатывать переменный электрический ток.

Принцип действия генератора переменного тока

Простейший генератор переменного тока состоит из проволочной рамки, вращающейся между полюсами неподвижного магнита. Каждый конец рамки соединен со своим контактным кольцом, скользящим по электропроводной угольной щетке (рисунок над текстом). Индуцированный электрический ток течет к внутреннему контактному кольцу, когда соединенная с ним половина рамки проходит мимо северного полюса магнита, и, наоборот, к внешнему контактному кольцу, когда мимо северного полюса проходит другая половина рамки.

Трехфазный генератор переменного тока

Одним из наиболее экономически выгодных способов выработки сильного переменного тока является использование одного магнита, вращающегося относительно нескольких обмоток. В типичном трехфазном генераторе три катушки расположены равноудалено от оси магнита. Каждая катушка вырабатывает переменный ток, когда мимо нее проходит полюс магнита (правый рисунок).

Изменение направления электрического тока

Когда магнит вдвигается в проволочную катушку, он индуцирует в ней электрический ток. Этот ток заставляет стрелку гальванометра отклоняться в сторону от нулевого положения. Когда магнит вынимается из катушки, электрический ток изменяет свое направление на противоположное, и стрелка гальванометра отклоняется в другую сторону от нулевого положения.

Переменный ток

Магнит не будет индуцировать электрический ток до тех пор, пока его силовые линии не начнут пересекать проволочную петлю. Когда полюс магнита вдвигается в проволочную петлю, в ней индуцируется электрический ток. Если магнит прекращает движение, электрический ток (голубые стрелки) также прекращается (средняя диаграмма). Когда магнит вынимается из проволочной петли, в ней индуцируется электрический ток, текущий в противоположном направлении.

Генератор переменного тока — Генератор переменного тока состоит он из неподвижной части, которая называется статор или якорь и вращающейся части — ротор или индуктор

В 1832-м году неизвестным изобретателем был создан первый однофазный синхронный многополюсный генератор переменного тока. Но в самых первых электронных устройствах применялся только постоянный ток, в то время как переменный ток долгое время не мог найти своего практического применения. Тем не менее, вскоре выяснили, что намного практичнее использовать не постоянный, а переменный ток, то есть тот ток, который периодически меняет свое значение и направление. Преимущества переменного тока, состоят в том, что его удобнее вырабатывать при помощи электростанций, генераторы переменного тока экономичнее и проще в обслуживании, чем аналоги, работающие на постоянном токе. Поэтому были собраны надежные электрические двигатели переменного тока, которые сразу нашли свое широкое применение в промышленных и бытовых сферах. Надо отметить, что благодаря существованию переменного тока, его особенным физическим явлениям, смогли появиться такие изобретения, как радио, магнитофон и прочая автоматика и электротехника, без которой сложно представить современную жизнь.

Устройство генератора переменного тока

Генератор переменного тока – это устройство, которые преобразует механическую энергию, в электрическую.

Состоит он из неподвижной части, которая называется статор или якорь (см. рисунок) и вращающейся части — ротор или индуктор. В генераторе переменного тока ротор — это электромагнит, который обеспечивает магнитное поле, которое передается на статор. На внутренней поверхности статора есть осевые впадины, так называемые пазы, в которых расположена обмотка переменного тока (проводник). Статор генератора изготавливается из 0.35 мм спрессованных стальных листов, которые изолированы покрытой лаком пленкой. Эти листы устанавливаются в станине устройства. Ротор крепится внутри статора и вращается посредством двигателя. Вал – одна из деталей, для передачи крутящего момента под действием расположенных на нём опор. На общем валу с генератором, располагается так называемый возбудитель постоянного тока, который питает постоянным током обмотки ротора. Аккумулятор в генераторе переменного тока выполняет функции стартерной батареи, которая имеет свойство накапливать и хранить электроэнергию при нехватке в отсутствии работы двигателя и при нехватке мощности, которую развивает генератор.

Применение генераторов переменного тока в жизни

В течении последних лет, популярность использования электростанций и генераторов переменного тока значительно возросла. Используются они как в промышленных, так и в бытовых сферах. Промышленные генераторы являются наилучшим вариантом для использования на производстве, в больницах, школах, магазинах, офисах, бизнес центрах, а так же на строительных площадках, значительно упрощая строительство в тех зонах, где электрификация полностью отсутствует. Бытовые генераторы, более практичные, компактные и идеально подходят для использования в коттедже и загородном доме. Генераторы переменного тока широко применяются в различных областях и сферах благодаря тому, что могут решить множество важных проблем, которые связаны с нестабильной работой электричества или полным его отсутствием.

Обслуживание

Практически любая дизельная электростанция в независимости от ее мощности и производителя имеет 2 главные составляющие. Это генератор переменного тока и двигатель внутреннего сгорания. Так как поддерживать данные узлы необходимо в рабочем исправном состоянии, в ходе их эксплуатации нужен определенный перечень обязательных работ по их техническому обслуживанию. К сожалению, подавляющее большинство владельцев считает, что можно ограничиться лишь своевременной заменой масла и фильтра, при этом «техническое обслуживание» можно провести и самостоятельно. Но результатом этого зачастую становится полный отказ работы устройства. В результате чего, не сложно сделать вывод, что проще и дешевле, доверить оборудование профессионалам, которые благодаря знаниям и огромному опыту, смогут увеличить срок службы ДГУ и сократить расходы при аварийных ситуациях.


Как устроен генератор — все об устройстве электрогенераторов постоянного и переменого тока

Принцип работы генерирующего устройства

Работа электрогенерирующего оборудования основывается на принципе конвертации механической энергии, получаемой из внешнего источника, в электроэнергию. Иными словами, устройство не вырабатывает самостоятельно электричество. Происходит усиление движения возникающих в проводах его обмотки электрических зарядов, которые проходя через внешнее кольцо циркуляции, отдают свою энергию. В результате на выходе образуется электрический ток, который и поступает в сеть от электростанции.

С научной точки зрения принцип называется «магнитной индукцией» и был обнаружен Майклом Фарадеем в 19 веке. Ученый физик установил, что перемещением электрического проводника в магнитном поле рождается поток зарядов. Между двумя концами проводника, в частности, провода, создается разность напряжений, который усиливает движение зарядов, превращая их в электричество.

Перейти в каталог генераторного оборудования:

Основные элементы электростанции


Как устроен генератор переменного тока?

Это неотъемлемая часть электростанции, которая осуществляет преобразование механической мощности в электрическую энергию. Состоит устройство из неподвижных и подвижных модулей, которые вмонтированы в его корпус. Все элементы работают в синхронном режиме, усиливая движение между электрическими и магнитными полями, что рождает электричество.

Ротор, как подвижный модуль, создает вращающееся магнитное поле. Выполняется это несколькими способами:

  • индукцией, которая происходит в синхронном бесщеточном генераторе, которые, как правило, имеют достаточно внушительные габариты;
  • постоянными магнитами, используемыми в малых генераторах;
  • с помощью задающего возбудителя, активизирующего ротор через сборку щеток и токопроводящих контактных колец.

Подвижным ротором вокруг статора вырабатывается вращающееся магнитное поле и вызывается разность напряжений в обмотке. Таким образом производится на выходе переменный ток.

Факторы, влияющие на эффективность работы синхронного генератора:

  • металлический или пластиковый корпус. В первом случае устройство отличается большей долговечностью. Пластик же со временем деформируется и может стать причиной повреждения внутренних элементов, создавая таким образом аварийную ситуацию и опасность для пользователя.
  • шариковый или игольчатый подшипник: первый более предпочтителен в силу большей его износостойкости.
  • в бесщеточном генераторе не используются щетки, благодаря чему отличается производством более чистой энергии на фоне меньшего технического обслуживания.

Двигатель

С помощью этого элемента образуется механическая энергия для работы миниэлектростанции. Его размер напрямую зависит от максимальной мощности электростанции. Кроме того, существует множество факторов, влияющих на функциональность двигателя:

  • вид топлива, используемое для работы двигателя. Это могут быть бензин, дизельное топливо, природный газ или пропан. Бытовые электростанции, как правило, работают на бензине, промышленные же электростанции – на дизельном топливе, природном газу, жидком или газообразном пропане. Есть модификации, работающие на комбинированном виде топлива – дизеле и газу.
  • верхнее расположение клапанов OHV. Впускные и выпускные клапаны таких двигателей располагаются не на блоке цилиндров, а на их верхушке. Данные модели имеют более высокую стоимость, что обусловлены дополнительными преимуществами. Это компактный дизайн, упрощенная рабочая механика, удобство в использовании, а также долговечность конструкции. Кроме того, их работа отличается низким уровнем шума и меньшим уровнем выбросов.
  • чугунная гильза в цилиндре двигателя, используемая в качестве подкладки. Таким способом уменьшается износ двигателя, что увеличивает доремонтный срок службы. Такая чугунная гильза используется в большинстве устройств с верхним расположением клапанов. Как элемент, эта подкладка имеет невысокую стоимость, однако очень важна, особенно в случаях частого использования электростанции.

Система подачи топлива

Топливный резервуар обычно имеет достаточный объем для поддержания стабильной работы электростанции на период от 6 до 8 часов. На малых устройствах бак устанавливается в верхней части корпуса. Для промышленной установки применяется наружный резервуар.

Характеристики системы:

  • соединение трубопроводов с двигателем. Таким путем осуществляется подача топлива к работающему модулю и обратно.
  • вентиляционная труба для топливного бака необходима для снижения уровня давления при повторном заполнении или сливе резервуара. Крайне важно при этом обеспечить контакт металлических поверхностей сопла наполнителя и топливного бака во избежание искр.
  • сливное соединение с дренажной трубой используется для предотвращения протечек жидкости во время слива.
  • топливный насос отвечает за перемещение топлива от основного хранилища в точку потребления. Данное устройство имеет электропривод.
  • топливный фильтр очищает жидкость от иных примесей, способных привести к коррозии и загрязнению внутренних модулей оборудования.
  • инжектор автоматически управляет поступлением необходимого объема жидкости в камеру сгорания.

Регулятор напряжения AVR

Этот модуль осуществляет регулировку выходного напряжения электростанции. Устройство состоит из нескольких компонентов:

  • регулятор напряжения контролирует процесс преобразования переменного напряжения в постоянный электроток. Затем происходит его подача на вторичную обмотку статора.
  • возбудитель обмотки необходим для генерирования небольшого количества переменного тока. Напрямую связан с вращающимся выпрямителем тока.
  • вращающийся выпрямитель тока осуществляет выпрямление переданного с возбудителя обмотки переменного тока с последующей конвертацией его в постоянный. Затем выполняется его подача на ротор, где в дополнение к вращающемуся магнитному полю создается и электромагнитное напряжение.
  • ротору отводится роль индукции большого количества переменного напряжения на обмотку статора.

Регулятор напряжения максимально задействован в начальном периоде запуска установки. Как только устройство выходит на полную работоспособность, модуль снижает выработку постоянного тока. В состоянии равновесия регулятор напряжения производит только необходимое количество мощности для поддержания электростанции в рабочем состоянии.

При увеличении нагрузки на электростанцию, регулятор напряжения выходит из состояния равновесия и активизирует свою работу, пока мощность оборудования не выйдет на показанный уровень потребления.

В нашем каталоге Вы можете ознакомиться с примерами дизельных генераторов с АВР >>


Установка выхлопа и охлаждения двигателя электростанции

Включает в себя:

  • Систему охлаждения электростанции, используемую для снижения уровня перегрева рабочего устройства. В качестве антифриза используется вода, водород, а также стандартный радиатор и вентилятор. За уровнем охлаждения следует периодически наблюдать, чтобы предотвратить аварийную ситуацию. Система требует постоянной очистки от загрязнений, выполняемую через каждые 600 часов работы. Следует обеспечить приток к устройству свежего воздуха: по действующим нормам в радиусе от электрогенерирующей установки должно быть не меньше метра свободного пространства.
  • Систему выхлопа. В процессе сгорания топлива образуется отработанный газ, содержащий высокотоксичные химические соединения. Очень важно создать эффективную систему утилизации выхлопов с использованием вытяжек.

Система смазки

Электростанция в комплекте имеет множество движущихся модулей, эффективность работы которых зависит и от содержания смазочных веществ. Для чего в помпе всегда находится специальное масло, уровень которого следует контролировать каждые 8 часов. Также необходимо строго отслеживать возможные протечки смазывающего вещества.

Зарядное устройство

Запуск электростанции осуществляется с помощью аккумулятора. Эта батарея должна быть всегда заряженной, за что отвечает зарядное устройство. Оно снабжает аккумулятор необходимым количеством «плавающей» энергии, которая и производит подзарядку емкости. Важно следить за уровнем этой энергии: снижение приведет к неполной зарядке аккумулятора, а повышенный уровень выведет его из строя.

Изготавливается зарядное устройство из нержавеющей стали, чтобы увеличить срок службы модуля. Его работа полностью автоматизирована и не требует вмешательства в параметры. Постоянное напряжение на выходе определяется на уровне на 2.33 Вольт на ячейку. Зарядное устройства обладает отдельным постоянным напряжением, которое может привнести сбои в нормальное функционирование электрооборудования.

Панель управления

Модуль снабжен упрощенным интерфейсом, на котором отображены все положения управляемых элементов. Каждый производитель предлагает собственный вариант панели.

Электрическое включение и выключение автоматически запускает электростанцию в рабочее состояние в случае необходимости. И отключает, когда деятельность устройства нецелесообразна.

Механическое устройство прибора отображает на датчиках наиболее важные параметры по давлению масла, температуре охлаждения, напряжению батареи, скорости вращения двигателя и длительности работы. При превышении нормы электростанция автоматически отключается.

Датчики мини электростанции отвечают за измерение выходного тока, напряжения и рабочей частоты. Иные виды контроля: переключатель частоты, фазовый селекторный переключатель и переключатель режимов двигателя.

Рама / Корпус

Основная конструкция служит генераторному оборудованию главной поддержкой и имеет выполненный под заказ корпус. В случаях, когда предполагается перемещение оборудования, рама может быть дополнительно оснащена шасси.

Для наглядности, вы можете посмотреть нашу продукцию из раздела передвижные дизельные генераторы >>

Автомобильный генератор — как работает, из чего состоит и устройство

Генератор — основной источник электроэнергии машины. Расскажем подробно как работает, из чего состоит и его устройство внутри. Информация подойдет для начинающих и опытных автолюбителей.

Как работает

При пуске двигателя автомобиля основным потребителем электроэнергии является стартер, сила тока достигает сотен ампер, что вызывает значительное падение напряжения аккумулятора. В этом режиме потребители питаются только от аккумулятора, который интенсивно разряжается. Сразу после пуска двигателя генератор становится основным источником электроснабжения. Генератор авто является источником постоянной подзарядки аккумуляторной батареи во время работы двигателя. Если он не будет работать, аккумулятор быстро разрядиться. Он обеспечивает требуемый ток для заряда АКБ и работы электроприборов. После подзарядки аккумулятора, генератор снижает зарядный ток и работает в штатном режиме.

При включении мощных потребителей (например, обогревателя заднего стекла, фар) и малых оборотов двигателя суммарный потребляемый ток может быть больше, чем способен отдать генератор. В этом случае нагрузка ляжет на аккумулятор, и он начнет разряжаться.

Привод и крепление

Привод осуществляется от шкива коленчатого вала ременной передачей. Чем больше диаметр шкива на коленчатом валу и меньше диаметр шкива, тем выше обороты генератора, соответственно, он способен отдать потребителям больший ток. На современных машинах привод осуществляется поликлиновым ремнем. Благодаря большей гибкости он позволяет устанавливать на генераторе шкив малого диаметра и, следовательно, получать высокие передаточные отношения. Натяжение поликлинового ремня осуществляется натяжными роликами при неподвижном генераторе.

Устройство и из чего состоит

Любой генератор автомобиля содержит статор с обмоткой, зажатый между двумя крышками — передней, со стороны привода, и задней, со стороны контактных колец. Генераторы крепятся в передней части двигателя болтами на специальных кронштейнах. Крепежные лапы и натяжная проушина находятся на крышках. Крышки, отлитые из алюминиевых сплавов, имеют вентиляционные окна, через которые воздух продувается вентилятором. Генераторы традиционной конструкции снабжены вентиляционными окнами только в торцевой части, а «компактной» конструкции — еще на цилиндрической части над лобовыми сторонами обмотки статора. На крышке со стороны контактных колец крепятся щеточный узел, который объединен с регулятором напряжения, и выпрямительный узел. Крышки обычно стянуты между собой тремя или четырьмя винтами, причем статор оказывается зажат между крышками, посадочные поверхности которых охватывают статор по наружной поверхности.

Статор генератора

1 — сердечник, 2 — обмотка, 3 — пазовый клин, 4 — паз, 5 — вывод для соединения с выпрямителем

Статор набирается из стальных листов толщиной 0.8…1 мм, но чаще выполняется навивкой «на ребро». При выполнении пакета статора навивкой ярмо статора над пазами обычно имеет выступы, по которым при навивке фиксируется положение слоев друг относительно друга. Эти выступы улучшают охлаждение статора за счет более развитой наружной поверхности.

Необходимость экономии металла привела к созданию конструкции пакета статора, набранного из отдельных подковообразных сегментов. Скрепление между собой отдельных листов пакета статора в монолитную конструкцию осуществляется сваркой или заклепками. Практически все генераторы автомобилей массовых выпусков имеют 36 пазов, в которых располагается обмотка статора. Пазы изолированы пленочной изоляцией или напылением эпоксидного компаунда.

Ротор генератора

а — в сборе; б — полюсная система в разобранном виде; 1,3- полюсные половины; 2 — обмотка возбуждения; 4 — контактные кольца; 5 — вал

Особенностью автомобильных генераторов является вид полюсной системы ротора. Она содержит две полюсные половины с выступами — полюсами клювообразной формы по шесть на каждой половине. Полюсные половины выполняются штамповкой и могут иметь выступы. В случае отсутствия выступов при напрессовке на вал между полюсными половинами устанавливается втулка с обмоткой возбуждения, намотанной на каркас, при этом намотка осуществляется после установки втулки внутрь каркаса.

Валы роторов выполняются из мягкой автоматной стали. Но при применении роликового подшипника, ролики которого работают непосредственно по концу вала со стороны контактных колец, вал выполняется из легированной стали, а цапфа вала закаливается. На конце вала, снабженном резьбой, прорезается паз под шпонку для крепления шкива.

Во многих современных конструкциях шпонка отсутствует. В этом случае торцевая часть вала имеет углубление или выступ под ключ в виде шестигранника. Это позволяет удерживать вал от поворота при затяжке гайки крепления шкива, или при разборке генератора, когда необходимо снять шкив и вентилятор.

Щеточный узел

Это конструкция, в которой размещаются щетки т.е. скользящие контакты. В автомобильных генераторах применяются щетки двух типов — меднографитные и электрографитные. Последние имеют повышенное падение напряжения в контакте с кольцом по сравнению с меднографитными. Они обеспечивают значительно меньший износ контактных колец. Щетки прижимаются к кольцам усилием пружин.

Выпрямительные узлы

Применяются двух типов. Это пластины-теплоотводы, в которые запрессовываются диоды силового выпрямителя или конструкции с сильно развитым оребрением и диоды припаиваются к теплоотводам. Диоды дополнительного выпрямителя имеют обычно пластмассовый корпус цилиндрической формы или в виде горошины или выполняются в виде отдельного герметизированного блока, включение в схему которого осуществляется шинками.

Наиболее опасным является замыкание пластин теплоотводов, соединенных с «массой» и выводом «+» генератора случайно попавшими между ними металлическими предметами или проводящими мостиками, образованными загрязнением, т.к. при этом происходит короткое замыкание по цепи аккумуляторной батареи и возможен пожар.


Во избежание этого пластины и другие части выпрямителя генераторов частично или полностью покрывают изоляционным слоем. В монолитную конструкцию выпрямительного блока теплоотводы объединяются в основном монтажными платами из изоляционного материала, армированными соединительными шинками.

Подшипниковые узлы

Это радиальные шариковые подшипники с одноразовой закладкой пластичной смазки на весь срок службы и одно или двухсторонними уплотнениями, встроенными в подшипник. Роликовые подшипники применяются только со стороны контактных колец и достаточно редко, в основном, американскими фирмами. Посадка шариковых подшипников на вал со стороны контактных колец — обычно плотная, со стороны привода — скользящая, в посадочное место крышки наоборот — со стороны контактных колец — скользящая, со стороны привода — плотная. Охлаждение генератора авто осуществляется одним или двумя вентиляторами, закрепленными на его валу. При этом у традиционной конструкции генераторов воздух засасывается центробежным вентилятором в крышку со стороны контактных колец. У генераторов, имеющих щеточный узел, регулятор напряжения и выпрямитель вне внутренней полости и защищенных кожухом, воздух засасывается через прорези этого кожуха, направляющие воздух в наиболее нагретые места — к выпрямителю и регулятору напряжения.
Система охлаждения: а — устройства обычной конструкции; б — для повышенной температуры в подкапотном пространстве; в — устройства компактной конструкции. Стрелками показано направление воздушных потоков На автомобилях с плотной компоновкой подкапотного пространства применяют генераторы со специальным кожухом, через который в него поступает холодный забортный воздух. У генераторов «компактной» конструкции охлаждающий воздух забирается со стороны как задней, так и передней крышек.

Для чего нужен регулятор напряжения

Регуляторы поддерживают напряжение генератора в определенных пределах для оптимальной работы электроприборов, включенных в бортовую сеть автомобиля. Генераторы оснащаются полупроводниковыми электронными регуляторами напряжения, встроенными внутрь корпуса. Схемы их исполнения и конструктивное оформление могут различаться, но принцип работы одинаков.

Регуляторы напряжения обладают свойством термокомпенсации — изменения напряжения, подводимого к аккумуляторной батарее, в зависимости от температуры воздуха в подкапотном пространстве для оптимального заряда АКБ. Чем ниже температура воздуха, тем большее напряжение должно подводиться к батарее и наоборот. Величина термокомпенсации достигает до 0,01 В на 1°С. Некоторые модели выносных регуляторов имеют ручные переключатели уровня напряжения (зима/лето).

Бензиновые и дизельные электрогенераторы

Прежде чем разобрать тему «принцип работы и устройство электрического генератора», нужно остановиться на основных электротехнических терминах.

Электрическая мощность, это произведение тока I (Амперы) и напряжения U (Вольты), измеряется в ВА (Вольт Амперах). Данная мощность ещё называется полной P=U x I (ВА). Она, в свою очередь, подразделяется на активную и реактивную.

Активная мощность измеряется в Ваттах. Она показывает значения потребления различных обогревательных электроприборов в момент их работы. В данном виде мощности вся электрическая энергия преобразуется в тепло. У активной мощности cos φ равен 1. Следовательно, если подключить к электрическому генератору только электроприборы выделяющие тепло, в конструкции которых нет электродвигателей, то можно использовать всю имеющуюся мощность бензинового или дизельного генератора.

Реактивная мощность (единица измерения Вольт-Амперы реактивные) — потребляют электрические двигатели и приборы, содержащие большие ёмкости, например фотовспышка. В этом показателе cos φ не равен 1 и отличается от прибора к прибору. Точно значение можно узнать из списка характеристик, указанных в документации устройства.

cos φ необходим для перевода полной мощности, выражаемой в Вольт-Амперах, перевести в более привычные Ватты. Мощность в Ваттах = Мощность в ВА х cos φ. Чтобы ярче показать взаимосвязь ВА и Вт можно представить кружку пива с пеной, так вот пиво с пеной — это ВА, а само пиво — это Ватты. 

cos φ — это угол сдвига между фазой напряжения и фазой тока, ещё cos φ называют коэффициентом мощности. Очень часто цифры в маркировке ИБП и генераторов обозначают мощность, выраженную в ВА, и, чтобы понять, какую мощность сможет выдать устройство в Ваттах, нужно это значение умножить на коэффициент мощности. 

электрический
прибор
cos φ мощность
(Ватты)
электроплита 1 1200-6000
электрический
обогреватель
1 500-2500
пылесос 0,9 500-2000
холодильник 0,95 150-600
компьютер 0,95 350-700
стиральная
машина
0,9 1500-2500
электродрель 0,85 400-1000
болгарка 0,8 600-3000
перфоратор 0,85 500-1200
компрессор 0,7 700-2500
электромотор 0,7-0,8 250-3000
дуговая
электросварка
0,3-0,6 1800-2500
СВЧ печь 1 700-2000

Пусковой ток свойственен исключительно электроприборам, оснащенным двигателем.

Пусковой ток представляет собой единовременное существенное повышение нагрузки, вызванное запуском устройства, так как электромотор при наборе оборотов требует существенно большей мощности, чем для стандартного режима работы. Следовательно, при подсоединении к генератору устройств, снабженных электродвигателями, суммарную нагрузку необходимо рассчитывать не по номиналу, указанному в паспорте этих приборов, а по мощности пусковых токов. Несмотря на то, что длятся они всего 1-3 секунды, они могут негативно сказаться на источниках электроэнергии, если пренебречь их значением и нагрузить генератор или стабилизатор. Ещё лучше, если источник электрической энергии работает с запасом по мощности процентов в 20%, так он прослужит вам достаточно долго. Ниже приведена таблица электрических приборов с примерным коэффициентом пусковых токов.

В свою очередь, полная мощность подразделяется на Активную и Реактивную мощности.

электроприбор значение
пускового тока
продолжительность
пусковых токов (секунд)
электронагревательный
прибор
(отсутствуют
пусковые токи)
0
холодильник или
морозильная камера
3 4
глубинный
насос
3-7 3
компьютер 2 1
энергосберегающая
лампа
2 1
циркуляционный
насос
3-7 3
посудомоечная
машина
3 1-3
кондиционер 3-5 1-3
микроволновая
печь
2 2
стиральная
машина
3-5 1-3
УШМ
(болгарка)
2 2
пылесос 1,5 2
перфоратор 3 2
мойка высокого
давления
3-5 2

Форма выходного напряжения. Если посмотреть через осциллограф (прибор отображающий форму напряжения) в линиях электропередачи, а значит и в розетке напряжение представлено в виде волны (чистой синусоиды), такая форма напряжения идеальна для работы всей техники. Бензиновые или дизельные генераторы выдают пилообразное напряжение, которое подходит для большинства электроприборов, но такая форма категорически не подходит для работы котлов отопления. Есть класс электроустановок — инверторные генераторы, у них на выходе синусоидальное напряжение. На выходе некоторых типов ИБП (off-line или line-interactive) может быть аппроксимация синусоиды (прямоугольники), что так же не допускается для электроснабжения насосов и энергозависимого котла.

Электрогенератор — электротехническое устройство, которое преобразует механическую энергию от работы двигателя в электрическую энергию. Генераторы получили широкое распространение из-за своей относительной дешевизны, по сравнению с другими источниками электроэнергии, и за широкий мощностной ряд. Дополнительно генератор можно оборудовать системой автозапуска и получится универсальная система резервного электроснабжения.

Электрогенераторы могут оснащаться различными двигателями: работающими на бензине или на дизельном топливе. Первые значительно дешевле вторых, но, к сожалению, обладают меньшим ресурсом эксплуатации. Средний срок работы бензинового двигателя составляет от 500 до 1500 часов, дизельного – 3000-7000 моточасов. Дизельные установки, оснащенные системой жидкостного охлаждения и двигателем на 1500 об/мин, способны проработать без ремонта до 40000 часов. На бензиновые установки мощностью до 1 кВа ставят, как правило, 2-х тактные двигатели, на генераторы свыше 1000 ВА устанавливаются 4-х тактные двигатели. Станции с бензиновым двигателем весят легче по сравнению с дизельными двигателями. Но у дизельных электростанций есть несколько плюсов: более высокий КПД, меньший расход топлива, больший крутящий момент, они лучше переносят частое подключение техники с большими пусковыми токами. Среди недостатков – высокий уровень шума, сложность запуска в морозы и бОльшая стоимость ремонта. Дизельный генератор должен работать с нагрузкой минимум 40% от своей мощности, в противном случае произойдёт закоксованность цилиндра.

По типу охлаждения генераторы разделяют на две группы: с охлаждением воздухом и жидкостью, при этом первые распространены гораздо больше. Маломощные генераторы до 12-20 кВа имеют воздушное охлаждение, что накладывает на них ограничение по времени непрерывной эксплуатации. Агрегаты с воздушным охлаждением можно непрерывно эксплуатировать не более 6-8 часов, потом станцию нужно остановить и дать остыть мотору, и не имеет значения, какой тип двигателя, бензиновый или дизельный установлен на генераторе.

Электрогенераторы с жидкостным охлаждением снабжены исключительно дизельными двигателями, данный тип генераторов называют ДГУ (дизельная генераторная установка). Наименьшая электрическая мощность станций с данным типом охлаждения начинается с 6 кВа, но, как правило, это генераторы с минимальной мощностью в 12-15 кВа. ДГУ можно эксплуатировать в непрерывном режиме, останавливая генератор, только на ТО и на дозаправку топливом.

Заявленная электрическая мощность генераторов выражена в ВА, цифры в наименовании станции обозначают Вольт-Амперы, чтобы перевести мощность в Ватты, их нужно умножить на cos φ. У современных станций cos φ равен 1, чаще распространены генераторы с cos φ равным 0,9 или 0,8. Цифры в модели электрогенератора обозначают максимальную мощность, превышающую показатели обычной работы. Под максимальной нагрузкой Р агрегат сможет проработать лишь 20-30 минут, после чего произойдет перегрев. Следовательно, нельзя нагружать генератор на полную (максимальную) мощность, и данный запас мощности нужен для поглощения пусковых токов.

Генераторная установка состоит из двух основных компонентов: мотор и альтернатор (генератор) — устройство, которое вырабатывает переменное напряжение. Альтернаторы бывают синхронные и асинхронные, щёточные и бесщёточные, однофазные (220 Вольт) и трёхфазные (380 Вольт). Самыми современными альтернаторами являются синхронные бесщёточные. У них длительный ресурс работы, они хорошо выдерживают пусковые токи, вырабатывают выходное напряжение высокого качества благодаря системе AVR. Автоматический регулятор выходного напряжения или, как он ещё называет AVR, предназначен для стабилизации напряжения генератора при изменении оборотов работы двигателя.

Покупать однофазный или трёхфазный генератор выбирает сам потребитель в зависимости от того, есть у него трёхфазные потребители электрического тока или нет. К трёхфазной станции можно подключить как однофазные приборы в 220 вольт, так и трёхфазные, потребляющие 380 вольт. Но нужно понимать, покупая, например, трёхфазный генератор на 6 кВт, на одну фазу данный агрегат выдаст только 2 кВт, то есть к трёхфазному генератору мощностью в 6 кВт нельзя подключить даже электрический чайник, потребляющий 2.2 кВт. Заявленную мощность в 6 кВт трёхфазная станция выдаёт для трёхфазного потребителя. Следовательно, если у вас нет трёхфазных потребителей в доме, то нет никакого смысла покупать трёхфазный генератор, а вот если у вас есть, например, трёхфазный станок, то вам требуется только трёхфазный генератор. Очень распространенно одно заблуждение — если к дому подведено трёхфазное напряжение, то и генератор нужно покупать трёхфазный. Да к дому подведено три фазы, но в доме-то проводка везде однофазная, есть естественно и исключения, и в доме может находиться трёхфазная розетка, например для электрической плиты, но, как правило, везде в розетках 220 вольт. По сути, подведённая трёхфазная сеть, это три линии электропередач по 220 вольт, подключённых к одному дому. Так вот, даже если у вас к дому подведено три фазы, но нет трёхфазных потребителей, устанавливайте однофазный генератор. Электрик при подключении сможет дать напряжение от однофазной станции на все три линии, или можно проложить по дому одну резервную линию, к которой будут подсоединены электроприборы, которые должны будут работать от генератора.

Нагрузка подсоединяется к генераторам через обычные розетки. Есть два типа розеток на 16 Ампер и на 32 Ампера. Как правило, у генератора, начиная от мощности 6 кВа, есть несколько розеток на 16 Ампер, и одна на 32 Ампера. Точное количество розеток каждого вида можно уточнить непосредственно во время покупки.

Запуск агрегата, в зависимости от модели, может осуществляется двумя способами: тросиком вручную или электростартером, работающим от аккумулятора. При этом все генераторы с воздушным охлаждением, оснащенные электростартером, снабжены тросом для ручного запуска двигателя. Существуют электрогенераторы, позволяющие установить систему автозапуска АВР (автоматический ввод резерва). Данная система при понижении входного напряжения сети ниже определённого значения отключает внешнюю сеть и запускает в работу двигатель генератора, когда восстанавливается подача напряжения из электрической сети, двигатель глушится и в дом начинает подаваться сетевое электричество.

Электрические генераторы могут поставляться с дополнительными опциями, такими как:

  • шумозащитный кожух;
  • увеличенный по ёмкости топливный бак;
  • вольтметр и амперметр;
  • встроенная система АВР;
  • электростартер;
  • ручки и колёса для транспортировки;
  • шумопоглощающий глушитель.

Выходная форма напряжения от обыкновенного генератора с воздушным охлаждением отличается от синусоидальной волны и наблюдается некоторый разброс параметров напряжения. Если технике, которую вы будете подключать к генератору, требуется напряжение повышенного качества, то есть инверторные генераторы. На выходе у них наблюдается чистый синус, напряжение значением в 220 вольт, частота переменного тока равна 50 Гц. По сравнению с обыкновенными генераторами инверторные более компактные, менее шумные, у них понижен уровень выброса вредных веществ, есть режим переключения на экономичный режим работы. 

Вопросы, на которые стоит ответить, прежде чем купить электрогенератор:

  • Генератор — это основной или временный источник электроснабжения?
  • Как часто и насколько интенсивно будет использоваться генератор?
  • Известной и проверенной фирмы будет техника или китайский производитель?
  • Нужен однофазный или трёхфазный альтернатор?
  • Какая выходная мощность необходима? (Ответом будет значение суммы мощностей пусковых токов всех планируемых потребителей).
  • Будет работать на бензине или дизельном топливе?
  • Какая нужна ёмкость топливного бака? Она будет определять время автономной работы.
  • Генератор нужен с системой автозапуска или без неё?
  • Какие электроприборы будут подключаться к электростанции?

В связи с большим распространением энергозависимых котлов отопления, у потребителя часто возникает вопрос — можно ли использовать для электроснабжения котла отопления генератор? Многим котлам требуется выраженная фаза и нейтраль, у генератора нет выраженных фазы и нуля, там две полуфазы по 115 вольт. Чтобы получить ноль, нужно заземлить одну из полуфаз. Многим газовым котлам отопления требуется синусоидальное напряжение значением в 220 вольт, данную форму напряжения могут выдать только инверторные генераторы. Плюс нужно учесть тот факт, что при отключении света, кто-то должен завести генератор, а если это произойдёт ночью или когда все на работе?

Бензиновый или дизельный электрогенератор, по сути, является конструктором. Берётся двигатель, к нему подсоединяется соответствующий по мощности альтернатор, сваривается рама и топливный бак, устанавливается AVR, ставятся розетки, и различные индикаторы. Всё, генератор готов. Если на всех генераторах устанавливается одни и те же агрегаты, то зачем переплачивать и покупать генераторы известных и именитых марок? Важное кроется в мелочах. По своей сути, любая автомашина, это тоже набор запасных частей и агрегатов, произведённых специализированными заводами и собранных в конечное изделие на каком-то заводе. Но вопрос как собранно и из чего? Поэтому многие покупатели предпочитают приобретать европейские, японские или американские машины известных фирм, потому что они уверенны в качестве конечного продукта — автомобиля. Тоже самое касается и генераторов, нужно очень ответственно подходить к выбору генератора и приобретать известные и проверенные марки. Есть мировые лидеры в производстве двигателей общего назначения, которые устанавливаются на генераторы, есть мировые лидеры в производстве альтернаторов, систем автоматики. У двигателей и альтернаторов, разные ресурсы, есть только заявленные параметры, а есть заявленные и соответствующие действительности значения. У деталей и компонентов могут быть разные сплавы, разные материалы, степень и качество обработки поверхностей. Даже такой банальный пример, как качество сварки и покраски рамы электрогенератора. В итоге всё влияет на качество, долговечность и на то заведётся ли генератор, когда это потребуется или нет.


Как генератор вырабатывает электричество? Статья о том, как работают генераторы

Генераторы

— это полезные устройства, которые подают электроэнергию во время отключения электроэнергии и предотвращают прерывание повседневной деятельности или прерывание бизнес-операций. Генераторы доступны в различных электрических и физических конфигурациях для использования в различных приложениях. В следующих разделах мы рассмотрим, как работает генератор, основные компоненты генератора и как генератор работает в качестве вторичного источника электроэнергии в жилых и промышленных помещениях.

Как работает генератор?

Электрический генератор — это устройство, которое преобразует механическую энергию, полученную от внешнего источника, в электрическую энергию на выходе.

Важно понимать, что генератор на самом деле не «создает» электрическую энергию. Вместо этого он использует подводимую к нему механическую энергию, чтобы заставить движение электрических зарядов, присутствующих в проводе его обмоток, через внешнюю электрическую цепь.Этот поток электрических зарядов составляет выходной электрический ток, подаваемый генератором. Этот механизм можно понять, рассматривая генератор как аналог водяного насоса, который вызывает поток воды, но на самом деле не «создает» воду, текущую через него.

Современный генератор работает на принципе электромагнитной индукции, открытом Майклом Фарадеем в 1831-32 гг. Фарадей обнаружил, что вышеупомянутый поток электрических зарядов может быть вызван перемещением электрического проводника, такого как провод, содержащий электрические заряды, в магнитном поле.Это движение создает разность напряжений между двумя концами провода или электрического проводника, что, в свою очередь, вызывает протекание электрических зарядов, генерируя электрический ток.

Основные компоненты генератора

Основные компоненты электрогенератора можно в общих чертах классифицировать следующим образом:

  • Двигатель
  • Генератор
  • Топливная система
  • Регулятор напряжения
  • Системы охлаждения и выхлопа
  • Система смазки
  • Зарядное устройство
  • Панель управления
  • Основной узел / рама
Ниже приводится описание основных компонентов генератора.
Двигатель

Двигатель является источником подводимой механической энергии к генератору. Размер двигателя прямо пропорционален максимальной выходной мощности, которую может выдать генератор. При оценке двигателя вашего генератора необходимо учитывать несколько факторов. Для получения полных рабочих характеристик двигателя и графиков технического обслуживания необходимо проконсультироваться с производителем двигателя.

(a) Тип используемого топлива — двигатели генераторов работают на различных видах топлива, таких как дизельное топливо, бензин, пропан (в сжиженном или газообразном виде) или природный газ. Меньшие двигатели обычно работают на бензине, в то время как более крупные двигатели работают на дизельном топливе, жидком пропане, пропане или природном газе. Некоторые двигатели также могут работать на двойной подаче дизельного и газового топлива в двухтопливном режиме.

(b) Двигатели с верхним расположением клапанов (OHV) по сравнению с двигателями без OHV — двигатели OHV отличаются от других двигателей тем, что впускные и выпускные клапаны двигателя расположены в головке цилиндра двигателя, а не на двигателе. блокировать.Двигатели OHV имеют ряд преимуществ перед другими двигателями, такими как:

• Компактная конструкция
• Более простой механизм управления
• Прочность
• Удобство эксплуатации
• Низкий уровень шума при работе
• Низкий уровень выбросов

Однако OHV-двигатели также дороже других двигателей.

(c) Чугунная гильза (CIS) в цилиндре двигателя — CIS — это накладка в цилиндре двигателя.Это снижает износ и обеспечивает долговечность двигателя. Большинство двигателей OHV оснащены системой CIS, но очень важно проверить наличие этой особенности в двигателе генератора. CIS — это не дорогая функция, но она играет важную роль в долговечности двигателя, особенно если вам нужно использовать генератор часто или в течение длительного времени.

Генератор

Генератор переменного тока, также известный как «генератор», представляет собой часть генератора, которая вырабатывает электрическую мощность за счет механического входа, подаваемого двигателем.Он содержит набор неподвижных и подвижных частей, заключенных в корпус. Компоненты работают вместе, вызывая относительное движение между магнитным и электрическим полями, которое, в свою очередь, генерирует электричество.

(а) Статор — это стационарный компонент. Он содержит набор электрических проводников, намотанных катушками на железный сердечник.

(b) Ротор / Якорь — это движущийся компонент, который создает вращающееся магнитное поле одним из следующих трех способов:

(i) Индукционным способом — они известны как бесщеточные генераторы переменного тока и обычно используются в больших генераторах.
(ii) Постоянными магнитами — это обычное дело в небольших генераторах переменного тока.
(iii) Использование возбудителя. Возбудитель представляет собой небольшой источник постоянного тока (DC), который питает ротор через совокупность токопроводящих контактных колец и щеток.

Ротор создает движущееся магнитное поле вокруг статора, которое вызывает разность напряжений между обмотками статора. Это производит переменный ток (AC) на выходе генератора.

При оценке генератора переменного тока необходимо учитывать следующие факторы:

(a) Металлический корпус по сравнению с пластиковым корпусом — цельнометаллическая конструкция обеспечивает долговечность генератора.Пластиковые корпуса со временем деформируются, что приводит к обнажению движущихся частей генератора. Это увеличивает износ и, что более важно, опасно для пользователя.

(b) Шариковые подшипники по сравнению с игольчатыми подшипниками — шариковые подшипники предпочтительнее и служат дольше.

(c) Бесщеточная конструкция — генератор, в котором не используются щетки, требует меньшего обслуживания, а также производит более чистую мощность.

Топливная система

Топливный бак обычно имеет достаточную емкость, чтобы генератор работал в среднем от 6 до 8 часов.В случае небольших генераторных установок топливный бак является частью опорной рамы генератора или устанавливается наверху рамы генератора. Для коммерческого использования может потребоваться монтаж и установка внешнего топливного бака. Все подобные установки должны быть одобрены Управлением городского планирования. Щелкните следующую ссылку для получения дополнительных сведений о топливных баках для генераторов.

Общие характеристики топливной системы включают следующее:

(a) Соединение трубопровода от топливного бака к двигателю — линия подачи направляет топливо из бака в двигатель, а обратная линия направляет топливо от двигателя в бак.

(b) Вентиляционная труба для топливного бака — Топливный бак имеет вентиляционную трубу для предотвращения повышения давления или вакуума во время заправки и опорожнения бака. При заправке топливного бака убедитесь, что металл-металл соприкасается с заправочной форсункой и топливным баком, чтобы избежать искр.

(c) Переливное соединение от топливного бака к сливной трубе — это необходимо для того, чтобы любой перелив во время заправки бака не вызывал разлив жидкости на генераторную установку.

(d) Топливный насос — перекачивает топливо из основного накопительного бака в дневной.Топливный насос обычно работает от электричества.

(e) Топливный водоотделитель / топливный фильтр — он отделяет воду и посторонние вещества от жидкого топлива для защиты других компонентов генератора от коррозии и загрязнения.

(f) Топливная форсунка — распыляет жидкое топливо и распыляет необходимое количество топлива в камеру сгорания двигателя.


Регулятор напряжения
Как следует из названия, этот компонент регулирует выходное напряжение генератора.Механизм описан ниже для каждого компонента, который участвует в циклическом процессе регулирования напряжения.

(1) Регулятор напряжения: преобразование переменного напряжения в постоянный ток — регулятор напряжения принимает небольшую часть выходного переменного напряжения генератора и преобразует его в постоянный ток. Затем регулятор напряжения подает этот постоянный ток на набор вторичных обмоток статора, известных как обмотки возбудителя.

(2) Обмотки возбудителя: преобразование постоянного тока в переменный — обмотки возбудителя теперь работают аналогично первичным обмоткам статора и генерируют небольшой переменный ток.Обмотки возбудителя подключены к блокам, известным как вращающиеся выпрямители.

(3) Вращающиеся выпрямители: преобразование переменного тока в постоянный — они выпрямляют переменный ток, генерируемый обмотками возбудителя, и преобразуют его в постоянный ток. Этот постоянный ток подается на ротор / якорь для создания электромагнитного поля в дополнение к вращающемуся магнитному полю ротора / якоря.

(4) Ротор / якорь: преобразование постоянного тока в переменное напряжение — ротор / якорь теперь индуцирует большее переменное напряжение на обмотках статора, которое генератор теперь производит как большее выходное переменное напряжение.

Этот цикл продолжается до тех пор, пока генератор не начнет выдавать выходное напряжение, эквивалентное его полной рабочей мощности. По мере увеличения выходной мощности генератора регулятор напряжения вырабатывает меньше постоянного тока. Когда генератор достигает полной рабочей мощности, регулятор напряжения достигает состояния равновесия и вырабатывает постоянный ток, достаточный для поддержания выходной мощности генератора на полном рабочем уровне.

Когда вы добавляете нагрузку к генератору, его выходное напряжение немного падает.Это вызывает действие регулятора напряжения, и начинается вышеуказанный цикл. Цикл продолжается до тех пор, пока выходная мощность генератора не достигнет своей первоначальной полной рабочей мощности.

Система охлаждения и выпуска
(а) Система охлаждения
Продолжительное использование генератора вызывает нагрев различных его компонентов. Очень важно иметь систему охлаждения и вентиляции для отвода тепла, выделяемого в процессе.

Неочищенная / пресная вода иногда используется в качестве охлаждающей жидкости для генераторов, но в основном это ограничивается конкретными ситуациями, такими как небольшие генераторы в городских условиях или очень большие агрегаты мощностью более 2250 кВт и выше.Водород иногда используется в качестве хладагента для обмоток статора больших генераторных установок, поскольку он более эффективно поглощает тепло, чем другие хладагенты. Водород отводит тепло от генератора и передает его через теплообменник во вторичный контур охлаждения, который содержит деминерализованную воду в качестве хладагента. Вот почему очень большие генераторы и малые электростанции часто имеют рядом с собой большие градирни. Для всех других распространенных применений, как жилых, так и промышленных, стандартный радиатор и вентилятор устанавливаются на генераторе и работают как основная система охлаждения.

Необходимо ежедневно проверять уровень охлаждающей жидкости в генераторе. Систему охлаждения и насос неочищенной воды следует промывать через каждые 600 часов, а теплообменник следует очищать через каждые 2400 часов работы генератора. Генератор следует размещать на открытом и вентилируемом месте с достаточным притоком свежего воздуха. Национальный электротехнический кодекс (NEC) требует, чтобы со всех сторон генератора оставалось минимум 3 фута, чтобы обеспечить свободный поток охлаждающего воздуха.

(б) Выхлопная система
Выхлопные газы, выделяемые генератором, такие же, как выхлопные газы любого другого дизельного или газового двигателя, и содержат высокотоксичные химические вещества, с которыми необходимо обращаться должным образом. Следовательно, важно установить соответствующую выхлопную систему для удаления выхлопных газов. Этот момент невозможно переоценить, поскольку отравление угарным газом остается одной из наиболее частых причин смерти в пострадавших от урагана районах, потому что люди, как правило, даже не думают об этом, пока не становится слишком поздно.

Выхлопные трубы обычно изготавливаются из чугуна, кованого железа или стали. Они должны быть отдельно стоящими и не должны поддерживаться двигателем генератора. Выхлопные трубы обычно присоединяются к двигателю с помощью гибких соединителей, чтобы минимизировать вибрации и предотвратить повреждение выхлопной системы генератора. Выхлопная труба заканчивается снаружи и ведет от дверей, окон и других отверстий в дом или здание. Вы должны убедиться, что выхлопная система вашего генератора не подключена к выхлопной системе любого другого оборудования.Вам также следует проконсультироваться с местными городскими постановлениями, чтобы определить, нужно ли для эксплуатации вашего генератора получить разрешение от местных властей, чтобы убедиться, что вы соблюдаете местное законодательство и защитите себя от штрафов и других санкций.


Смазочная система
Поскольку генератор состоит из движущихся частей в своем двигателе, он требует смазки для обеспечения долговечности и бесперебойной работы в течение длительного периода времени. Двигатель генератора смазывается маслом, хранящимся в насосе.Уровень смазочного масла следует проверять каждые 8 ​​часов работы генератора. Вы также должны проверять отсутствие утечек смазки и менять смазочное масло каждые 500 часов работы генератора.


Зарядное устройство
Генератор st e работает от батареи. Зарядное устройство поддерживает заряд аккумуляторной батареи генератора, подавая на нее точное «плавающее» напряжение. Если напряжение холостого хода очень низкое, аккумулятор останется недозаряженным.Если напряжение холостого хода очень высокое, это сократит срок службы батареи. Зарядные устройства для аккумуляторов обычно изготавливаются из нержавеющей стали для предотвращения коррозии. Они также полностью автоматические и не требуют каких-либо регулировок или изменений каких-либо настроек. Выходное напряжение постоянного тока зарядного устройства устанавливается на уровне 2,33 В на элемент, что является точным значением напряжения холостого хода для свинцово-кислотных аккумуляторов. Зарядное устройство аккумулятора имеет изолированный выход постоянного напряжения, который мешает нормальному функционированию генератора.


Панель управления
Это пользовательский интерфейс генератора, в котором находятся электрические розетки и элементы управления. В следующей статье представлены дополнительные сведения о панели управления генератором. Различные производители предлагают различные функции в панелях управления своих устройств. Некоторые из них упомянуты ниже.

(a) Электрический запуск и выключение — Панели управления автоматическим запуском автоматически запускают ваш генератор при отключении электроэнергии, контролируют генератор во время работы и автоматически отключают агрегат, когда он больше не нужен.

(b) Манометры двигателя. Различные датчики показывают важные параметры, такие как давление масла, температура охлаждающей жидкости, напряжение аккумуляторной батареи, скорость вращения двигателя и продолжительность работы. Постоянное измерение и мониторинг этих параметров позволяет автоматически отключать генератор, когда любой из них превышает соответствующие пороговые уровни.

(c) Датчики генератора. На панели управления также есть счетчики для измерения выходного тока и напряжения, а также рабочей частоты.

(d) Другие элементы управления — переключатель выбора фазы, переключатель частоты и переключатель управления двигателем (ручной режим, автоматический режим) среди прочего.

Основной узел / рама

Все генераторы, переносные или стационарные, имеют индивидуальные корпуса, которые обеспечивают структурную опору основания. Рама также позволяет заземлить генерируемые элементы в целях безопасности.

Электрогенератор

Электродвигатель — устройство для преобразования электрической энергии в механическую; электрический генератор делает обратное, используя механическую энергию для выработки электричества.В основе как двигателей, так и генераторов лежит проволочная катушка в магнитном поле. Фактически, одно и то же устройство можно использовать как двигатель или генератор.

Когда устройство используется в качестве двигателя, через катушку пропускается ток. Взаимодействие магнитного поля с током заставляет катушку вращаться. Чтобы использовать устройство в качестве генератора, катушка вращается, вызывая в катушке ток.

Магнитное поле при моделировании находится на экране. Когда площадь контура уменьшается, в каком направлении индуцируется ток в контуре?

  1. по часовой стрелке
  2. против часовой стрелки

Индуцированный ток идет по часовой стрелке, когда область, которую мы видим, уменьшается, и против часовой стрелки, когда область увеличивается.

В какой момент величина тока максимальна?

  1. Когда плоскость петли перпендикулярна полю (максимальная площадь)
  2. Когда плоскость петли параллельна полю (нулевая зона)
  3. Поскольку петля вращается с постоянной скоростью, величина тока постоянна.

График зависимости потока от времени имеет наибольший наклон по величине, когда плоскость контура параллельна полю, так что именно тогда наведенная ЭДС и наведенный ток имеют максимальную величину.

Допустим, мы вращаем катушку из N витков и площади A с постоянной скоростью в однородном магнитном поле B. По закону Фарадея наведенная ЭДС определяется выражением:

ε =
-N d (BA cosθ)
дт

B и A являются константами, и если угловая скорость ω контура постоянна, угол равен:
θ = ωt

Тогда наведенная ЭДС равна:

ε = -NBA
d (cos (ωt))
дт
= ωНБА sin (ωt) = ε o sin (ωt)

Вращение петли в магнитном поле с постоянной скоростью — простой способ генерировать синусоидально колеблющееся напряжение… Другими словами, для выработки электроэнергии переменного тока. Амплитуда напряжения составляет:
ε o = ωNBA

В Северной Америке частота переменного тока от настенной розетки составляет 60 Гц. Следовательно, угловая частота катушек или магнитов, на которых вырабатывается электричество, составляет 60 Гц.

Для выработки электроэнергии постоянного тока используйте тот же тип коммутатора с разъемным кольцом, который используется в двигателе постоянного тока, чтобы полярность напряжения всегда была одинаковой. В очень простом генераторе постоянного тока с одним вращающимся контуром уровень напряжения будет постоянно колебаться.Напряжение от многих контуров (не синхронизированных друг с другом) обычно складывается, чтобы получить относительно стабильное напряжение.

Вместо того, чтобы использовать вращающуюся катушку в постоянном магнитном поле, другой способ использования электромагнитной индукции состоит в том, чтобы удерживать катушку в неподвижном состоянии и вращать постоянные магниты (обеспечивающие магнитное поле и поток) вокруг катушки. Хорошим примером этого является способ производства электроэнергии, например, на гидроэлектростанции. Энергия падающей воды используется для вращения постоянных магнитов вокруг фиксированного контура, производящего мощность переменного тока.

Электрогенератор | инструмент | Британника

Электрогенератор , также называемый динамо , любая машина, преобразующая механическую энергию в электричество для передачи и распределения по линиям электропередач бытовым, коммерческим и промышленным потребителям. Генераторы также производят электроэнергию, необходимую для автомобилей, самолетов, кораблей и поездов.

Механическая мощность для электрического генератора обычно получается от вращающегося вала и равна крутящему моменту вала, умноженному на вращательную или угловую скорость.Механическая энергия может поступать из ряда источников: гидротурбины на плотинах или водопадах; Ветряные турбины; паровые турбины, использующие пар, получаемый при сжигании ископаемого топлива или в результате ядерного деления; газовые турбины, сжигающие газ непосредственно в турбине; или бензиновые и дизельные двигатели. Конструкция и скорость генератора могут значительно различаться в зависимости от характеристик механического первичного двигателя.

Почти все генераторы, используемые для электроснабжения сетей, вырабатывают переменный ток, полярность которого меняется на фиксированную частоту (обычно 50 или 60 циклов или двойное изменение полярности в секунду).Поскольку несколько генераторов подключены к электросети, они должны работать на одной и той же частоте для одновременной генерации. Поэтому они известны как синхронные генераторы или, в некоторых случаях, генераторы переменного тока.

Генераторы синхронные

Основная причина выбора переменного тока для электрических сетей заключается в том, что его постоянное изменение во времени позволяет использовать трансформаторы. Эти устройства преобразуют электрическую энергию при любом напряжении и токе, которые она генерирует, в высокое напряжение и низкий ток для передачи на большие расстояния, а затем преобразуют ее в низкое напряжение, подходящее для каждого отдельного потребителя (обычно 120 или 240 вольт для бытовых нужд).Конкретная используемая форма переменного тока представляет собой синусоидальную волну, которая имеет форму, показанную на рисунке 1. Это было выбрано, потому что это единственная повторяющаяся форма, для которой две волны, смещенные друг от друга во времени, могут быть добавлены или вычтены и имеют такая же форма возникает в результате. В идеале все напряжения и токи должны иметь синусоидальную форму. Синхронный генератор разработан для получения этой формы с максимальной точностью. Это станет очевидным, когда ниже будут описаны основные компоненты и характеристики такого генератора.

Синусоидальная волна.

Британская энциклопедия, Inc. Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Ротор

Элементарный синхронный генератор показан в разрезе на рис. 2. Центральный вал ротора соединен с механическим первичным двигателем. Магнитное поле создается проводниками или катушками, намотанными в пазы, вырезанные на поверхности цилиндрического железного ротора. Этот набор катушек, соединенных последовательно, известен как обмотка возбуждения.Положение катушек возбуждения таково, что направленная наружу или радиальная составляющая магнитного поля, создаваемого в воздушном зазоре к статору, приблизительно синусоидально распределяется по периферии ротора. На рисунке 2 плотность поля в воздушном зазоре максимальна снаружи вверху, максимальна внутрь внизу и равна нулю с двух сторон, что соответствует синусоидальному распределению.

Элементарный синхронный генератор.

Британская энциклопедия, Inc.

Статор простейшего генератора на рисунке 2 состоит из цилиндрического кольца из железа, обеспечивающего легкий путь для магнитного потока.В этом случае статор содержит только одну катушку, причем две стороны размещены в пазах в утюге, а концы соединены вместе изогнутыми проводниками по периферии статора. Катушка обычно состоит из нескольких витков.

Когда ротор вращается, в обмотке статора индуцируется напряжение. В любой момент величина напряжения пропорциональна скорости, с которой магнитное поле, окруженное катушкой, изменяется со временем, то есть скорости, с которой магнитное поле проходит через две стороны катушки.Таким образом, напряжение будет максимальным в одном направлении, когда ротор повернут на 90 ° из положения, показанного на рисунке 2, и будет максимальным в противоположном направлении на 180 ° позже. Форма волны напряжения будет примерно синусоидальной формы, показанной на рисунке 1.

Конструкция ротора генератора на рисунке 2 имеет два полюса: один для магнитного потока, направленного наружу, и соответствующий полюс для потока, направленного внутрь. Одна полная синусоида индуцируется в обмотке статора за каждый оборот ротора.Таким образом, частота электрического выходного сигнала, измеренная в герцах (циклах в секунду), равна скорости вращения ротора в оборотах в секунду. Чтобы обеспечить подачу электроэнергии с частотой 60 Гц, например, первичный двигатель и скорость ротора должны быть 60 оборотов в секунду или 3600 оборотов в минуту. Это удобная скорость для многих паровых и газовых турбин. Для очень больших турбин такая скорость может быть чрезмерной из-за механического напряжения. В этом случае ротор генератора спроектирован с четырьмя полюсами, разнесенными с интервалом 90 °.Напряжение, индуцированное в катушке статора, которая охватывает аналогичный угол 90 °, будет состоять из двух полных синусоидальных волн на оборот. Таким образом, требуемая частота вращения ротора для частоты 60 Гц составляет 1800 оборотов в минуту. Для более низких скоростей, например, используемых в большинстве водяных турбин, можно использовать большее количество пар полюсов. Возможные значения частоты вращения ротора в оборотах в минуту равны 120 f / p , где f — частота, а p — количество полюсов.В.

Данные можно ввести в любое из полей. Когда вы закончили ввод данных, щелкните количество, которое вы хотите рассчитать, в активной формуле выше. Количество не будет принудительно согласованным, пока вы не нажмете на выбор. Для неопределенных параметров будут введены значения по умолчанию, но все значения могут быть изменены.

После того, как вы рассчитали генерируемое напряжение, разумным последующим вопросом будет «Какой ток и мощность я могу получить от генератора?».Несмотря на то, что это не будет практичной геометрией генератора, она может служить идеализация для обсуждения принципов генерации напряжения при взаимодействии с магнитным полем. Принимая это простая геометрия, электрический ток в амперах, возникающий при перемещении провода через магнитное поле будет определяться сопротивлением цепи, к которой он подключен. связаны, используя закон Ома, I = V / R. Если вы сгенерировали 10 вольт и были подключены к цепи сопротивление 1 Ом, результирующий ток будет 10 ампер, а передаваемая мощность P = VI = 10 вольт x 10 амперы = 100 Вт (см. соотношение мощности).Но бесплатного обеда не существует, и вам придется приложить больше усилий, чтобы двигаться. провод через магнитное поле с такой скоростью — вы, по сути, торгуете механической энергией толкания для выработки электрической энергии, всегда ограничиваясь принципом сохранения энергии. Вам придется приложите (по крайней мере) 100 Вт механической мощности толкания, чтобы получить 100 Вт электроэнергии. Практические генераторы почти всегда используют геометрию вращающейся катушки, а крупномасштабные генераторы энергии используют что-то вроде паровой турбины или водяной турбины, чтобы повернуть катушку провода в спираль. магнитное поле, получающее напряжение, генерируемое с обеих сторон вращающейся катушки.

Если указанный выше генератор был подключен к цепи с сопротивлением R = Ом,

электрический ток будет I = V / R = амперы для скорости, перпендикулярной B.

Мощность, подаваемая в схему, будет P = VI = Вт.

В идеальном случае, когда не было потерь, механическая мощность P = Fv, необходимая для проталкивания провода через магнитное поле, была бы равна электрической мощности. Для указанной выше скорости требуемая сила равна

.

Идеальная минимально необходимая сила:

F = P / v = ньютоны = фунты.

Электрогенераторы | Физика

Цели обучения

К концу этого раздела вы сможете:

  • Рассчитайте ЭДС, наведенную в генераторе.
  • Рассчитайте пиковую ЭДС, которая может быть наведена в конкретной системе генератора.
Электрические генераторы индуцируют ЭДС, вращая катушку в магнитном поле, как кратко обсуждается в Индуцированная ЭДС и Магнитный поток. Теперь мы рассмотрим генераторы более подробно.Рассмотрим следующий пример.

Пример 1. Расчет ЭДС, индуцированной в катушке генератора

Катушка генератора, показанная на рисунке 1, поворачивается на одну четверть оборота (от θ, = 0º до θ, = 90º) за 15,0 мс. Круглая катушка с 200 витками имеет радиус 5,00 см и находится в однородном магнитном поле 1,25 Тл. Какая средняя наведенная ЭДС?

Рис. 1. Когда катушка генератора вращается на одну четверть оборота, магнитный поток Φ изменяется от максимального до нуля, вызывая ЭДС.

Стратегия

Мы используем закон индукции Фарадея, чтобы найти среднюю ЭДС, индуцированную за время Δ t :

[латекс] \ text {emf} = — N \ frac {\ Delta \ Phi} {\ Delta t} \\ [/ latex].

Мы знаем, что N = 200 и Δ t = 15,0 мс, и поэтому мы должны определить изменение потока Δ Φ , чтобы найти ЭДС.

Решение

Поскольку площадь петли и напряженность магнитного поля постоянны, мы видим, что

[латекс] \ Delta \ Phi = \ Delta \ left (BA \ cos \ theta \ right) = AB \ Delta \ left (\ cos \ theta \ right) \\ [/ latex].{-3} \ text {s}} = 131 \ text {V} \\ [/ latex].

Обсуждение

Это практическое среднее значение, аналогичное 120 В, используемому в бытовой электросети.

ЭДС, рассчитанная в Примере 1 выше, является средним значением за одну четверть оборота. Какова ЭДС в любой момент времени? Он меняется в зависимости от угла между магнитным полем и перпендикуляром к катушке. Мы можем получить выражение для ЭДС как функции времени, рассматривая ЭДС движения на вращающейся прямоугольной катушке шириной × и высотой × в однородном магнитном поле, как показано на рисунке 2.

Рис. 2. Генератор с одной прямоугольной катушкой, вращающейся с постоянной угловой скоростью в однородном магнитном поле, создает ЭДС, синусоидально изменяющуюся во времени. Обратите внимание, что генератор похож на двигатель, за исключением того, что вал вращается для выработки тока, а не наоборот.

На заряды в проводах петли действует магнитная сила, потому что они движутся в магнитном поле. Заряды в вертикальных проводах испытывают силы, параллельные проводу, вызывая токи.Но те, кто находится в верхнем и нижнем сегментах, ощущают силу, перпендикулярную проводу, которая не вызывает тока. Таким образом, мы можем найти наведенную ЭДС, рассматривая только боковые провода. Движущаяся ЭДС равна ЭДС = B 900v , где скорость v перпендикулярна магнитному полю B . Здесь скорость находится под углом θ к B , так что ее составляющая, перпендикулярная B , равна v sin θ (см. Рисунок 2).Таким образом, в этом случае ЭДС, индуцированная с каждой стороны, составляет ЭДС = Bℓv sin θ , и они имеют одинаковое направление. Суммарная ЭДС вокруг контура тогда составляет

.

[латекс] \ text {emf} = 2 {B \ ell v} \ sin \ theta \\ [/ latex].

Это выражение допустимо, но оно не дает ЭДС как функцию времени. Чтобы найти зависимость ЭДС от времени, предположим, что катушка вращается с постоянной угловой скоростью ω . Угол θ связан с угловой скоростью соотношением θ = ωt , так что

[латекс] \ text {emf} = 2 {B \ ell v} \ sin \ omega t \\ [/ latex].

Итак, линейная скорость v связана с угловой скоростью ω соотношением v = . Здесь r = w /2, так что v = ( w /2) ω и

[латекс] \ text {emf} = 2 B \ ell \ frac {w} {2} \ omega \ sin \ omega t = \ left (\ ell w \ right) B \ omega \ sin \ omega t \\ [ /латекс].

Учитывая, что площадь петли составляет A, = w , и учитывая N петель, мы находим, что

[латекс] \ text {emf} = NAB \ omega \ sin \ omega t \\ [/ latex]

— это ЭДС , наведенная в катушке генератора из N, витков и области A, , вращающейся с постоянной угловой скоростью ω в однородном магнитном поле B .Это также можно выразить как

[латекс] \ text {emf} = {\ text {emf}} _ {0} \ sin \ omega t \\ [/ latex],

где

[латекс] {\ text {emf}} _ {0} = NAB \ omega \\ [/ latex]

— максимальная (пиковая) ЭДС . Обратите внимание, что частота колебаний составляет f = ω / 2π , а период составляет T = 1/ f = 2π / ω . На рис. 3 показан график зависимости ЭДС от времени, и теперь кажется разумным, что напряжение переменного тока является синусоидальным.

Рис. 3. ЭДС генератора направляется на лампочку с показанной системой колец и щеток. График показывает зависимость ЭДС генератора от времени. emf0 — пиковая ЭДС. Период равен T = 1/ f = 2π / ω, где f — частота. Обратите внимание, что сценарий E означает emf.

Тот факт, что пиковая ЭДС 0 = NABω , имеет смысл. Чем больше катушек, тем больше их площадь и чем сильнее поле, тем больше выходное напряжение.Интересно, что чем быстрее раскручивается генератор (больше ω ), тем больше ЭДС. Это заметно на велосипедных генераторах — по крайней мере, на более дешевых моделях. Один из авторов, будучи подростком, находил забавным ездить на велосипеде достаточно быстро, чтобы погасить его свет, пока ему не пришлось ехать домой без света одной темной ночью. На рис. 4 показана схема, по которой генератор может вырабатывать импульсный постоянный ток. Более сложные конструкции из нескольких катушек и разрезных колец могут обеспечить более плавный постоянный ток, хотя для создания постоянного тока без пульсаций обычно используются электронные, а не механические средства.

Рис. 4. Разделенные кольца, называемые коммутаторами, в этой конфигурации создают импульсный выходной сигнал ЭДС постоянного тока.

Пример 2. Расчет максимальной ЭДС генератора

Рассчитайте максимальную ЭДС, ЭДС 0 генератора, который был предметом примера 1.

Стратегия

После определения ω , угловой скорости, ЭДС 0 = NABω может использоваться для нахождения ЭДС 0 . Все остальные количества известны.

Решение

Угловая скорость определяется как изменение угла в единицу времени:

[латекс] \ omega = \ frac {\ Delta \ theta} {\ Delta t} \\ [/ latex].

Одна четвертая оборота равна π / 2 радиан, а время 0,0150 с; таким образом,

[латекс] \ begin {array} {lll} \ omega & = & \ frac {\ pi / 2 \ text {rad}} {0.0150 \ text {s}} \\ & = & 104.7 \ text {rad / s } \ end {array} \\ [/ latex].

104,7 рад / с — это ровно 1000 об / мин. Подставляем это значение вместо ω и информацию из предыдущего примера в ЭДС 0 = NABω , что дает

[латекс] \ begin {array} {lll} {\ text {emf}} _ {0} & = & NAB \ omega \\ & = & 200 \ left (7.{2} \ right) \ left (1.25 \ text {T} \ right) \ left (104.7 \ text {rad / s} \ right) \\ & = & 206 \ text {V} \ end {array} \\ [/латекс].

Обсуждение

Максимальная ЭДС больше, чем средняя ЭДС 131 В, найденная в предыдущем примере, как и должно быть.

В реальной жизни электрические генераторы сильно отличаются от рисунков в этом разделе, но принципы те же. Источником механической энергии, вращающей катушку, может быть падающая вода (гидроэнергия), пар, образующийся при сжигании ископаемого топлива, или кинетическая энергия ветра.На фиг.5 — паровая турбина в разрезе; пар движется по лопастям, соединенным с валом, который вращает катушку внутри генератора.

Рисунок 5. Паровая турбина / генератор. Пар, образующийся при сжигании угля, ударяет по лопаткам турбины, вращая вал, соединенный с генератором. (Источник: Nabonaco, Wikimedia Commons)

Генераторы, показанные в этом разделе, очень похожи на двигатели, показанные ранее. Это не случайно. Фактически, двигатель становится генератором, когда его вал вращается.В некоторых ранних автомобилях стартер использовался в качестве генератора. В Back Emf мы более подробно рассмотрим действие двигателя как генератора.

Сводка раздела

  • Электрический генератор вращает катушку в магнитном поле, вызывая ЭДС, задаваемую как функцию времени

    [латекс] \ text {emf} = 2 {B \ ell v} \ sin \ omega t \\ [/ latex],

    , где A, — площадь витка N , вращающегося с постоянной угловой скоростью ω в однородном магнитном поле B .

  • Пиковая ЭДС ЭДС 0 генератора равна

    ЭДС 0 = NABω

Концептуальные вопросы

  1. Используя RHR-1, покажите, что ЭДС на сторонах контура генератора на Рисунке 4 имеют одинаковое значение и, таким образом, складываются.
  2. Источником выработки электрической энергии генератора является работа по вращению его катушек. Как работа, необходимая для включения генератора, связана с законом Ленца?

Задачи и упражнения

1.Вычислите пиковое напряжение генератора, который вращает свою 200-витковую катушку диаметром 0,100 м со скоростью 3600 об / мин в поле 0,800 Тл.

2. При какой угловой скорости в об / мин пиковое напряжение генератора будет 480 В, если его 500-витковая катушка диаметром 8,00 см вращается в поле 0,250 Тл?

3. Какова пиковая ЭДС, генерируемая при вращении катушки с 1000 витками диаметром 20,0 см в магнитном поле Земли 5,00 × 10 −5 Тл, учитывая, что плоскость катушки изначально перпендикулярна полю Земли и вращается быть параллельно полю в 10.0 мс?

4. Какова пиковая ЭДС, генерируемая радиусом 0,250 м, катушка с 500 витками вращается на одну четверть оборота за 4,17 мс, первоначально ее плоскость перпендикулярна однородному магнитному полю. (Это 60 об / с.)

5. (a) Велогенератор вращается со скоростью 1875 рад / с, создавая пиковую ЭДС 18,0 В. Он имеет прямоугольную катушку размером 1,00 на 3,00 см в поле 0,640 Тл. Сколько витков в катушке? (b) Практично ли такое количество витков провода для катушки 1,00 на 3,00 см?

6. Integrated Concepts Эта проблема относится к велосипедному генератору, рассмотренному в предыдущей задаче. Он приводится в движение колесом диаметром 1,60 см, которое катится по внешнему ободу велосипедной шины. а) Какова скорость велосипеда, если угловая скорость генератора составляет 1875 рад / с? (b) Какова максимальная ЭДС генератора, когда велосипед движется со скоростью 10,0 м / с, учитывая, что в исходных условиях она составляла 18,0 В? (c) Если сложный генератор может изменять собственное магнитное поле, какая напряженность поля ему потребуется при 5.00 м / с для создания максимальной ЭДС 9,00 В?

7. (a) Автомобильный генератор вращается со скоростью 400 об / мин при работе двигателя на холостом ходу. Его прямоугольная катушка с 300 витками, 5,00 на 8,00 см вращается в регулируемом магнитном поле, так что она может производить достаточное напряжение даже при низких оборотах в минуту. Какая напряженность поля необходима для создания пиковой ЭДС 24,0 В? (b) Обсудите, как эта требуемая напряженность поля сравнивается с имеющейся у постоянных магнитов и электромагнитов.

8. Покажите, что если катушка вращается с угловой скоростью ω , период ее выхода переменного тока равен 2π / ω .

9. Катушка с 75 витками диаметром 10,0 см вращается с угловой скоростью 8,00 рад / с в поле 1,25 Тл, начиная с плоскости катушки, параллельной полю. а) Что такое пиковая ЭДС? (б) В какое время впервые достигается пиковая ЭДС? (c) В какое время ЭДС становится наиболее отрицательной? (d) Каков период выходного напряжения переменного тока?

10. (a) Если ЭДС катушки, вращающейся в магнитном поле, равна нулю при t = 0 и увеличивается до своего первого пика при t = 0.100 мс, какова угловая скорость катушки? б) В какое время наступит его следующий максимум? (c) Каков период вывода? (d) Когда выход составляет первую четверть от максимума? (e) Когда это следующая четверть от максимума?

11. Необоснованные результаты Катушка на 500 витков с площадью 0,250 м 2 вращается в поле Земли 5,00 × 10 −5 Тл, создавая максимальную ЭДС 12,0 кВ. (а) С какой угловой скоростью нужно вращать катушку? б) Что неразумного в этом результате? (c) Какое предположение или предпосылка ответственны?

Глоссарий

электрогенератор:
устройство для преобразования механической работы в электрическую энергию; он индуцирует ЭДС, вращая катушку в магнитном поле
ЭДС, индуцированная в катушке генератора:
э. Д. времени т
пиковая ЭДС:
ЭДС 0 = NABω

Избранные решения проблем и упражнения

1.474 В

3. 0,247 В

5. (a) 50 (b) да

7. (a) 0,477 Тл (b) Эта напряженность поля достаточно мала, чтобы ее можно было получить с помощью постоянного магнита или электромагнита.

9. (а) 5,89 В (б) При т = 0 (в) 0,393 с (г) 0,785 с

11. (a) 1,92 × 10 6 рад / с (b) Эта угловая скорость неоправданно высока, выше, чем может быть получена для любой механической системы. (c) Предположение, что можно получить напряжение до 12,0 кВ, является необоснованным.

Основная информация о генераторе — Power Products

Этот глоссарий терминов относится к электричеству и производителям энергии.

Q1: Как вырабатывается электроэнергия?

A: Энергетическое тело вращается двигателем для выработки электроэнергии

Это мало чем отличается от эксперимента в научном классе, где электричество генерировалось с помощью катушки и магнита. Фактически, при перемещении магнита рядом с катушкой генерируется электричество из-за явления, называемого «электромагнитной индукцией».«В принципе, этот процесс также происходит в случае генератора. На основе этого принципа при использовании двигателя для вращения компонента, называемого энергогенерирующим телом, вырабатывается переменный ток.

Q2: В чем разница между «постоянным током» и «переменным током»?

A: Поток электричества отличается

Существует два вида электрического тока: постоянный и переменный. В случае постоянного тока напряжение обычно постоянно, но переменный ток характеризуется изменением напряжения во времени.Постоянный ток хранится и может использоваться в сухих элементах и ​​батареях, тогда как переменный ток может быть преобразован и предлагает отличную универсальность для использования в электропитании бытовой техники.

Q3: Что означают «напряжение (В, вольт)», «ток (А, ампер)» и «мощность (Вт, ватт)?»

A: Важные элементы, составляющие электричество

Электричество часто сравнивают с потоком воды. Представьте себе текущую реку. Чем больше разница между высотами реки вверх и вниз по течению, тем больше импульс воды; и чем шире река, тем больше воды впадает в бассейн.В этом отношении «напряжение» (В, вольт) соответствует разнице в высоте, а «ток» (А, амперы) соответствует ширине реки. Поскольку «мощность» (Вт, ватты) — это скорость работы в единицу времени, ее можно представить как количество воды, которое переместилось от верхнего к нижнему потоку за заданное время. Эту мощность можно определить, умножив напряжение и ток.

Q4: В чем разница между W (ватт) и VA («V – A»)?

A: разница между потребляемой мощностью и выходной мощностью

Вт (Вт): мощность, потребляемая используемым оборудованием (потребляемая мощность)
ВА («В – А»): выходная электрическая мощность от генератора (выработка электроэнергии)

Q5: Что произойдет с электрооборудованием, если будет выбран неподходящий генератор?

A: Использование становится невозможным

Если потребляемая мощность превышает номинальную выходную мощность генератора, подача питания автоматически прекращается из-за перегрузки.Поэтому использование электрооборудования становится невозможным.

Глоссарий, который может понадобиться знать

Инвертор

Аппарат для преобразования постоянного тока в переменный. В инверторном генераторе, после временного преобразования переменного тока в постоянный, инвертор снова преобразует его в переменный ток.

Открытого типа / звуконепроницаемого типа

Генератор типа, в котором двигатель, являющийся источником шума, снабжен крышкой и известен как генератор звукоизоляционного типа, тогда как генератор открытого типа называется генератором открытого типа.

Параллельная работа

Две модели, «EF2000iS» и «EF2400iS», могут работать параллельно, подключив две идентичные модели параллельно с помощью специального кабеля для увеличения выходной мощности. Это дает преимущество, заключающееся в том, что в зависимости от требуемой мощности можно выборочно использовать один или два устройства.

Генератор переменного тока

Генератор переменного тока
следующий: Генератор постоянного тока Up: Магнитная индукция Предыдущая: Вихревые токи


Генератор переменного тока Электрический генератор или динамо-машина — это устройство, преобразующее механическую энергию в электроэнергия.Простейший практичный генератор состоит из прямоугольного катушка вращается в однородном магнитном поле. Магнитное поле обычно подается постоянным магнитом. Эта установка проиллюстрирована на рис. 38.
Рисунок 38: Генератор переменного тока.

Позвольте быть длина катушки вдоль ее оси вращения, а ширина катушки перпендикулярно этой оси. Предположим, что катушка вращается с постоянной угловой скоростью в равномерном магнитное поле напряженности.Скорость, с которой двое длинные стороны катушки ( т. е. , стороны и) движутся через магнитное поле, это просто продукт угловой скорости вращения и расстояния каждого сторону от оси вращения, поэтому . Двигательная ЭДС индуцированный в каждую сторону задается , где составляющая магнитного поля, перпендикулярная мгновенному направлению движения рассматриваемой стороны. Если направление магнитного поля составляет угол с нормальным направлением к катушку, как показано на рисунке, затем .Таким образом, величина двигательной ЭДС, генерируемой в сторонах и является

(209)

где площадь катушки. ЭДС равна нулю, когда или, поскольку направление движения сторон и параллельно направлению магнитного поля в этих случаях. ЭДС достигает максимального значения, когда или, поскольку направление движения сторон и находится на перпендикулярно к направлению магнитного поля в этих случаях.Между прочим, из симметрии ясно, что нет чистого двигательного ЭДС создается по бокам и катушке.

Предположим, что направление вращения катушки такое, что сторона перемещается на страницу на рис. 38 (вид сбоку), тогда как сбоку перемещается со страницы. Двигательная ЭДС, индуцированная в побочных действиях от к . Точно так же двигательный ЭДС индукции в побочных действиях от до. Видно, что обе ЭДС действуйте по часовой стрелке вокруг катушки. Таким образом, чистая ЭДС действуя вокруг катушка .Если в катушке есть витки, то чистая ЭДС становится равной . Таким образом, общее выражение для ЭДС, генерируемой вокруг устойчиво вращающаяся, многовитковая катушка в однородном магнитном поле

(210)

где мы написали для постоянно вращающейся катушки (при условии, что в ). Это выражение также можно записать
(211)

где
(212)

— пиковая ЭДС, создаваемая генератором, и — количество полных оборотов, выполняемых катушками в секунду.Таким образом пиковая ЭДС прямо пропорциональна площади катушки, количеству витков в катушке частота вращения катушки, и напряженность магнитного поля.

Рисунок 39 показывает ЭДС, указанную в формуле. (211) в виде функции времени. Видно, что изменение ЭДС во времени равно синусоидальная по природе. ЭДС достигает максимальных значений, когда плоскость катушка параллельна плоскости магнитного поля, проходит через ноль, когда плоскость катушки перпендикулярна магнитному полю, и меняет направление подписывать каждые полупериоды оборота катушки.ЭДС периодическая (, то есть , он постоянно повторяет один и тот же образец во времени), с период (который, конечно же, период вращения катушки).

Рисунок 39: ЭДС, генерируемая постоянно вращающимся генератором переменного тока.

Предположим, что некоторая нагрузка ( например, , электрическая лампочка или электрический обогреватель) элемент) сопротивления подключается к клеммам генератор.На практике это достигается соединением двух концов катушка к вращающимся кольцам, которые затем подключаются к внешней цепи с помощью металлических щеток. По закону Ома ток, протекающий в нагрузка дается

(213)

Обратите внимание, что этот ток постоянно меняет направление, как и ЭДС генератора. Следовательно, тип генератора, описанный выше, является обычно называется переменного тока , или, генератора.

Ток, протекающий через нагрузку, также должен течь по катушке. Поскольку катушка находится в магнитном поле, этот ток вызывает крутящий момент на катушке, который, как легко продемонстрировать, замедляет ее вращение. Согласно разд. 8.11, тормозной момент действующий на катушке дается выражением

(214)

где — составляющая магнитного поля, которая лежит в плоскости катушки.Из уравнения (210) что
(215)

поскольку . Внешний крутящий момент, равный разрывному моменту и противоположный ему, должен быть приложен к катушка, если она должна вращаться равномерно , как предполагалось выше. Скорость, с которой этот внешний крутящий момент действительно работает, равна произведение крутящего момента и угловой скорости катушки. Таким образом,
(216)

Неудивительно, что скорость, с которой работает внешний крутящий момент, точно соответствует скорость, с которой электрическая энергия генерируется в цепи, состоящей из вращающейся катушки и нагрузки.

Уравнения (210), (213) и (215) дают

(217)

где . На рисунке 40 показан разрыв крутящий момент, построенный как функция времени, согласно Уравнение (217). Видно, что крутящий момент всегда одного знака ( т.е. , он всегда действует в одном и том же направление, чтобы постоянно противостоять вращение катушки), но не постоянный во время. Вместо этого периодически пульсирует с периодом.Нарушение крутящий момент достигает максимального значения, когда плоскость катушки параллельна плоскость магнитного поля и равна нулю, если плоскость катушки перпендикулярна к магнитному полю. Понятно, что внешний крутящий момент нужен чтобы катушка вращалась с постоянной угловой скоростью, она также должна пульсировать вовремя с периодом. Постоянный внешний крутящий момент может привести к неравномерно вращающемуся катушки, и, следовательно, к переменной ЭДС, которая меняется со временем в более сложнее, чем .
Рисунок 40: Тормозной момент в стабильно вращающемся генераторе переменного тока.

Практически все коммерческие электростанции вырабатывают электроэнергию с помощью генераторов переменного тока. Внешнее питание, необходимое для вращения генерирующей катушки, обычно подается от паровая турбина (продувка паром по вентиляторным лопаткам, которые принудительно вращается). Вода испаряется, чтобы произвести высокое давление пара, сжигая уголь, или используя энергию, выделяемую внутри атомной электростанции. реактор.Конечно, на гидроэлектростанциях мощность нужна на поворот катушки генератора подводится водяная турбина (аналогичная к паровой турбине, за исключением того, что падающая вода играет роль пара). Недавно был разработан новый тип электростанции, в которой мощность, необходимая для вращения генераторной катушки, вырабатывается газовой турбиной. (по сути, большой реактивный двигатель, работающий на природном газе). В Соединенных Штатах и Канаде переменная ЭДС, генерируемая электростанциями, колеблется на Гц, что означает, что катушки генератора на электростанциях вращаются точно шестьдесят раз в секунду.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *