Контактная и бесконтактная система зажигания: Системы зажигания: от простой к лучшей!

Содержание

Системы зажигания: от простой к лучшей!

Системы зажигания: от простой к лучшей!

Система зажигания является неотъемлемым атрибутом любого бензинового или газового двигателя. При всем многообразии технических нюансов в данном вопросе, все системы зажигания с динамическим распределением подаваемого напряжения можно разделить на контактные и бесконтактные. Нижеследующая статья посвящена их основным особенностям, а также причинам возникновения систем со статическим распределением напряжения (электронное зажигание).

Работа современных ДВС основана на сгорании топлива. В дизельных двигателях оно воспламеняется за счет сжатия, в бензиновых и газовых силовых агрегатах, а именно о них пойдет речь в последующем — посредством подведения к топливно-воздушной смеси искры высокого напряжения через свечи зажигания.

Топливо может загореться только при прохождении в зазоре свечи достаточно большого напряжения (от 2 до 30 кВ).

Для обеспечения тока с таким высоким напряжением используется катушка зажигания, представляющие собой, по сути, повышающий трансформатор.

Основными элементами катушки зажигания являются сердечник и две обмотки — первичная и вторичная. Первичная обмотка запитывается от бортовой сети 12 В и предназначается для создания магнитного поля. В момент, когда на первичную обмотку перестает поступать ток, магнитное поле исчезает, причем происходит это настолько быстро, что при пересечении данным магнитным полем витков вторичной обмотки в ней индуцируется ток с очень высоким напряжением.

После того, как необходимое для воспламенения топлива напряжение было создано, его необходимо подать в цилиндры. Причем для обеспечения высокой эффективности и экономичности топливо должно загораться в определенный момент времени, а значит, искра должна подаваться одновременно не во все цилиндры. Именно в обеспечении данного базового принципа и проявляются различия между контактной и бесконтактной системами зажигания.


Контактная система зажигания

Контактная система зажигания включает следующие компоненты:

- Свечи зажигания;
- Источник электроэнергии: при включении автомобиля — аккумулятор, в нормальном режиме работы — генератор;
- Катушка зажигания;
- Высоковольтные и низковольтные провода;
- Прерыватель;
- Распределитель зажигания.

Прерыватель и распределитель зажигания объединяются в корпусе единого устройства, которое в народе получило название «трамблер».

Ключевой особенностью контактной системы является распределитель зажигания. Это механическое устройство определяет, на какую из свеч в данный момент времени будет подано напряжение.

Подобная организация распределения напряжения максимально проста, а значит, достаточно надежна, но в то же время обладает рядом существенных недостатков. Механическое распределение напряжения накладывает довольно существенные ограничения на мощность искры, т. к. с увеличением данного параметра стремительно ускоряется тепловой износ контактов. Кроме того, при работе двигателя на высоких оборотах контактная группа начинает «дребезжать», что на порядок снижает эффективность коммутации.


Бесконтактная система зажигания

Бесконтактные системы зажигания стали логическим продолжением классических систем искрораспределения. Их ключевой особенностью стала замена механического распределителя на электронный коммутатор. Первоначально такие блоки обладали крайне низкой надежностью (порой даже менее 10 тыс. км.) однако в процессе конструкторских доработок данный параметр был выведен на более-менее приемлемый уровень.

Бесконтактные системы зажигания позволили снизить расход топлива, упростить запуск автомобиля в холодное время года, повысить крутящий момент двигателя на малых оборотах и его мощность на высоких, а также несколько уменьшить вредность выхлопных газов благодаря увеличению мощности искры и более полному сгоранию топливно-воздушной смеси. Тем не менее, управление углом опережения зажигания осуществлялось с помощью физических датчиков, входящих в состав трамблера.

Прерыватель-распределитель («трамблер»)

Прерыватель-распределитель зажигания, также известный у автомобилистов под названием «трамблер», является неотъемлемой частью как контактной, так и бесконтактной систем зажигания, пусть во втором случае его конструкция и несколько отличается. Крайне важными компонентами прерывателя-распределителя являются вакуумный и центробежный регуляторы угла опережения зажигания — именно они определяют момент воспламенения топлива (а загораться оно должно раньше достижения поршнем ВМТ), а значит, данные устройства оказывают самое непосредственное влияние на работу двигателя. Рассмотрим их работу на примере контактной системы зажигания.

Центробежный регулятор опережения зажигания

Данное устройство отвечает за корреляцию момента возникновения искры со скоростью вращения коленвала. Центробежный регулятор состоит из двух плоских металлических грузиков, закрепленных на валике прерывателя-распределителя, который в свою очередь непосредственно контактирует с коленчатым валом двигателя. По мере увеличения числа оборотов коленвала ускоряется вращение валика трамблера, вследствие чего грузики под действием центробежной силы расходятся и набегающий кулачок смещается по ходу вращения навстречу молоточку контактов. Вследствие этого контакты размыкаются раньше и угол опережения зажигания увеличивается. При уменьшении величины центробежной силы грузики возвращаются назад под действием пружин — угол опережения зажигания уменьшается.

Вакуумный октан-корректор

Вакуумный октан-корректор изменяет угол опережения зажигания в зависимости от текущей нагрузки на ДВС. Прибор крепится к корпусу трамблера и представляет собой две взаимосвязанные полости, разделенные чувствительной мембраной. Одна из них непосредственно контактирует с окружающей атмосферой, другая — с полостью под дроссельной заслонкой. При увеличении нагрузки на двигатель разряжение под дроссельной заслонкой уменьшается. Вследствие этого пара «диафрагма-тяга» несколько сдвигает пластину с контактами от набегающего на нее кулачка контактов — угол опережения зажигания уменьшается. И, наоборот, при уменьшении подачи газа разряжение под дроссельной заслонкой увеличивается, после чего диафрагма сдвигает пластину с контактами в другую сторону.

Оба устройства работают схожим образом и в бесконтактной системе зажигания, однако вместо кулачка поворачивается экран бесконтактного датчика момента искрообразования.

Общие недостатки контактной и бесконтактной систем зажигания

Даже после устранения комплекса проблем, связанных с механическими контактами распределителя контактной системы зажигания, остался нерешенным процесс точной установки угла опережения зажигания. В обеих системах для этих целей использовались механические устройства, не обеспечивающие должную точность. Как результат — уменьшение мощности двигателя, его довольно ощутимый перегрев при работе. Именно для решения данной проблемы в дальнейшем и были использованы микроконтроллеры, ознаменовавшие появление электронной системы зажигания.

Другие статьи

#Палец штанги реактивной

Палец штанги реактивной: прочная основа шарниров штанг

23. 06.2021 | Статьи о запасных частях

В подвесках грузовых автомобилей, автобусов и другой техники предусмотрены элементы, компенсирующие реактивный момент — реактивные штанги. Соединение штанг с балками мостов и рамой осуществляется с помощью пальцев — об этих деталях, их типах и конструкции, а также о замене пальцев читайте в статье.

#Клапан МАЗ включения привода сцепления

Клапан МАЗ включения привода сцепления

16.06.2021 | Статьи о запасных частях

Многие модели автомобилей МАЗ оснащаются приводом выключения сцепления с пневматическим усилителем, важную роль в работе которого играет клапан включения привода. Все о клапанах включения привода сцепления МАЗ, их типах и конструкции, а также о подборе, замене и ТО данной детали — узнайте из статьи.

Контактная и бесконтактная система зажигания ВАЗ 2107

На автомобилях ВАЗ 2107 применяются два типа зажигания: устаревшая контактная и современная бесконтактная система. Последний тип начал применяться на «классике» ВАЗа относительно недавно, в основном на моделях, оборудованных инжекторными двигателями. Однако преимущества бесконтактной схемы в полной мере раскрываются и на карбюраторных моторах ВАЗ.

Содержание страницы:

Контактная система зажигания ВАЗ 2107

Классическая контактная система, применяемая на ВАЗ, состоит из 6 компонентов:

  • Выключатель зажигания.
  • Прерыватель-распределитель.
  • Свечи зажигания.
  • Низковольтные провода.
  • Катушка зажигания.
  • Высоковольтные провода.

Выключатель зажигания совмещает в себе две детали: замок с противоугонным устройством и контактную часть.

Выключатель крепится двумя винтами слева от рулевой колонки.

Катушка зажигания является повышающим трансформатором, преобразующим ток низкого напряжения в высокое напряжение, необходимое для получения искры в свечах зажигания. Первичная и вторичная обмотки катушки помещены в корпус и залиты трансформаторным маслом, обеспечивающим их охлаждение во время работы.

Распределитель зажигания – наиболее сложный элемент системы, состоящий из множества деталей. Функция распределителя – преобразования постоянного низкого напряжения в высокое импульсное с распределением импульсов по свечам зажигания. В конструкцию распределителя входят прерыватель, центробежный и вакуумный регуляторы опережения зажигания, подвижная пластина, крышка, корпус и прочие детали.

Свечи зажигания воспламеняют бензино-воздушную смесь в цилиндрах двигателя при помощи искровых разрядов. Во время эксплуатации сечей необходимо контролировать зазор между электродами и исправность изоляторов.

Бесконтактная система зажигания ВАЗ 2107

Название «бесконтактной» электронная схема зажигания ВАЗ 2107 получила потому, что размыкание/замыкание цепи производится не контактами прерывателя, а электронным коммутатором, управляющим работой выходного полупроводникового транзистора.

Комплекты электронной (бесконтактной) системы зажигания ВАЗ 2107 на карбюраторных и инжекторных двигателях несколько отличаются, поэтому существует ошибочное мнение, что электронное и бесконтактное зажигание являются разными системами. В реальности принцип работы электронных систем зажигания одинаков.

Как и контактная система зажигания, электронное зажигание включает в себя свечи, провода, катушку зажигания и трамблер. Разница лишь в наличии коммутатора, который управляет подачей высокого напряжения к свечам зажигания.

Бесконтактная система отличается повышенной надежностью благодаря отсутствию контактов, нуждающихся в очистке и регулировке зазора. Полупроводниковый транзистор обеспечивает стабильное распределение искры по цилиндрам. Благодаря высокому напряжению разряда искры (25-30 вместо 9-12 кВ) происходит более полное сгорание рабочей смеси в цилиндрах, что улучшает динамические характеристики двигателя и показатели экологической безопасности выхлопа. При малом напряжении аккумулятора напряжение в свечах остается достаточно высоким для воспламенения смеси, что облегчает запуск двигателя в сильный мороз.


Регулировка зажигания


В домашних условиях выставить угол опережения зажигания можно «на слух», выставив угол опережения так, чтоб в данном положении обороты прогретого двигателя были наиболее высокими и ровными. Во время движения на скорости 50 км/ч на четвертой передаче при полном нажатии педали газа должен возникать звук «детонации», до тех пор, пока скорость не увеличится на 3-5 км/ч. Если звук слышен дольше, угол опережения необходимо уменьшить.

В условиях автосервиса регулировка зажигания производится при помощи специализированного оборудования.

Модернизация системы зажигания автомобиля - блоки Пульсар и Октан

Способы модернизации:
  • Установка на штатную контактную систему зажигания дополнительного блока управления.
  • Бесконтактная системы зажигания.
  • Установка на бесконтактную систему зажигания дополнительного блока управления.
  • Микропроцессорная системы зажигания.

Контактная система (КСЗ)

КСЗ штатно устанавливается на большинство авто. Преимущество - предельная простота и надежность. Внезапный отказ маловероятен, ремонт не сложен и не займет много времени. Основных недостатков три. Первое - ток подается на первичную обмотку катушки зажигания через контактную группу (КГ). Что накладывает ограничение на величину напряжения на вторичной обмотке катушки (до 1.5 кВ), а значит сильно ограничивает энергию искры. Второе - необходимо периодически следить за зазором в КГ, за углом замкнутого состояния. Контакты надо периодически очищать поскольку они в процессе эксплуатации подгорают. Вал трамблера и кулачек распределителя необходимо после каждых 10 тыс. км. пробега смазывать. Третий недостаток - низкая эффективность при высоких оборотах двигателя связанная с "дребезгом" контактной группы.

При модернизации меняют элементы на более качественные и надежные. Заменить можно крышку трамблера, бегунок, контактную группу, катушку.


Можно установить блок зажигания "Пульсар". Один из недостатков КСЗ устраняется, поскольку ток для формирования высоковольтного напряжения подается на первичную обмотку катушки зажигания через мощные силовые цепи "Пульсара", а не через КГ. Что позволяет существенно поднять мощность искры. При этом КГ не подгорает. Но чистить придется, она начинает окисляться.

Бесконтактная система (БСЗ)

Штатно устанавливается на переднеприводные авто. Может быть поставлена на автомобиль оснащенный КСЗ - замена не требует дополнительных переделок.

Плюсы

Первое - ток подается на первичную обмотку катушки зажигания через полупроводниковый коммутатор, что позволяет обеспечить гораздо большую энергию искры за счет возможности получения большего напряжения на вторичной обмотке катушки зажигания (до 10 кВ). Второе - электромагнитный формирователь импульсов, функционально заменяющий КГ и реализованный с помощью датчика Холла. Он реализует лучшую форму импульсов и их стабильность, причем во всем диапазоне оборотов двигателя. В результате двигатель с БСЗ имеет лучшие мощностные характеристики и топливную экономичность (до 1 л. на 100 км).

Третье преимущество - низкая по сравнению с КСЗ потребность в обслуживании. Нужно только смазывать вал трамблера каждые 10 тыс. км. пробега.

Минусы

Основной недостаток - низкая надежность. Коммутаторы часто выходили из строя после нескольких тысяч пробега. Был разработан модифицированный коммутатор. Он имеет лучшую надежность, но также низка. Поэтому в БСЗ не следует применять отечественные коммутаторы, лучше импортный. При отказе диагностика и ремонт сложны. Особенно в полевых условиях.

Модернизация БСЗ заключается в замене элементов на более качественные и надежные импортные. Заменить можно крышку трамблера, бегунок, датчик Холла, коммутатор, катушку. Систему можно модернизировать применением блока зажигания "Пульсар" или "Октан" для БСЗ.


Недостаток - обе системы не оптимально устанавливают угол опережения зажигания. Начальный уровень устанавливается вращением трамблера. После трамблер жестко фиксируется, а угол соответствует лишь составу рабочей смеси на момент установки. При изменении параметров топлива, воздуха, температуры и давления - параметры рабочей смеси могут меняться, причем существенно.

В результате начальный уровень установки зажигания не будет соответствовать параметрам смеси.

В процессе работы двигателя для оптимального сгорания рабочей смеси, требуется коррекция угла опережения зажигания. Автоматические регуляторы угла в этих системах, вакуумный и центробежный, грубые и примитивные устройства не отличающиеся стабильностью работы.

Минусом КСЗ и БСЗ является наличие электромеханического распределителя бегунок-крышка трамблера реализованного с помощью контактного уголька скользящего по вращающейся пластине. Это накладывает дополнительное ограничение на величину высоковольтного напряжения на свечах зажигания, особенно актуально для БСЗ.

Микропроцессорная система (МПСЗ)

Преимущества МПСЗ - улучшает оптимальное управление зажиганием в зависимости от частоты вращения коленвала, давления в впускном трубопроводе, температуры двигателя, положения дроссельной заслонки карбюратора. В системе отсутствует механический распределитель, поэтому высокую энергию искры. Недостатки - в системе присутствует два сложных электронных блока выпускавшихся мелкосерийно.

При оценке перехода на МПСЗ следует учитывать, что для обеспечения оптимального управления зажиганием уровню самых простейших современных инжекторных систем, МПСЗ не хватает датчика детонации, массового расхода воздуха и датчика состава сгоревшей смеси. Поэтому система неполноценная.

Модернизация по надежности невозможна, поскольку основные узлы уникальные. Тюнинг с целью оптимизации осуществляется подбором программного обеспечения (прошивок) под свой двигатель.

Блоки управления Пульсар и Октан

Блоки управления зажиганием Пульсар, вне зависимости от назначения - для КСЗ или БСЗ, состоят из самого блока и выносного пульта. Наиболее интересными возможностями является функция "октан-коррекции" и т.н. "резервный режим". Функция "октан-коррекции" реализована за счет корректировки начального уровня опережения зажигания (УОЗ) из салона автомобиля с помощью пульта.

На самом деле с помощью пульта упрощенно регулируется запаздывание сигнала с датчика положения коленвала (контактной группы для КСЗ или датчика Холла для БСЗ).

Запаздывание в Пульсаре никак не связано с оборотами двигателя, т.е. регулировка запаздывания не является регулировкой УОЗ. Поэтому польза от такой "октан-коррекции" сомнительна. За исключением случаев периодического использования бензина с разными октановыми числами. Т.е. если УОЗ начально установлен на 95-ый бензин, то при заправке 76-ым действительно можно с помощью пульта, из салона, убрать детонацию не залезая под капот. "Резервный режим" предназначен для обеспечения работы двигателя при выходе из строя датчика положения коленвала. Работает с помощью простейшего генератора импульсов. В этом режиме непрерывно генерируются кратковременные импульсы, которые формируют множественные высоковольтные импульсы (искры) на той свече, на которую повернут бегунок. Один из импульсов с высокой вероятностью обеспечит воспламенение смеси в соответствующем цилиндре, но даже о минимальной стабильности работы двигателя говорить трудно.

Пульсары выполнены неудачно, корпус громоздкий и имеет несколько больших отверстий снизу. Под корпус будет попадать влага и грязь, а плата не защищена внутри ничем, что не позволяет надеяться на нормальную надежность и долговечность.


Развитием Пульсара является "Силыч". Он оснащен датчиком детонации, который должен делать корректировку УОЗ. Принцип коррекции УОЗ подобен Пульсару, т.е. практически не зависит от оборотов. Поэтому корректировка УОЗ далеко не оптимальна. Конструктивно "Силыч" подобен Пульсару, т.е. надеяться на нормальную надежность и долговечность не стоит. Правда встречаются "Силычи" с импортными элементами, что положительно влияет на надежность.

Сравнительные параметры

Параметр Единицы
измерения
Классическая Бесконтактная
Время нарастания вторичного напряжения с 2 до 15 кВ
мкс

30

20
Энергия искрового разряда мДж 20 60
Длительность искрового разряда мс 1,5 2
Вторичное напряжение max кВ 26 29,5

Улучшение системы зажигания

Опубликовано:

08. 08.2016

Все современные марки автомобилей отличаются от ВАЗовской классики тем, что на них установлена бесконтактная система зажигания (БСЗ). Владельцам старых авто не стоит с молчаливой завистью наблюдать за такой несправедливостью, а нужно просто установить на своё транспортное средство точно такую же систему.

Что такое БСЗ?

Прежде чем решать, требует ли контактная система зажигания рестайлинга, важно понять, что же такое БСЗ и каковы её преимущества. БСЗ — современная система зажигания двигателя, что состоит полностью из полупроводников, которые являются электронными элементами и гораздо лучше справляются со своей задачей.

Напряжение является постоянным на свечах в БСЗ. Оно не изменяется даже в случае, когда силовой агрегат вращается с малой частотой. Это означает, что условия пуска улучшаются, а это достаточно актуально в зимний период.

Подобная система зажигания двигателя предполагает, что для замыкания или размыкания электрической цепи не требуется механический контакт. Что касается транзистора, то его запирание или отпирание осуществляется с помощью электронного коммутатора.

Для инжекторных двигателей производят несколько иные системы БСЗ, чем для карбюраторных моторов. Но отличия невелики, и нельзя назвать эти системы существенно разными.

Недостатки контактной системы

Практически все водители ВАЗовской классики сталкивались с недостатками в системе зажигания. Связаны они с тем, что такие составляющие части контактной группы, как кулачки и контакты, подвержены износу из-за механического воздействия. Эти детали также подвержены вибрациям, окислениям и ослаблениям. Механические нагрузки приводят к тому, что время работы опорного подшипника уменьшается.

В целом получается, что такая система уже технически сильно устарела. Именно поэтому ей на смену пришла более новая, надёжная и гибкая БСЗ. Однако почему-то производители транспортных средств ВАЗ упорно не хотят этого признавать и продолжают оснащать свою продукцию именно такой системой зажигания. А ведь на «восьмёрках» ещё 15 лет назад устанавливали БСЗ.

Теперь рассмотрим, какие преимущества даёт БСЗ:

  • более мощная искра избавляет от проблем с запуском мотора;
  • происходит сгорание всего воздушно-топливного состава;
  • содержание CO приходит в норму;
  • заметно улучшается запуск мотора.

Основные причины заменить систему зажигания на ВАЗ

Можно выделить следующие важные причины, которые доказывают, что целесообразно заменить контактную систему зажигания ВАЗа новой БСЗ:

  • исчезновение биения оси трамблёра и вибрации;
  • стабильное распределение искры по всем цилиндрам мотора благодаря отсутствию элемента размыкания контактов;
  • не требуется регулировать зазоры и очищать контакты;
  • не нужно проводить плановый контроль системы и постоянно наблюдать за её работой;
  • экономия топлива (до 5%) за счёт полного выгорания воздушно-топливной смеси;
  • качественное воспламенение бензина за счёт более высокого разряда в свечах;
  • постоянная сила напряжения обеспечивается даже на низких оборотах;
  • уменьшение в выхлопах показателя CO.

Чтобы наверняка быть уверенным в том, что приобретённая бесконтактная система зажигания подойдёт по всем параметрам к автомобилю ВАЗ, стоит приобретать детали отечественного производства. Они имеют отличное качество и отличаются длительностью эксплуатации.

Можно приобретать комплект системы полностью, а можно покупать по отдельности все её компоненты. Что касается стоимости, то она несколько выше, чем у контактной системы зажигания двигателя, но она с лихвой окупается в процессе работы.

Элементы БСЗ и их установка

Устанавливается бесконтактная система зажигания довольно просто и работает потом длительное время. Комплект включает в себя следующие детали:

  • коммутатор — необходим для прерывания тока в цепи;
  • трамблёр — датчик-распределитель, который подаёт сигнал на коммутатор;
  • бесконтактная катушка — преобразует ток низкого напряжения в высокое, обеспечивая пробой между электродами свечей;
  • провода — необходимы для соединения системы в единое целое;
  • свечи зажигания — поставляются в комплекте и имеют зазор в 0,7–0,8 мм.

Алгоритм замены контактного зажигания на БСЗ выглядит следующим образом:

  1. Изначально требуется выставить точное зажигание на старом трамблёре.
  2. Затем следует демонтировать крышку с проводами трамблёра.
  3. После этого от катушки необходимо отключить высоковольтный провод.
  4. Далее, выставляется направление бегунка. Достигается это с помощью коротких включений стартёра. Он должен быть перпендикулярен двигателю, и после этого проворачивать коленвал запрещено.
  5. Следующим действием является демонтаж старого распределителя.
  6. С нового распределителя снимается крышка.
  7. Корпус устанавливается на место старой детали.
  8. Затем важно его совместить с точками, намеченными на старом трамблёре.
  9. Потом на распределитель надевается новая крышка и на трамблёр подсоединяются провода.
  10. Катушка тоже заменяется новой деталью.
  11. Далее, подключаются провода.
  12. Коммутатор монтируется обычными саморезами к корпусу машины.
  13. После этого важно проверить работу проводов. Всё должно работать в соответствии с имеющейся схемой.
  14. На заключительном этапе заводим двигатель.

При сборке системы крайне необходимо использовать хорошие провода и не забывать заменить свечи.

Подводя итоги всему вышеизложенному, можно сказать, что замена устаревшей контактной системы на отечественных автомобилях имеет исключительно положительные моменты. После этого зажигание отлично срабатывает даже в самые холодные дни года, топливо экономится, а показатель CO в выхлопных газах минимизируется.

Бесконтактная система зажигания: 3 преимущества системы

Содержание статьи

Владельцы машин всегда стремятся усовершенствовать и улучшить работу своего автомобиля. Устанавливая различное оборудование, они делают передвижение на авто более удобным, надёжным, безопасным. Бесконтактная система зажигания позволит сделать работу двигателя более эффективной и экономной. Даже если авто было оснащено на заводе контактной системой, то его легко переоборудовать и установить БСЗ.

Несмотря на то что стоимость нового бесконтактного комплекта достаточно высока, целесообразность такого переоборудования отмечают как водители, так и автомастера.

Преимущества и недостатки БСЗ

Бесконтактное зажигание ставится на большинство новых машин и некоторые иномарки старше 15 лет. Даже если на авто не стоит электронная система зажигания, то монтаж и её настройка не вызывают сложностей даже у начинающих мастеров.

В обычном варианте зажигания достаточно часто выходит из строя контактная пара, что доставляет владельцу транспортного средства массу неудобств. В электронных системах такой недостаток исключён, благодаря чему устройство более надёжно и стабильно в работе.

Бесконтактное зажигание хорошо справляется со своей задачей даже при влажной и холодной погоде, что является несомненным плюсом по сравнению с контактным.

Более современная конструкция совместима со всеми марками и моделями авто, поэтому переоборудование может выполняться на всех машинах.

Среди преимуществ электронной системы специалисты отмечают три основных параметра.

  1. Возможность более эффективного использования свечей. Так как электричество подаётся на первичную обмотку через коммутатор, то на вторичной обмотке катушки можно получить значительно большее напряжение. Мощная искра обеспечивает стабильный поджиг смеси даже в движках с высокой компрессией. Так как контакты отсутствуют, то они не пригорают, благодаря чему в процессе эксплуатации БСЗ не происходит снижение мощности искры.
  2. Экономность. Благодаря электромагнитному импульсному создателю, пришедшему на замену контактной группы, импульсы имеют более стабильные и лучшие характеристики. Двигатель, оборудованный электронной системой зажигания, имеет более высокие показатели мощности при том, что расход топлива может снижаться в среднем на 1 литр на 100 км. Также импульсный создатель гарантирует стабильность работы при различных оборотах мотора.
  3. Более редкое обслуживание. В отличие от КСЗ, которую рекомендуется обслуживать каждые 5 — 7 тысяч км, электронное оборудование менее подвержено поломкам и не нуждается в частой регулировке. Бесконтактную систему в среднем нужно обслуживать каждые 10 — 12 тысяч км. Чаще всего регламентные работы предполагают смазывание трамблера. Иногда может потребоваться замена отдельных деталей, но их неисправности встречаются достаточно редко.

Также автолюбители отмечают и другие плюсы, которые, по их мнению, играют важную роль при выборе системы зажигания. Бесконтактное электронное зажигание потребляет минимальное количество электричества в заведённом состоянии, что существенно экономит заряд аккумулятора. Для работы системы требуется гораздо меньшее количество тока, благодаря чему авто заведётся даже при полностью разряженном аккумуляторе «с толкача».

Среди недостатков зажигания можно отметить некачественные коммутаторы. Очень часто встречаются случаи, когда коммутатор отечественного производства выходил из строя всего через несколько тысяч километров после установки, поэтому не стоит экономить на всех деталях системы.

Качественные комплектующие — залог надёжной и долговечной работы БСЗ.

Ещё одной деталью, которая чаще всего выходит из строя, является реле холостого хода. Запчасть не подлежит ремонту, поэтому её приходится менять при поломке. Так как в установленных на заводе бесконтактных системах чаще всего используются не совсем качественные детали, то многие автомастера рекомендуют сразу заменить некоторые части зажигания:

В некоторых случаях целесообразно установить блоки зажигания для электронных систем.

Из чего состоит БСЗ?

Бесконтактное зажигание включает в себя небольшое количество деталей, благодаря чему снижается вероятность выхода из строя каждой из них. Система состоит из:

  1. Источника питания. Во всех автомобилях им является аккумуляторная батарея.
  2. Выключатель зажигания и стартера. Деталь необходима для правильного распределения времени работы устройства.
  3. Катушка зажигания. Преобразовывает низковольтный ток от аккумулятора в высоковольтный, благодаря чему обеспечивается стабильная работа авто.
  4. Транзисторный коммутатор. Отвечает за прерывание поступления электрического тока на катушку.
  5. Датчик зажигания. Фиксирует перемены в магнитном поле.
  6. Распределительный датчик. Датчик объединён с импульсным, который бывает нескольких видов. Импульсный датчик чаще всего представлен датчиком Холла, но также существуют ещё две разновидности — индуктивный и оптический.
  7. Свечи.

Что понадобится для монтажа бесконтактной системы?

Установка зажигания требует минимальной подготовки, благодаря чему монтаж может произвести каждый желающий. Для проведения монтажных работ понадобятся:

  • ключи под номерами 8, 10 и 13;
  • крестовидная отвёртка;
  • дрель с комплектом насадок;
  • саморезы различной длины.

Эти инструменты понадобятся в процессе монтажа, но под рукой также стоит иметь и другие гаечные ключи, а также плоскогубцы, отвёртку с набором бит.

Процесс установки БСЗ

В первую очередь необходимо снять клемму с аккумулятора для предотвращения замыкания системы. Бесконтактное зажигание на ВАЗ-2106 предполагает монтаж в несколько этапов. Нет разницы, с какой части системы начинать замену. Можно начать с переустановки с переустановки трамблера:

  1. В первую очередь необходимо демонтировать высоковольтные провода.
  2. Вращая коленчатый вал, нужно поставить бегунок в перпендикулярное положение по отношению к оси мотора. Мастера рекомендуют поставить отметку расположения трамблера (средней метки). Данная процедура облегчит последующую установку и корректировку работы БСЗ.
  3. Демонтировать крепеж трамблера и снять деталь.
  4. Установить новую запчасть, а бегунок поставить в положение в соответствие с ранее проставленными метками.
  5. Далее надевается крышка трамблера и устанавливаются провода.

Далее можно приступить к замене катушки. Манипуляция достаточно простая, но необходимо придерживаться правильного расположения контактов. При расположении контактов с другой стороны необходимо перевернуть деталь. В последнюю очередь лучше переустановить коммутатор. Деталь монтируется при помощи саморезов. Обязательным условием выступает прислонение радиатора к кузову автомобиля. После того, как вся система собрана, необходимо тщательно проверить все электрические соединения и соответствие расположения деталей согласно схеме.

Регулировка бесконтактной системы зажигания

Корректировку работы лучше осуществлять при помощи специального оборудования — стробоскопа. В случае отсутствия спецоборудования можно выполнять регулировку по звуку. Так как на слух определяется работа не только зажигания, то необходимо, чтобы все системы работали слаженно и исправно. Настройка происходит следующим образом:

  1. Прогрев мотора.
  2. Открутка гайки, которая отвечает за фиксацию трамблера.
  3. При работающем движке необходимо аккуратно проворачивать трамблер до того момента, пока обороты ДВС станут наиболее максимальными и ровными.
  4. Затяжка крепежа.
  5. На третьей скорости машину необходимо ускорить до 50 км/час. При переключении на четвёртую скорость потребуется резко нажать на педаль газа. В норме возникает звук, схожий с детонацией. Звук должен сохраняться в течение некоторого времени, пока авто не ускориться ещё на 3 — 5 км. В случае, когда звук не прекращается, необходимо провести повторную настройку и во время неё провернуть деталь на один градус по часовой стрелке. Если звук не появился, а при нажатии педали происходит провал оборотов, то во время корректировки запчасть проворачивается против часовой стрелки.

Так как настройка БСЗ – достаточно сложное занятие, требующее специальных навыков и умений, то целесообразней обратиться в автоцентр. Мастера СТО выполнят регулировку при помощи профессионального оборудования, благодаря чему настройка будет точной и продлит срок эксплуатации системы. Если нет уверенности в своих сил в процессе установки бесконтактной системы, то также лучше обратиться в сертифицированный центр.

Чаще всего на проведение комплексных работ предоставляется скидка. Если установка электронного зажигания на ВАЗ-2106 выполнялась на СТО, то лучше попросить гарантию на проведённые работы.

При отказе в выдаче гарантийных обязательств лучше обратиться в другой автосервис.

Неисправности БСЗ

Как и у контактной системы зажигания у бесконтактной существует характерные неисправности. Самая типичная из них — выход из строя датчика Холла. Примечательной особенностью является то, что без него система зажигания работать не может. Если датчик вышел из строя, то его необходимо заменить в кратчайшие сроки для восстановления работоспособности автомобиля. Также распространёнными неисправностями являются:

  1. Выход из строя свечей, поломка катушки.
  2. Нарушение в электрической цепи. Причины могут быть самые разные (обрывы, окисление либо неплотное прилегание контактов).

Если в систему был установлен электронный блок управления, например, «Октан» либо «Пульсар», то к распространённым поломкам также можно отнести его неисправность и выход из строя входных датчиков. Экономить на БУ не стоит, так как некачественные детали могут стать причиной преждевременной поломки всей системы. Чаще всего неисправности возникают по причине несвоевременного обслуживания БСЗ. Регулятор холостого хода может также выходить из строя по причине неправильной работы других систем автомобиля.

Среди причин, которые способствуют появлению неисправностей, отмечают:

  1. Несвоевременный техосмотр всех систем авто. Неправильная работа двигателя и свечей может привести к тому, что система зажигания преждевременно выйдет из строя. В случае с БСЗ стоимость ремонта будет достаточно высокой.
  2. Использование некачественного топлива. Бензин либо газ с посторонними примесями приводит к тому, что зажигание не происходит либо получается с задержкой. Невнимательное отношение к качеству топлива станет причиной выхода из строя всех запчастей, которые контактируют с ним и воздушно-топливной смесью.
  3. Использование в системе деталей, не прошедших сертификацию либо отличающихся низким качеством. Помимо того, что такие детали очень быстро выходят из строя, они могут стать причиной серьёзных поломок всей БСЗ и контактирующих с ней устройств.
  4. Механические повреждения. Если на систему зажигания оказывается механическое воздействие в виде ударов, сильной вибрации, то она значительно быстрей изнашивается и может понадобиться полная замена.
  5. Особенности погоды. Устройства при работе в экстремальных условиях имеют более низкий ресурс работы. Повышенная влажность приведёт к более быстрому окислению контактов, поэтому плановое обслуживание понадобится проводить чаще.

Ремонт электронных систем зажигания

Любая неисправность сильно будет влиять на работоспособность машины, поэтому её необходимо устранить в кратчайшие сроки. Для этого можно воспользоваться услугами профессионалов либо попытаться выполнить его самостоятельно. В первую очередь необходимо проверить состояние свечей. В среднем свечи заменяются в БСЗ каждые 18 — 20 тысяч километров пробега независимо от их состояния. Если замена выпадает на зимний период, а свечи визуально в рабочем состоянии, то их можно отложить и использовать в весенне-осенний период.

Изношенные свечи, которые имеют изолятор светлого серо-коричневого оттенка свидетельствуют о том, что детали совместимы с данным типом двигателя, а мотор работает исправно и стабильно. Нагар чёрного цвета свидетельствует о том, что свечи не подходят для данного движка либо топливная смесь переобогащена горючим. Выгорание электродов указывает на проблему в работе ДВС.

Неправильная работа может быть вызвана некачественным топливом, неверными пропорциями рабочей смеси, некорректной установкой системы зажигания.

Если не запускается движок, то возможны следующие причины поломки:

  1. Электрический ток не поступает на контакты прерывания из-за того, что они загрязнились, окислились либо пригорели.
  2. На контактах появились деформации.
  3. Обрыв проводов либо их замыкание на массу.
  4. Поломка выключателя зажигания из-за чего не происходит замыкание контактов цепи.
  5. Выход из строя конденсатора вследствие замыкания.
  6. Обрыв в катушке зажигания. Дефект проявляется преимущественно в нарушении целостности первичной обмотки. В некоторых случаях причиной может стать повреждение вторичной обмотки.
  7. Утечка электрического тока в роторе распределителя. Данный процесс возможен при попадании во внутрь влаги либо образовании нагара на внутренней стороне крышки.
  8. Не поступает питание на свечи. Помимо повреждения целостности проводов причиной такой неисправности может стать неправильная посадка свечей в гнёздах, их замасление либо окислении наконечников.

Все эти причины решаются переборкой системы зажигания и переустановкой некоторых деталей. Иногда может потребоваться регулировка работы движка, которую лучше произвести в специализированном автосервисе.

Другим признаком неисправности может стать неустойчивая работа движка либо остановка его работы на холостом ходе. Причиной такой неисправности чаще всего становится:

  • преждевременное зажигание в цилиндрах, что не позволяет полноценно работать мотору;
  • увеличенное расстояние между электродами свечей;
  • послабление пружины грузиков в регуляторе, который отвечает за контроль за опережением зажигания.

В основном причины данных поломок кроются в неправильной регулировке. Повторная настройка или корректировка положения позволит за короткий срок забыть о проблеме. Все манипуляции удобно проводить самостоятельно, но необходимо заранее подготовить ветошь, так как чаще всего в процессе работы сильно пачкаются руки.

Если в работе двигателя наблюдаются сбои при различной частоте вращения, то причинами такой неисправности со стороны бесконтактной системы зажигания могут стать:

  • повреждения проводов, послабление их креплений, окислительные процессы на наконечниках;
  • повреждение контактов прерывателя: сгорание, окисление, загрязнение, сдвиги;
  • нарушение работоспособности конденсатора;
  • ослабление пружинки уголька, её надлом либо износ;
  • подгорание контактов в роторе;
  • проблемы со свечами.

Если вариант со свечами исключён, то лучше обратиться в автоцентр для проведения комплексной диагностики всего авто и выявления причин нестабильной работы ДВС.

Ещё одной характерной неисправностью, которая появляется из-за неправильной работы зажигания, выступает невозможность развить полную скорость. В таком случае причинами могут выступать:

  • неправильный монтаж момента зажигания;
  • чрезмерный износ втулки в прерывателе;
  • заедание грузиков либо послабление их пружин в регуляторе опережения зажигания.

Если нет уверенности, что ремонт будет проведён качественно, то стоит обратиться в центры, которые специализируются на данных устройствах. Опытные мастера не только восстановят работоспособность авто, но и могут дать несколько советов, которые существенно улучшат качество поездок, а также продлят срок службы деталей.

Полезные советы

  1. Так как чаще всего причина неисправностей кроется в состоянии проводов, то не стоит экономить на них. Качественные провода, которые имеют силиконовую изоляцию, отличаются долговечностью и надёжностью работы.
  2. Неправильный крепёж проводной колодки нередко выступает причиной, по которой ломается коммутатор. После монтажа детали необходимо обязательно проконтролировать состояние посадки разъёма.
  3. Если после установки бесконтактной системы зажигания тахометр перестал выполнять свои функции, то необходимо дополнительно вмонтировать в цепь между ним и катушкой конденсатор.

Пожалуйста, оцените этот материал!

Загрузка...

Если Вам понравилась статья, поделитесь ею с друзьями!

Переделка контактного на бесконтактное зажигание (ВАЗ) | Блог по доработке,тюнингу и обслуживанию автомобиля и скутера

Пожалуй, трудно найти владельца вазовской "классики", которому были бы не знакомы проблемы связанные с системой зажигания установленной на его автомобиле. Хотя в целом данный узел достаточно надежный, но существуют некоторые моменты, которые хотя и редко, но добавят ложку дегтя. Основной недостаток это наличие контактной группы прерывателя с характерными недостатками, к которым следует отнести: износ контактов и кулачка прерывателя; вибрацию и окисление контактов; ослабление упругости пружины подвижного контакта; малый срок службы опорного подшипника вследствие механических нагрузок. Все выше перечисленное говорит о том, что контактная система зажигания давно уже устарела, как технически, так и морально.

Поставив у себя на автомобиле бесконтактную систему зажигания, вы не только забудете о перечисленных выше недостатках, но и получите массу преимуществ перед обычной системой. К основным из них следует отнести следующие: более мощная искра в следствие возросшего напряжения во вторичной цепи 22-24 кВ вместо 16-18 кВ; соответственно более полное сгорание воздушно-топливной смеси и снижение содержания СО в выхлопе вашего автомобиля; лучший запуск двигателя при минусовых температурах; заметное улучшение динамических показателей; более высокая надежность в работе и отсутствие частого контроля за работой данной системы зажигания.

На фотографии представлен максимальный комплект для установки бесконтактной системы зажигания на автомобили ВАЗ 2101-2107 и их модификации. В его состав входят. Датчик-распределитель зажигания (1), со встроенным микроэлектронным датчиком управляющих импульсов. Катушка зажигания (2) типа 27.3705 с разомкнутым магнитопроводом. Коммутатор (3) типа 3620.3734 или другой его аналог, нужен для преобразования управляющих импульсов датчика в импульсы тока в первичной обмотке катушки зажигания. Жгут проводки (4) для соединения компонентов системы между собой и подключения к автомобильной сети. Высоковольтные провода (5) способные работать с возросшим напряжением во вторичной цепи. Комплект свечей (6) типа А17ДВР или другой отечественный или зарубежный аналог.

Сам процесс установки занимает в среднем около часа времени и для человека имеющего представление об устройстве электрики автомобиля трудностей вряд ли представит. Поэтому остановлюсь лишь на основных моментах.

Прежде необходимо выбрать место для установки Коммутатора (3). Например, левый брызговик. С помощью двух саморезов крепим коммутатор к автомобилю. Здесь следует отметить, что радиатор коммутатора должен, как можно больше по площади соприкасаться с кузовом, для лучшей теплоотдачи.

Предварительно установив метку зажигания на четвертый цилиндр меняем старый распределитель на новый.

Вот это он самый, микроэлектронный датчик управляющих импульсов, или иначе датчик "Холла". Именно из-за него так и названа бесконтактная система зажигания.

Далее меняем свечи зажигания, а если у вас уже стоят свечи нужного типа, то необходимо проверить их состояние, и выставить необходимый зазор. В нашем случае это 0,8 мм

В заключении меняем катушку зажигания, соединяем компоненты с помощью жгута проводки (4) и одеваем высоковольтные провода (5). Все готово к запуску двигателя. Остается только выставить правильный момент зажигания и в путь.


По материалам сайта "avto.jeh.ru"

контактная система зажигания, схема контактной системы зажигания

Контактная система зажигания служит для воспламенения рабочей смеси в цилиндрах бензинового двигателя внутреннего сгорания. Она должна обеспечивать полное сгорание топливовоздушной смеси в цилиндрах.

Контактная система зажигания устройство.

Контактная система зажигания состоит из  катушки зажигания, трамблёра, свечей зажигания и высоковольтных проводов.

Контактная система зажигания принцип работы.

Генератором высоковольтных импульсов является катушка зажигания, которая работает по принципу повышающего трансформатора. Она соединена с контактами прерывателя. При замкнутом состоянии его контактов, по первичной катушке протекает ток, создавая магнитное поле, силовые линии которого пронизывают вторичную обмотку.

После размыкания контактов магнитное поле пропадает, что приводит к появлению тока индукции во вторичной обмотке, равному 16 -18 кВ. В первичной катушке в этот момент образуется ток самоиндукции, равный примерно 300В, направленный в противоположную сторону от прерываемого тока.

Контактная система зажигания отчего зависит вторичное напряжение

Наличие и сила вторичного напряжения зависит от силы и скорости уменьшения тока самоиндукции в первичной обмотке. Именно ток, возникающий в первичной цепи катушки вызывает, искрение и подгорание контактов прерывателя. Для уменьшения этого эффекта, параллельно контакта подключается конденсатор, который заряжается в момент разрыва контактов и разряжается при появлении тока самоиндукции, ускоряя процесс его угасания.

Конденсатор подбирается для системы зажигания индивидуально для каждого типа двигателя. Его ёмкость обычно находятся в диапазоне 0,17 – 0,35мкФ и любое отклонение приводит к снижению вторичного напряжения.

Для воспламенения рабочей смеси достаточно вторичное напряжения равного 8 – 12 к В. Так как при распределении высокого напряжения и при протекании его по проводам и свечам существуют потери, то для надёжной работы системы вторичное напряжение должно быть 16 – 25 к В. Кроме того повышенное напряжение необходимо для воспламенения бедной смеси при неисправности топливной системы.

Ещё на вторичное напряжение влияет время замкнутого и разомкнутого состояния контактов. Эти величины зависят от профиля кулачка прерывателя и величины зазора и подбираются, как и конденсаторы индивидуально для каждого типа двигателя.

Во время эксплуатации при изменении зазора или износе кулачка происходит снижение вторичного напряжения. При уменьшении зазора и как следствие увеличении угла замкнутого состояния контактов, увеличивается искрение и подгорание контактов прерывателя, а так же медленно исчезает ток самоиндукции.

При увеличенном зазоре уменьшается угол замкнутого состояния, что приводит к снижению силы тока первичной обмотке, хотя и уменьшает искрение на контактах.

Вторичное напряжение по высоковольтному проводу передаётся на центральный вывод распределителя зажигания. Ротор (бегунок) распределителя соединён с валом прерывателя через центробежный регулятор опережения зажигания и при вращении соединяет центральный вывод с боковыми электродами, которые соединены со свечами. Центральный вывод распределителя соединён с бегунком через угольный электрод, ток с которого стекает с его бокового контакта на боковые электроды крышки, а с них по высоковольтным проводам к свечам зажигания.

Для снижения потерь тока между бегунком и боковыми электродами зазор между ними всего несколько микрон, поэтому в процессе эксплуатации не стоит скоблить и зачищать боковые контакты, что значительно увеличит зазор и снижение вторичного напряжения.

Контактная система зажигания недостатки.

Контактная система зажигания имеет ряд недостатков. Самый большой из них подгорание контактов, для предотвращение которого необходимо снижение тока первичной обмотки катушки. По этой причине при контактной системе зажигания имеется ограничение вторичного напряжения. Кроме этого при повышении числа оборотов происходит снижение вторичного напряжения, так как снижается время замкнутого состояния контактов. По этой же причине снижается вторичное напряжение при увеличении числа цилиндров. В процессе развития эти недостатки устранялись в других системах, контактно-транзисторной и бесконтактной.

admin 11/02/2012 «Если Вы заметили ошибку в тексте, пожалуйста выделите это место мышкой и нажмите CTRL+ENTER» "Если статья была Вам полезна, поделитесь ссылкой на неё в соцсетях"

В чем разница между обычными, электронными и безраспределительными системами зажигания?

Если вы, как и многие люди, знаете, что когда вы поворачиваете ключ в замке зажигания, двигатель заводится, и вы можете управлять автомобилем. Однако вы можете не знать, как работает эта система зажигания. Если на то пошло, вы можете даже не знать, какой тип системы зажигания используется в вашем автомобиле.

Различные типы систем зажигания

  • Обычная : Хотя это называется «обычной» системой зажигания, это что-то вроде неправильного названия.Они не используются на современных автомобилях, по крайней мере, в США. Это более старая система зажигания, в которой используются точки, распределитель и внешняя катушка. Они требуют больших затрат в обслуживании, но легко ремонтируются и довольно дешевы. Интервалы обслуживания варьировались от каждых 5000 до 10 000 миль.

  • Электронное : Электронное зажигание является модификацией традиционной системы, и вы найдете их широко распространенными сегодня, хотя системы без распределителя становятся все более распространенными.В электронной системе у вас все еще есть распределитель, но точки были заменены на приемную катушку, и есть электронный модуль управления зажиганием. У них гораздо меньше шансов выйти из строя, чем у обычных систем, и они обеспечивают очень надежную работу. Интервалы обслуживания для этих типов систем обычно рекомендуются каждые 25 000 миль или около того.

  • Без дистрибьютора : это новейший тип системы зажигания, и он начинает находить очень широкое распространение на новых автомобилях.Он сильно отличается от двух других типов. В этой системе катушки расположены непосредственно на свечах зажигания (нет проводов свечей зажигания), и система полностью электронная. Он управляется компьютером автомобиля. Возможно, вы более знакомы с ней как с системой «прямого зажигания». Они требуют очень небольшого обслуживания, и некоторые автопроизводители требуют 100 000 миль между сервисами.

Развитие систем зажигания дало ряд преимуществ. Водители с более новыми системами получают лучшую топливную экономичность, более надежную работу и меньшие затраты на техническое обслуживание (обслуживание систем дороже, но при техническом обслуживании, которое требуется только каждые 100 000 миль, многим водителям, возможно, никогда не придется платить за обслуживание).

Что такое электронная система зажигания?

Электронная система зажигания

Что такое электронная система зажигания? : - Электронная система зажигания возрождается в наши дни, она полностью управляется электроникой и питается от батареи. Он имеет два вывода, отрицательный и положительный. Где отрицательная клемма заземлена, а положительная подключена к замку зажигания.

Теперь при включенном выключателе питание на электронную систему зажигания подается по проводам.После этого питание подается на катушку зажигания, имеющую две обмотки; первичная и вторичная обмотка. Обмотки изолированы, причем первичная обмотка сравнительно толще вторичной. Между обмотками находится стержень для создания магнитных полей. Электронная система зажигания - это система, которая относится к типу, в котором есть только электронные схемы на транзисторах, которые контролируются датчиками для генерации электронных импульсов.Искра не должна быть очень интенсивной, так как она может даже поджечь смесь и обеспечить меньшее излучение или лучшую экономию.

Работа электронной системы зажигания

  • Чтобы понять работу электронной системы зажигания, все компоненты должны быть правильно подключены и должны соответствовать их рабочему состоянию.
  • Как только водитель включается, ток от замка зажигания начинает течь от батареи, чтобы запустить транспортное средство, которое запускает якорь и поднимает катушку, чтобы принимать и отправлять сигналы напряжения от якоря на модуль зажигания.
  • После того, как зубец вращающегося реактора перемещается в передней части измерительной катушки, сигнал напряжения от измерительной катушки отправляется на электронный модуль, который, в свою очередь, воспринимает сигналы и регулирует ток, который течет, чтобы сформировать первичную катушку. .
  • Имеется сигнал об изменении напряжения, отправляемый катушкой датчика на модуль зажигания со схемой синхронизации, установленной внутри модуля зажигания, которая включает ток. Это происходит, когда зубец вращающегося реактора смещается от приемной катушки.
  • Внутри катушки зажигания создается магнитное поле, из-за которого происходит непрерывное замыкание и размыкание, которое индуцирует вторичную обмотку и увеличивает напряжение до 50 000 вольт. После этого высокое напряжение подается на распределитель, который имеет вращающийся ротор и точку распределителя, которая устанавливает момент зажигания.
  • В случае, если ротор подходит к какой-либо точке распределителя, происходит скачок напряжения через воздушный зазор.Это происходит из зазора между ротором и точкой распределителя, который затем передается на соседнюю свечу зажигания через кабель высокого напряжения, который отвечает за создание большой разницы напряжений между центральным электродом и заземляющим электродом, а также отвечает за образование искры. на кончике свечи зажигания.

Преимущества электронной системы зажигания

Вот некоторые достоинства электронной системы зажигания, которые являются основной причиной ее наибольшей популярности:

  • У нее очень мало движущихся частей.
  • Очень низкие затраты на обслуживание.
  • Вырабатывает значительно меньше выбросов.
  • Высокоэффективный.
  • Повышает топливную экономичность.

Недостатки электронной системы зажигания

Ссылаясь только на достоинства, недостаточно, здесь обсуждаются различные недостатки электронной системы зажигания:

  • Система очень дорога с точки зрения стоимости.

Это единственный недостаток электронной системы зажигания, которая известна человечеству как выключенная.

Типы систем зажигания

Существует три основных типа систем зажигания, которые используются в двигателях внутреннего сгорания с искровым зажиганием. Прокрутите вниз, чтобы узнать больше об этих системах зажигания.

1. Система зажигания магнето

Магнит служит основным компонентом в системе зажигания магнитного типа, которая используется для создания энергии при высоком напряжении. Это высокое напряжение используется для выработки электроэнергии, которая затем используется для работы транспортных средств.Эта система представляет собой комбинацию распределителя и генератора в одном устройстве. Это то, что отличает его от обычного распределителя, который создает энергию искры без какого-либо внешнего напряжения.

2. Аккумуляторная система зажигания

Аккумуляторная система зажигания широко используется в автомобилях для получения искры с помощью свечи зажигания и аккумулятора. В основном он использовался в четырехколесных транспортных средствах, но теперь также используется в двухколесных транспортных средствах, которые получают ток от 6–12-вольтовой батареи, находящейся в катушке зажигания.

Компоненты системы зажигания

Вот некоторые компоненты различных типов системы зажигания:

Система зажигания магнето: Компоненты этой системы зажигания включают магнето, распределитель, конденсатор, кулачок , контактный выключатель и выключатель зажигания.

Аккумуляторная система зажигания: Аккумуляторная система зажигания состоит из таких компонентов, как аккумулятор, выключатель зажигания, катушка зажигания, балластный резистор, прерыватель контактов, распределитель, конденсатор и свеча зажигания.

Электронная система зажигания: Компоненты электронной системы зажигания включают аккумулятор, распределитель, конденсатор, модуль управления зажиганием, якорь, катушку зажигания и свечу зажигания.

Достоинства систем зажигания

Вот некоторые достоинства системы зажигания. Прокрутите вниз, чтобы узнать.

  • Обслуживание системы зажигания от магнето проще и дешевле.
  • Занимает меньшую площадь.
  • Не требует батареи.
  • Работает с высокой эффективностью за счет искры высокой интенсивности.
  • Менее выделяет
  • Повышает эффективность использования топлива.
  • Системы зажигания аккумуляторного типа имеют очень высокую интенсивность искры.
  • Обеспечивает высокую концентрацию искры даже при низких оборотах двигателя при запуске.
  • Тип батареи Система зажигания требует меньшего обслуживания, как и все другие типы систем зажигания.

Недостатки систем зажигания

Несмотря на различные достоинства, у системы зажигания есть и недостатки.Прочтите следующее, чтобы узнать о недостатках системы зажигания:

  • Недостатком системы зажигания магнитного типа является то, что она имеет низкое качество искры при первом запуске.
  • Возможны пропуски зажигания из-за утечки.
  • Стоимость обслуживания электронных систем зажигания слишком высока, для чего также требуется много места и батарея, которая должна использоваться для питания системы.

Система зажигания вашего автомобиля · BlueStar Inspections

Основные принципы системы электрического искрового зажигания не изменились почти за столетие, но метод, с помощью которого создается и распределяется искра, значительно улучшился с развитием технологий.

Существует три основных типа автомобильных систем зажигания: распределительные системы, без распределителя и катушки на свече (COP). В ранних системах зажигания использовались полностью механические распределители для подачи искры в нужное время. Далее появились более надежные распределители, оснащенные твердотельными переключателями и модулями управления зажиганием. Они были известны как распределительные системы зажигания. Затем были созданы еще более надежные полностью электронные системы зажигания без распределителей. Они известны как системы зажигания без распределителя.Наконец, были созданы самые надежные на сегодняшний день электронные системы зажигания. Эти современные системы известны как «катушка на вилке» (COP). Полностью электронные системы зажигания типа «катушка на свече» управляются компьютером. Помимо повышения точности синхронизации зажигания, системы зажигания COP используют измененные катушки зажигания, способные создавать более высокие напряжения и более горячую искру, что улучшает работу двигателя.

Вы когда-нибудь задумывались, что происходит, когда вы вставляете ключ в замок зажигания вашего автомобиля, поворачиваете ключ, и ваш двигатель запускается и продолжает работать? Сегодня я вам расскажу.Чтобы система зажигания работала должным образом, она должна выполнять две работы одновременно. Первая задача - повысить напряжение с 12,4 вольт, обеспечиваемых аккумулятором, до более чем 20 000 вольт, необходимых для воспламенения сжатого воздуха и топливной смеси в камере сгорания. Вторая задача системы зажигания - обеспечить подачу напряжения на нужный цилиндр точно в нужное время. Для этого смесь воздуха и топлива сначала сжимается поршнем в камере сгорания.Затем эту смесь необходимо поджечь. Эта задача выполняется системой зажигания двигателя, которая включает в себя такие компоненты, как аккумулятор, ключ зажигания, катушка зажигания, пусковой выключатель, свечи зажигания и модуль управления двигателем (ECM). ЕСМ управляет системой зажигания и распределяет электроэнергию по каждому цилиндру в отдельности. Система зажигания должна обеспечивать достаточное количество искры в нужном цилиндре в точное время и делать это часто. Малейшая ошибка во времени вызовет проблемы с производительностью двигателя.

Автомобильные системы зажигания должны генерировать искру, достаточно сильную, чтобы перепрыгнуть через зазор свечи зажигания. Для этого в системах зажигания используется катушка зажигания. Катушка зажигания действует как силовой трансформатор.

Катушка зажигания преобразует низкое напряжение аккумулятора в тысячи вольт, необходимых для создания электрической искры в свечах зажигания для воспламенения топливно-воздушной смеси. Для возникновения необходимой искры напряжение на свече зажигания должно составлять в среднем от 20 000 до 50 000 вольт.Катушка зажигания состоит из двух обмоток из медной проволоки, намотанной на железный сердечник. Они известны как первичная обмотка и вторичная обмотка. Катушка зажигания предназначена для создания электромагнита, пропуская напряжение батареи через первичную обмотку. Когда пусковой переключатель системы зажигания автомобиля отключает питание катушки зажигания, магнитное поле разрушается. При этом вторичная обмотка улавливает разрушающееся магнитное поле от первичной обмотки и подает это напряжение на свечу зажигания, тем самым запуская двигатель вашего автомобиля.

Изношенные свечи зажигания и неисправные компоненты системы зажигания снизят производительность вашего двигателя и могут создать широкий спектр проблем при работе двигателя, включая пропуски зажигания, недостаток мощности, низкую экономию топлива, затрудненный запуск и, возможно, контрольную лампу двигателя. Эти проблемы могут повредить другие важные компоненты автомобиля.

Для бесперебойной и безопасной работы вашего автомобиля необходимо регулярное техническое обслуживание системы зажигания. Визуальный осмотр компонентов системы зажигания вашего автомобиля следует проводить не реже одного раза в год.Все компоненты вашей системы зажигания следует регулярно проверять и заменять, когда они начинают проявлять признаки износа или неисправности. Кроме того, не забывайте проверять и заменять свечи зажигания с интервалом, рекомендованным производителем вашего автомобиля. Не ждите, пока возникнет проблема с уходом за вашим автомобилем. Регулярное обслуживание является ключом к долговечности и качеству двигателя вашего автомобиля.

Как установить бесконтактную систему зажигания. Установка БСЗ

  1. Дом
  2. легковых автомобилей
  3. Как установить бесконтактную систему зажигания.Установка БСЗ
Если вы читаете это, то задайте вопрос о преимуществах бесконтактной системы зажигания, прежде чем контакт будет решен за вас. Установлен БСЗ на ВАЗ "классика".

21.11.2015 10:02:51 412

зажигание система зажигания бесконтактное зажигание бесконтактная система зажигания катушка зажигания запуск двигателя

Купить БСЗ

В автомобиле так же можно купить готовую систему бесконтактного зажигания и приобрести ее комплектующие.Во втором случае купите: Бесконтактный прерыватель-распределитель зажигания (для двигателей объемом 1,5 л длинный вал 038.3706, для двигателя объемом 1,3 л - короткий вал 038.3706-01). Ни в коем случае не покупайте распределитель для «Урожая» (3810.3706 или 038.3706-10), это вакуумный регулятор и центробежный механизм, существенно отличающиеся по характеристикам от «классики». Катушка зажигания 27.3705 Переключатель 36.3734 или 3620.3734 Жгут проводов для БСЗ Свеча зажигания типа А17ДВР с зазором 0,7-0,8 мм. Протокол высокого напряжения рекомендую приобретать устройства для мгновенной диагностики типа (МД-1) и аварийного зажигания (АЗ-1) или гибридный вариант.Они будут вашими помощниками во многих сложных ситуациях.

Демонтаж старой системы зажигания

Отсоедините провода от катушки зажигания, обязательно запомнив или записав порядок подключения проводов к контактам катушки. Откручиваем две гайки крепления и съемной катушки. Снимаем с прерывателя-распределителя крышку с проводами ВН. Стартером или вручную проворачивая коленчатый вал двигателя так, чтобы «ползун» на распределителе располагался перпендикулярно оси автомобиля и указывал на 1-цилиндровый двигатель.На блоке цилиндров, в месте установки автоматического выключателя, нарисуйте отметку посередине элементов (их 5) на корпусе распределителя. Откручиваем крепежную гайку и снимаем прерыватель с трамблера, стараясь не потерять паронитовую прокладку.

Установить бесконтактную систему зажигания.

На левом лонжероне, возле бачка омывателя лобового стекла просверлить два отверстия и закрепить винтами переключатель. Крепление должно быть надежным, чтобы обеспечить полный контакт радиатора переключателя с кузовом автомобиля. Снимите новую крышку распределителя и, вращая вал прерывателя-распределителя, установите распределитель так, чтобы бегунок был перпендикулярен оси автомобиля и указывал на 1-й цилиндр двигателя, а среднюю отметку на корпусе распределителя. прерыватель совпадает с нанесенной ранее маркировкой на блоке цилиндров.Рекордная гайка прерывателя-распределителя на блоке цилиндров Установите катушку зажигания. Если расположение контактных штырей на новой катушке отличается от старой, ослабьте зажим на кронштейне новых катушек, сделайте катушку на 1800 и снова затяните зажим Заверните в ГБЦ новую искру, убедившись, что зазор между электродами составляет 0,7-0,8 мм. Наденьте крышку на трамблер. Подключите высоковольтные провода Разъем жгута проводов БСЗ к переключателю и трамблеру. Отдельно проложенный черный провод, прикрепленный к креплению переключателя к кузову автомобиля, коричневый провод подключается к контакту «K», а синий провод - к контакту «B» катушки зажигания. Внимание! Бывают случаи, когда по какой-то причине синий и коричневый провода от жгута проводов либо имеют совершенно другой цвет, либо поменяны местами.Так что если после установки БСЗ двигатель не запускается, стоит поменять местами провода от жгута, идущего к катушке. Ни в коем случае не меняйте порядок подключения штатных проводов к катушке зажигания! Приборы диагностики проверяют исправность узлов системы бесконтактного зажигания. Запускаем двигатель. Если узлы и детали «е» исправны, а угол опережения зажигания при замене старого контактного прерывателя трамблера на новый бесконтактный не был нарушен, двигатель запускается с полоборота. Если двигатель не запускается, установить угол опережения зажигания или «классическим методом», либо с помощью прибора «МД-1», а затем проверить его во время движения.
Статьи по теме

Детали, работа, преимущества и недостатки [PDF]

В этой системе узел контактных прерывателей (в системе зажигания аккумулятора) заменен якорем. Этот якорь представляет собой генератор импульсов или сигналов, запускающий модуль зажигания, также называемый электронным блоком управления зажиганием или электронным модулем зажигания.

Этот блок управления в основном содержит транзисторную схему, базовый ток которой отключается и включается якорем, что приводит к запуску и остановке первичного тока.

Как известно, существует 3 типа систем зажигания. Это система зажигания от батареи, система электронного зажигания, система зажигания от магнето. Итак, в этой статье я подробно расскажу об электронной системе зажигания.

Детали электронной системы зажигания:

Детали электронной системы зажигания: :

  1. Батарея
  2. Выключатель зажигания
  3. Электронный модуль зажигания
  4. Катушка зажигания
  5. Якорь
  6. Распределитель
  7. Свеча зажигания

Электронная система зажигания объясняется следующим образом.

Батарея:

Перезаряжаемая свинцово-кислотная батарея используется для обеспечения электрической энергией зажигания в цилиндре.

Эта батарея заряжается динамо, которое приводится в движение двигателем.

Замок зажигания:

Один конец батареи заземлен, а другой конец (положительная клемма) подключен к первичной обмотке катушки зажигания с помощью переключателя зажигания.

Этот переключатель (ключ) используется для включения / выключения системы зажигания.

Электронный модуль зажигания:

Электронный модуль воспринимает сигнал, производимый катушкой датчика, и останавливает ток от первичной цепи. Цепь синхронизации внутри модуля зажигания включается, и, таким образом, ток снова течет в цепь, когда напряжение не создается.

Катушка зажигания:

Катушка зажигания является источником энергии зажигания. Его функция заключается в повышении низкого напряжения до высокого, чтобы вызвать электрическую искру в свече зажигания.

Катушка зажигания состоит из магнитного сердечника из мягкого железа и двух изолированных проводящих катушек, известных как первичная и вторичная обмотки. Первичная обмотка состоит из 200-300 витков, оба конца которой подключены к внешним клеммам.

Вторичная обмотка состоит из 21000 витков, один конец которой подключен к проводу высокого напряжения, идущему к распределителю, а другой конец - к первичной катушке.

Арматура:

Контактные прерыватели системы зажигания аккумуляторной батареи заменены на якорь.Когда зуб якоря оказывается перед катушкой датчика, генерируется сигнал напряжения. Электронный модуль воспринимает сигнал, производимый катушкой датчика, и останавливает ток от первичной цепи.

Дистрибьютор:

Распределитель предназначен для распределения импульсов зажигания на отдельные свечи зажигания в правильной последовательности относительно порядка зажигания.

Он состоит из ротора посередине и металлического электрода на периферии.Эти металлические электроды напрямую соединены со свечами зажигания и также известны как жгут зажигания

.

Вторичная обмотка катушки зажигания подключена к ротору этого распределителя, который приводится в действие распределительным валом. Когда ротор вращается, он передает ток высокого напряжения на провод зажигания, который затем переносит эти токи высокого напряжения на свечи зажигания.

Свеча зажигания:

Это выходная часть всей системы зажигания, которая отвечает за образование искры в цилиндре двигателя.

Он состоит из 2 электродов, один из которых прикреплен к токоведущим проводам высокого напряжения, а другой заземлен. Разность потенциалов между этими электродами ионизирует зазор между ними, и, таким образом, возникает искра, воспламеняющая горючую смесь.

Работа электронной системы зажигания:

Когда ключ зажигания включен, ток течет от аккумулятора через ключ зажигания к первичной обмотке катушки.

Когда отражатель или зуб якоря оказывается перед катушкой датчика, генерируется сигнал напряжения.Электронный модуль воспринимает сигнал, производимый катушкой датчика, и останавливает ток от первичной цепи.

Когда зуб якоря отодвигается от приемной катушки, сигнал напряжения не генерируется, и из-за этого включается синхронизирующая схема внутри модуля зажигания, и, таким образом, ток снова течет в цепь.

Из-за непрерывного включения и выключения тока в катушке зажигания создается магнитное поле. Из-за магнитного поля во вторичной обмотке индуцируется электродвижущая сила (ЭДС), в результате чего напряжение увеличивается до 50 000 вольт.

Это высокое напряжение затем передается на распределитель. Ротор внутри распределителя вращается в соответствии с моментом зажигания. Когда ротор подходит точно перед точкой распределителя, напряжение подскакивает из-за воздушного зазора от ротора к точке.

Затем высокое напряжение передается от распределителя к выводу свечи зажигания через кабель высокого напряжения. Между центральным электродом и заземляющим электродом возникает разность напряжений. Напряжение продолжает передаваться через центральный электрод, который изолирован изолятором.

Когда напряжение между этими электродами превышает диэлектрическую прочность газов, газы ионизируются. Благодаря ионизации газ становится проводником и позволяет току течь через зазор, и, таким образом, в конечном итоге возникает искра.

Это подробное объяснение электронной системы зажигания, если у вас есть какие-либо сомнения, не стесняйтесь спрашивать в разделе комментариев.

Преимущества электронной системы зажигания:

Некоторые из преимуществ заключаются в следующем.

  • В этой системе нет движущихся частей, поскольку она находится под управлением электронного модуля зажигания или электронного блока управления (ЭБУ).
  • За счет этого повышается точность по отношению к распределение искры.
  • Это увеличивает надежность и долгий срок службы остальных компонентов схемы.
  • Это снижает требования к техническому обслуживанию.

Недостатки электронной системы зажигания:

Недостаток электронной системы зажигания:

  • Стоимость всей системы очень высока.

Итак, это все об электронной системе зажигания. Надеюсь, вы получили общее представление об электронной системе зажигания.Если у вас есть сомнения, не забудьте спросить меня в разделе комментариев и не забудьте поделиться этой статьей на своих любимых социальных платформах.

Подробнее о системе зажигания

Аккумуляторная система зажигания
Магнитная система зажигания
Источники [Внешние ссылки]:

Кредиты СМИ:

  • Изображение батареи: Автор Автор не предоставил машиночитаемый автор. Предполагается, что Шаддак (на основании заявлений об авторских правах).- Машиночитаемый источник не предоставлен. Предполагается собственная работа (на основании заявлений об авторских правах)., Public Domain, https://commons.wikimedia.org/w/index.php?curid=401224
  • Изображение катушки зажигания : Автор Sonett72 в английской Википедии - Перенесено с en .wikipedia в Commons., Public Domain, https://commons.wikimedia.org/w/index.php?curid=672379
  • Изображение дистрибьютора : Риккардо Никола - собственная работа, общественное достояние, https: // commons .wikimedia.org / w / index.php? curid = 6214163
  • Изображение свечи зажигания: Автор: Industry shill - собственная работа автора, загрузившего файл, Public Domain, https: // commons.wikimedia.org/w/index.php?curid=60305532
  • Изображение арматуры: Автор (Лукас Ричардсон) - собственная работа, общественное достояние, https://commons.wikimedia.org/w/index.php?curid= 1511733
  • Изображение элемента : Изменено автором, источником IGNOU

Система зажигания | инженерия | Britannica

Система зажигания в бензиновом двигателе - средство, используемое для создания электрической искры для воспламенения топливно-воздушной смеси; горение этой смеси в цилиндрах создает движущую силу.

Основными компонентами системы зажигания являются аккумуляторная батарея, индукционная катушка, устройство для создания синхронизированных высоковольтных разрядов от индукционной катушки, распределитель и набор свечей зажигания. Аккумуляторная батарея обеспечивает электрический ток низкого напряжения (обычно 12 вольт), который преобразуется системой в высокое напряжение (около 40 000 вольт). Распределитель направляет последовательные всплески тока высокого напряжения к каждой свече зажигания в порядке зажигания.

В старых автомобильных системах зажигания импульсы высокого напряжения вырабатываются с помощью точек прерывания, управляемых вращающимся кулачком распределителя.Когда точки соприкасаются, они замыкают электрическую цепь через первичную обмотку катушки зажигания. Когда точки разделены кулачком, первичная цепь разрывается, что создает выброс высокого напряжения во вторичных обмотках индукционной катушки. В более новых автомобилях точки прерывания в значительной степени заменены электронными устройствами. Большинство из них сейчас используют магнитное устройство, называемое реактором, которое приводится в действие валом распределителя для выработки синхронизированных электрических сигналов, которые усиливаются и используются для управления током в индукционной катушке.Эти новые системы зажигания более надежны, чем старые, позволяют лучше управлять двигателем и обеспечивают более высокое выходное напряжение на свечах зажигания.

В процессе развития твердотельных систем зажигания было внесено множество модификаций. Некоторые системы преобразования зажигания, например, продлевают срок службы точки прерывания за счет использования транзисторов, устройств, в которых небольшой ток на входе (цепь точки прерывания) управляет гораздо большим током на выходе (первичная цепь катушки).

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту.Подпишитесь сейчас

Многие автомобильные двигатели теперь используют систему зажигания без распределителя или систему прямого зажигания, в которой импульс высокого напряжения подается непосредственно на катушки, которые находятся на вершине свечей зажигания (известные как катушка на свече). Основными компонентами этих систем являются блок катушек, модуль зажигания, реактивное кольцо коленчатого вала, магнитный датчик и электронный модуль управления. Модуль зажигания управляет первичной цепью катушек, включая и выключая их. Кольцо реактора установлено на коленчатом валу таким образом, чтобы при вращении коленчатого вала магнитный датчик срабатывал зазубрины в кольце реактора.Магнитный датчик передает информацию о местоположении электронному модулю управления, который определяет угол зажигания.

Электронное зажигание (автомобиль)

16.3.

Электронное зажигание

Повышенные требования к системам зажигания могут
не удовлетворяться традиционной индукционной системой зажигания с 1960 года. Введение новых критериев выбросов выхлопных газов в 1965 году и потребность в улучшенной экономии топлива в 1975 году вынудили использовать электронику в системе зажигания для удовлетворения требований. законодательные требования к транспортному средству.Законодательные требования и требования водителей по улучшению характеристик двигателя, добавленные к маркетинговой стратегии производителя по предложению более совершенного автомобиля, являются стимулом для электронных инноваций в этой области.

Недостатки традиционной системы.

Основной принцип обычной индукционной системы зажигания не менялся в течение нескольких десятилетий, пока она не стала неспособной удовлетворить потребности в отношении выходной энергии и рабочих характеристик контактного выключателя. В отличие от мощности воспламенения 10-15 кВ, использовавшейся ранее, современному высокоскоростному двигателю требуется мощность 15-30 кВ для зажигания более слабых смесей, необходимых для обеспечения большей экономичности и выбросов.Чтобы удовлетворить это требование, часто используется малоиндуктивная катушка. Из-за гораздо более высокого тока, протекающего в этой катушке, эрозионный износ прерывателя контактов недопустим. Одной этой причины достаточно, чтобы заменить механический выключатель электронной системой. Однако другие недостатки прерывателя:
(i) Зажигание отличается от указанного значения из-за изменения скорости из-за (а) износа пятки контакта, кулачка и шпинделя, (б) эрозии контактных поверхностей, и (c) отскок контакта и неспособность пятки следовать за кулачком на высокой скорости.(«) Неблагоприятное влияние на время выдержки в результате изменения угла выдержки. (Привет) Частое обслуживание.
Следующие описания охватывают основные принципы электронных систем зажигания, используемых в период от начала перехода от механического прерывателя к самому последнему.
16.3.1.


Системы с автоматическим выключателем

Контакты с транзисторным управлением (TA.C.)

Эта система включает в себя обычные механические прерыватели, которые приводят в действие транзистор для управления током в первичной цепи.Поскольку используется очень небольшой ток прерывателя, эрозия контактов
устраняется, так что сохраняется хороший выход катушки. Также он обеспечивает точную синхронизацию зажигания в течение гораздо более длительного периода. Когда с этой системой используются катушка с низкой индуктивностью и балластный резистор, также исключается чрезмерное искрение контактов, вызванное высоким первичным током.
Основной принцип индуктивной полупроводниковой системы зажигания, запускаемой выключателем, проиллюстрирован на рис. 16.25, где транзистор работает как контактный выключатель, действуя как

Рис.16.25. T.A.C. система зажигания.
выключатель питания для включения и отключения первичной цепи. Транзистор работает как реле, которое управляется током, подаваемым кулачковым управляющим переключателем и, таким образом, называется срабатывающим выключателем.
Небольшой управляющий ток проходит через базу-эмиттер транзистора, когда прерыватель контактов находится в замкнутом состоянии. Это включает цепь коллектор-эмиттер транзистора и позволяет полному току протекать через первичную цепь для возбуждения катушки.На этом этапе протекание тока в цепи управления и базе транзистора регулируется суммарными и относительными значениями резисторов R1 и R2. Эти значения сопротивления выбраны для обеспечения управляющего тока около 0,3 А, что достаточно для обеспечения самоочищающегося действия контактных поверхностей без перегрузки выключателя.
Когда требуется искра, кулачок размыкает контакт для прерывания цепи базы, что вызывает отключение транзистора. При внезапном размыкании первичной цепи во вторичной возникает высокое напряжение, которое вызывает искру на свече.Эта последовательность повторяется, чтобы обеспечить необходимое количество искр на каждый оборот кулачка (рис. 16.26). T.A.C. Такое расположение обеспечивает более быстрый разрыв цепи по сравнению с нетранзисторной системой, и, как следствие, происходит более быстрое схлопывание магнитного потока. Следовательно, получается высокое вторичное напряжение HT. Компоненты этой системы зажигания аналогичны компонентам, используемым в обычной системе, за исключением дополнительного модуля управления, содержащего силовой транзистор.
Необходимы дополнительные усовершенствования базовой схемы (рис. 16.25), чтобы защитить полупроводники от перегрузки из-за самоиндукции и минимизировать радиопомехи. Также эта схема не подходит для использования с обычным автоматическим выключателем с фиксированным заземляющим контактом. Для решения этой проблемы используется дополнительный транзистор (рис. 16.27). В этой схеме транзистор Т \ включен последовательно с выключателем в цепи управления и действует как драйвер для силового транзистора Т%.Подобно предыдущим системам, резисторы ограничивают ток базы в Т \ и Т2, а также ток размыкателя контактов.

Рис. 16.26. Контроль первичного тока (4-цилиндровый двигатель).

Рис. 16.27. TA.C. с драйвером и силовыми транзисторами.
В замкнутом положении выключателя в цепи управления течет небольшой ток. Хотя большая часть этого тока проходит через Ri, очень небольшая часть проходит через базу T1 для включения транзистора.Этот чувствительный транзистор затем подает ток на базу силового транзистора T2, чтобы включить его. Следовательно, коллектор-эмиттер T2 проводит и замыкает первичную цепь, позволяя нарастать магнитный поток в катушке. Во время искры размыкается контактный выключатель, который прерывает ток в цепи управления и базовой цепи Т \. При выключенном T \ ток отсекается от базы T%, тем самым разрывая первичную цепь.
Силовой транзистор T
Рис. 16.28. Усилитель Дарлингтона. Транзистор
Т2 в системе, показанной на рис. 16.27, значительно повышает надежность системы. Схема усилителя Дарлингтона (рис. 16.28) с двумя транзисторами образует интегральную схему (IC) с тремя выводами, E, B и C. Когда небольшой ток подается на базу T \ t, он включается и вызывает пропорциональную больший ток течет к базе T2.Это, в свою очередь, включает T%, что позволяет основному току течь через T2 от коллектора к эмиттеру.
16.3.2.

Без выключателей

Электронный выключатель вместо механического выключателя дает следующие преимущества.
(i) Точная синхронизация зажигания доступна во всем диапазоне рабочих скоростей.
(ii) Отсутствие эрозии и износа из-за отсутствия каких-либо контактов. Эта система не требует обслуживания в отношении постоянной замены, регулировки выдержки и настройки момента зажигания.Также время остается правильным в течение очень длительного периода.
(Hi) Время нарастания катушки зажигания можно изменять, изменяя период выдержки в соответствии с условиями. Это обеспечивает более высокий выход энергии из катушки на высокой скорости, но не имеет риска высокотемпературной эрозии на низкой скорости.
(iv) Отсутствует отскок контактов на высокой скорости, и, следовательно, исключается возможность потери первичного тока катушки.
Принципиальная схема электронной системы зажигания без прерывателя показана на рис.16.29. Блок распределителя аналогичен обычному блоку, за исключением того, что электронный переключатель, называемый генератором импульсов, заменяет прерыватель контактов. Генератор импульсов генерирует электрический импульс, чтобы сообщить, когда требуется искра. Твердотельный модуль управления создает и прерывает ток в первичной обмотке катушки зажигания, усиливая и обрабатывая сигналы, полученные от генератора импульсов. Кроме того, модуль управления определяет частоту вращения двигателя по частоте импульсов и, соответственно, изменяет время задержки в соответствии с частотой вращения двигателя.

Генератор импульсов.

Три основных типа генераторов импульсов: (i) индуктивный (ii) генератор Холла и (Hi) оптический.

Генератор индуктивных импульсов.

Одна из конструкций этого генератора показана на рис. 16.30, где постоянный магнит и индуктивная обмотка прикреплены к опорной плите. Вал распределителя приводит в движение железное спусковое колесо. Количество зубцов на спусковом колесе или отражателе соответствует количеству цилиндров двигателя.Если зуб приближается к сердечнику статора из мягкого железа, магнитный путь завершается, вызывая протекание магнитного потока. Когда колесо спускового механизма
перемещается из показанного положения, воздушный зазор между сердечником статора и зубцом спускового механизма увеличивается, из-за чего магнитное сопротивление или магнитное сопротивление также увеличивается, вызывая уменьшение магнитного потока в магнитной цепи.
Изменение магнитного потока создает ЭДС в индуктивной обмотке, установленной вокруг стального сердечника статора. Максимальное напряжение индуцируется, когда скорость изменения магнитного потока является наибольшей, что происходит непосредственно перед и сразу после точки, где зубец триггера находится ближе всего к сердечнику статора.На рисунке 16.31 показано изменение напряжения из-за перемещения спускового колеса на один оборот. Положительный и отрицательный пик устанавливаются из-за нарастания потока и спада потока соответственно. В положении триггера с наибольшим потоком ЭДС в обмотку не наводится. Средняя точка изменения между положительным и отрицательным импульсами используется, чтобы сигнализировать о необходимости наличия искры.
Поскольку скорость вращения колеса триггера определяет скорость изменения магнитного потока, выходной сигнал генератора импульсов изменяется примерно от 0.От 5 В до 100 В. Это изменение напряжения в сочетании с изменением частоты используется модулем управления в качестве сигналов считывания для различных целей, кроме запуска искры. Поскольку сопротивление магнитной цепи зависит от размера воздушного зазора, выходное напряжение также зависит от размера воздушного зазора. Из-за магнитного эффекта для проверки воздушного зазора используется немагнитный щуп, например, пластмассовый.
Генератор импульсов Bosch работает по аналогичному принципу, но имеет другую конструкцию (рис.16.32). Он состоит из круглого дискового магнита с двумя плоскими поверхностями, действующими как полюса N и S. Круглый полюсный наконечник из мягкого железа помещен на верхнюю поверхность магнита, пальцы которого загнуты вверх для образования четырех полюсов статора в случае 4-цилиндрового двигателя. Подобное количество зубцов сформировано на спусковом колесе, чтобы создать путь, по которому поток проходит к несущей пластине, поддерживающей магнит. Индуктивная катушка намотана концентрично шпинделю и

Рис.16.29. Компоновка станка без прерывателя электронного

. 16.30. Генератор индуктивных импульсов.

Рис. 16.31. Выход напряжения от генератора импульсов.
Вся сборка образует симметричный узел, устойчивый к вибрации и износу шпинделя.

Рис. 16.32. Генератор импульсов (Bosch).
Некоторые производители не используют обычные распределители. Citroen использует единственную металлическую пробку, называемую мишенью, закрепленную болтами на периферии маховика, и датчик цели, установленный на картере сцепления (рис.16.33). Датчик цели использует индуктивную обмотку, размещенную вокруг магнитопровода таким образом, чтобы сердечник находился на расстоянии 1 ± 0,5 мм от пули, когда нет. 1 поршень находится прямо перед ВМТ. Выходное напряжение аналогично другим генераторам импульсов, за исключением того, что модуль управления (компьютер) в этом случае получает только один импульс сигнала на оборот. В целях управления Citroen включает второй датчик цели, конструкция которого идентична другому датчику, и расположенный рядом с зубьями стартового кольца на маховике.Этот датчик сигнализирует прохождение каждого зубца маховика, чтобы компьютер мог подсчитать зубцы и определить частоту вращения двигателя, чтобы установить опережение зажигания в соответствии с условиями.

Генератор импульсов Холла.

Принцип действия генератора импульсов этого типа основан на эффекте Холла. Когда микросхема, изготовленная из полупроводникового материала, пропускает через нее ток сигнала и подвергается воздействию магнитного поля, между краями кристалла под углом 90 градусов к пути прохождения сигнального тока создается небольшое напряжение, называемое напряжением Холла.Напряжение Холла изменяется из-за изменения напряженности магнитного поля, и этот эффект можно использовать в качестве переключающего устройства для срабатывания точки зажигания путем изменения тока Холла.
Принцип работы генератора Холла показан на рис. 16.34. Полупроводниковый чип, удерживаемый в керамической опоре, имеет четыре электрических соединения. Ток входного сигнала подается на AB, а выходной ток Холла поступает от CD. Напротив чипа расположен постоянный магнит, разделенный воздушным зазором.Переключение осуществляется лопатками на спусковом колесе, которое приводится в движение шпинделем распределителя. Генератор Холла может генерировать искру при неподвижном двигателе, что невозможно при использовании индуктивного генератора импульсов. При обращении с этой системой следует соблюдать осторожность, поскольку существует риск поражения электрическим током.

Рис. 16.33. Генератор импульсов (Citroen)
Как только металлическая пластина выходит из воздушного зазора, микросхема подвергается воздействию магнитного потока, и на компакт-диск подается напряжение Холла.Теперь переключатель включен, и в цепи CD течет ток. Перемещение лопасти в воздушный зазор между магнитом и блоками микросхемы отводит магнитный поток от микросхемы, что приводит к падению напряжения Холла до нуля. Если лопатка находится в этом положении блокировки потока, переключатель выключен, и в цепи CD не течет холловский ток. Когда триггерная лопасть генератора импульсов проходит через воздушный зазор, модуль управления
, используемый с этой системой, включает первичный ток для катушки зажигания.Следовательно, угловое расстояние между лопатками определяет период выдержки. Если пространство между лопатками уменьшается, время закрытия первого контура увеличивается. Когда переключатель Холла замкнут, то есть когда лопатка покидает воздушный зазор, закрытый период заканчивается и возникает искра.
Схема генератора Холла, используемого в распределителе Bosch, показана на рис. 16.35. Полупроводниковый чип в этой модели используется в интегральной схеме, которая также выполняет функции формирования импульсов, усиления импульсов и стабилизации напряжения.Количество лопаток на спусковом колесе равно количеству цилиндров двигателя. В этой конструкции спусковое колесо и лопасти ротора составляют одно целое. Трехжильный кабель соединяет генератор Холла с модулем управления, а его выводы образуют вход сигнала, выход Холла и землю.

Генератор оптических импульсов.

Этот тип работает по обнаружению точки искры с помощью заслонки, которая прерывает световой луч, проецируемый светоизлучающим диодом (LED) на фототранзистор.Этот фотоэлектрический метод запуска был разработан для системы Lumenition.
Принцип действия триггера этого типа показан на рис. 16.36. Невидимый свет с частотой, близкой к инфракрасной, излучается полупроводниковым диодом из арсенида галлия, и его луч фокусируется полусферической линзой до ширины около 1,25 мм в точке прерывания. К шпинделю распределителя крепится стальной измельчитель с лезвиями, соответствующими количеству цилиндров и периоду выдержки. Это контролирует периоды времени, когда свет падает на кремниевый фототранзисторный детектор.Этот транзистор образует первую часть усилителя Дарлингтона, который формирует сигнал и включает в себя средство предотвращения изменения синхронизации из-за изменения линейного напряжения или из-за накопления грязи на линзе. Сигнал, посылаемый генератором на модуль управления, включает ток в первичной катушке. Следовательно, когда прерыватель разрезает лучи, первичная цепь разрывается, и на свече возникает искра.

Модули управления.


Фиг.16.34. Эффект Холла.

Рис. 16.35. Генератор Холла (Bosch).

Рис. 16.36. Генератор оптических импульсов.
Модуль управления или триггерный блок переключает ток первичной обмотки катушки зажигания в соответствии с сигналом, полученным от генератора импульсов. Используются как индуктивные накопительные системы типа
, так и системы управления емкостным разрядом. Эти два разных типа управления образуют две разные электронные системы зажигания.
16.3.3.

Индуктивное зажигание с накоплением

Первичная цепь этой системы аналогична системе Кеттеринга, за исключением того, что надежный силовой транзистор, установленный в модуле управления, замыкает и размыкает первичную цепь вместо контактного выключателя. Типичное управление выполняет четыре функции, такие как формирование импульса, управление периодом задержки, стабилизация напряжения и первичное переключение (рис. 16.37) в четырех полупроводниковых каскадах.

Рис.16.37. Модуль управления индуктивным накоплением.

Формирование импульса.

Сплошная линия на рис. 16.38 представляет выходное напряжение от генератора импульсов индуктивного типа, подключенного к схеме модуля управления. Полная отрицательная волна получается только при испытании генератора на разрыв цепи. После того, как сигнал переменного тока подается на каскад схемы запуска, импульс принимает прямоугольную форму постоянного тока (рис. 16.38). Ширина прямоугольного импульса зависит от длительности выходного импульса генератора.Однако высота прямоугольника или выходной ток триггерных цепей не зависят от скорости двигателя.

Рис. 16.38. Формирование импульса.

Контроль периода выдержки и стабилизация напряжения.

Период ожидания на этом этапе обычно изменяется путем изменения начала периода ожидания. Таким образом, вторичный выход уменьшается при уменьшении периода выдержки. Эта функция управления используется для управления периодом времени, в течение которого ток проходит через первичную обмотку катушки в соответствии с частотой вращения двигателя.
Напряжение, подаваемое на эту цепь резистора-конденсатора (RC), должно оставаться постоянным, независимо от изменения напряжения питания модуля управления из-за изменений мощности зарядки и нагрузок потребителей. Это достигается за счет секции стабилизации напряжения модуля.

Первичная коммутация.

Ток в первичной цепи обычно переключается усилителем Дарлингтона. Импульсные сигналы, полученные от каскада управления периодом выдержки, передаются на транзистор управления, действующий как усилитель управляющего тока.В нужное время ток от драйвера включается или отключается для управления мощным силовым транзистором выходного каскада Дарлингтона.

Обработка импульсов.

Последовательность событий от момента получения сигнала от исходного генератора импульсов до момента искры в цилиндре показана на рис. 16.39. A

Рис. 16.39. Импульсная обработка.
Электронно-лучевой осциллограф (CRO), когда он подключен к выходу катушки зажигания, составляющей часть электронной системы зажигания, дает изображение, показанное вторичными выходными диаграммами.Вертикальная и горизонтальная оси шаблона CRO представляют напряжение и время соответственно. Основные характеристики одного вторичного разряда показаны на рис. 16.40.
Если первичная цепь разорвана, вторичное напряжение увеличивается до тех пор, пока не возникнет искра. Когда это происходит, напряжение, необходимое для поддержания искры, падает до значения, которое затем поддерживается до тех пор, пока выходная энергия не станет достаточной для поддержания процесса искры. В этот момент вторичное напряжение немного повышается, прежде чем упасть, и колеблется в два или три раза, поскольку оставшаяся энергия рассеивается в катушке.
Управление вторичным выходом. За исключением изменений, вызванных механическими дефектами, система срабатывания прерывателя имеет постоянную задержку во всем диапазоне скоростей. В результате на высокой скорости период ожидания слишком короткий, из-за чего вторичный выход плохой из-за сравнительно низкого первичного тока. Однако катушка с низкой индуктивностью улучшает выходную мощность в верхнем диапазоне скоростей, но вызывает эрозионный износ в нижнем диапазоне скоростей. Использование системы постоянного энергопотребления решает эту проблему. Эта энергетическая система включает в себя катушку с высокой выходной мощностью и управляется электроникой для изменения периода выдержки, подходящего для всех скоростей.На низкой скорости процент задержки остается относительно небольшим, который постепенно увеличивается с увеличением скорости.

Как показано на рис. 16.40, задержка начинается в точке (1) и заканчивается в точке (2) на низких скоростях. С увеличением оборотов двигателя начало периода ожидания (то есть точка, в которой начинается ток

рис. 16.40. Задержка относительно вторичного напряжения.
течет в первичной обмотке) постепенно смещается в сторону крайнего предела. (3). Любое увеличение времени задержки после точки (3) уменьшает продолжительность искры, поскольку этот предел представляет собой конец периода искрового разряда.
Изменение процентной задержки в зависимости от частоты вращения двигателя показано на рис. 16.41. На холостом ходу процент задержки устанавливается большим, чтобы дать искру высокой энергии для контроля выбросов выхлопных газов. Однако между холостым ходом и 4000 об / мин увеличение процента задержки предотвращает снижение накопленной энергии. Следовательно, это обеспечивает почти постоянное вторичное напряжение вплоть до максимального значения системы, которое, как считается, составляет около 15000 искр / мин.

ИНТЕНСИВНОСТЬ ИСКРЫ, ИСКРЫ / МИН 4 ЦИЛИНДР
Рис.16.41. Доработка выдержки в соответствии с оборотами двигателя.
Когда система встроена в 6- и 8-цилиндровые двигатели, возникает необходимость уменьшить процентное значение задержки на скоростях выше 5000 об / мин, в противном случае начало задержки произойдет до окончания периода искрового разряда. Эта проблема решается с помощью транзистора в системе управления для включения первичного тока в заданное время после возникновения искры. Продолжительности 0,4 миллисекунды обычно достаточно для удовлетворения большинства требований сгорания.На рисунке 16.42 показан выходной сигнал, выдаваемый системой постоянной энергии с использованием управления углом выдержки.

Цепь модуля управления.

На рисунке 16.43 представлена ​​упрощенная схема модуля управления с указанием четырех основных секций A, B, C и D, обсуждаемых ниже.

Рис. 16.42. Выход из системы постоянной энергии.

Рис. 16.43. Схема модуля управления (упрощенная).

Стабилизация напряжения (А).

Использование стабилитрона (ZD) обеспечивает подачу постоянного напряжения на управляющие секции B и C и не зависит от колебаний напряжения, возникающих в других цепях транспортного средства.Падение напряжения на диоде является постоянным, и эта функция используется для обеспечения регулируемого напряжения для управления цепью управления.

Формирование импульса (B).

В этом разделе два транзистора, T1 и T2, образуют устройство, называемое триггером Шмитта, который является обычным методом, используемым в аналого-цифровом преобразователе для формирования прямоугольного импульса при преобразовании аналогового сигнала в цифровой сигнал. Транзистор Ti включается, когда импульс, генерируемый внешним триггером, противодействует току, протекающему от батареи к триггеру через диод D.Это заставляет ток течь через базу-эмиттер Т \, который включает транзистор и отводит ток от базы Т%. Действие триггера Шмитта приводит к тому, что Т2 «выключен», когда Т1 «включен», и наоборот. Напряжение во время переключения регулируется пороговым напряжением, необходимым для включения Т \. Переключение Ti происходит при очень низком пороговом напряжении, поэтому для практических целей считается, что переключение происходит, когда триггерный потенциал изменяется с положительного на отрицательный.

Контроль выдержки (С).

Первичный ток в катушке протекает при включении pnp-транзистора T \, который управляется T3. Переключение T3 контролируется током, подаваемым через i? 5, и состоянием заряда конденсатора C. Во время зарядки конденсатора током от R5 ток не проходит на базу T3, поэтому T3 переключается. -выключенный. Как только конденсатор полностью заряжен, ток проходит к базе T3 и включает его, чтобы начать период выдержки (т.е.е. для инициирования протекания тока в первичной обмотке катушки). Время, необходимое для зарядки конденсатора, определяет период выдержки. Постоянная времени RC в этом случае определяется величиной разряда конденсатора до получения заряда от R5.
При малых оборотах двигателя транзистор Т2 включен на сравнительно долгое время. Это позволяет обкладке конденсатора, примыкающей к T2, передавать на землю заряд, который она получила от Ra, когда T2 был выключен. На этой низкой скорости конденсатора достаточно времени, чтобы полностью разрядиться до точки, в которой потенциал пластины становится похож на землю.Это заставляет конденсатор притягивать большой заряд от R5, когда транзистор T2 выключается. Поскольку время, необходимое для обеспечения этого заряда, велико, точка включения T3 задерживается, и в результате возникает короткий период ожидания.
На высокой скорости T2 включается на короткое время, тем самым позволяя только частичный разряд конденсатора. Следовательно, время, необходимое для зарядки конденсатора, короче, и задержка начинается в более ранней точке, обеспечивая более длительный период. Прерывание первичной обмотки происходит при включении Т2.Это продиктовано триггерным сигналом, из-за которого конец периода задержки всегда наступает в одно и то же время. В момент включения T2 конденсатор начинает разряжаться, что приводит к отключению T3 и возникновению искры.

Выход Дарлингтона (Д).

Пара Дарлингтона, обычная матрица силовых транзисторов, используется для коммутации больших токов. В паре используются два надежных транзистора, T5 и Tq, которые встроены в металлический корпус с тремя выводами - базой, эмиттером и коллектором.
Если напряжение прямого смещения приложено к цепи база-эмиттер T5, транзистор включается. Это увеличивает напряжение, приложенное к базе T &, и если оно превышает пороговое значение, T% также включается. Когда t5 и Tq включены, первичная обмотка находится под напряжением. Если T5 отключается отключением T4, первичная цепь разрывается и образуется искра. Чтобы сделать систему пригодной для транспортного средства, в схеме
, показанной на рис.16.43, которые предотвращают повреждение полупроводников из-за высокого переходного напряжения, а также уменьшают радиопомехи.

Альтернативный метод контроля выдержки.

Другой метод управления углом задержки заключается в наложении опорного напряжения на выходной сигнал, подаваемый генератором импульсов (рис. 16.44A). В этой схеме срабатывание искры в конце периода задержки происходит в точке переключения между положительной и отрицательной волнами, но начало периода задержки сигнализируется, когда импульсное напряжение превышает опорное напряжение.Опорное напряжение 1,5 В действует на ступень управления выдержкой на низкой скорости, которая повышается до 5 В на высокой скорости. Более сильный импульсный сигнал в сочетании с более высоким опорным напряжением обеспечивает более длительный период задержки (рис. 16.44B). Когда двигатель неподвижен, импульсный сигнал не генерируется, поэтому через катушку не может протекать ток, и, следовательно, управление выдержкой не может работать.

Рис. 16.44. Использование опорного напряжения для управления задержкой.

Рис. 16.45. Распределитель со встроенным усилителем.

Ford Escort Электронное зажигание. В двигателях

Ford 1300 и 1600 используются электронные системы зажигания с 1981 года. Модуль управления установлен на стороне распределителя в сборе. Питание модуля управления осуществляется через четырехконтактный мультиштекер, встроенный в корпус распределителя. Внешние кабели LT от распределителя ограничены двумя выводами, соединяющимися с катушкой и замком зажигания (рис. 16.45). Тахометр, подключенный к ’-’ стороне катушки, использует LT-импульсы заряда катушки для измерения скорости двигателя.
После установки распределитель точно настроен для двигателя, и, поскольку он имеет конструкцию без прерывателя, дальнейшая проверка синхронизации во время обслуживания автомобиля не требуется. Поскольку угол задержки регулируется модулем управления, проверка или регулировка не требуется.

Honda Электронное зажигание.

Эта система, установленная на Accord, содержит генератор импульсов индуктивного типа и модуль управления, называемый воспламенителем (рис. 16.46). Переключение первичного тока катушки осуществляется двумя транзисторами, а именно транзистором Ti и силовыми транзисторами T%. В генераторе импульсов используется реактор, имеющий форму зуба пилы для создания формы волны переменного тока.

Рис. 16.46. Электронная схема зажигания (Honda).
Если ключ зажигания замкнут при неподвижном двигателе, R2 подает напряжение на базу T \. Это напряжение выше триггерного напряжения, и, поскольку сопротивление обмотки генератора импульсов превышает 700 Ом, транзистор Т \ включен. На этом этапе T \ проводит ток «a» на землю, а не на базу T2. Следовательно, Т2 отключается и первичная цепь разомкнута.
Во время проворачивания двигателя движением рефлектора возникает эрнф.Если полярность ЭДС генератора на конце T \ обмотки отрицательная, резистор R2 подает ток на землю через обмотку и диод D \. На этом этапе напряжение, приложенное к базе T \, меньше напряжения триггера, и, следовательно, T \ выключен. Ток ‘a’ от R3 теперь отводится от T \ к базе T2, поэтому T2 включен, и ток проходит через первичную обмотку. Если эл.
Стабилитроны ZD \ и ZD2, установленные на каждом конце первичной обмотки, проводят на землю колебательный ток высокого напряжения, вызванный самоиндукцией, и тем самым защищают оба транзистора от высоковольтных зарядов.
16.3.4.

Емкость Разряда (КД) Зажигание

Эта система хранит электрическую энергию высокого напряжения в конденсаторе до тех пор, пока триггер не отправит заряд в первичную обмотку катушки. Катушка в данном случае представляет собой импульсный трансформатор вместо обычного накопителя энергии (рис.16,47). Чтобы подать на конденсатор напряжение около 400 В, ток батареи инвертируется в переменный, а затем напряжение повышается через трансформатор. Когда требуется искра, триггер передает энергию первичной обмотке катушки, «зажигая» тиристер, который представляет собой тип транзисторного переключателя. После срабатывания тиристера он продолжает пропускать ток через переключатель даже после того, как ток срабатывания триггера прекратится. Из-за внезапного разряда энергии высокого напряжения в первичной обмотке происходит быстрое увеличение магнитного потока катушки, что индуцирует напряжение, превышающее 40 кВ, во вторичной цепи, создавая короткую искру высокой интенсивности.

Рис. 16.47. Схема электронного зажигания разряда емкости.
Преимущества системы CD:
(i) Она сохраняет высокое вторичное напряжение.
Hi) Обеспечивает постоянный входной ток и постоянное выходное напряжение в широком диапазоне скоростей.
(Hi) Это вызывает быстрое нарастание выходного напряжения. Поскольку скорость нарастания примерно в десять раз выше, чем у индуктивного типа электронного зажигания, система CD снижает риск короткого замыкания высокотемпературного тока на землю через загрязненный изолятор вилки или прохождение пути, отличного от электродов свечи.
Хотя система CD специально подходит для двигателей с высокими рабочими характеристиками, продолжительность искры около 0,1 мс, обеспечиваемая этой системой, обычно слишком мала для надежного воспламенения более слабых смесей, используемых во многих современных двигателях. Чтобы решить проблему малой продолжительности искры, иногда используется преимущество высокой вторичной выходной мощности, чтобы обеспечить большую искру за счет увеличения зазора свечи зажигания.
Система может срабатывать с помощью механического прерывателя, но для повышения привлекательности системы используется генератор импульсов либо индуктивного типа, либо на эффекте Холла.Сигнал переменного тока от генератора подается на схему управления формированием импульса, которая преобразует сигнал в выпрямленный прямоугольный импульс, а затем преобразует его в треугольный импульс запуска, чтобы запустить тиристер, когда требуется искра.
Трансформатор напряжения, обеспечивающий одно- или многоимпульсный выход, используется для зарядки конденсатора емкостью 1 мкФ до напряжения около 400 В. В обоих случаях между этапом зарядки и конденсатором установлен диод, чтобы предотвратить повреждение конденсатора. протекание тока от конденсатора.Одноимпульсный заряд конденсатора позволяет нарастить напряжение до максимального примерно за 0,3 мс, тогда как колебательный заряд, обеспечиваемый многоимпульсным, намного медленнее (рис. 16.48), и, следовательно, первый является предпочтительным. Это короткое время зарядки устраняет необходимость в управлении углом выдержки, поскольку время зарядки системы CD не зависит от частоты вращения двигателя. Поскольку первичная обмотка трансформатора зажигания (катушка) всегда получает одинаковый энергетический разряд от конденсатора, доступное вторичное напряжение остается постоянным во всем диапазоне оборотов двигателя (рис.16,49).

Рис. 16.48. Зарядка конденсатора.

Рис. 16.49. Вторичный выход из системы CD.
Внешний вид трансформатора зажигания системы CD похож на обычную катушку зажигания, но внутренне он совсем другой. Он прочен, чтобы выдерживать более высокие электрические и термические нагрузки. Кроме того, индуктивность первичной обмотки составляет всего около 10% от индуктивности нормальной катушки. Из-за низкого импеданса, составляющего около 50 кОм, катушка CD легко принимает энергию, выделяемую конденсатором, из-за чего нарастание вторичного напряжения происходит в десять раз быстрее.Эта особенность снижает риск пропусков зажигания из-за наличия шунтов HT, например пути утечки через загрязненную свечу зажигания, которая имеет сопротивление 0,2–1,0 M £ 2.
При замене необходимо использовать трансформатор только рекомендованного типа. Стандартная катушка вместо трансформатора зажигания, однако, работает без повреждения системы, но многие преимущества системы CD теряются.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *