Классификация двигателя: Классификация двигателей

Содержание

Классификация двигателей внутреннего сгорания. — Автомастер

Классификация двигателей внутреннего сгорания.

Подробности

Двигатели можно классифицировать по следующим признакам:

  1. по смесеобразованию и виду топлива:
    • с внутренним смесеобразованием (дизельный двигатель) приготовление смеси происходит непосредственно уже в самом цилиндре. Воспламенение горючего происходит от соприкосновения с нагретым до высокой температуры воздухом, за счет его сжатия поршнем. В качестве топлива используется дизтопливо.
    • с внешним смесеобразованием (бензиновые двигатели, также они могут работать и на газу). Смесеобразование происходит за пределами цилиндра. В цилиндр попадает уже готовая смесь, воспламенение которой происходит от искры свечи зажигания. В качестве топлива используется бензин или газ.
  2. по выполнению рабочего цикла существуют:
    • двухтактные.
      Рабочий цикл совершается за два такта. Такт – это процесс, происходящий в цилиндре за один ход поршня.
    • четырехтактные. Рабочий цикл совершается за четыре такта.
  3. по числу цилиндров различают:
    • одноцилиндровые.
    • двухцилиндровые.
    • многоцилиндровые
  4. по расположению цилиндров:
    • рядные (цилиндры расположены в ряд).
    • V – образные (цилиндры расположены под углом 90 градусов).
    • оппозитные (цилиндры расположены под углом 180 градусов).
  5. По способу охлаждения:
    • с воздушным охлаждением (обдувается встречным потоком воздуха или используются вентиляторы для принудительного обдува).
    • с водяным охлаждением (для охлаждения используется жидкость, которая циркулирует по каналам в головки блока цилиндров и не посредственно в самом блоке, отводя излишки тепла).

На современных автомобилях в наше время используются многоцилиндровые двигатели с водяным охлаждением со всеми видами расположения цилиндров. Используются как бензиновые, так и дизельные двигатели.

Двигатели и силовые агрегаты

Модели двигателейСоответствие экол. нормамДиаметр цилиндра x ход поршня, ммРаб. объем, лnном, мин-1Ne, л.с.Мкр.max, кгс*мМин-й удельный расход топлива, г/л.с.˙чРасход масла на угар, не более, % от расхода топливаРесурс, тыс. км пробега автомобиляОсобенности конструкции
740.75-440Евро-4 (Правила № 49-04В1 ЕЭК ООН)120×13011.761900440206194.50.061000, в составе магистральных автомобилейДизельные, с турбонаддувом, ОНВ, электронным управлением и системами топливоподачи типа «Common Rail» и обработки отработавших газов
740. 74-420420186
740.73-400400176
740.72-360360157
740.71-320320137
740.70-280280117
820.73-300Евро-4 (Правила № 49-04В1 ЕЭК ООН)120×13011.7619003001401540,17 г/(л.с•ч)800, в составе магистральных автомобилейГазовые, с турбонаддувом, ОНВ, электронным управлением и системой обработки отработавших газов
820.72-240240110
820.74-300300125
820.60-26022002601100,33 г/(л.с•ч)
820.61-26195
740. 662-300Евро-4 (Правила № 96-02 ЕЭК ООН)120×13011.7619003001272070.1450, в составе полноприводных автомобилейДизельные, с турбонаддувом, ОНВ, электронным управлением и системой топливоподачи типа «Common Rail»
740.642-420420186
740.632-400400176
740.602-360360157
740.612-320320137
740.622-280280117
740.652-260260112
740.64-420Евро-3 (Правила № 49-04А ЕЭК ООН)120×13011.7619004201862070.1800, в составе магистральных автомобилейДизельные, с турбонаддувом, ОНВ и электронным управлением
740. 63-400400180
740.60-360360157
740.61-320320137
740.62-280280118
740.65-24024098
740.30-260Евро-3 (Правила № 96-01 ЕЭК ООН) Евро-2 (Правила № 49-02В ЕЭК ООН)120×12010.8622002601072070.2800, в составе магистральных автомобилейДизельные, с турбонаддувом и ОНВ
740.31-24024093
740.35-400120×13011.761900400157201
740.50-360360147
740.51-320320127
740.52-260260107
740. 53-290290122
740.55-300300118
740.37-400400176204
740.38-360360160148
740.13-260Евро-1 (Правила № 49-02А ЕЭК ООН)120×12010.862200260932070.3800, в составе магистральных автомобилейДизельные, с турбонаддувом
740.11-24024083
7403.10Евро-0 (Правила № 49-00 ЕЭК ООН)120×12010.862600260801550.8400
740.10-20220680.6Дизельные
740. 1021068

Классификация моторных масел и смазочных материалов

 

Классификация моторных масел API впервые появилась в 1947 г. по инициативе Американского института нефти (API: American Petroleum Institute), который классифицировал смазочные материалы согласно уровню их функциональных свойств и вводил новые стандарты, когда это требовал американский авторынок.

API совместно с SAE разработали данную классификацию, разделив различные категории масел начиная с 1947 г. и до настоящего момента согласно их характеристикам и типам применяемых двигателей. Количество категорий не ограничено и институт API вводит новые категории каждый раз, когда автомобильный рынок выдвигает новые требования к моторным маслам.

Условные обозначения:

  • первая буква обозначает применение смазочных материалов:
    — масла для бензиновых двигателей обозначаются буквой S
    — масла для дизельных двигателей — буквой C.
  • вторая буква обозначает уровень свойств моторного масла.

 

Классификация моторных масел API для бензиновых двигателей

SE ***Бензиновые двигатели 1972. Те же требования к моторному маслу, что и для категории SD, но лучше защита двигателя.
SF ***Бензиновые двигатели  1980. Те же требования, что и для категории SE, но улучшена защита от износа и окислительная стабильность.
SG ***
Бензиновые двигатели 1988. Те же требования, что и для категории SF, но лучше защита от износа, образования шлама и окисления масла.
SH ***Бензиновые двигатели 1993. Те же требования, что и для категории SG, но вводится система лицензирования и записи результатов всех моторных тестов и формул с целью гарантии качества. Символ API, который свидетельствует о дейсвтительном соответствии уровню SH помещается на этикетки канистр.
SJБензиновые двигатели 1996. Те же требования, что и для категории SH (включая лицензию и систему сертификатов) с лучшей защитой от окисления масла при высоких температурах и забивания катализатора.   
Начиная с  01/08/97, уровень SJ официально заменяет SH.
SL
Бензиновые двигатели 2001. Новые тесты на степень износа  (Seq IVA), моющие свойства моторного масла (TEOST MHT4), окисление (Seq IIIF) и низкотемпературные отложения (Seq VG)  для лучшей защиты двигателя и продления интервала замены масла. Стандарт SL заменил  API SJ в середине 2001г.
SMБензиновые двигатели 2004. Улучшены общие свойства для максимально-расширенного интервала замены масла. Ужесточен тест на высокотемпературные отложения (TEOST), новый тест на окисление (Seq. IIIG).
SNБензиновые двигатели 2010. Представлен в октябре 2010 г. Разработан для автомобилей 2011 года выпуска и более ранних. Улучшенная защита от высокотемпературных отложений на поршнях. Более жесткие требования к контролю сажи и совместимости с уплотнителями.

 

Классификация моторных масел API для 2-тактных двигателей

Классификация API для 2-тактных двигателей имеет четыре уровня: TA, TB, TC для наземных транспортных средств и TD для использования на лодочных 2-тактных двигателеях. Производители рассматривают данную класификацию моторных масел как устаревшую. Эстафету приняла японская спецификация JASO, признанная в среде профессионалов. Международная специяикация ISO базируется на данной японской спецификации, опубликованной в 1997г.

Спецификации по API для дизельных двигателей.

CE *«Требовательные» коммерческие дизельные двигатели (1987). Очень жесткие условия эксплуатации для нагруженных дизельных двигателей. Соответствует CD, усиленная защита от износа и высокотемпературных отложений, лучший контроль за окислением и расходом масла.
CF-4 *«Требовательные» коммерческие дизельные двигатели (1991).Те же требования, что и для категории CE, но усиленная защита против отложений на поршнях и высокого расхода масла.
CFДизельные двигатели с непрямым впрыском (1994). Масла для строительной и карьерной техники, а также для двигателей, использующих дизельное топливо с высоким содержанием серы (>0.5%). Могут быть использованы вместо API CD. Иногда используются в дизельных двигателях для пассажирского транспорта.  
CG-4Коммерческие дизельные двигатели, работающие в под тяжелыми нагрузками (развитие API CF-4, 1995). Масла для двигателей, соответствующих ограничениям по выхлопам в  США 1994 г. (дизельное топливо с содержанием серы ≤ 0.05%).  Могут быть использованы с дизельным топливом, содержащим серу в количестве до 0,5%).
CH-4Дизельные двигатели под очень высокими нагрузками, удовлетворяющие стандартам по выхлопам США (1998). Масла, соответствующие требованиям США 1998г. для двигателей с пониженным уровнем выхлопов, специально разработаны для дизельного топлива с содержанием серы не более 0,5%. Особенно эффективны в борьбе с коррозией, износом, сажей и окислением. Высокая сдвиговая стабильность и устойчивость к вспениванию. Продлевают срок службы двигателей, эксплуатируемых в самых разнообразных условиях. Перекрывая требования предыдущих стандартов, данные масла достаточно гибко могут быть использованы в разнородных парках техники.
CI-4

Дизельные двигатели под очень высокими нагрузками (2002). Масла для последних дизельных двигателей с пониженным выхлопом, перекрывает требования CH-4.

Особенно подходит для оборудования, работающего на дизельном топливе с очень низким содержанием серы (менее 0,5%). Ужесточенные требования к свойствам масел и одновременное увеличение интервала замены масла в 2 раза. Увеличение срока службы двигателя. Также принимается во внимание более строгие требования к работе с системами доочистки выхлопных газов.

 

Новая версия, названная API CI-4 Plus была опубликована в 2004г. с целью улучшить совместимость с системами EGR

CJ-4Представлена в 2006г для 4-тактных высокоскоростных двигателей, удовлетворяющих требованиям к выхлопам 2007 года. Эти масла были разработаны для двигателей, оснащенных сажевыми фильтрами и рассчитанных на использование дизельного топлива с содержанием серы до 0,05%. Могут быть использованы вместо масел стандартов API CF-4, CG-4, CH-4, CI-4 и CI-4 Plus

 

Классификация моторных масел API для 2-тактных дизельных двигателей.

CD-II2-тактные дизельные двигатели, работающие в сложных условиях (1988). Улучшенная защита от износа и отложений. Удовлетворяет требованиям уровня CD.
CF-22-тактные дизельные двигатели, работающие в сложных условиях (1994). Более жесткие требования, чем API CD-II. Усиленная защита от износа поршневых колец и цилиндров.

 

Классификация API трансмиссионных масел

API-GL-1

Минеральные трансмиссионные масла без присадок или с антиокислительными и противопенными присадками без противозадирных компонентов для применения, среди прочего, в коробках передач с ручным управлением с низкими удельными давлениями и скоростями скольжения. Цилиндрические, червячные и спирально-конические зубчатые передачи, работающие при низких скоростях и нагрузках.

API-GL-2

Червячные передачи, работающие в условиях GL-1 при низких скоростях и нагрузках, но с более высокими требованиями к антифрикционным свойствам. Могут содержать антифрикционный компонент.

API-GL-3

Трансмиссионные масла с высоким содержанием присадок с уровнем эксплуатационных свойств MIL-L-2105. Эти масла применяются предпочтительно в ступенчатых коробках передач и рулевых механизмах, в главных передачах и гипоидных передачах с малым смещением в автомобилях и безрельсовых транспортных средствах для перевозки грузов, пассажиров и для нетранспортных работ. Обладают лучшими противоизносными свойствами, чем GL-2.

API-GL-4

Трансмиссионные масла с высоким содержанием присадок с уровнем эксплуатационных свойств MIL-L-2105. Эти масла применяются предпочтительно в ступенчатых коробках передач и рулевых механизмах, в главных передачах и гипоидных передачах с малым смещением в автомобилях и безрельсовых транспортных средствах для перевозки грузов и пассажиров и для нетранспортных работ.

API-GL-5

Масла для гипоидных передач с уровнем эксплуатационных свойств MIL-L-2105 C/D. Эти масла предпочтительно применяются в передачах с гипоидными коническими зубатыми колесами и коническими колесами с круговыми зубьями для главной передачи в автомобилях и в карданных приводах мотоциклов и ступенчатых коробках передач мотоциклов. Специально для гипоидных передач с высоким смешением оси. Для самых тяжелых условий эксплуатации с ударной и знакопеременной нагрузкой.

Классификация ACEA

Классификация моторных масел AСEA адаптирована под новые технологии, принимающие во внимание Европейские требования к защите окружающей среды. Начиная с 1996 г. было издано несколько версий стандартов AСEA.
Соблюдение требований ACEA 2008 является обязательным условием с декабря 2010г.

Версия ACEA 2008 определяет четыре категории бензиновых и дизельных двигателей (A1/B1, A3/B3, A3/B4, A5/B5), четыре категории автомобилей с системами доочистки выхлопных газов (C1, C2, C3, C4), и четыре категории дизельных двигателей, используемых на тяжелой технике (E4, E6, E7, E9), две из которых относятся к тяжелым транспортным средствам, оснащённым системами доочистки выхлопных газов DPF или CRT (E6, E9).

Категория А/B:
A – бензиновые двигатели
B – дизельные двигатели

 

 Без экономии топливаЭкономия топлива
Увеличенный интервал заменыA3 / B4A5 / B5
Стандартный  интервал заменыA3 / B3A1 / B1

 

Категория C:
Двигатели с системами доочистки выхлопных газов

 Без экономии топливаЭкономия топлива
Низкое содержание SAPSС4С1
Среднее содержание SAPSС3С2

 

Описание требований ACEA 2008 к маслам категории Low SAPS (низкое содержание серы, фосфора и сульфатных зол)

ХарактеристикиПоказателиЭкономия топливаКласс

Высокая экономия топлива
Низкое содержание SAPS

2. 9 ≤ HTHS
P ≤ 0.05 %;
S ≤ 0.2%,
CS ≤ 0.5 %

> 3%

С1

Высокая экономия топлива
Среднее содержание SAPS

2.9 ≤ HTHS
0.070 % ≤ P≤ 0.090 %,
S ≤ 0.3 %,
CS ≤ 0.8 %

> 2.5%

С2

Стандартная экономия топлива
Среднее содержание SAPS

HTHS ≥ 3.5
0.070 % ≤ P≤ 0.090 %,
S ≤ 0.3 %,
CS ≤ 0.8 %

> 1%
(вязкость xW-30)

С3

Сатндартная экономия топлива
Низкое содержание SAPS

HTHS ≥ 3.5
Пониженная летучесть (≤11%)
P≤ 0.090%, S ≤ 0.2%, SA ≤ 0.5%

> 1%
(вязкость xW-30)

С4

 

Классификация ACEA для тяжелой техники

 

Низкое содержание SAPS

Среднее содержание SAPS

Расширенный интервал замены

E6E4
TBN ≥ 12%

Стандартный интервал замены

E9E7
TBN ≥ 9. 0%

КЛАССИФИКАЦИЯ МОТОРНЫХ МАСЕЛ SAE J300

Классификация SAEJ 300 используется для характеристики вязкости (сопротивления течению) масла при высоких и низких температурах.
SAE: Society of Automotive Engineers (Общество автомобильных инженеров, США).

ASTM

Класс вязкости по SAEНизкотемпературная вязкостьВысокотемпературная вязкость
 Проворачивание1), МПа*с, max при температуре,
°С
Прокачиваемость2), МПа*с, max при температуре,
°С
Кинематическая вязкость3), мм2/с при 100 °СПри высокой скорости сдвига4), МПа*с, при 150 °С и 106 с-1, min
   minmax 
0W6200 при -3560000 при -403,8
5W6600 при -3060000 при -353,8
10W7000 при -2560000 при -304,1
15W7000 при -2060000 при -255,6
20W9500 при -1560000 при -205,6
25W13000 при -1060000 при -159,3
20  5,69,32,6
30  9,312,52,9
40  12,516,32,9
(0W-40,
5W-40,
10W-40)
40  12,516,33,7
(15W-40, 20W-40,
40)
50  16,321,93,7
60  21,926,13,7

 

1. ASTMD 2602 – имитатор холодного пуска CCS
2. ASTMD 4684 и D 3829 – мини-ротационный вискозиметр MRV
3. ASTMD 445 – стеклянный капиллярный вискозиметр
4. ASTMD – конический имитатор подшипника HTHS

Пример: SAE 15W- 40

15W — Низкотемпературный класс вязкости.
Буква « W » означает winter (зима)
Чем ниже класс, тем ниже температура возможного старта двигателя
40 — Высокотемпературный класс
Чем выше класс, тем выше температура, которую может выдержать масло (защита двигателя при высоких рабочих температурах).

SAE xxW-yy  — Всесезонное масло, например Quartz 9000 5W-40
SAE xxW  или SAE yy – Сезонное масло, например Rubia S 10W 

Сезонные масла, в основном, используются там, где нет сильных перепадов температуры и среднегодовая температура достаточно высокая. Всесезонные масла предлагаются как с зимней, так и с летней степенью вязкости.

ЛУКОЙЛ — Классификация масел

Новый качественный шаг в развитии качества и классификации моторных масел был сделан в 1983-1992 годах, когда под руководством API и участии представителей производителей автомобилей (ААМА), двигателей (ЕМА) и технических союзов (ASTM и SAE) была создана и развита «Система лицензирования и сертификации моторных масел EOLCS» (Engine Oil Licensing and Certification System, API Publication No. 1509). Эта система постоянно совершенствуется. В настоящее время аттестация моторных масел проводится согласно требованиям EOLCS и «Свода правил СМА» (СМА Code of Practice).

По системе API (ASTM D 4485, SAE J183 APR96) установлены три эксплуатационные категории (три ряда) назначения и качества моторных масел:

S (Service) — состоит из категорий качества моторных масел для бензиновых двигателей, идущих в хронологическом порядке. Для каждой новой генерации присваивается дополнительная буква по алфавиту:
API SA, API SB, API SC, API SD, API SE, API SF, API SG, API SH и API SJ (категория SI — намеренно пропущена API, для исключения путаницы с Международной системой мер).

Категории API SA, API SB, API SC, API SD, API SE, API SF, API SG на сегодняшний день признаны недействительными, как устаревшие, однако в некоторых странах масла этих категорий еще выпускаются, категория API SH является «условно действующей» и может использоваться только как дополнительная, например API CG-4/SH.

Класс SL введен 2001 г. и отличается от SJ существенно лучшими антиокислительными, противоизносными, противопенными свойствами, а также меньшей испаряемостью;

C (Commercial) — состоит из категорий качества и назначения масел для дизельных двигателей, идущих в хронологическом порядке. Для каждой новой генерации присваивается дополнительная буква по алфавиту:
API СA, API СB, API СC, API СD, API СD-II, API CE, API CF, API CF-2, API CF-4, API CG-4 и API CH-4.
Категории API СA, API СB, API СC, API СD, API СD-II на сегодняшний день признаны недействительными, как устаревшие, однако в некоторых странах масла этих категорий еще выпускаются;

EC (Energy Conserving) — энергосберегающие масла — новый ряд высококачественных масел, состоящий из маловязких, легкотекущих масел, уменьшающих расход топлива по результатам тестов на бензиновых двигателях.

Моторные масла, отличающиеся низкой вязкостью как при низкой, так и при высокой температуре могут быть сертифицированы на соответствие категории API EC «энергосберегающее» масло («Energy Conserving» Oil). Ранее энергосбережение определялось по методике Последовательности VI (Sequence VI, ASTM RR D02 1204). Данная методика использовалась для сертификации масел категории API SH на уровни (степени) энергосбережения: API SH/EC — 1,5% экономии топлива и API SH/ECII — 2,7% экономии топлива, по сравнению с эталонным маслом SAE 20w-30. Римские цифры после букв ЕС указывают уровень получаемой экономии топлива (ЕС II — 2,5%).

Как правильно читать этикетки на канистрах моторного масла?

4 Октября 2019

Этикетки на канистрах  содержат полную информацию  о характеристиках моторного масла. Ниже представлено краткое руководство о том, где найти и как расшифровать необходимые данные на примере этикеток на канистрах Mobil™.  

Вязкость

Ключевым параметром при выборе моторного масла является класс вязкости по классификации SAE (Общество автомобильных инженеров, от англ. – Society of Automotive Engineers). Рекомендуемый класс вязкости масла зависит от

 конструктивных особенностей двигателя и определяется производителем, который указывает его в руководстве по эксплуатации автомобиля. Ведь вязкость напрямую влияет на быстрый пуск и правильную смазку элементов двигателя.

Вязкость всегда указана на фронтальной этикетке канистры рядом с названием моторного масла и выглядит как сочетание цифр и латинской буквы W. Например, 5W-40 или 0W-20. Первое число в сочетании с буквой W (Winter) означает степень вязкости при низких температурах. Чем оно меньше, тем более текучим остается масло в морозы. Второе число после W указывает на степень высокотемпературной вязкости. Чем оно выше, чем гуще масло в жаркую погоду.

Классификация по международным стандартам качества

На этикетках канистр моторного масла содержится информация о соответствии продуктов требованиям и стандартам (спецификациям) экспертных организаций:

API – Американский институт нефти;

ACEA – Ассоциация Европейских Производителей Автомобилей;

ILSAC – Международный комитет по стандартизации и сертификации смазочных материалов;

ААЕ – Ассоциация автомобильных инженеров России.

Рядом с названием вышеуказанной экспертной организацией указан код, состоящий из букв или букв и цифр, например, API SN, ACEA C3. Этот код указывает на уровень свойств масла и соответствие  определенным стандартам качества.

Уровни защиты оригинальной продукции

На фронтальных этикетках моторного масла Mobil размещены защитные элементы, которые позволяют убедиться в оригинальности продукции: QR-код, 12-значный цифровой код и набор объемных металлических точек с цветными штрихами на них. Узнать подробнее о технологии защиты продуктов Mobil можно здесь.

Допуск автопроизводителя двигатель

Помимо общих стандартных спецификаций на задней этикетке канистр  моторного масла Mobil указаны  допуски автопроизводителей. Каждый из допусков означает, что масло прошло серию тестов и соответствует требованиям, которые предъявляет производитель к моторному маслу.

Масла Mobil имеют разные допуски производителей легкового и грузового транспорта: Volkswagen (VW), Mercedes-Benz (MB), General Motors (GM, dexos), Ford, BMW, Porsche, Jaguar Land Rover (JLR), Peugeot/Citroën Automobiles (PSA), Renault (RN), AVTOVAZ (Lada), Volvo, MAN, Scania, DAF, Mack.

На этикетках моторного масла допуски производителей могут выглядеть по-разному. Например, для легковых Mercedes-Benz они выглядят так: MB-Approval 229.3/229.1. А для грузовиков Renault, к примеру, так: Renault Trucks RLD-3.

Меры предосторожности и место производства

Задняя этикетка на канистрах Mobil является двойной. На ее внутренней стороне указаны рекомендации по соблюдению техники безопасности при работе с моторными маслами, а также информация о месте производства конкретной канистры масла.

Моторные масла Mobil поставляются официальными дистрибьютерами с заводов, находящихся в трех европейских городах: Гравеншон (Франция), Уддевала (Швеция) и Наантали (Финляндия).

Номер партии и дата изготовления

Эти данные указаны рядом с задней этикеткой и напечатаны непосредственно на канистре.

О чем говорят спецификации моторных масел API, ACEA, ILSAC, ААЕ?

API, ACEA, ILSAC и ААЕ — это международные стандарты качества, разработанные крупными экспертными организациями. Производители автомобилей всегда указывают определенные спецификации в руководстве по эксплуатации автомобиля, поэтому они являются важным параметром при выборе моторного масла.  Рекомендуемые спецификации зависят от конструктивных особенностей и типа двигателя конкретного автомобиля.

Кто же эти экспертные сообщества, занимающиеся разработкой стандартов:

  • API (от англ. – American Petrol Institute) — Американский институт нефти;
  • ACEA (от фр. – Association des Constructeurs Européens d’Automobiles) — Ассоциация европейских производителей автомобилей;
  • ILSAC (от англ. – International Lubricant Standardization and Approval Committee) — Международный комитет по стандартизации и одобрению смазочных материалов;
  • ААЕ (или русс. – ААИ) — Ассоциация автомобильных инженеров России.

Масла для автомобилей американских и азиатских автопроизводителей классифицируются по API или ILSAC. Европейские производители автомобилей для определения качества масла руководствуются классификацией по ACEA. При этом при выборе масла для легковых автомобилей, оборудованных дизельным двигателем с сажевым фильтром (DPF), руководствуются требованиям по классификации ACEA. Коммерческий дизельный транспорт ориентируется на обширную систему требований по API и ACEA.

Классификация API разделяет масла по их эксплуатационным свойствам. В соответствии с системой API существует две категории моторных масел:

API S (Service), например API SN – масла для бензиновых двигателей;

API C (Commercial), например API CK-4 – масла для дизельных двигателей.

Расшифровывается маркировка качества по API так. Буква, следующая за «S» или «С», указывает на качество масла. Чем дальше она стоит в алфавите, тем выше требования к уровню свойств масла. Самая низкая действующая в настоящее время спецификация для бензиновых двигателей – это API SJ.

В настоящее время наивысшей категорией масел для бензиновых двигателей по классификации API является спецификация API SN Plus, действующая с 1 мая 2018 года. Она особенно актуальна для автомобилей с TGDI (турбированным бензиновым двигателем с прямым впрыском), так как моторное масло такого уровня свойств способно предотвратить преждевременное воспламенение топливной смеси в цилиндре.

Остальные категории API для бензиновых двигателей соответствуют:

API SJ — масла для автомобилей не старше 2001 года;

API SL – масла для автомобилей не старше 2004 года;

API SM – масла для автомобилей не старше 2010 года;

API SN – масла для автомобилей с 2011 года.

Для легковых бензиновых двигателей масла более высоких спецификаций, например, API SN, можно применять там, где рекомендовано использование масла предыдущего уровня, например, API SM, API SL или API SJ.

Высшей категорией масел для дизельных двигателей по этой классификации является спецификация API CK-4. Это новый стандарт моторных масел для автомобилей, выпускающихся с 2017 года.

Также действующими стандартами остаются API CH-4, API CI-4, API CI-4 PLUS и API CJ-4. Цифра «4» в маркировке спецификации указывает на соответствие масла требованиям четырехтактных двигателей большого объема.

Масла более высокого класса могут применяться в двигателях, для которых подходят масла классов ниже. Например, API CK-4 может замещать собой такие спецификации как API CJ-4, API CI-4, API CI-4 PLUS и API CH-4.

Спецификация же API CH-4 может использоваться там, где подходят масла устаревших спецификаций API CD, API CE, API CF-4 и API CG-4. При этом всегда необходимо учитывать рекомендации автопроизводителя.

Классификация ACEA выделяет масла, которые ориентированы на требования европейских автопроизводителей и имеют развернутую систему одобрений.  Ее требования более жесткие исходя из общеевропейских стандартов качества.

В соответствии с классификацией ACEA масла для бензиновых и легковых дизельных двигателей объединены в одну категорию и имеют обозначение в виде сочетания букв A/B, рядом с которыми стоят цифры.

В настоящее время спецификация A1/B1, соответствующая энергосберегающим маслам низкой вязкости, отменена.

Спецификации A3/B3 соответствуют стабильные, износостойкие масла, отвечающие базовому уровню требований автопроизводителей. Это универсальные полновязкие полнозольные моторные масла.

Спецификация A3/B4 включает в себя спецификацию A3/B3, а также масла для бензинового двигателя с прямым впрыском и дизельного двигателя с системой инжекции. Масла этой спецификации подходят для увеличенного интервала замены масла и соответствуют повышенным требованиям автопроизводителей.

Спецификации A5/B5 соответствуют энергоэффективные моторные масла низкой вязкости, ориентированные на экономию топлива. Они применимы только для двигателей определенных моделей.

В связи с экологическими требованиями в европейских странах классификация ACEA дополнена категорией С, которой соответствуют масла для автомобилей, оснащённых системой очистки выхлопных газов (сажевый фильтр (DPF), каталитический нейтрализатор). Эти масла различаются уровнем содержания SAPS – сульфатной золы, фосфора и серы.

С1 – очень низкий уровень SAPS;

С2 – средний уровень SAPS;

С3 – средний SAPS;

С4 – низкий SAPS;

С5 – средний SAPS и экономия топлива; это малозольное масло низкой вязкости.

Масла для дизельных двигателей тяжелых грузовых автомобилей выделены в категорию E.

E4 – масла для двигателей экологических стандартов Euro I – Euro V, работающих в тяжелых условиях, включая увеличенные интервалы замены масла. Подходят для двигателей без сажевых фильтров, некоторых двигателей с EGR (система рециркуляции отработанных газов) и SCR (селективный каталитический нейтрализатор).

E6 – масла для двигателей экологических стандартов Euro I — Euro VI, работающих в тяжелых условиях с увеличенным интервалом замены масла. Они подходит для двигателей с EGR и SCR. Такие масла рекомендованы для двигателей, оснащенных сажевыми фильтрами, а также работающими на топливе с пониженным содержанием серы.

E7 – масла с отличной защитой от износа дизельных двигателей нового поколения экологических стандартов Euro I – Euro V. Они подходят для двигателей без сажевых фильтров и для большинства двигателей с EGR и SCR.

E9 – масла с отличной защитой от износа дизельных двигателей нового поколения экологических стандартов Euro I – Euro VI. Они подходят для двигателей с EGR и SCR. Рекомендованы для оснащённых сажевыми фильтрами двигателей, работающих на топливе с пониженным содержанием серы.

Классификация ILSAC создана для масел, используемых в американских и японских автомобилях. Она имеет пять категорий качества, первая из которых уже устарела, а наиболее актуальные в настоящее время ILSAC GF-4 и ILSAC GF-5.

ILSAC GF-4 – стандарт соответствует уровню требований API SM;

ILSAC GF-5 – стандарт соответствует уровню требований API SN.

Два этих стандарта перекрывают предыдущие уровни одобрения.

Классификация ААЕ (AAИ) имеет две категории масел:

Б – масла для бензиновых двигателей;

Д – масла для дизельных двигателей.

Цифры после буквы обозначают класс продукта. Высшими являются ААИ Б6 (AAE B6) для бензиновых двигателей, отвечающих требованиям Euro IV, и ААИ Д5 (AAE D5) для дизелей грузовых автомобилей с наддувом, работающих в тяжелых условиях и отвечающих требованиям Euro-III по выбросам токсичных компонентов.

Классификация моторных масел по API :: ПКФ «Лагуна»

API система классификации моторных масел (API Engine Service Classification System) развивалась с 1969 года в результате совместной работы API, ASTM и SAE. Система полностью изложена в стандартах ASTM D 4485 «Стандартная спецификация на качество эксплуатационных свойств моторных масел» (Standart Performance Specification for Performance of Engine Oils) и SAE J183 APR96 «Качество эксплуатационных свойств моторных масел и эксплуатационные классификации двигателей (за исключением энергосберегающих масел)»(Engine Oil Performance and Engine Service Classifications (Other than «Energy Conserving»). Новый качественный шаг в развитии качества и классификации моторных масел был сделан в 1983-1992 годах, когда под руководством API и участии представителей производителей автомобилей (ААМА), двигателей (ЕМА) и технических союзов (ASTM и SAE) была создана и развита «Система лицензирования и сертификации моторных масел EOLCS» (Engine Oil Licensing and Certification System, API Publication No. 1509). Эта система постоянно совершенствуется. В настоящее время аттестация моторных масел проводится согласно требованиям EOLCS и «Свода правил СМА» (СМА Code of Practice). 
По системе API (ASTM D 4485, SAE J183 APR96) установлены три эксплуатационные категории (три ряда) назначения и качества моторных масел:
S (Service) — состоит из категорий качества моторных масел для бензиновых двигателей, идущих в хронологическом порядке. Для каждой новой генерации присваивается дополнительная буква по алфавиту:
SA, SB, SC, SD, SE, SF, SG, SH и SJ (категория SI — намеренно пропущена API, для исключения путаницы с Международной системой мер, категория SK — намеренно пропущена API так как один из корейских производителей моторного масла использует сокращение «SK» в качестве своего корпоративного именив).
Категории API SA, SB, SC, SD, SE, SF, SG на сегодняшний день признаны недействительными, как устаревшие, однако в некоторых странах масла этих категорий еще выпускаются, категория API SH является «условно действующей» и может использоваться только как дополнительная, например API CG-4/SH.
Класс SL введен 2001 г. и отличается от SJ существенно лучшими антиокислительными, противоизносными, противопенными свойствами, а также меньшей испаряемостью;
C (Commercial) — состоит из категорий качества и назначения масел для дизельных двигателей, идущих в хронологическом порядке. Для каждой новой генерации присваивается дополнительная буква по алфавиту:
API СA, СB, СC, СD, СD-II, CE, CF, CF-2, CF-4, CG-4 и CH-4.
Категории API СA, СB, СC, СD, СD-II на сегодняшний день признаны недействительными, как устаревшие, однако в некоторых странах масла этих категорий еще выпускаются; 
T (Two-stroke) — для двухтактных двигателей.
EC (Energy Conserving) — энергосберегающие масла — новый ряд высококачественных масел, состоящий из маловязких, легкотекущих масел, уменьшающих расход топлива по результатам тестов на бензиновых двигателях.
Моторные масла, отличающиеся низкой вязкостью как при низкой, так и при высокой температуре могут быть сертифицированы на соответствие категории API EC «энергосберегающее» масло («Energy Conserving» Oil). Ранее энергосбережение определялось по методике Последовательности VI (Sequence VI, ASTM RR D02 1204). Данная методика использовалась для сертификации масел категории API SH на уровни (степени) энергосбережения: API SH/EC — 1,5% экономии топлива и API SH/ECII — 2,7% экономии топлива, по сравнению с эталонным маслом SAE 20w-30. Римские цифры после букв ЕС указывают уровень получаемой экономии топлива (ЕС II — 2,5%).
Влияние систем по контролю эмиссии вредных веществ
Универсальные масла для бензиновых и для дизельных двигателей обозначаются двумя символами соответствующих категорий: первый символ является основным, а второй указывает на возможность применения этого масла для двигателя другого типа. Например, API CG-4/SH — масло, оптимизированное для применения в дизельных двигателях, но его можно применять и в бензиновых двигателях, для которых предписывается масло категории API SH и ниже (SG, SF, SE и т.д.).Для бензиновых двигателей — классы масел по шкале S.

 

Классы качества моторного масла API: бензиновые двигатели

SN — Введена в октябре 2010г.  (Действующая).
Новый класс SN создавался американским нефтяным институтом (API) совместно с американской профессиональной ассоциацией ASTM (Американское общество по испытанию материалов) и SAE (Общество инженеров автомобильной промышленности).
Этот новый североамериканский стандарт заменил предыдущую сервисную категорию SM, которая была введена в 2004 г. Масла API SN улучшены по сравнению с API SM в областях окислительной стабильности и контроля отложений и шламов. API также ввело новое обозначение «Сберегающее Ресурсы» (Resource Conserving), которое может использоваться в связке с API SN. Обозначение «Сберегающее Ресурсы» заменило предыдущее обозначение «Сберегающее Энергию» (Energy Conserving). В то время как обозначение «Сберегающее Энергию» было сфокусировано только на экономии топлива, новое обозначение «Сберегающее Ресурсы» охватывает экономию топлива, защиту системы очистки выхлопных газов и турбонаддувов, а также совместимость с топливами, содержащими этанол (вплоть до Е85, т. е. с топливами, содержащими до 85 % биоэтанола). Другими словами, основное отличие класса API SN от предыдущей спецификации SM гораздо более масштабны, нежели отличия класса SM от SL. Основное отличие API SN от предыдущих классификаций API в ограничении содержания фосфора для совместимости с современными системами нейтрализации выхлопных газов, а также комплексное энергосбережение. То есть, масла, классифицируемые по API SN, будут приблизительно соответствовать АСЕА С2, С3, С4, без поправки на высокотемпературную вязкость.
Масла, соответствующие API SN могут применяться для замены API SM и более ранних.

SM — Моторные масла для бензиновых двигателей с 2004 года выпуска. (Действующая).
Класс утвержден 30 ноября 2004 года.
Тенденции развития техники направлены на повышение их экологической безопасности, увеличение интервалов техобслуживания при сохранении надежности работы. Естественно, это вносит свои коррективы в процесс совершенствования двигателей, отображаясь и на качествах смазывающих материалов. Следуя данным тенденциям, в ноябре 2004 года в классификации API появился класс на моторные масла для бензиновых двигателей — SM, предполагающий, по сравнению с SL, повышенные требования к смазывающим материалам относительно стойкости к окислению, защите от отложений, износа и т.д. Моторные масла, соответствующие требованиям API SM могут применяться в случаях, когда производителем автомобиля рекомендуется класс API SL или более ранние.

SL — Моторные масла для бензиновых двигателей с 2000 года выпуска (Действующая).
В соответствии с требованиями производителей автомобилей, автомасла класса API SL применяются в многоклапанных, турбированных моторах, работающих на обеднённых смесях топлива, соответствующих современным повышенным требованиям по экологии, а также энергосбережению.
Моторные масла, соответствующие требованиям API SL могут использоваться в случаях, когда автопроизводителем рекомендуется класс API SJ или более ранние.

SJ   Моторные масла для бензиновых двигателей с 1996 года выпуска.  (Действующая).
Категория API SJ утверждена 6 ноября 1995 года, лицензии выдаются с 15 октября 1996 года.
Автомобильные масла этого класса предназначены для использования в бензиновых моторах легковых и спортивных машин, микроавтобусов и легких грузовых машин, которые обслуживаются в соответствии с требованиями производителей автомобилей. SJ предусматривает такие же минимальные стандарты, как и SH, а также дополнительные требования к нагарообразованию и работе при низких температурах. Масла попадают под сертификацию по категории энергосбережения API SJ/EC.
Моторные масла, удовлетворяющие требованиям API SJ, могут применяться в тех случаях, когда производителем автомобиля рекомендуется класс SH или более ранние.

SH   Моторные масла для бензиновых двигателей с 1993 года выпуска. (Условно действующая).
Категория API SH утверждена в 1992 году, является условно действующей и может быть сертифицирована только как дополнительная к категориям для дизельных двигателей.
Моторные масла этого класса предназначены для использования в бензиновых моторах легковых машин, микроавтобусов и легких грузовых автомобилей 1996 года и старше, в соответствии с рекомендациями их производителей. Моторные масла данного класса тестировались в соответствии с требованиями Ассоциации производителей химической продукции (СМА).
Класс характеризуется более высокими требованиями по сравнению с классом SG, и был разработан, как заменитель последнего, для улучшения антинагарных, противоокислительных, антиизносных свойств масел и повышенной защиты от коррозии.
Класс API SH соответствует категории ILSAC GF-1 по всем параметрам, кроме обязательного энергосбережения и, в зависимости от степени экономии топлива, относится к категориям API SH/EC и API SH/ECII.
Моторные масла этого класса могут использоваться в тех случаях, когда производителем автомобиля рекомендуется класс API SG или более ранний.

SG   Моторные масла для бензиновых двигателей с 1989 по 1993 годов выпуска.  (Устаревшая)
Категория API SG утверждена в 1988 году, действие прекращено в конце 1995 года.
Предназначены для использования в бензиновых моторах легковых машин, микроавтобусов и легких грузовиков моделей 1993 года и старше, работающих на неэтилированном бензине с оксигенатами. Моторные масла этого класса обладают свойствами, обеспечивающими улучшенную защиту от нагара, окисления автомасла и износа мотора, в сравнении с предыдущими классами, а также содержат присадки, защищающие от ржавления и коррозии внутренних деталей двигателя.
Моторные масла класса API SG соответствуют требованиям к моторным маслам для дизельных моторов API CC и CD. Могут использоваться там, где рекомендуются классы API SF, SE, SF/CC или же SE/CC.

SF — Моторные масла для бензиновых двигателей с 1980 по 1989 годов выпуска. (Устаревшая)
Эти моторные масла применялись в бензиновых моторах 1980-1989 годов выпуска, работающих на этилированном бензине, при условии наличия рекомендаций и инструкций производителя двигателя.
Обеспечивают усиленную устойчивость к окислению, ржавлению и коррозии, улучшенную защиту от износа деталей, в сравнении базовыми характеристиками автомасел класса API SE, а также более надежную защиту от нагара и шлака.
Моторные масла класса API SF могли применяться, как заменители предыдущих классов API SE, SD или SC.

SE — Моторные масла для бензиновых двигателей с 1972 по 1980 годов выпуска. (Устаревшая)
Эти моторные масла применялись в бензиновых моторах моделей выпуска 1972-1979 годов, а также в некоторых моделях 1971 года.
Дополнительная защита в сравнении с автомаслами API SC и SD. Могут использоваться как заменители API SC и SD.

SD — Моторные масла для бензиновых двигателей с 1968 по 1971 годов выпуска. (Устаревшая)
Автомасла этого класса использовались в бензиновых моторах легковых машин и некоторых грузовых выпуска 1968-70 годов, а также некоторых моделей 1971 года и позднее. Улучшенная защита по сравнению с моторными маслами API SC, применялись также исключительно при наличии рекомендации производителя двигателя

SC — Моторные масла для бензиновых двигателей с 1964 по 1967 годов выпуска.  (Устаревшая)
Обычно применялись в моторах легковых машин и некоторых грузовиков выпуска 1964-1967 годов. Уменьшают высоко- и низкотемпературный нагар, износ, а также защищают от коррозии.

SB — Моторные масла для маломощных бензиновых моторов. (Устаревшая)
Моторные масла 30-х годов 20-го века, обеспечивавших достаточно легкую защиту от износа и окисления, а также антикоррозийную защиту подшипников в моторах, которые эксплуатируются в легких нагрузочных режимах. Моторные масла класса API SB могут применяться только, если они специально рекомендованы производителем двигателя.

SA — Моторные масла для бензиновых и дизельных моторов. (Устаревшая)
Устаревший класс масел для использования в старых моторах, работающих в таких условиях и режимах, при которых защита деталей с помощью присадок не нужна. Моторные масла класса API SA могут применяться только, если они рекомендованы производителем двигателя.

Классы качества моторного масла API: дизельные двигатели

CJ-4 — Моторные масла для дизельных двигателей с 2006 года выпуска.
Для быстроходных четырёхтактных двигателей, проектируемых для удовлетворения норм по токсичности отработавших газов 2007 года на магистральных дорогах. Масла CJ-4 допускают использование топлива с содержанием серы вплоть до 500 ррт (0,05% от массы). Однако работа с топливом, в котором содержание серы превышает 15 ррт (0,0015% от массы), может сказаться на работоспособности систем очистки выхлопных газов и/или интервалах замены масла.
Масла CJ-4 рекомендованы для двигателей, оборудованных дизельными сажевыми фильтрами и другими системами обработки выхлопных газов.
Классификация API CJ-4 превышает требования более ранних категорий API CI-4 PLUS, CI-4 и может использоваться как их замена. 

API CI-4 PLUS
Дополнительный эксплуатационный класс моторных масел API CI-4 PLUS для дизельных двигателей введён в 2004 году.
По сравнению с API CI-4 ужесточены требования к сажеобразованию, отложениям, вязкостным показателям, ограничение значения TBN. При сертификации в данной классификации моторное масло должно тестироваться в семнадцати моторных тестах.

СI-4 — Моторные масла для дизельных двигателей с 2002 года выпуска.
Введена в 2002 году. Для быстроходных четырёхтактных двигателей, проектируемых для удовлетворения нормам по токсичности отработавших газов, осуществляемым в 2002 году. Масла СI-4 допускают использование топлива с содержание серы вплоть до 0,5% от массы, а также применяются в двигателях с системой рециркуляции отработанных газов (EGR).
Классификация API CI-4 заменяет масла API CD, СЕ, CF-4, CG 4 и СН-4.

СH-4 — Моторные масла для дизельных двигателей с 1998 года выпуска.
Для быстроходных четырёхтактных двигателей, удовлетворяющих требования по токсичности выхлопных газов, введенных в США с 1998 года. Масла СН-4 позволяют использовать топливо с содержанием серы вплоть до 0,5% от массы.
Масла API GH-4 могут применяться, как заменители моторных масел API CD, CE, CF-4 и CG-4, в соответствии с рекомендациями производителя двигателя.

СG-4 — Моторные масла для дизельных двигателей с 1995 года выпуска.
Для двигателей быстроходной дизельной техники, работающей на топливе с содержанием серы менее чем 0,5%. Масла CG-4 для двигателей, выполняющих требования по токсичности отработанных газов, введенные в США с 1994 года.
Моторные масла API CG-4 могут применяться в двигателях, для которых рекомендуются классы API CD, CE и CF-4.

CF (CF-2, CF-4)
Цифра через дефис означает двух- или четырехтактный двигатель.
Класс API CF описывает моторные масла рекомендованные к применению в дизельных двигателях с непрямым впрыском, а также других видах дизельных двигателей, которые работают на топливе различного качества, в том числе и с повышенным содержанием серы (например, больше 0,5% от общей массы).
Моторные масла API CF могут использоваться там, где рекомендуется класс качества API CD.

СF-4 — Моторные масла для дизельных двигателей с 1990 года выпуска.
Моторные масла данного класса могут использоваться в четырехтактных дизельных двигателях, условия эксплуатации которых связаны с высокоскоростными режимами.
Можно применять вместо CD и СЕ масел.

СF-2 (CF II) Моторные масла для дизельных двигателей с 1994 года выпуска.
Улучшенные характеристики, используется вместо CD-II для двухтактных двигателей.
Моторное масло, сертифицированное по классу API CF-2, обладает улучшенными свойствами и может использоваться вместо более ранних аналогичных масел, при наличии рекомендации производителя.

CE — Моторные масла для дизельных двигателей с 1983 года выпуска.
Высокофорсированные перспективные двигатели с высоким турбонаддувом, работающие в тяжелых условиях, может использоваться вместо масел классов CC и CD.

API CD-II (CD-2) — Моторные масла для двухтактных дизельных двигателей с 1985 года выпуска.
Класс API CD-II введен в 1985 году для использования в двухтактных дизельных моторах и является, по сути, эволюционным развитием предыдущего класса API CD. Основным предназначением использования таких автомасел являлось применение в тяжелых мощных дизельных двигателях, которые устанавливались, в основном на сельскохозяйственную технику.
Моторные масла этого класса соответствуют всем рабочим стандартам предыдущего класса API CD, кроме этого существенно повышены требования относительно высокоэффективной защиты двигателя от нагара и износа.

API CD+ — Моторные масла для дизельных двигателей японского производства.
Дополнительная категория API CD+ учитывает возросшие требования к качеству моторных масел для японских дизельных двигателей.
Масла обладают высокой устойчивостью к окислению и загущению под влиянием накопления сажи, а также повышенной защитой от износа узла клапанов.

CD — Моторные масла для дизельных двигателей с 1955 года выпуска.
Класс масел для скоростных дизельных двигателей с турбонаддувом и высокой удельной мощностью, работающих на больших скоростях и при высоких давлениях и требующих повышенных противоизносных свойств и предотвращения образования нагара.

CC — Моторные масла для дизельных двигателей с 1961 года выпуска.
Высокофорсированные двигатели (в том числе с умеренным наддувом), работающие в тяжелых условиях.     с 1961 года.

CB — Моторные масла для дизельных двигателей с 1949 по 1960 годов выпуска.
Среднефорсированные двигатели без наддува, работающие при повышенных нагрузках на сернистом топливе.

CA — Моторные масла для дизельных двигателей с 1940 по 1950 годов выпуска.
Двигатели, работающие при умеренных нагрузках на малосернистом топливе.

Универсальные масла для бензиновых двигателей и дизелей имеют обозначения обеих категорий, например API SG/CD, API SJ/CF.  
Классы дизельных масел подразделяются дополнительно для двухтактных (CD-2, CF-2) и четырехтактных дизелей (CF-4, CG-4, СН-4).
 

Классы качества моторного масла API: двухтактные двигатели

API TD
Масла для подвесных двухтактных двигателей моторных лодок.

API TC
Масла для двигателей с высокими требованиями к качеству масла, кроме моторных лодок, например, двигатели мотоциклов, снегоходов. Возможно использование API TC в случаях, когда требуется класс API TA или TB.

API TB
Масла для скоростных двухтактных двигателей с объемом 50-200 см3, работающих под большими нагрузками, например, мотороллеры, бензопилы, мотоциклы.

API TА
Масла для двухтактных двигателей с объемом до 50 см3 с воздушным охлаждением, к примеру, мопеды, газонокосилки.

 

Классы качества моторного масла API: трансмиссионные масла

API GL-6
Трансмиссионные масла для гипоидных передач с увеличенным смещением, работающих в условиях высоких скоростей, больших крутящих моментов и ударных нагрузок.
Масла содержат большее количество серо-фосфорсодержащей противозадирной присадки, чем масла GL-5.

API GL-5
Трансмиссионные масла для гипоидных передач с уровнем эксплуатационных свойствMIL-L-2105 C/D. Эти масла предпо­чтительно применяются в передачах с гипоидными коническими зубчатыми колесами и коническими колесами с круговыми зубьями для главной передачи в автомобилях, в карданных приводах мотоциклов и ступенчатых коробках передач мотоциклов.
Масла применяются специально для гипоидных передач с высоким смешением оси. Для самых тяжелых условий эксплуатации с ударной и знакопеременной нагрузкой. Рекомендовано для гипоидных передач, работающих в условиях высоких скоростей при малых крутящих моментах и ударных нагрузках на зубья шестерен.
Масла содержат большое количество серо-фосфорсодержащей противозадирной присадки.

API GL-4
Трансмиссионные масла с высоким содержанием присадок с уровнем эксплуатационных свойств MIL-L-2105. Эти масла применяются предпочтительно в ступенчатых коробках передач и рулевых механизмах, в главных пере­дачах и гипоидных передачах с малым смещением в автомобилях и безрельсовых транспортных средствах для перевозки грузов и пассажиров и для нетранспортных работ.
Масла применяются для гипоидных передач, работающих в условиях высоких скоростей при малых крутящих моментах и в условиях малых скоростей при больших крутящих моментах.
Обязательно наличие высокоэффектив­ных противозадирных присадок.

API GL-3
Трансмиссионные масла с высоким содержанием присадок с уровнем эксплуатационных свойств MIL-L-2105. Эти масла применяются предпочтительно в ступенчатых коробках передач и рулевых механизмах, в главных передачах и гипоидных передачах с малым смещением в автомобилях и безрельсовых транспортных средствах для пере­возки грузов, пассажиров и для нетранспортных работ.
Масла применяются для спирально-конических передач, работающих в умеренно жестких условиях, а также для обычных трансмиссий со спирально-коническими шестернями, работающих в умеренно жестких условиях по скоростям и нагрузкам.
Обладают лучшими противоизносными свойствами, чем API GL-2.

API GL-2
Трансмиссионные масла для червячных передач, работающих в условиях GL-1 при низких скоростях и нагрузках, но с более высо­кими требованиями к антифрикционным свойствам.
Могут содержать антифрикционный компонент.

API GL-1
Минеральные масла без присадок либо масла с антиокислительными и противопенными присадками, но без про­тивозадирных компонентов для применения в коробках передач с ручным управлением с низкими удель­ными давлениями и скоростями скольжения.
Масла применяются в цилиндрических, червячных и спирально-конических зубчатых передачах, работающих при низких скоростях и нагрузках.

API МТ-1
Масла для высоконагруженных агрегатов.
Предназначены для несинхронизированных механических коробок передач мощных коммерческих автомобилей (тягачей и автобусов).
Эквивалентны маслам API GL-5, но обладают повышенной термической стабильностью.

API PG-2
Масла для передач ведущих мостов мощных коммерческих автомобилей (тягачей и автобусов) и мобильной техники.
Эквивалентны маслам API GL-5, но обладают повышенной термической стабильностью и улучшенной совместимостью с эластомерами.

 

Масла, соответствующие требованиям действующих категорий качества и прошедшие официальные испытания API — SAE, имеют на своих этикетках графический круглый знак (donut mark) — «API символ обслуживания» (API Service Symbol), в котором указаны степень вязкости по SAE, категория качества и назначения по API и возможная степень энергосбережения.

 

 

 

Масла, лицензированные API и отвечающие API SN отображаются на заднем лейбле сервисным симво­лом «кольцо» API. Сведе­ния о том, что лицензиро­ванное масло также отвечает обозначению Resource Conserving, изображены на нижней части кольца.

 

 

Новейшие категории масел сертифицированные API, в случае соответствия требованиям ILSAC, обозначаются «Символом Свидетельства сертификации API» (API Certification Mark), так называемым знаком «Звездного взрыва» («Starburst»). Этот знак может присваиваться только энергосберегающим, легкотекучим маслам наивысшего уровня качества, с вязкостями SAE 0W-…, 5W-… и 10W-… . Система требований к маслам серии ILSAC GF является составной частью системы API Обеспечения Качества Американских Масел (EOLCS).

 

Системы API — ILSAC предназначены для удовлетворения требований к маслам, используемым в двигателях американских и японских автомобилей. Требования европейских автопроизводителей несколько отличаются по причине конструктивных особенностей европейских двигателей. Несмотря на это, большинство моторных масел, поступающих на европейский рынок, маркируются знаками соответствия категориям качества API и, в редких случаях, даже «Символом Обслуживания API» (API Service Symbol).
 

Kлассификации API масла для двигателей

Производители машинных масел испытания своей продукции проводят в различных международных и государственных учреждениях по контролю качества, наиболее признанными из которых являются API (American Petroleum Institute, т.е. Американский Институт Нефти) и ACEA (Association des Constructeurs Europeens d’Automobiles, т.е. Ассоциация Европейских Производителей Автомобилей). 


API классификация моторных масел

Классификация SAE не определяет качество масла. Для определения качества масла необходимы многоэтапные лабораторные и практические исследования. Ими занимаются производители автомобилей и двигателей в сотрудничестве с производителями масел. На основании этих результатов определяются требования к смазочным маслам и классификация их качества, на основании чего, в свою очередь, вырабатываются рекомендации для автомобильных и двигательных масел.

 

При классификации API качество моторного масла определяется экспериментом на двигателе, когда исследуются, например, износ и чистота стенок цилиндров, поршневых колец, подшипников и газораспределительного механизма, образование нагара и осадка, а также поверхностные повреждения и окисляемость масла. Надо отметить, что классификация API определяет только основные требования, предъявляемые к маслу. У относящихся к одному классу по API-классификации масел на практике могут быть различные качества, превышающие критерии классификации. 


При классификации API масла для бензиновых двигателей обозначаются символом S

Буква, следующая за буквой-обозначением, указывает класс качества и условия использования : SA, SB, SC, SD, SE, SF, SG, и SH: использование прекращено.

 

SJ: Класс качества, принятый в 1996 году. Моторные тесты и границы величин такие же, как у класса SH, но соответствует требованиям к более низкой испаряемости и пониженному содержанию фосфора. Для автомобилей, выпущенных до 2001 года.

 

SL: Класс качества, принятый в 2001 году. Моторные тесты и границы величин такие же, как у класса SJ, но более жесткие требования к расходу масла и образованию нагара при высоких температурах. Некоторые масла этого класса по экономичности расхода соответствуют требованию ILSAC GF-3. Для автомобилей, выпущенных до 2004 года.

 

SM: Класс качества, принятый в 2004 году. Эти масла обладают лучшими антиокислительными свойствами, препятствуют образованию нагара и износу, способны работать при низких температурах весь период между заменами. Некоторые масла этого класса по экономичности расхода соответствуют также новейшему требованию ILSAC GF-4.

 

Для моторов, работающих на бензине, всегда можно использовать масла более высокого класса качества, чем рекомендует изготовитель. Понятно, что для старых машин не могли быть выдвинуты требования качества, которое достигнуто позже. Применение современного масла более высокого качества принесет только пользу вашей машине. 


По классификации API масла для дизельных обозначаются символом С

Класс масла по качеству и по условиям использования обозначается следующими буквами: CA, CB, CC, CD, CD-II и CE: использование прекращено.

 

CF-4: Превышает требования CE в отношении расхода масла и загрязняемости поршня.
CF-2: Двухтактные дизельные двигатели. Может заменять масла CD-ll класса.
CF: Может заменять масла CD-класса. Для моторов, в которых используют горючее с высоким содержанием серы.
CG-4: Американские моторы с низкой токсичностью выхлопа. Может заменять масла классов CD, CE и CF-4. Соответствует требованиям 1994 года по токсичности выхлопа.
CH-4: Представлено в 1998 году. Низковыхлопные американские моторы, спроектированные для соответствия требованиям 1998 года по содержанию выхлопных газов. Может заменять масла CD, CE, CF-4 и CG-4 классов.
CI-4: Представлено в 2002 году. Американские моторы с низкой токсичностью выхлопа, спроектированные для соответствия требованиям 2004 года по содержанию выхлопных газов. Особенно подходят для моторов с дожиганием выхлопных газов (EGR). Может заменять масла классов CD, CE, CF-4, CG-4 и CH-4.
CI-4 PLUS: Представлено в 2004 году. Превышает требования CI-4.


CJ-4: Bступил в силу в 2006 г., рекомендуется использовать для новейших высоконагруженных малотоксичных дизельных двигателей, использующих топливо с низким содержанием серы, совместимо как с дизельными сажевыми фильтрами (DPF), так и с EGR.

 

Для всех четырёхтактных двигателей можно использовать масло более высокого качества, чем масло, рекомендуемое производителем, поскольку оно — более высокого качества и гарантирует улучшенную защиту деталей двигателя. При подборе масла для двухтактных дизельных двигателей необходимо учесть рекомендации производителя.

 

Моторные масла в целом соответствуют требованиям API к бензиновым и дизельным двигателям. Классификация масла по API может быть, например, SJ/CF. Это означает, что масло соответствует или превышает требования качества API масла для бензиновых моторов SJ и подходит также для дизельных моторов, для которых существует требование API CF. Если API классификация равна CG-4/SH, масло подходит для дизельных моторов с тяжелой нагрузкой и бензиновых моторов, для которых требование SH является достаточным, с условием, что масло соответствует требованиям по вязкости. 


Классификация масел для двухтактных двигателей

Уровень способности масел для двухтактных двигателей к эффективной работе определяется классификацией API, ISO, JASO или NMMA. Так же, как и для четырехтактных моторов, классификацию определяют на основе моторных и лабораторных исследований.

 

API TA (ISO-L-ETA): Двухтактные моторы мопедов, косилоки других машин небольшой мощности. Обычно ниже 50 cc.
API TB (ISO-L-ETB): Смазочные качества масла достаточны для мотороллеров и скутеров небольшой мощности. Снято с применения. Обычно 50-200 cc.
API TC (ISO-L-ETC): Для моторов, которые чувствительны к повреждениям от раннего зажигания, где маслу необходимо работать при довольно высоких температурах, не вызывая заклинивания поршневых колец. Смазочные качества масла достаточны и для мощных мотороллеров, мотосаней и пил. Обычно 50-500 cc.

API TCS: Такое же, как и API TC, но синтетический продукт.
API TD (ISO-L-ETD): Для смазки подвесных моторов. Снято с применения.
JASO FB/ISO-L-EGB: Масла низкого уровня качества.
JASO FC/ISO-L-EGC: Минимальные требования японских производителей двигателей.
JASO FCS: Такое же, как и JASO FC, но синтетический продукт.
ISO-L-EGD: масла для двухтактных двигателейс прекрасной омывающей способностью и повышенной эффективностью работы при высоких температурах.


NMMA TC-W3:
Для подвесных моторов. Может заменять масла API TD класса

Как классифицируются автомобильные двигатели?

Конструкция и классификация двигателей:

Двигатель — это машина, вырабатывающая энергию. Он преобразует потенциальную энергию топлива в тепловую, а затем во вращательное движение. Автомобильный двигатель, который производит энергию, также работает от своей собственной мощности. В целом производители классифицируют двигатели по разным конструкциям, конструкциям и областям применения. Как правило, автомобильные приложения имеют следующие подкатегории, по которым: разные конструкции двигателей отличаются друг от друга.

Автомобильные двигатели обычно классифицируются по следующим категориям:

  1. Внутреннее сгорание (IC) и внешнее сгорание (EC)
  2. Тип топлива: Бензин, Дизель, Газ, Био / Альтернативные виды топлива
  3. Число тактов — двухтактный бензиновый, двухтактный дизельный, четырехтактный бензиновый / четырехтактный дизель
  4. Тип зажигания, такой как искровое зажигание, зажигание от сжатия
  5. Количество цилиндров — от 1 до 18 цилиндров (в автомобиле)
  6. Расположение цилиндров: рядные, V, W, горизонтальные, радиальные
  7. Движение поршней — возвратно-поступательное, поворотное
  8. Размер / Вместимость
  9. Отношение диаметра к длине хода
  10. Методы охлаждения двигателя, такие как воздушное охлаждение, жидкостное охлаждение (на водной основе), масляное охлаждение (масло охлаждается отдельно)
  11. Система дыхания, например, без наддува, с турбонаддувом / наддувом
  12. Применения, такие как велосипеды, легковые автомобили, гоночные автомобили, коммерческие автомобили, морское, сельскохозяйственное оборудование, землеройное оборудование и т. Д.

Обычный автомобильный двигатель состоит из следующих частей:

  1. Головка блока цилиндров двигателя — Распределительный вал (в случае конструкции с верхним расположением клапанов), впускные клапаны, выпускные клапаны, впускной коллектор с турбонагнетателем (если установлен), выпускной коллектор
  2. Блок цилиндров двигателя — содержит основные детали двигателя, такие как поршни, коленчатый вал, распределительный вал, масляный насос, масляный фильтр, масляный радиатор, водяной насос и масляный поддон.
  3. Генератор, компрессор кондиционера, насос гидроусилителя
  4. Маховик, сцепление в сборе, картер сцепления, трансмиссия

По расположению цилиндров двигатель классифицируется в основном по следующим категориям:

  1. Рядный
  2. V-образный
  3. W-образная
  4. Плоский / Горизонтально противоположный
  5. Поршни противоположные
  6. Радиальный

Однако наиболее часто используемые двигатели в автомобилях — это рядные, V-, W- и плоские двигатели.

Рядный двигатель:

Этот тип конструкции представляет собой очень простую и обычную конструкцию двигателя. В этой конструкции двигателя цилиндры расположены на одной прямой линии. Рядный двигатель используется с 2, 3, 4, 5, 6 или до 8 цилиндрами. Читать далее.

V Двигатель:

Это двигатель нового поколения. В этой конструкции двигателя цилиндры расположены под углом. Угол между цилиндрами имеет V-образную форму, поэтому двигатель имеет V-образную конструкцию. Читать далее.

‘W’ Двигатель:

В этой конструкции двигателя три ряда цилиндров расположены под углом. Углы между рядами цилиндров образуют W-образную форму, поэтому двигатель имеет W-образную конструкцию.

W Engine Design

Обычно он используется в высокоскоростных гоночных автомобилях. Автомобили с 18 цилиндрами — это некоторые из шоу-каров Bugatti — концепт EB118, концепт EB 218, концепт 18/3 Chiron — все с 18-цилиндровым двигателем W-18 и концепт EB 18.4 Veyron с 16-цилиндровым W -16 ‘двигатель.

Смотрите анимацию двигателя Bugatti Veyron W16 здесь:

Плоское / горизонтально противоположное:

Основное преимущество плоских / горизонтально расположенных двигателей заключается в том, что они позволяют более низкий центр тяжести, тем самым помогая улучшить характеристики автомобиля. Этот тип двигателя используется в автомобилях Subaru.

Двигатель с плоской / горизонтальной оппозицией

Все модели Subaru, такие как Impreza, Forester, Tribeca, Legacy, Outback, Baja, BRZ и SVX, используют четырехцилиндровый или шестицилиндровый двигатель.

Посмотрите анимацию с плоским двигателем здесь:

Для получения дополнительной информации нажмите:

http: // www.subaru-global.com/

Читайте дальше: Какой объем двигателя (куб. См)? >>

О компании CarBikeTech

CarBikeTech — технический блог. Его члены имеют опыт работы в автомобильной сфере более 20 лет. CarBikeTech регулярно публикует специальные технические статьи по автомобильным технологиям.

Посмотреть все сообщения CarBikeTech

Сколько типов двигателей в автомобиле

В этой статье мы узнаем о различных типах двигателей.Классификация двигателей зависит от типа используемого топлива, рабочего цикла, числа тактов, типа зажигания, количества цилиндров, расположения цилиндров, расположения клапанов, типов охлаждения и т. Д. Эти двигатели используются в различных областях, таких как в автомобильной, авиационной, морской промышленности и т. д. в зависимости от пригодности они используются в различных областях. Итак, давайте поговорим о различных типах двигателей один за другим.

Типы двигателей

В основном двигатели бывают двух типов: двигатели внешнего и внутреннего сгорания.

(i). Двигатель внешнего сгорания: В двигателе внешнего сгорания сгорание топлива происходит вне двигателя. Пример: паровой двигатель.

(ii). Двигатель внутреннего сгорания: В двигателе внутреннего сгорания сгорание топлива происходит внутри двигателя. Двухтактные и четырехтактные бензиновые и дизельные двигатели являются примерами двигателей внутреннего сгорания.

Существуют различные типы двигателей внутреннего сгорания (I.C.), и их классификация зависит от различных оснований.

I.C. Двигатели классифицируются по следующему принципу:

1. Типы конструкции

(i). Поршневой двигатель: В поршневом двигателе есть поршень и цилиндр, поршень совершает возвратно-поступательное движение (вперед и назад) внутри цилиндра. Из-за возвратно-поступательного движения поршня его называют поршневым двигателем. Двухтактные и четырехтактные двигатели являются типичными примерами поршневых двигателей.

(ii).Роторный двигатель: В роторном двигателе ротор совершает вращательное движение для выработки энергии. Возвратно-поступательного движения нет. В камере находится ротор, который совершает вращательное движение внутри камеры. Роторный двигатель Ванкеля, газотурбинные двигатели относятся к роторным типам двигателей.

2. Типы используемого топлива

По типам используемого топлива двигатель подразделяется на бензиновый, дизельный и газовый.

(i). Бензиновый двигатель: Двигатель, работающий на бензине, называется бензиновым двигателем.

(ii). Дизельный двигатель: Двигатель, работающий на дизельном топливе, называется дизельным двигателем.

(iii). Газовый двигатель: Двигатель, работающий на газовом топливе, называется газовым двигателем.

3. Рабочий цикл

На основе рабочего цикла типы двигателей следующие:

(i). Двигатель цикла Отто: Эти типы двигателей работают по циклу Отто.

(ii). Дизельный двигатель: Двигатель, работающий по дизельному циклу, называется двигателем с дизельным циклом.

(iii). Двухтактный двигатель или двигатель с полудизельным циклом: Двигатель, который работает как с дизельным двигателем, так и с циклом Отто, называется двухтактным двигателем или двигателем с полудизельным циклом.

4. Число ходов

Типы двигателей на основе числа ходов:

(i). Четырехтактный двигатель: Это двигатель, в котором поршень перемещается четыре раза, то есть два движения вверх (от нижней мертвой точки к верхней мертвой точке) и два движения вниз (от верхней мертвой точки к нижней мертвой точке) за один цикл рабочего такта, называется четырехтактным двигателем.

Четырехтактный двигатель

(ii). Двухтактный двигатель: Двигатель, в котором поршень совершает двукратное движение, то есть одно из ВМТ в НМТ, а другое из НМТ в ВМТ для создания рабочего хода, называется двухтактным двигателем.

Двухтактный двигатель

(iii).Двигатель с воспламенением от горячей точки: Этот тип двигателя не используется на практике.

5. Тип зажигания

По типу зажигания двигатели классифицируются как:


(i). Двигатель с искровым зажиганием (двигатель S.I.): В двигателе с искровым зажиганием на головке двигателя установлена ​​свеча зажигания. Свеча зажигания производит искру после сжатия топлива и воспламеняет топливовоздушную смесь для сгорания. Бензиновые двигатели представляют собой двигатель с искровым зажиганием.

(ii). Двигатель с воспламенением от сжатия (двигатель C.I.): В двигателе с воспламенением от сжатия на головке блока цилиндров нет свечи зажигания. Топливо воспламеняется от тепла сжатого воздуха. Дизельные двигатели представляют собой двигатель с воспламенением от сжатия.

Также читайте:

6. Количество цилиндров

В зависимости от количества цилиндров, имеющихся в двигателе, типы двигателей следующие:

(i). Одноцилиндровый двигатель: Одноцилиндровый двигатель называется одноцилиндровым двигателем.Обычно одноцилиндровые двигатели используются в мотоциклах, скутерах и т. Д.

(ii). Двухцилиндровый двигатель: Двухцилиндровый двигатель называется двухцилиндровым двигателем.

(iii). Многоцилиндровый двигатель: Двигатель, состоящий более чем из двух цилиндров, называется многоцилиндровым двигателем. Многоцилиндровый двигатель может иметь три, четыре, шесть, восемь, двенадцать и шестнадцать цилиндров.

7. Расположение цилиндров

По расположению цилиндров классификация двигателей:

(i).Вертикальный двигатель: в вертикальных двигателях цилиндры расположены в вертикальном положении, как показано на схеме.

(ii). Горизонтальный двигатель: В горизонтальных двигателях цилиндры расположены горизонтально, как показано на схеме, приведенной ниже.

(iii). Радиальный двигатель: Радиальный двигатель представляет собой двигатель внутреннего сгорания возвратно-поступательного типа, в котором цилиндры выходят наружу из центрального картера, как спицы колеса. Если смотреть спереди, он напоминает стилизованную звезду и называется «звездообразным» двигателем.До того, как газотурбинный двигатель не стал преобладающим, его обычно использовали для авиационных двигателей.

(iv). V-образный двигатель: В двигателях V-типа цилиндры расположены в двух рядах с некоторым углом между ними. Угол между двумя банками должен быть как можно меньше, чтобы предотвратить вибрацию и проблемы с балансировкой.

(в). Двигатель типа W: В двигателях типа w цилиндры расположены в три ряда, образуя расположение типа W. Двигатель типа W производится при выпуске 12- и 16-цилиндровых двигателей.

(vi). Двигатель с оппозитными цилиндрами: В двигателе с оппозитными цилиндрами цилиндры расположены напротив друг друга. Поршень и шатун движутся одинаково. Он работает плавно и имеет большую балансировку. Размеры оппозитно-цилиндрового двигателя увеличиваются из-за его расположения.

8. Расположение клапанов

В зависимости от расположения впускного и выпускного клапана в различных положениях в головке или блоке цилиндров автомобильные двигатели подразделяются на четыре категории.Эти аранжировки обозначаются как «L», «I», «F» и «T». Легко запомнить слово «LIFT», чтобы вспомнить четырехклапанный механизм.

(i). Двигатель с L-образной головкой: В двигателях этих типов впускные и выпускные клапаны расположены рядом и приводятся в действие одним распредвалом. Цилиндр и камера сгорания образуют перевернутый L.

(ii). Двигатель с I-образной головкой: В двигателях с I-образной головкой впускные и выпускные клапаны расположены в головке цилиндров. Один клапан приводит в действие все клапаны.Эти типы двигателей в основном используются в автомобилях.

(iii). Двигатель с F-образной головкой: Это комбинация двигателей с I-образной головкой и F-образной головкой. В этом случае один впускной клапан обычно находится в головке, а выпускной клапан находится в блоке цилиндров. Оба набора клапанов приводятся в действие одним распредвалом.

(iv). Двигатель с Т-образной головкой: В двигателях с Т-образной головкой впускной клапан расположен с одной стороны, а выпускной клапан — с другой стороны цилиндра. Здесь для работы требуются два распределительных вала: один для впускного клапана, а другой — для выпускного клапана.

Также читайте:

9. Типы охлаждения

По типам охлаждения двигатели классифицируются как:

(i). Двигатели с воздушным охлаждением: В этих двигателях воздух используется для охлаждения двигателей. В двигателях с воздушным охлаждением цилиндры разделены и используются металлические ребра, которые обеспечивают площадь излучающей поверхности, что увеличивает охлаждение. Двигатели с воздушным охлаждением обычно используются в мотоциклах и скутерах.

(ii).Двигатели с водяным охлаждением: В двигателях с водяным охлаждением вода используется для охлаждения двигателя. Двигатели с водяным охлаждением используются в легковых автомобилях, автобусах, грузовиках и других четырехколесных транспортных средствах, а также в тяжелых автотранспортных средствах. В воду добавляется антифриз, чтобы она не замерзла в холодную погоду. Каждый двигатель с водяным охлаждением имеет радиатор для охлаждения горячей воды от двигателя.

Помимо вышеуказанных типов двигателей, двигатель внутреннего сгорания также классифицируется на основании следующего.

1. Скорость:

Типы двигателей в зависимости от скорости:

(i). Низкооборотный двигатель
(ii). Среднеоборотный двигатель
(iii). Высокоскоростной двигатель

2. Способ впрыска топлива

По способу впрыска топлива двигатели классифицируются как:

(i). Карбюраторный двигатель
(ii). Двигатель с впрыском воздуха
(iii). Двигатель с безвоздушным или твердым впрыском топлива

3. Метод управления

(i).Двигатель с управляемым попаданием и промахом: Это тип двигателя, в котором подача топлива регулируется регулятором. Он контролирует скорость двигателя, отключая зажигание и подачу топлива в двигатель на очень высоких оборотах.

(ii). Качественно управляемый двигатель
(iii). Двигатель с количественным управлением

4. Заявка

(i). Стационарный двигатель: Стационарный двигатель — это двигатель, в котором его каркас не движется. Он используется для привода неподвижного оборудования, такого как насос, генератор, мельница, заводское оборудование и т. Д.

(ii). Автомобильный двигатель: Это типы двигателей, которые используются в автомобильной промышленности. Например: бензиновый двигатель, дизельный двигатель, газовый двигатель — двигатели внутреннего сгорания попадают в категорию автомобильных двигателей.

(iii). Двигатель локомотива: Двигатели, которые используются в поездах, называются локомотивными двигателями.

(iv). Судовой двигатель: Двигатели, которые используются в морской пехоте для движения лодок или судов, называются судовыми двигателями.

(в). Авиационный двигатель: Тип двигателя, который используется в самолете, называется авиационным двигателем. В силовых установках самолетов используются радиальные и газотурбинные двигатели.

Это все о различных типах движков. Если вы обнаружите, что что-то отсутствует или неверно, не забудьте прокомментировать нас. И если вам понравилась эта статья, то поставьте лайк и поделитесь с нами на Facebook

Классификация автомобильных двигателей (Автомобиль)

2.2.

Классификация автомобильных двигателей

Автомобильные двигатели подразделяются на несколько различных категорий, а именно:
(i) Типы циклов: двухтактные и четырехтактные циклы.Для получения подробной информации можно обратиться к разделу 2.3.
(ii) Типы используемого топлива: бензин (бензин) и дизельное топливо. За подробностями можно обратиться к главе 8.
(Hi) Количество цилиндров: двигатели легковых автомобилей обычно имеют три, четыре, пять, шесть,
восемь и двенадцать цилиндров. Двенадцати- и шестнадцатицилиндровые двигатели были использованы в автобусах и
грузовиках.
(iv) Расположение цилиндров: Автомобильные двигатели различаются в зависимости от расположения цилиндров в блоке цилиндров. См. Раздел 2.5 для подробностей.
(v) Порядок срабатывания: Порядок срабатывания — это порядок, в котором цилиндры передают свою мощность
ходов. Это встроенная часть конструкции двигателя. Ходы делятся вдоль коленчатого вала
, так что получается хорошо распределенный рисунок, сводящий к минимуму нагрузку на коленчатый вал. Порядок зажигания
можно найти в сервисном руководстве производителя двигателя. Для получения подробной информации о порядке стрельбы
см. Раздел 2.6.

(vi) Расположение клапанов: Двигатели можно классифицировать в зависимости от расположения и типа
используемой клапанной системы.См. Подробности в разделе 2.7.
U ”w> Тип охлаждения: В большинстве автомобильных двигателей используется жидкость, обычно вода, смешанная с антифризом
, для поддержания постоянной рабочей температуры двигателя за счет передачи тепла
от металла, окружающего камеру сгорания, жидкости. Эта система получила название жидкостной системы охлаждения
. Некоторые автомобили передают тепло непосредственно воздуху без промежуточной охлаждающей жидкости
. Охлаждение двигателя этим методом называется воздушным охлаждением.Для получения дополнительной информации можно обратиться к главе 12
.
wiii) Поршневые или роторные двигатели: роторные двигатели — это двигатели с вращающейся камерой сгорания (двигатель Ванкеля) и турбины. Роторные двигатели обсуждались в главе 5.

Типы двигателей

Двигатели — это машины, которые преобразуют источник энергии в физическую работу. Если вам нужно что-то передвигать, двигатель — это то, что вам нужно.Но не все двигатели сделаны одинаково, и разные типы двигателей определенно не работают одинаково.

Изображение предоставлено Little Visuals / Pixabay.

Вероятно, наиболее интуитивно понятный способ различить их — это тип энергии, который каждый двигатель использует для выработки мощности.

  • Тепловые двигатели
    • Двигатели внутреннего сгорания (двигатели внутреннего сгорания)
    • Двигатели внешнего сгорания (ЕС двигатели)
    • Двигатели реакции
  • Электродвигатели
  • Физические механизмы

Тепловые двигатели

В самом широком смысле этим двигателям требуется источник тепла для перехода в движение.В зависимости от того, как они выделяют указанное тепло, это могут быть двигатели внутреннего сгорания (которые сжигают материал) или негорючие двигатели. Они действуют либо за счет прямого сгорания топлива, либо за счет преобразования жидкости для создания работы. Таким образом, большинство тепловых двигателей также частично пересекаются с химическими системами привода. Это могут быть двигатели с воздушным дыханием (которые забирают окислитель, например кислород из атмосферы) или двигатели без дыхания (с окислителями, химически связанными в топливе).

Двигатели внутреннего сгорания

Двигатели внутреннего сгорания (двигатели IC) сегодня довольно распространены.Они приводят в действие автомобили, газонокосилки, вертолеты и так далее. Самый большой двигатель внутреннего сгорания может генерировать 109 000 л.с. для корабля, перевозящего 20 000 контейнеров. Двигатели внутреннего сгорания получают энергию из топлива, сжигаемого в специальной области системы, называемой камерой сгорания. В процессе сгорания образуются продукты реакции (выхлоп), общий объем которых намного превышает общий объем реагентов (топлива и окислителя). Это расширение и есть хлеб с маслом для двигателей внутреннего сгорания — это то, что на самом деле обеспечивает движение.Тепло является лишь побочным продуктом сгорания и представляет собой потраченную впустую часть запаса энергии топлива, поскольку фактически не обеспечивает никакой физической работы.

Рядный 4-цилиндровый двигатель внутреннего сгорания.
Изображение предоставлено НАСА / Исследовательским центром Гленна. Двигатели

IC различаются по количеству «ходов» или циклов, которые каждый поршень делает для полного вращения коленчатого вала. Сегодня наиболее распространены четырехтактные двигатели, в которых реакция сгорания разбита на четыре этапа:

  1. Индукция или впрыск топливовоздушной смеси (карбюрата) в камеру сгорания.
  2. Сжатие смеси.
  3. Зажигание свечой или сжатием — топливо идет штанга .
  4. Выброс выхлопных газов.
Этот радиальный паровозик похож на самого забавного человечка, которого я когда-либо видел.
Изображение предоставлено Duk / Wikimedia.

На каждом шаге 4-тактный поршень попеременно опускается или поднимается. Зажигание — это единственный этап, на котором в двигателе генерируется работа, поэтому на всех остальных этапах каждый поршень полагается на энергию от внешних источников (другие поршни, электростартер, ручной запуск или инерция коленчатого вала) для перемещения.Вот почему вам нужно тянуть за шнурок газонокосилки, и почему вашему автомобилю нужен исправный аккумулятор, чтобы начать работать.

Другими критериями для дифференциации двигателей внутреннего сгорания являются тип используемого топлива, количество цилиндров, общий рабочий объем (внутренний объем цилиндров), распределение цилиндров (рядные, радиальные, V-образные двигатели и т. Д.), А также мощность и мощность. -весовой выход.

Двигатели внешнего сгорания

Двигатели внешнего сгорания (двигатели ЕС) хранят топливо и продукты выхлопа отдельно — они сжигают топливо в одной камере и нагревают рабочую жидкость внутри двигателя через теплообменник или стенку двигателя.В эту категорию попадает и этот великий отец промышленной революции, паровая машина.

В некоторых отношениях двигатели с электронным управлением работают так же, как и их аналоги на базе IC — им обоим требуется тепло, которое получается при сжигании материала. Однако есть и несколько отличий.

В двигателях

EC используются жидкости, которые подвергаются тепловому расширению-сжатию или сдвигу по фазе, но химический состав которых остается неизменным. Используемая жидкость может быть газообразной (как в двигателе Стирлинга), жидкой (двигатель с органическим циклом Ренкина) или претерпевать изменение фазы (как в паровом двигателе) — для двигателей внутреннего сгорания почти всегда жидкость представляет собой жидкое топливо. и воздушная смесь, которая воспламеняется (меняет свой химический состав).Наконец, двигатели могут либо выпускать жидкость после использования, как двигатели внутреннего сгорания (двигатели с открытым циклом), либо постоянно использовать одну и ту же жидкость (двигатели с закрытым циклом).

Паровоз Стивенсона в рабочем состоянии

Удивительно, но первые паровые машины, получившие промышленное применение, создавали работу за счет создания вакуума, а не давления. Эти машины, получившие название «атмосферные двигатели», были громоздкими и очень неэффективными. Со временем паровые двигатели приобрели форму и характеристики, которые мы ожидаем от двигателей сегодня, и стали более эффективными — с поршневыми паровыми двигателями, в которых была введена поршневая система (все еще используемая двигателями внутреннего сгорания сегодня) или составные системы двигателей, которые повторно использовали жидкость в цилиндрах при понижении давления для создания дополнительной «мощности».

Сегодня паровые двигатели вышли из широкого использования: они тяжелые, громоздкие, имеют гораздо меньшую топливную эффективность и удельную мощность, чем двигатели внутреннего сгорания, и не могут так быстро менять мощность. Но если вас не беспокоит их вес, размер и вам нужен постоянный запас работы, они просто великолепны. Таким образом, ЕС в настоящее время с большим успехом используется в качестве паротурбинных двигателей для морских операций и электростанций.

Применение

для атомной энергетики отличается тем, что называется негорючими или внешними тепловыми двигателями , поскольку они работают по тем же принципам, что и двигатели ЕС, но не получают энергию от сгорания.

Реакционные двигатели

Реакционные двигатели , в просторечии известные как реактивные двигатели , создают тягу за счет вытеснения реакционной массы. Основным принципом реактивного двигателя является третий закон Ньютона: в основном, если вы ударите чем-то с достаточной силой через заднюю часть двигателя, он вытолкнет переднюю часть вперед. И реактивные двигатели действительно хороши в этом.

Безумно хорошо в этом.
Изображение предоставлено thund3rbolt / Imgur.

То, что мы обычно называем «реактивным» двигателем, прикрепленное к пассажирскому самолету Boeing, строго говоря, является воздушно-реактивным двигателем и относится к классу двигателей с турбинным двигателем. Прямоточные воздушно-реактивные двигатели, которые обычно считаются более простыми и надежными, поскольку они содержат меньше (или почти не содержат) движущихся частей, также являются воздушно-реактивными двигателями, но относятся к классу таранных двигателей. Разница между ними заключается в том, что прямоточные воздушно-реактивные двигатели полагаются на чистую скорость для подачи воздуха в двигатель, тогда как турбореактивные двигатели используют турбины для втягивания и сжатия воздуха в камеру сгорания.В остальном они функционируют в основном одинаково.

В турбореактивных двигателях воздух втягивается в камеру двигателя и сжимается вращающейся турбиной. Ramjets рисуют и сжимают его, двигаясь очень быстро. Внутри двигателя он смешивается с мощным топливом и воспламеняется. Когда вы концентрируете воздух (и, следовательно, кислород), смешиваете его с большим количеством топлива и взрываете его (таким образом, генерируя выхлоп и термически расширяя весь газ), вы получаете реакционный продукт, который имеет огромный объем по сравнению с всасываемым воздухом. Единственное место, через которое может пройти вся эта масса газов, — это задняя часть двигателя, что она и делает с огромной силой.По пути он приводит в действие турбину, втягивая больше воздуха и поддерживая реакцию. И чтобы добавить оскорбления к травмам, в задней части двигателя есть метательное сопло.

Здравствуйте, я метательная форсунка. Я буду твоим проводником.

Этот элемент оборудования заставляет весь газ проходить через еще меньшее пространство, чем он изначально прошел, таким образом, еще больше ускоряя его, превращая его в «струю» материи. Выхлоп выходит из двигателя с невероятной скоростью, в три раза превышающей скорость звука, толкая самолет вперед.

Реактивные двигатели

, не дышащие воздухом, или ракетные двигатели , работают так же, как реактивные двигатели без переднего долота — потому что им не нужен внешний материал для поддержания горения. Мы можем использовать их в космосе, потому что в них есть весь необходимый окислитель, упакованный в топливо. Это один из немногих типов двигателей, в которых постоянно используется твердое топливо.

Тепловые двигатели могут быть до смехотворно большими или очаровательно маленькими. Но что, если все, что у вас есть, — это розетка, и вам нужно запитать свои вещи? Что ж, в таком случае вам нужно:

Электродвигатели

Ах да, чистая банда.Классические электрические двигатели бывают трех типов: магнитные, пьезоэлектрические и электростатические.

И, конечно же, привод Duracell.

Магнитный, как и батарея там, наиболее часто используется из трех. Он основан на взаимодействии магнитного поля и электрического потока для создания работы. Он работает по тому же принципу, что и динамо-машина для выработки электроэнергии, но наоборот. Фактически, вы можете выработать немного электроэнергии, если вручную провернете электромагнитный двигатель.

Для создания магнитного двигателя вам понадобятся несколько магнитов и намотанный провод. Когда к обмотке подается электрический ток, он индуцирует магнитное поле, которое взаимодействует с магнитом, создавая вращение. Важно, чтобы эти два элемента были разделены, поэтому электродвигатели состоят из двух основных компонентов: статора, который является внешней частью двигателя и остается неподвижной, и ротора, который вращается внутри него. Они разделены воздушной прослойкой. Обычно магниты встроены в статор, а проводник намотан на ротор, но они взаимозаменяемы.Магнитные двигатели также оснащены коммутатором для переключения электрического потока и модуляции индуцированного магнитного поля, когда ротор вращается для поддержания вращения.

Пьезоэлектрические приводы — это типы двигателей, в которых используется свойство некоторых материалов генерировать ультразвуковые колебания под воздействием электрического тока для создания работы. Электростатические двигатели используют одинаковые заряды, чтобы отталкивать друг друга и вызывать вращение ротора. Поскольку в первом используются дорогие материалы, а во втором для работы требуется сравнительно высокое напряжение, они не так распространены, как магнитные приводы.

Классические электрические двигатели обладают одними из самых высоких показателей энергоэффективности среди двигателей, преобразуя до 90% энергии в работу.

Ионные приводы

Ионные приводы представляют собой смесь реактивного и электростатического двигателей. Этот класс приводов ускоряет ионы (плазму), используя электрический заряд для создания движения. Они не работают, если вокруг корабля уже есть ионы, поэтому они бесполезны за пределами космического вакуума.

Подруливающее устройство Холла.
Изображение предоставлено NASA / JPL-Caltech.

Они также имеют очень ограниченную выходную мощность. Однако, поскольку в качестве топлива они используют только электричество и отдельные частицы газа, они были тщательно изучены для использования в космических кораблях. Deep Space 1 и Dawn успешно использовали ионные двигатели. Тем не менее, эта технология кажется наиболее подходящей для малых кораблей и спутников, поскольку след электронов, оставляемый этими двигателями, отрицательно влияет на их общую производительность.

Приводы EM / Cannae

EM / Cannae Приводы используют электромагнитное излучение, содержащееся в микроволновом резонаторе, для создания доверия.Это, наверное, самый необычный из всех типов двигателей. Его даже называют «невозможным» побуждением, поскольку это нереакционный побудительный мотив — это означает, что он не производит никакого разряда для создания тяги, по-видимому, в обход Третьего закона.

«Вместо топлива он использует микроволны, отражающиеся от тщательно настроенного набора отражателей, для достижения небольшой силы и, следовательно, тяги без топлива», — сообщил Андрей о поездке.

Было много споров о том, работает ли этот тип двигателя на самом деле или нет, но испытания НАСА подтвердили, что он функционально исправен.В будущем его даже обновят. Поскольку он использует только электрическую энергию для создания тяги, хотя и в небольших количествах, он кажется наиболее подходящим двигателем для исследования космоса.

Но это в будущем. Давайте посмотрим, с чего все началось. Давайте посмотрим на:

Физические механизмы

Работа этих двигателей зависит от накопленной механической энергии. Заводные двигатели , пневматические и гидравлические двигатели — все это физические приводы.

Модель Ле Плонжера с огромными баллонами с воздухом.
Изображение предоставлено Национальным морским музеем.

Они не очень эффективны. Они также обычно не могут использовать большие запасы энергии. Например, заводные двигатели хранят упругую энергию в пружинах, и их нужно заводить каждый день. Пневматические и гидравлические двигатели должны иметь на себе огромные трубки со сжатой жидкостью, которые, как правило, не работают очень долго. Например, Plongeur , первая в мире подводная лодка с механическим приводом, построенная во Франции между 1860 и 1863 годами, несла поршневой воздушный двигатель, снабженный 23 танками на 12.5 баров. Они занимали огромное пространство (153 кубических метра / 5 403 кубических фута), и их хватало только для того, чтобы корабль пролетел 5 морских миль (9 км / 5,6 миль) при скорости 4 узла.

Тем не менее, физические диски, вероятно, использовались впервые. Катапульты, требушеты или тараны полагаются на этот тип двигателей. То же самое и с кранами, приводимыми в движение человеком или зверем — все они использовались задолго до любых других типов двигателей.

Это далеко не полный список всех двигателей, созданных человеком.Не говоря уже о том, что биология тоже создала побуждения — и они являются одними из самых эффективных, которые мы когда-либо видели. Но если вы прочтете все это, я почти уверен, что у вас к этому моменту заканчивается топливо. Так что отдохните, расслабьтесь, и в следующий раз, когда вы встретите двигатель, смазывайте руки и нос, исследуя его — мы рассказали вам основы.

Forcepoint Advanced Classification Engine (ACE)

Forcepoint Advanced Classification Engine (ACE) обеспечивает оптимизированную защиту от угроз посредством глубокой проверки содержимого трафика, которая выполняется в режиме реального времени.Восемь областей оценки защиты ACE позволяют решениям Forcepoint защищать от возникающих угроз, включая самые передовые атаки нулевого дня и APT, одновременно повышая производительность и соблюдение нормативных требований за счет надежной видимости исходящего контента и контроля сдерживания.

Forcepoint ACE обслуживается исследователями Forcepoint X-Labs. Его возможности включают:

  • Эвристическая аналитика для выявления угроз нулевого дня и других новых сложных угроз
  • Встроенная проверка SSL для защиты всего веб-трафика
  • Механизм принятия решений, который направляет весь контент в соответствующие области оценки защиты Внутренние системы сдержек и противовесов для обеспечения точности
  • Машинное обучение и статистический анализ, чтобы оставаться прогнозирующими, упреждающими и актуальными
  • Постоянные обновления от Forcepoint ThreatSeeker Intelligence

Forcepoint ACE проверяет содержимое трафика и шаблоны использования, используя до восьми различных областей оценки защиты для выявления вредоносных программ, фишинга, спама и других рисков для предприятия.Восемь областей оценки защиты, которые составляют ACE:

  • Классификация безопасности в реальном времени. Проверяет весь контент трафика на наличие вредоносного или подозрительного кода, такого как запутанные скрипты и теги iframe, которые часто скрывают вредоносное ПО за динамическим содержимым.
  • Классификация контента в реальном времени. Применяет передовое машинное обучение для быстрой и точной классификации веб-страниц по категориям детализированного контента для эффективной фильтрации доступа.
  • Классификация URL. Применяет текущую классификационную информацию для известных веб-страниц и оценивает новые страницы и ссылки на основе связанных сайтов и перенаправлений.
  • Поведенческая песочница. Позволяет запускать подозрительные файлы и оценивать их на предмет вредоносных действий в безопасной песочнице, которая имитирует реальную машину вплоть до уровней процессора и памяти.
  • Механизмы защиты от вредоносных программ. Применяет самую современную защиту от вредоносных программ, способную упреждающе блокировать новейшие двоичные угрозы и угрозы на основе сценариев.
  • Защита от спама и фишинга. Обеспечивает проактивную защиту от спама и фишинговых кампаний в больших объемах, а также от угроз, передаваемых по электронной почте.
  • Репутационный анализ. Базы данных репутации (как сторонние, так и проприетарные Forcepoint) применяются к электронным письмам и URL-адресам для блокировки веб-трафика и трафика электронной почты из ненадежных источников.
  • Классификация данных в реальном времени. Классифицирует структурированные и неструктурированные данные с поддержкой анализа и декодирования для предотвращения кражи исходящих данных.

Восемь областей оценки защиты ACE, совместно используемых для оценки безопасности в Интернете, электронной почте, данных и решениях по безопасности конечных точек, дают ACE уникально широкую перспективу безопасности.

Forcepoint ACE Insight Widget
Позвольте посетителям вашего веб-сайта проверить безопасность веб-ссылки, прежде чем они нажмут на нее. Виджет ACE Insight выполняет анализ содержимого в реальном времени для оценки текущего состояния и уровня риска веб-ссылки или IP-адреса.

Лист данных: Forcepoint Advanced Classification Engine (ACE)

Классификация морского дна

Survey Engine® :: Coda Octopus Products Ltd.

Обзор

Наш модуль классификации морского дна использует методы на основе искусственного интеллекта для обнаружения и классификации морского дна как по типу, так и по географической протяженности на основе данных гидролокатора бокового обзора. Границы экстентов мгновенно видны пользователю для проверки и контроля качества, а затем могут быть экспортированы для использования при создании диаграмм и карт, прямого импорта на выбранную пользователем платформу ГИС или для дальнейшей обработки.В Survey Engine границы типов морского дна сохраняются с помощью нашего мощного набора функций GeoKit, позволяющего редактировать их вручную, составлять отчеты или дополнять при необходимости. Процесс создания границ автоматически создает узлы таким образом, чтобы избежать любых промежутков между смежными типами морского дна, что жизненно важно для непрерывной сегментации и отчетности. Наше программное обеспечение также отображает закрытые граничные области в виде цветных многоугольников, помогая идентифицировать и различать эти типы морского дна, что особенно полезно для визуализации этих областей, полностью окруженных другими типами морского дна.

С помощью этого нового полностью автоматизированного программного обеспечения для классификации морского дна наши пользователи теперь могут сэкономить ценное время на интерпретацию и составление отчетов при создании диаграмм или карт в поддержку своих проектов геофизических исследований. Идеальные приложения для геофизических исследований включают исследование площадки и геологических опасностей в поддержку укладки трубопровода, установки оболочки и стояка или подводных операций по прокладке кабеля. Например, рябь на морском дне, предупреждающая операторов о сильных и потенциально опасных течениях, теперь может быть быстрее и более повторяема для определения для более правильного принятия решений.Экологические приложения значительно выиграют от автоматизированной классификации при съемках больших площадей различных и разнообразных типов морского дна.

В настоящее время бета-версия классификации морского дна запрограммирована на распознавание шести (6) различных типов составов морского дна. Этот пакет классификации морского дна является полностью расширяемым, и по запросу могут быть добавлены определенные типы.

Чтобы запросить пробную версию бета-версии классификации морского дна, свяжитесь с нашим отделом продаж по адресу sales @ codaoctopus.com.

heroku / predictionio-engine-classification: Механизм классификатора на основе атрибутов PredictionIO, предустановленный для пакета сборки Heroku

⚠️ Этот проект больше не активен. Никаких дальнейших обновлений не планируется.

Классификатор машинного обучения, который можно развернуть в Heroku с помощью пакета сборки PredictionIO.

Алгоритм случайных лесов

Spark используется для прогнозирования метки с использованием деревьев решений. См. «Визуальное введение в машинное обучение», чтобы узнать, почему деревья решений настолько эффективны.

На основе шаблона классификатора на основе атрибутов, измененного для использования альтернативного алгоритма. Первоначально этот движок реализовывал наивный байесовский алгоритм Spark. Вскоре мы перешли на случайные леса, чтобы улучшить прогнозы за счет корреляции атрибутов, что является хорошо известной слабостью наивного Байеса. Алгоритм Байеса по-прежнему доступен в исходном коде движка.

Демо-история 🐸

Этот механизм демонстрирует предсказание наиболее подходящего плана обслуживания для пользователя мобильного телефона на основе его использования голоса, данных и текста .Модель обучается с использованием небольшого набора данных в качестве примера.

Планы обслуживания , помеченные во включенных данных обучения:

  • 0 Низкое использование : значительного использования служб нет
  • 1 More Voice : время разговора увеличено до 1000 минут
  • 2 Дополнительные данные : расширенная квота передачи до 1000 мегабайт
  • 3 Еще тексты : расширено SMS до 1000 сообщений
  • 4 Голос + данные : увеличенное время разговора и квота на передачу
  • 5 Данные + текст : расширенная квота на передачу и SMS
  • 6 Голос + текст : увеличенное время разговора и SMS
  • 7 Еще Все : все услуги используются равномерно

Как получить 📚

✏️ В этом документе термины кода, начинающиеся с $ , представляют собой значение (переменную оболочки), которое следует заменить настраиваемым значением, например.g $ EVENTSERVER_NAME , $ ENGINE_NAME , $ POSTGRES_ADDON_ID

Развернуть на Heroku

Пожалуйста, следуйте инструкциям по порядку.

  1. Требования
  2. Классификационный двигатель
    1. Создать двигатель
    2. Импорт данных
    3. Развернуть двигатель
    4. Масштабирование
    5. Повторить выпуск
  3. Местное развитие

Использование

Как работать с двигателем после развертывания.

Требования

Классификация двигателя

Создайте двигатель

 git clone \
  https://github.com/heroku/predictionio-engine-classification.git \
  pio-engine-classi

компакт-диск pio-engine-classi

heroku создать $ ENGINE_NAME
пакеты сборки heroku: установите https://github.com/heroku/predictionio-buildpack.git
аддоны heroku: создать heroku-postgresql: hobby-dev
конфигурация heroku: установить \
  PIO_EVENTSERVER_APP_NAME = classi \
  PIO_EVENTSERVER_ACCESS_KEY = $ RANDOM- $ RANDOM- $ RANDOM- $ RANDOM 

Импорт данных

Начальные данные обучения автоматически импортируются из data / initial-events.json .

👓 Когда вы будете готовы начать работу со своими данными, ознакомьтесь с методами импорта данных в документации CUSTOM.

Развернуть двигатель

 # Дождитесь развертывания, пока база данных не будет готова
героку пг: подожди

git push heroku мастер

# Следите за журналами, чтобы увидеть запуск веб-процесса
#
журналы heroku -t 

⚠️ Первоначальное развертывание, вероятно, не удастся из-за нехватки памяти. Продолжить масштабирование.

Масштабирование

После развертывания масштабируйте процессы.Это платные профессиональные дино-типы:

 героку пс: масштаб \
  web = 1: Стандарт-2X \
  release = 0: Производительность-L \
  поезд = 0: Производительность-L 

Повторить выпуск

Когда выпуск ( pio train ) выходит из строя из-за ограничений памяти или другой временной ошибки, вы можете использовать Heroku CLI Release: retry plugin, чтобы перезапустить выпуск без запуска нового развертывания:

 # В первый раз установите.
Плагины heroku: установите heroku-Release-retry

# Повторно запустить релиз и посмотреть логи
Heroku выпускает: повторить попытку
журналы heroku -t 

Запрос прогнозов

После завершения развертывания механизм готов спрогнозировать наиболее подходящий план обслуживания для пользователя мобильного телефона на основе его использования голоса, данных и текста .

Отправьте запросы, содержащие эти три пользовательских атрибута, чтобы получить прогнозы с использованием алгоритма случайных лесов Spark:

 # Подходит для низкого использования, `0`
curl -X "POST" "https: //$ENGINE_NAME.herokuapp.com/queries.json" \
     -H "Content-Type: application / json; charset = utf-8" \
     -d "{\" voice_usage \ ": 12, \" data_usage \ ": 0, \" text_usage \ ": 4}"

# Подходит для большего количества голосов, `1`
curl -X "POST" "https: //$ENGINE_NAME.herokuapp.com/queries.json" \
     -H "Content-Type: application / json; charset = utf-8" \
     -d "{\" voice_usage \ ": 480, \" data_usage \ ": 0, \" text_usage \ ": 121}"

# Подходит для большего количества данных, `2`
curl -X "POST" "https: // $ ENGINE_NAME.herokuapp.com/queries.json "\
     -H "Content-Type: application / json; charset = utf-8" \
     -d "{\" voice_usage \ ": 25, \" data_usage \ ": 1000, \" text_usage \ ": 80}"

# Подходит для других текстов, `3`
curl -X "POST" "https: //$ENGINE_NAME.herokuapp.com/queries.json" \
     -H "Content-Type: application / json; charset = utf-8" \
     -d "{\" voice_usage \ ": 5, \" data_usage \ ": 80, \" text_usage \ ": 1000}"

# Экстремальный голос и данные, `4`
curl -X "POST" "https: //$ENGINE_NAME.herokuapp.com/queries.json" \
     -H "Content-Type: application / json; charset = utf-8" \
     -d "{\" voice_usage \ ": 450, \" data_usage \ ": 1104, \" text_usage \ ": 43}"

# Экстремальные данные и текст, `5`
curl -X "POST" "https: // $ ENGINE_NAME.herokuapp.com/queries.json "\
     -H "Content-Type: application / json; charset = utf-8" \
     -d "{\" voice_usage \ ": 24, \" data_usage \ ": 770, \" text_usage \ ": 482}"

# Экстремальный голос и текст, `6`
curl -X "POST" "https: //$ENGINE_NAME.herokuapp.com/queries.json" \
     -H "Content-Type: application / json; charset = utf-8" \
     -d "{\" voice_usage \ ": 450, \" data_usage \ ": 80, \" text_usage \ ": 332}"

# Все равно / сбалансированное использование, `7`
curl -X "POST" "https: //$ENGINE_NAME.herokuapp.com/queries.json" \
     -H "Content-Type: application / json; charset = utf-8" \
     -d "{\" voice_usage \ ": 450, \" data_usage \ ": 432, \" text_usage \ ": 390}" 

Для производственной модели могут быть приняты во внимание другие аспекты учетной записи пользователя и их взаимосвязи, в том числе: тип учетной записи (индивидуальный, деловой или семейный), частота роуминга, международное использование, тип устройства (смартфон или обычный телефон). , возраст устройства и т. д.

Диагностика

Если у вас возникнут какие-либо проблемы с обработкой запросов движком, проверьте логи:

 журналы heroku -t --app $ ENGINE_NAME 

Если возникают ошибки, иногда помогает перезагрузка:

 heroku restart --app $ ENGINE_NAME 

Местное развитие

Если вы хотите настроить движок, вам необходимо запустить его локально на вашем компьютере.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *