Крутящий момент что это: Крутящий момент двигателя: что это такое

Содержание

Что такое крутящий момент двигателя автомобиля простыми словами и формула расчета

Водители автомобилей > Полезная информация > Двигатель > От чего зависит крутящий момент двигателя автомобиля

Традиционно мы привыкли оценивать ходовые характеристики автомобилей мощностью двигателя, выраженной в лошадиных силах либо киловаттах. Однако в обычном ритме движения двигатель не нагружается на полную мощность. Максимальная мощность, отражаемая в технических характеристиках двигателей автомобилей, достигается при оборотах около 4000 об./минуту в дизельных и около 6000 об./минуту для бензиновых авто.

В случаях, когда необходимо придать автомобилю заметное ускорение, например, во время обгона, мы часто встречаемся с ситуацией, когда не получаем реальной отдачи от движка даже максимально утопив педаль акселератора. Именно в таких случаях на приемистость двигателя в первую очередь влияет крутящий момент, а не его максимальная мощность.

Крутящий момент двигателя: формула расчета

Согласно физическому определению крутящий момент М есть произведение силы F на длину плеча рычага L, куда эта сила приложена:

М = F * L

Сила F измеряется в ньютонах, длина  – в метрах. Таким образом, момент силы  —  в ньютон на метр.

Применительно к двигателям внутреннего сгорания  (ДВС) сила, выработанная в рабочем объеме  при сгорании топливно-воздушной смеси, давит на поршень, который передает свое усилие кривошипно-шатунному механизму коленвала. Именно длина рычага кривошипа учитывается при расчете крутящего момента. Именно он является определяющей характеристикой при оценке параметров динамического разгона автомобиля.

Видео — мощность и крутящий момент двигателя: что это такое с примерами

Максимальный крутящий момент двигателя в технических характеристиках всегда указывается совместно с величиной оборотов двигателя, при которых он может быть достигнут. В этом смысле различают низкооборотные и высокооборотные двигатели. К низкооборотным относятся, в большинстве, дизельные двигатели. Они могут «выстрелить» при движении с оборотами от 2000 до 3000 в минуту. Бензиновые двигатели обычно показывают максимальный крутящий момент при более высоких оборотах – от 4500 об./минуту.

Бензиновые высокооборотные двигатели достигают большой мощности за счет того, что им подвластны обороты до 8.000 об./минуту и более. Низкооборотные дизельные двигатели способны при меньшей мощности достигать максимальный крутящий момент на более малых оборотах (вплоть до 2.000), поэтому в динамике движения и обгона в городском ритме нисколько не уступают  бензиновым.

Для любителей математических вычислений полезна формула расчета мощности двигателя, исходя из его максимального крутящего момента:

Р = М * n / 9549 [килоВатт]

Здесь Р – мощность двигателя в килоВаттах, М – максимальный крутящий момент, n – количество оборотов двигателя.

Для перевода мощности Р в привычные лошадиные силы можно полученную величину умножить на 1,36.

Некоторые производители указывают величину номинального крутящего момента, определяемую на холостых оборотах двигателя.

Зависимости вращающего момента и мощности ДВС от частоты оборотов

В большинстве случаев зависимости величины крутящего момента и мощности двигателя от количества оборотов имеют такой вид, как на графике 1:

Из графика зависимости видно, что при малых оборотах крутящий момент небольшой, по мере их увеличения он достигает максимума 178 ньютон на метр при величине оборотов около 4500 в минуту, затем начинает падать. Вместе с тем мощность, пропорциональная произведению количества оборотов на крутящий момент до 5500 оборотов в минуту продолжает увеличиваться вплоть до 124 лошадиных сил, как на примере, затем после значительного уменьшения крутящего момента, также падает.

Физически это объяснить нетрудно. На малых оборотах в область сгорания в единицу времени поступает незначительное количество топливно-воздушной смеси, соответственно, сила, воздействующая на поршни, обеспечивающие крутящий момент, небольшие. При увеличении оборотов сгорание больше, крутящий момент увеличивается. Его уменьшение при дальнейшем увеличении оборотов связано с:

  • увеличивающимися потерями мощности на трение механизмов двигателя;
  • инерционными потерями;
  • кислородным голоданием двигателя.

Современные двигатели с турбонаддувом обеспечивают поступление топливно-воздушной смеси в полном объеме и на малых оборотах, кроме этого имеют отлаженную систему электронного регулирования. За счет этого характеристика крутящего момента на различных оборотах более равномерная, как показано на графике 2:

Из графика видно, что высокий крутящий момент обеспечивается на низких оборотах вплоть до 2000 об./минуту и не сильно уменьшается до 5500 об./минуту.

Высокооборотные двигатели позволяют увеличить мощность за счет увеличения количества оборотов до 7.000 – 8.000 в минуту и более, как показано на графике 3:

Как видно из графиков, мощность двигателя является зависимой от крутящего момента и количества оборотов двигателя величиной. Приобретая автомобиль, желательно ознакомиться с динамическими характеристиками двигателя, зависимостью крутящего момента от величины оборотов.

Если вы желаете комфортно передвигаться в городском ритме движения, совершая уверенные обгоны и перестроения, лучше приобрести автомобиль с низкооборотным двигателем либо турбонаддувом. В том случае, если вы любитель погонять с ветерком на автобане, подходит вариант высокооборотного движка.

Видео — крутящий момент, мощность и обороты ДВС:

Как его увеличить и в каких случаях это оправдано

Первоначально крутящий момент определяется на этапе конструкторской разработки двигателя внутреннего сгорания. Существенно увеличить эту характеристику можно, разве что при конструктивных изменениях ДВС. В практике специальных мастерских такой метод увеличения крутящего момента называется форсирование двигателя. Он заключается в увеличении компрессии за счет изменения геометрии поршневой группы, замене штатных форсунок, увеличения воздухозабора, других конструктивных решениях.

Более доступный способ увеличения крутящего момента – коррекция топливной карты с помощью чипования блока управления. Существенного увеличения крутящего момента (более 20%) при чиповании ожидать не следует, но такой метод менее дорогостоящий, не требует конструктивных изменений.

В любом случае, увеличение крутящего момента значительно уменьшает ресурс двигателя, так как все механические нагрузки на узлы двигателя рассчитаны, исходя из крутящего момента, определенного производителем. Их увеличение может вызвать преждевременный износ деталей.

Если вы пока не планируете участвовать на своем авто в соревнованиях по дрифтингу, дрэг-рейсингу и другим экстремальным видам автомобильных состязаний, лучше отложить идею увеличения крутящего момента до тех времен, когда участие в таких соревнованиях будет для вас реальной целью.

Читайте про то, как работает круиз-контроль на механике и какие особенности он имеет.

А в ЭТОЙ СТАТЬЕ узнаете как правильно демонтировать сигнализацию на машине.

Как восстановить работу https://voditeliauto.ru/poleznaya-informaciya/to-i-remont/obogreva-zadnego-stekla.html обогрева заднего стекла автомобиля.

Видео — что важнее мощность или крутящий момент:


Крутящий момент | это… Что такое Крутящий момент?

Момент силы (синонимы: крутящий момент; вращательный момент; вращающий момент

) — физическая величина, характеризующая вращательное действие силы на твёрдое тело.

Момент силы приложенный к гаечному ключу

Отношение между векторами силы, момента силы и импульса во вращающейся системе

Содержание

  • 1 Момент силы
  • 2 Предыстория
  • 3 Единицы
  • 4 Специальные случаи
    • 4.1 Формула момента рычага
    • 4.2 Сила под углом
    • 4.3 Статическое равновесие
    • 4. 4 Момент силы как функция от времени
  • 5 Отношение между моментом силы и мощностью
  • 6 Отношение между моментом силы и работой
  • 7 Момент силы относительно точки
  • 8 Момент силы относительно оси
  • 9 Единицы измерения
  • 10 Измерение момента
  • 11 См. также

Момент силы

В физике момент силы можно понимать как «вращающая сила». В системе СИ единицами измерения для момента силы является ньютон-метр, хотя сантиньютон-метр (cN•m), футо-фунт (ft•lbf), дюйм-фунт (lbf•in) и дюйм-унция (ozf•in) также часто используются для выражения момента силы. Символ момента силы τ (тау). Момент силы иногда называют моментом пары сил, это понятие возникло в трудах Архимеда над рычагами. Вращающиеся аналоги силы, массы и ускорения есть момент силы, момент инерции и угловое ускорение соответственно. Сила, приложенная к рычагу, умноженная на расстояние до оси рычага, есть момент силы. Например, сила в 3 ньютона, приложенная к рычагу, расстояние до оси которого 2 метра, это то же самое, что 1 ньютон, приложенный к рычагу, расстояние до оси которого 6 метров.

Более точно, момент силы частицы определяется как векторное произведение:

где  — сила, действующая на частицу, а  — радиус-вектор частицы!

Предыстория

Строго говоря, вектор, обозначающий момент сил, введен искуственно, так как является удобным при вычислении работы по криволинейному участку относительно неподвижной оси и удобен при вычислении общего момента сил всей системы, так как может суммироваться. Для того, чтобы понять откуда появилось обозначение момента сил и как до него додумались, стоит рассмотреть действие силы на рычаг, относительно неподвижной оси.

Работа, совершаемая при действии силы на рычаг , совершающего вращательное движение вокруг неподвижной оси, может быть рассчитана исходя из следующих соображений.

Пусть под действием этой силы конец рычага смещается на бесконечно малый отрезок , которому соответствует бесконечно малый угол . Обозначим через вектор, который направлен вдоль бесконечно малого отрезка и равен ему по модулю.

Угол между вектором силы и вектором равен , а угол и вектором силы .

Следовательно, бесконечно малая работа , совершаемая силой на бесконечно малом участке равна скалярному произведению вектора и вектора силы, то есть .

Теперь попытаемся выразить модуль вектора через радиус вектор , а проекцию вектора силы на вектор , через угол .

В первом случае, используя теорему Пифагора, можно записать следующее равенство , где в случае малого угла справедливо и следовательно


Для проекции вектора силы на вектор , видно, что угол , так как для бесконечно малого перемещения рычага , можно считать, что траектория перемещения перпендикулярна рычагу , а так как , получаем, что .

Теперь запишем бесконечно малую работу через новые равенства или .

Теперь видно, что произведение есть ни что иное как модуль векторного произведения векторов и , то есть , которое и было принято обозначить за момент силы или модуля вектора момента силы .

И теперь полная работа записывается очень просто или .

Единицы

Момент силы имеет размерность сила на расстояние, и в системе СИ единицей момента силы является «ньютон-метр». Джоуль, единица СИ для энергии и работы, тоже определяется как 1Н*м, но эта единица не используется для момента силы. Когда энергия представляется как результат «сила на расстояние», энергия скалярная, тогда как момент силы — это «сила, векторно умноженная на расстояние» и таким образом она (псевдо) векторная величина. Конечно, совпадение размерности этих величин не простое совпадение; момент силы 1Н*м, приложенный через целый оборот, требует энергии как раз 2*π джоулей. Математически

,

где Е — энергия, τ — вращающий момент, θ — угол в радианах.

Специальные случаи

Формула момента рычага

Момент рычага

Очень интересен особый случай, представляемый как определение момента силы в поле:

τ = МОМЕНТ РЫЧАГА * СИЛУ

Проблема такого представления в том, что оно не дает направления момента силы, а только его величину, поэтому трудно рассматривать в. м. в 3-хмерном случае. Если сила перпендикулярна вектору r, момент рычага будет равен расстоянию до центра и момент силы будет максимален

= РАССТОЯНИЕ ДО ЦЕНТРА * СИЛУ

Сила под углом

Если сила F направлена под углом θ к рычагу r, то τ = r*F*sinθ, где θ это угол между рычагом и приложенной силой

Статическое равновесие

Для того чтобы объект находился в равновесии, должна равняться нулю не только сумма всех сил, но и сумма всех моментов силы вокруг любой точки. Для 2-хмерного случая с горизонтальными и вертикальными силами: сумма сил в двух измерениях ΣH=0, ΣV=0 и момент силы в третьем измерении Στ=0.

Момент силы как функция от времени

Момент силы — производная по времени от момент импульса,

,

где L — момент импульса. Момент импульса твердого тела может быть описан через произведение момента инерции и угловой скорости.

,

То есть если I постоянная, то

,

где α — угловое ускорение, измеряемое в радианах в секунду за секунду.

Отношение между моментом силы и мощностью

Если сила совершает действие на каком-либо расстоянии, то она совершает механическую работу. Также если момент силы совершает действие через угловое расстояние, он совершает работу.

= МОМЕНТ СИЛЫ * УГЛОВАЯ СКОРОСТЬ

В системе СИ мощность измеряется в Ваттах, момент силы в ньютон-метрах, а УГЛОВАЯ СКОРОСТЬ в радианах в секунду.

Отношение между моментом силы и работой

= МОМЕНТ СИЛЫ * УГОЛ

В системе СИ работа измеряется в Джоулях, момент силы в Ньютон * метр, а УГОЛ в в радианах.

Обычно известна угловая скорость в радианах в секунду и время действия МОМЕНТА .

Тогда совершенная МОМЕНТОМ силы РАБОТА рассчитывается как:

= МОМЕНТ СИЛЫ * *

Момент силы относительно точки

Если имеется материальная точка , к которой приложена сила , то момент силы относительно точки равен векторному произведению радиус-вектора , соединяющий точки O и OF, на вектор силы :

.

Момент силы относительно оси

Моментом силы относительно оси называется момент проекции силы на плоскость, перпендикулярную оси относительно точки пересечения оси с этой плоскостью.

Единицы измерения

Момент силы измеряется в ньютон-метрах. 1 Н•м — момент силы, который производит сила 1 Н на рычаг длиной 1 м.

Измерение момента

На сегодняшний день измерение момента силы осуществляется с помощью тензометрических, оптических и индуктивных датчиков нагрузки. В России при решении задач измерения момента в основном используется оборудование зарубежных производителей (HBM (Германия), Kyowa (Япония), Dacell (Корея) и ряда других).

См. также

  • Момент инерции
  • Момент импульса
  • Теорема Вариньона

Как измерять крутящий момент? | Dewesoft

Автор: Грант Малой Смит (Grant Maloy Smith), специалист по сбору данных

Данная статья об измерении крутящего момента поможет вам:

  • Понять, что такое крутящий момент
  • Узнать, как измерять крутящий момент
  • Ознакомиться со спецификой измерения крутящего момента при сборе данных

Что такое крутящий момент?

Если вы не пропускали уроки физики в школе, то помните, что сила — это воздействие, приводящее тело в движение в течение времени. Например, простое линейное усилие может толкнуть (или притянуть) массу в состоянии покоя и изменить её скорость путём ускорения. Крутящий момент — сила, которая вызывает вращение тела по своей оси вращения. Так, крутящий момент — это крутящее усилие, которое называют вращающей силой

Наиболее очевидный пример крутящего момента — приводной вал автомобиля. Вызываемый двигателем крутящий момент вала приводит автомобиль в движение. Крутящий момент — это вектор: это означает, что он имеет направление. 

Крутящий момент — усилие, вращающее или поворачивающее приводной вал, винт или колесо.

Вращающее усилие

Также крутящий момент называют моментом или моментом силы. Как правило, крутящий момент обозначают символом $τ$ (греческой буквой «т»). Единица измерения крутящего момента по системе СИ — $N\cdot m$ (Н·м). 

В США для его выражения используют футо-фунты ($ft/lbs$). Для перевода $N\cdot m$ в $ft/lbs$ достаточно разделить $N\cdot m$ на 1,356.

Старшина второй статьи Джеймс Р. Эванс (James R. Evans) осматривает приводной вал хвостового винта вертолёта ВМС США. Снимок из открытого доступа, Wikimedia Commons

Для чего измеряют крутящий момент?

Измерение механического крутящего момента торсионных валов — важнейший этап проектирования и сбора различных машин, а также устранения их неисправностей. Истинное значение механического крутящего момента вала, пропеллера или другого вращающегося компонента — единственный способ понять, отвечает ли он требованиям. 

В некоторых случаях крутящий момент необходимо отслеживать постоянно: например, чтобы предотвратить потенциально опасный чрезмерный крутящий момент, который может привести к выходу системы из строя. Также измерения крутящего момента играют важную роль при диагностическом техническом обслуживании.

Какие виды крутящего момента существуют?

Крутящий момент делится на два вида: вращающий и реактивный:

  • вращающий — то есть вращающий или динамический крутящий момент;
  • реактивный — то есть стационарный или статичный крутящий момент.

Вращающий момент

Тела, которые многократно (или постоянно) вращаются вокруг своей оси (например, валы, турбины, колёса), имеют вращающий момент.

Реактивный момент

Воздействующая на тело статичная сила называется реактивным крутящим моментом. Например, при попытке закрутить болт ключом на болт воздействует реактивная сила. Такая сила воздействует даже тогда, когда болт не крутится. В таких случаях крутящий момент измеряют не за полный оборот.

Как измеряется крутящий момент?

Крутящий момент можно измерить косвенно или напрямую. Если известны КПД двигателя и скорость вала, с помощью измерителя мощности можно вычислить крутящий момент. Такое измерение называют косвенным.

Более точным методом является прямое измерение крутящего момента с помощью датчиков крутящего момента или роторных моментомеров. Чем они отличаются?

Датчики реактивного (статичного) крутящего момента

Датчик Torquemaster. CC BY-SA 3.0, Wikimedia Commons

Датчик реактивного крутящего момента измеряет статический крутящий момент.

Пример датчика крутящего момента — динамометрический ключ. С помощью таких ключей можно точно измерить крутящий момент, прилагаемый к болту, гайке или другому креплению. В основании ключа можно задать нужный крутящий момент, после чего при затягивании крепления оператором до нужного момента раздастся щелчок. Как правило, такие ключи называют щелчковыми. На них можно задать несколько значений момента.

Цифровые динамометрические ключи оснащены иглой или цифровым дисплеем, на котором отображается прилагаемое усилие. Ряд электронных моделей (в частотности промышленных) имеют память, в которой хранится каждое измерение значение (для ведения документации или контроля качества).

Принцип работы щелчкового динамометрического ключа продемонстрирован в следующем видео:

В основе датчика реактивного крутящего момента лежит кварцевый пьезоэлектрический датчик или тензодатчик. Сегодня на рынке представлены различные виды и конфигурации динамометрических ключей и отвёрток.

Датчики крутящего момента

Датчик крутящего момента — это преобразователь, который преобразовывает вращающий момент в сигнал, который можно измерить, проанализировать, отобразить и сохранить. Преобразователи крутящего момента применяются для испытаний крутящего момента двигателя, испытаний ДВС, испытаний электродвигателей, валов, турбин, генераторов и т.д.

Измерить крутящий момент можно как напрямую, так и косвенно. 

Косвенное измерение крутящего момента — более экономичный и удобный метод измерения, точность которого уступает методу прямого измерения. Он подходит для случаев, когда известен КПД двигателя и имеется возможность измерить скорость вала и расход тока.

Прямое измерение — более точный способ. Для прямого измерения на вале закрепляют тензодатчик, который измеряет крутящее усилие на вале. 

На вале закрепляют тензодатчик. Вращательное усилие заставляет вал вращаться.  

При повороте вала двигателем вращательное усилие будет незначительным. Из-за жёсткости стали увидеть вращение нельзя, однако его можно считать с помощью закреплённых на вале тензодатчиков. Четыре датчика образуют мост Уитстона, выход которого балансируется и нормируется системой измерения крутящего момента.

Выход тензодатчика можно передать по проводу (если возможно) или дистанционно на систему измерения крутящего момента или систему сбора данных. 

Стандартная система измерения крутящего момента

Внутри датчика крутящего момента выходы закреплённых на вале тензодатчиков передаются на электронные компоненты по контактному кольцу (на тензодатчики должно подаваться питание). Также можно подключить бесщёточный или индуктивный датчик: он повышает скорость и меньше изнашивается, а значит требует меньшего технического обслуживания. Бесконтактным способом можно измерить угол и частоту вращения. 

Системы сбора данных Dewesoft — идеальные решения для измерения любых физических параметров, в том числе крутящего момента. В них встроены изолированные блоки преобразования сигналов, которые сокращают количество шумов и гарантируют высокую точность данных. Также они имеют входы счётчика, частоты вращения и энкодера, а значит подходят для одновременного измерения скорости, угла и положения вала. В системах сбора данных данные с аналоговых и цифровых счётчиков полностью синхронизированы между собой, и этот фактор играет важную роль при решении любых задач, особенно при испытании вибрации кручения и вращения. Подробнее об этом — в следующем разделе.

Испытание вибрации кручения и вращения в ПО Dewesoft X  

Стационарные системы измерения крутящего момента

В представленной выше системе датчик крутящего момента закреплён между двигателем и тормозом с помощью соединений с каждой стороны. Проходящий через вал датчик оснащен тензодатчиком, который измеряет крутящее усилие вала. После преобразования выход сигнала отправляется на систему сбора данных, цифровой дисплей или аварийную систему (при мониторинге, а не записи данных).

При необходимости датчики крутящего момента можно оснастить энкодером, который точно выводит скорость и угол вала. Такие выводы применяют для анализа вибрации кручения и вращения. Выводы скорости и угла крайне важны при использовании динамометров для вычисления выходной мощности (выраженной в $HP$ или $Kw$) и КПД двигателя. 

Портативные системы измерения крутящего момента

Для временных измерений крутящего момента тензодатчики можно закрепить на приводном вале. Компактный интерфейс с питанием от аккумулятора питает датчики и дистанционно передаёт данные на ближайший блок преобразования, в котором с помощью системы сбора данных их можно записать, отобразить или проанализировать. 

 

Беспроводной датчик крутящего момента. Изображение предоставлено компанией Parker-LORD MicroStrain Sensing

Беспроводные датчики Parker-Lord совместимы с ПО Dewesoft X: их можно объединить с системами сбора данных и использовать на неограниченном количестве каналов.

Области применения порядкового анализа

Вибрации кручения могут стать причиной выхода торсионных валов из строя. Анализ вибрации вращения и кручения — важный способ устранения неисправностей валов, коленчатых валов и зубчатых передач в автомобилестроении, промышленности и в производстве электроэнергии.

Что такое вибрация кручения?

Вибрации кручения — угловые вибрации тела (как правило, вала по оси вращения). Данные механических вибраций вызваны изменениями крутящего момента с течением времени, наложенными на постоянную скорость торсионного вала. В автомобилестроении основной причиной вибраций кручения становятся колебания полезной мощности двигателя.

Вибрации кручения оценивают как изменение скорости вращения в цикле вращения. Изменения частоты вращения обусловлены нестабильным крутящим моментом или переменной нагрузкой.

Что такое вибрация вращения?

Вибрация вращения — динамическая составляющая скорости вращения. При точном измерении вибрации вращения вала в некоторых участках разгона можно увидеть сильное отклонение скорости вращения. Отклонение возникает в результате угловой вибрации, пересекающей собственную угловую частоту вала. Угловая вибрация вычисляется путём отсечения постоянной составляющей скорости или угла вращения;

Вибрация кручения зависит от ряда параметров: свойств материала и условий эксплуатации (температуры, нагрузки, частоты вращения и т.д.).

Как измерять вибрацию вращения и кручения

В этом коротком видео показаны способы измерения вибрации и вращения, а также описана базовая теория и практические преимущества таких измерений.

Модуль вибрации кручения Dewesoft X автоматически вычисляет следующие параметры:

  • угол поворота: фильтрованное значение угла вибрации;
  • скорость вращения: фильтрованное значение скорости вибрации;
  • угол кручения: динамический угол кручения, который представляет собой разность углов, полученных от датчика 1 и датчика 2;
  • скорость кручения: разница угловых скоростей, полученных от датчика 1 и датчика 2;
  • опорный угол по оси X: опорный угол, который всегда составляет от 0 до 360° и может быть использован в качестве опорного на графике XY;
  • частота: об/мин.

Вычисления можно провести в ходе измерения, а также на этапе обработки (по необработанным данным).

Итог

Датчики крутящего момента применяются для решения сотен задач во всех отраслях. Датчики реактивного крутящего момента применяются в динамометрических ключах и других инструментах.

В автомобилестроении датчики крутящего момента устанавливают в стойки испытания двигателей, динамометры, испытательные стенды, а также стенды испытаний на долговечность. Но это лишь базовые применения, помимо которых датчики применяют для испытания промышленных установок кондиционирования воздуха, крупномасштабных кормушек для животных и птиц, робототехники, монтажного и медицинского оборудования, электрооборудования и т.д. 

Крутящий момент — важный параметр в множестве отраслей. К счастью, его можно измерить с помощью датчиков и преобразователей, и отобразить, записать и проанализировать с помощью систем сбора данных.

Поделиться статьёй:

что такое, формула и в чем измеряется

Мощность двигателя – важнейший его показатель. Как в плане эксплуатации, так и в плане начисления налогов на авто. Крутящий момент нередко путают с мощностью или упускают его из виду в процессе оценки ходовых качеств авто. Многие упрощают автомобиль, считая, что большое количество лошадиных сил – главное преимущество любого мотора. Однако, вращающий момент – более важный показатель. Особенно, если автомобиль не предполагается использовать в качестве спортивного.

Содержание

  1. Что такое крутящий момент
  2. Формула расчета крутящего момента
  3. От чего зависит крутящий момент
  4. На что влияет крутящий момент
  5. Как увеличить крутящий момент
  6. Определение крутящего момента на валу
  7. Измеритель крутящего момента
  8. Датчик крутящего момента
  9. Максимальный крутящий момент
  10. Какому двигателю отдать предпочтение
  11. Бензиновый двигатель
  12. Дизельный двигатель
  13. Электродвигатель
  14. Улучшение разгона авто за счет изменения момента вращения
  15. Зависимость мощности от крутящего момента

Что такое крутящий момент

Крутящим моментом называют единицу силы, которая необходима для поворота коленчатого вала ДВС. Эта не «лошадиная сила», которой должна обозначаться мощность.

ДВС вырабатывает кинетическую энергию, вращая таким образом коленвал. Показатель мощности двигателя (сила давления) зависит от скорости сгорания топлива. Крутящий момент – результат от действия силы на рычаг. Эта сила в физике считается в ньютонах. Длина плеча коленвала считается в метрах. Поэтому обозначение крутящего момента – ньютон-метр.

Технически, крутящий момент – это усилие, которое должно осуществляться двигателем для разгона и движения машины. При этом сила, оказывающая действие на поршень, пропорциональна объему двигателя.

Формула расчета крутящего момента

Показатель КМ рассчитывается так: мощность (в л. с.) равно крутящий момент (в Нм) умножить на обороты в минуту и разделить на 5,252. При меньших чем 5,252 значениях крутящий момент будет выше мощности, при больших – ниже.

В пересчете на принятую в России систему (кгм – килограмм на метр) – 1кг = 10Н, 1 см = 0,01м. Таким образом 1 кг х см = 0,1 Н х м. Посчитать вращательный момент в разных системах измерений ньютоны/килограммы и т.д. поможет конвертер – в практически неизменном виде он доступен на множестве сайтов, с его помощью можно определять данные по практически любому мотору.

График:

На графике изображена зависимость крутящего момента двигателя от его оборотов

От чего зависит крутящий момент

На КМ будут влиять:

  • Объем двигателя.
  • Давление в цилиндрах.
  • Площадь поршней.
  • Радиус кривошипа коленвала.

Основная механика образования КМ заключается в том, что чем больше двигатель по объему, тем сильней он будет нагружать поршень. То есть – будет выше значение КМ. Аналогична взаимосвязь с радиусом кривошипа коленвала, но это вторично: в современных двигателях этот радиус сильно изменить нельзя.

Давление в камере сгорания – не менее важный фактор. От него напрямую зависит сила, давящая на поршень.

Для снижения потерь крутящего момента при тряске машины во время резкого газа можно использовать компенсатор. Это специальный (собранный вручную) демпфер, компенсация которого позволит сохранить вращающий момент и повысить срок эксплуатации деталей.

На что влияет крутящий момент

Главная цель КМ – набор мощности. Часто мощные моторы обладают низким показателем КМ, поэтому не способны разогнать машину достаточно быстро. Особенно это касается бензиновых двигателей.

ВАЖНО! При выборе авто стоит рассчитать оптимальное соотношение вращательного момента с количеством оборотов, на которых чаще всего мотор будет работать. Если держать вращательный момент на соответствующем уровне, это позволит оптимально реализовать потенциал двигателя.

Высокий КМ также может влиять на управляемость машины, поэтому при резком увеличении скорости не лишним будет использование системы TSC. Она позволяет точнее направлять авто при резком разгоне.

Широко распространенный 8-клапанный двигатель ВАЗ выдает вращательный момент 120 (при 2500-2700 оборотах). Ручная коробка или АКПП стоит на машине – не принципиально. При использовании КПП немаловажен опыт водителя, на автоматической коробке плавный старт обеспечивает преобразователь.

Как увеличить крутящий момент

Увеличение рабочего объема. Чтобы повышать КМ используются разные методы: замена установленного коленвала на вал с увеличенным эксцентриситетом (редко встречающаяся запчасть, которую трудно находить) или расточка цилиндров под больший диаметр поршней. Оба способа имеют свои плюсы и минусы. Первый требует много времени на подбор деталей и снижает долговечность двигателя. Второй, увеличение диаметра цилиндров с помощью расточки, более популярен. Это может сделать практически любой автосервис. Там же можно настроить карбюратор для повышения КМ.

Изменение величины наддува. Турбированные двигатели позволяют достичь более высокого показателя КМ благодаря особенностям конструкции – возможности отключить ограничения в блоке управления компрессором, который отвечает за наддув. Манипуляции с блоком позволят повысить объем давления выше максимума, указанного производителем при сборке автомобиля. Способ можно назвать опасным, поскольку у каждого двигателя есть лимитированный запас нагрузок. Кроме того, часто требуются дополнительные усовершенствования: увеличение камеры сгорания, приведение охлаждения в соответствие повышенной мощности. Иногда требуется отрегулировать впускной клапан, иногда – сменить распредвал. Может потребоваться замена чугунного коленвала на стальной, замена поршней.

Изменение газодинамики. Редко используемый вариант, поскольку двигатель – сложная конструкция, созданием которого занимаются профессионалы. Теоретически можно придумать, как убрать ограничения, заложенные конструкторами для увеличения срока эксплуатации двигателя и его деталей. Но на практике, если убрать ограничитель, результат не гарантирован, поскольку поменяются все характеристики: например, динамика вырастет, но шина не будет цепляться за дорогу. Чтобы усовершенствовать двигатель такие образом надо быть не просто автомобильным конструктором, но и математиком, физиком и т.д.

ВАЖНО! Простой способ повысить КМ – использовать масляный фильтр. Он снизит засорение двигателя и продлит срок эксплуатации всех деталей.

Определение крутящего момента на валу

Для измерения крутящего момента на валу автомобильного двигателя применяется множество методик. Это может быть показатель подачи топлива, температуры выхлопных газов и т.д. Такие методы не гарантируют высокой точности.

Распространенный метод повышенной точности – применение тензометрического моста. На вал крепятся тензометры, электрически соединенные по мостовой схеме. Сигнал передается на считывающее устройство.

Измеритель крутящего момента

Главная сложность в измерителе крутящего момента, использующего тензометры, является точность передачи данных. Применявшиеся ранее контактные, индукционные и светотехнические устройства не гарантировали необходимой эффективности. Сейчас данные передаются по цифровым радиоканалам. Измеритель представляет собой компактный радиопередатчик, который крепится на вал и передает данные на приемник.

Сейчас такие устройства доступны по стоимости и просты в эксплуатации. Применяются в основном в СТО.

Датчик крутящего момента

Аналогичные устройства, измеряющие КМ, в автомобиле могут быть установлены не только на коленвал, но и на рулевое колесо. Он ставится на модели машин с электроусилителем руля и позволяет отслеживать работу системы управление автомобилей. При выходе датчика из строя, усилитель, как правило, отключается.

Максимальный крутящий момент

Максимальным называется крутящий момент, представляющий пик, после которого момент не растет, несмотря на количество оборотов. На малых оборотах в цилиндре скапливается большой объем остаточных газов, в результате чего показатель КМ значительно ниже пикового. На средних оборотах в цилиндры поступает больше воздуха, процент газов снижается, крутящий момент продолжает расти.

При высоких оборотах растут потери эффективности: от трения поршней, инерционных потерь в ГРМ, разогрева масла и т.д. будет зависеть работа мотора. Поэтому рост качества работы двигателя прекращается или само качество начинает снижаться. Максимальный крутящий момент достигнут и начинает снижаться.

В электродвигателях максимальный вращательный момент называется «критический».

Таблица марок автомобилей с указанием крутящего момента:

Модели автомобиля ВАЗ Крутящий момент (Нм, разные марки двигателей)
2107 93 – 176
2108 79-186
2109 78-118
2110 104-196
2112 104-162
2114 115-145
2121 (Нива) 116-129
2115 103-132
2106 92-116
2101 85-92
2105 85-186
Двигатели ЗМЗ
406 181,5-230
409 230
Других популярные в России марки автомобилей
Ауди А6 500-750
БМВ 5 290-760
Бугатти Вейрон 1250-1500
Дэу Нексия 123-150
КАМАЗ ~650-2000+
Киа Рио 132-151
Лада Калина 127-148
Мазда 6 165-420
Мицубиси Лансер 143-343
УАЗ Патриот 217-235
Рено Логан 112-152
Рено Дастер 156-240
Тойота Королла 128-173
Хендай Акцент 106-235
Хендай Солярис 132-151
Шевроле Каптив 220-400
Шевроле Круз 118-200

Какому двигателю отдать предпочтение

Сегодня множество моделей производители оснащают разными типами моторов: бензиновым или дизельным. Эти модели идентичны только по цене и другим характеристикам.

Из-за разных типов мотора одна и та же модель может отличаться по показателям мощности мотора и крутящему моменту, при этом разница может быть значительной.

Бензиновый двигатель

Бензиновый двигатель формирует воздушно-топливную смесь, заполняющую цилиндр. Температура внутри него поднимается до примерно 500 градусов. У таких моторов номинальный коэффициент сжатия составляет порядка 9-10, реже 11 единиц. Поэтому, когда происходит впрыск необходимо использование свечей зажигания.

Дизельный двигатель

В цилиндрах работающего на дизеле движка коэффициент сжатия смеси может достигать показателя в 25 единиц, температура – 900 градусов. Поэтому смесь зажигается без использования свечи.

Электродвигатель

Чтобы ответить на вопрос – дизельный, бензиновый или электродвигатель лучше, надо сначала исключить третий вариант, поскольку электродвигатели пока не так распространены, как первые два типа.

ВАЖНО! Что касается выбора между бензиновым и дизельным двигателями, они в первую очередь отличаются мощностью и крутящим моментом. На практике это означает, что при одинаковом объеме двигателя дизельный быстрее разгоняется, а бензиновый позволяет давать более высокую скорость.

Улучшение разгона авто за счет изменения момента вращения

Чем выше показатель крутящего момента – тем быстрее двигатель набирает мощность. Таким образом, вырастет скорость движения. На практике это означает, что, например, во время разгона крутящий момент позволит быстрее обогнать едущий впереди автомобиль.

Чтобы улучшить разгон автомобиля за счет изменения момента вращения, достаточно повысить показатели последнего. Как это сделать – описано выше.

Зависимость мощности от крутящего момента

Крутящий момент, как говорилось выше, это показатель того, с какой скоростью двигатель может набирать обороты. По сути, мощность мотора – прямая производная от КМ на коленвале. Чем больше оборотов – тем выше показатель мощности.

Зависимость мощности от вращательного момента выражается формулой: Р = М*n (Р – мощность, М – крутящий момент, n – количество оборотов коленвала/мин).

Мощность и крутящий момент – что важнее? Разбираемся в деталях

Автоцентр Новости Мощность и крутящий момент – что важнее? Разбираемся в деталях

Марка

Модель

Оставьте ваши контактные данные:

По телефону

На почту

Уточните удобное время для звонка:

День/дата

  • День/дата
  • Сегодня
  • Завтра
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

Часы

  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

Минуты

  • 10
  • 20
  • 30
  • 40
  • 50

Отправляя заявку я предоставляю свое согласие на сбор и обработку предоставленных мною личных персональных данных в соответствии с Законом Украины «О защите персональных данных»

Оставьте ваши контактные данные:

Уточните удобное время для звонка:

День/дата

  • День/дата
  • Сегодня
  • Завтра
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

Часы

  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

Минуты

  • 10
  • 20
  • 30
  • 40
  • 50

Прямо сейчас

Отправляя заявку я предоставляю свое согласие на сбор и обработку предоставленных мною личных персональных данных в соответствии с Законом Украины «О защите персональных данных»

Оставьте ваши контактные данные:

Выберите машину:

Марка

  • Сначала выберите дилера

Модель

  • Сначала выберите марку

Отправляя заявку я предоставляю свое согласие на сбор и обработку предоставленных мною личных персональных данных в соответствии с Законом Украины «О защите персональных данных»

Sample Text

Оставьте ваши контактные данные:

Выберите машину:

Марка

  • Сначала выберите дилера

Модель

  • Сначала выберите марку

Уточните удобное время для тест-драйва:

День/дата

  • День/дата
  • Сегодня
  • Завтра
  • 17 сентября
  • 18 сентября
  • 19 сентября
  • 20 сентября
  • 21 сентября
  • 22 сентября
  • 23 сентября
  • 24 сентября
  • 25 сентября
  • 26 сентября
  • 27 сентября
  • 28 сентября
  • 29 сентября

Часы

  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

Минуты

  • 00
  • 10
  • 20
  • 30
  • 40
  • 50

Отправляя заявку я предоставляю свое согласие на сбор и обработку предоставленных мною личных персональных данных в соответствии с Законом Украины «О защите персональных данных»

X

Оберіть мовну версію сайту. За замовчуванням autocentre.ua відображається українською мовою.

Слава Україні! Героям слава!
Ви будете перенаправлені на українську версію сайту через 10 секунд

Крутящий момент что это для чайников

Мощность зависит от крутящего момента.

В автомобильном мире постоянно сравнивают автомобили друг с другом. В первую очередь это делается с помощью официальных технических характеристик, где, как правило, эксперты, сравнивают мощность автомобиля, выраженную в лошадиных силах, и максимальный крутящий момент, выражаемый в Ньютон-метрах. Но что такое лошадиная сила и крутящий момент? Как эти технические характеристики связаны друг с другом? Вот интересное и простое объяснение.

Известный в англоязычном Интернете видеоблогер снял очередной ролик, в котором простым языком наглядно объяснил разницу между крутящим моментом и мощностью в лошадиных силах.

Крутящий момент – это просто сила, которая воздействует на что-то издалека. Например, в двигателе крутящий момент – это та сила, с которой поршень давит на шатун, передающий эту силу коленвалу. Коленвал же преобразует возвратно-поступательное движение поршней в крутящий момент.

Лошадиная сила представляет собой крутящий момент, умноженный на количество оборотов двигателя в минуту. Обычно в этом случае вычисляют мощность в киловаттах. Чтобы перевести киловатты в лошадиные силы, нужно умножить количество киловатт на 1,36. Вот формула:

P = (Mкр * N : 9549) * 1,36

Р — Мощность в киловаттах

Мкр — крутящий момент в ньютон-метрах (Нм)

9549 — поправочный коэффициент для удобства подсчетов, чтобы не вдаваться в тяжелые вычисления математических функций таких как косинус-альфа.

1,36 — коэффициент необходимый для перевода киловатт в лошадиные силы.

То есть получается, что лошадиная сила показывает, насколько быстро двигатель может выполнить работу за определенное количество времени. Соответственно, крутящий момент и мощность неразрывно связаны друг с другом. В итоге получается, что мощность показывает, сколько двигатель за единицу времени создает крутящих моментов.

Так что когда дело доходит до измерения максимальной скорости автомобиля или его динамики разгона с 0-100, 0-200 км/ч и т. п., то в первую очередь вы должны смотреть на количество лошадиных сил, так как именно мощность напрямую влияет на производительность автомобиля за конкретный промежуток. Ведь именно мощность показывает, сколько тот или иной двигатель может выполнить работы за определенный период времени.

Но это простое объяснение в двух словах. Также вы можете прочитать еще несколько наших материалов по этой теме:

В том числе советуем посмотреть очередной видеоролик блогера Джейсона Фэнске, который в традиционной для себя манере простым языком объясняет сложные вещи. Правда, англоязычный ролик не имеет профессионального перевода на русский язык.

Поэтому для тех, кто не знает английский язык, придется включить субтитры и их машинный перевод на русский язык. К сожалению, перевод, естественно, получается корявый, но тем не менее дает понять многие вещи, которые происходят внутри двигателя.

Крутящий момент – качественный показатель, характеризующий силу вращения коленчатого вала автомобиля.

Его измерение производится в ньютон-метрах (н*м). От показателя КМ зависят тяговые характеристики ДВС и динамика разгона транспортного средства.

Важно: ошибкой было бы называть крутящий момент вращающим, как это делают некоторые источники в Сети. Термин «крутящий» подразумевает внутреннюю силу, приводящую к вращению. Под словом «вращающий» подразумевается наружная сила. Так, крутящей является сила, приводящая в движение коленчатый вал. Вращающей – сила пальцев, в которых крутят карандаш.

Если простым языком отвечать на вопрос, что такое крутящий момент двигателя, то можно сказать, что КМ – сила, с которой агрегат крутит выходной вал. Например, при КМ, равном 130 Н*м и длине выходного вала 1 метр на его конец можно повесить груз весом 13 кг. При этом мотор должен провернуть вал.

Непосредственное отношение к понятию КМ имеет показатель мощности. Мощность и крутящий момент неразрывно связаны, так как одно вытекает из другого. График КМ растет только совместно с графиком мощности.

Мощность определяется количеством работы, которую мотор способен выполнять за единицу времени. Измеряется в лошадиных силах или киловаттах. При этом первая единица измерения является неофициальной, но более популярной. Вторая – официальной, но используемой только в документах.

Показатель КМ двигателя автомобиля напрямую зависит от:

  • Силы давления газов на поршень;
  • Рабочего объема цилиндров;
  • Степени сжатия топливовоздушной смеси в цилиндрах.

Мощность двигателя определяется по формуле P=M*N, где P это мощность, М – крутящий момент, N – обороты двигателя. Соответственно, расчитать КМ можно по формуле M = P/N.

При проведении подсчетов необходимо использовать официальные единицы измерения, зарегистрированные в СИ (Н*м, ватты, радианы в секунду). Реальное измерение крутящего момента производится на специальном стенде в лабораторных условиях.

Передача КМ к ведущим колесам

Появления КМ в результате сгорания топлива недостаточно для начала движения. Момент должен быть передан к ведущим колесам транспортного средства.

Передача выработанного крутящего момента осуществляется посредством трансмиссии – коробки передач, валов, ШРУСов, заднего редуктора, раздаточной коробки. Наличие тех или иных элементов трансмиссии зависит от типа привода автомобиля.
» alt=»»>
В процессе движения водитель имеет возможность изменять КМ, передаваемый от двигателя к колесам. Чтобы добиться этого, необходимо увеличивать или уменьшать количество оборотов силового агрегата. Подобные манипуляции без потерь в скорости движения совершаются с помощью коробки передач.

Важно: коробка переключения передач – устройство, предназначенное для изменения частоты вращения и КМ на двигателях, не обладающих достаточной приспособляемостью. Сегодня в автомобильной промышленности применяются механические, гидромеханические, электромеханические и автоматические КПП.

В процессе передачи крутящего момента его показатель может уменьшаться вследствие механических потерь. Передающееся усилие ослабевает по причине трения элементов мотора и трансмиссии друг об друга, сопротивления материалов, из которых изготовлены детали автомобиля и других факторов воздействия.

Максимальный и номинальный КМ

В механике существует понятие о максимальном и номинальном КМ.

Максимальный крутящий момент – самый большой показатель КМ, который двигатель может развить.

Известно, что момент не является постоянной величиной. Его показатель растет совместно с ростом оборотов.

Однако на определенном этапе поток воздуха, поступающий в цилиндры, начинает оказывать столь высокое сопротивление, что разрежения, создаваемого поршнем, становится недостаточно для всасывания достаточного количества топливовоздушной смеси. При этом ухудшается вентиляция цилиндров, и рост к/м прекращается.

На автомобилях ВАЗ-2110 с мотором 21114 максимальный показатель КМ достигается на 3 тысячах оборотов в минуту. Дальнейшее увеличение частоты работы силового агрегата приводит к росту мощности. При этом крутящий момент снижается.

На что влияет подобное явление? Автомобиль, работающий в мощностном режиме, способен легко преодолевать подъемы, тащить тяжелый прицеп, другой автомобиль. При этом динамика разгона даже не загруженного ТС будет существенно снижена.

Номинальный крутящий момент – показатель КМ, который двигатель выдает без дополнительной нагрузки, работая в нормальном режиме.

Как увеличить КМ

» alt=»»>
Как увеличить крутящий момент двигателя? Увеличение КМ осуществляется практически аналогично увеличению такого показателя, как мощность двигателя. Для этого необходимо произвести доработку самого мотора или его агрегатов.

  • Замена распределительных валов, системы выпуска, фильтров на высокопроизводительные аналоги;
  • Повышение пропускных возможностей впускного клапана или турбирование. Это дает возможность улучшить вентиляцию цилиндров;
  • Коррекция фаз газораспределения с увеличением времени открытия впускных клапанов;
  • Увеличение степени сжатия. Данный способ позволяет значительно повысить КМ, однако сопровождается существенными техническими трудностями.
  • Замена поршней более легкими аналогами. Двигателю будет легче крутиться. Соответственно, динамика разгона вырастет.

Увеличения динамики разгона можно добиться и путем коррекции механизма передачи крутящего момента к ведущим колесам. Для этого необходимо установить в коробку передач шестерни с большим передаточным числом. Следует помнить, что увеличение КМ будет означать снижение максимальной скорости авто.

Увеличения динамики разгона можно добиться и с помощью чип-тюнинга. При этом заводская программа с блока управления двигателем заменяется на альтернативную, изменяющую параметры работы силового агрегата в ту или иную сторону.

Большинство автовладельцев и водителей оценивают ходовые качества своих автотранспортных средств мощностью двигателя. В процессе эксплуатации транспортных средств часто возникают ситуации необходимости намеренного обгона сопутствующих машин в процессе движения. Находясь в определенном ритме движения, водитель «давит» на педаль акселератора и не получает желаемого ускорения обгона. В этом случае более информативной характеристикой приемистости двигателя является крутящий момент на определенных оборотах двигателя.

Максимальная мощность, указываемая в технических характеристиках двигателя, приводится на соответствующих оборотах. Для бензиновых ДВС обычно эта величина соответствует 5000 – 6000 оборотов в минуту, дизельных – приблизительно 3500 – 4500 об/мин. Поэтому считается, что все бензиновые движки являются высокооборотными, дизельные – низкооборотными. Это не всегда так.

Каждый автовладелец, особенно тот, который желает показать мастерство пилотирования симпатичным девушкам, должен знать характеристики крутящего момента своего авто.

Определение крутящего момента двигателя

Крутящий М момент силы согласно определению равен произведению F силы, действующей на рычаг L длиной. Формула, известная многим из школьного курса физики, представляет:

М=F*L

Если переводить входные величины в единую систему измерений, сила F измеряется в ньютонах, длина (в СИ) в метрах, М будет измеряться в ньютон на метр.

Сила, образуемая при воспламенении воздушно-топливной смеси, приводит в действие кривошипно-шатунный механизм. Чем больше рычаг, то есть разность расстояний от центра воздействия до места его осуществления, тем выше крутящий момент. Теоретически крутящий момент возможно пропорционально длине рычага увеличить. Но при этом уменьшится частота вращения двигателя, и увеличатся размеры механизма коленвала. В судах морских плаваний такие изменения несущественны, но автомобиль требует минимизации размеров всех комплектующих.

Крутящий момент ДВС определяет его мощность. Упрощенная формула для пересчета момента в параметр мощности имеет вид:

Р=М*n / 9549, где М – крутящий момента (в Н*м) на оборотах n (в об/мин). Р – мощность в киловаттах. 9549 – округленное число, полученное в результате сокращения констант.

Для пересчета мощности в более привычные для автолюбителей л.с. результат требуется умножить на 1,36.

Таким образом, мощность прямо пропорциональна количеству оборотов. В силу особенности конструкции бензиновые двигатели эффективно работают на оборотах до 8000 об/мин и выше. Таким образом, высокооборотные движки могут развить достаточно высокую мощность. У дизельных движков максимальная характеристика крутящего момента приходится на оборотах порядка 3500 – 4500 об/минуту. Обычно на таких оборотах происходит крейсерское движение автомобиля в городском ритме. Поэтому совершать маневры обгона и перестроения, резко увеличивая скорость на невысоких оборотах, на автомобилях с дизельными ДВС легче.

Характеристики момента приводятся в технических параметрах транспортного средства только вместе с величиной оборотов, для которых они измерены. В некоторых справочных данных автопроизводители указывают крутящий момент двигателя на холостых оборотах.

Наиболее полную картину ходовых параметров двигателя дают зависимости крутящего момента.

Зависимость мощности и крутящего момента двигателя

Крутящий момент по мере увеличения оборотов двигателя постепенно возрастает, при оборотах около 2800 немного стабилизируется, достигая своего максимума приблизительно 178 н*метр при 4500 об/мин. Мощность двигателя по мере увеличения оборотов продолжает возрастать, что согласуется с приведенной выше формулой. Однако после достижения величины оборотов 5400 об/мин, крутящий момент снижается с большей скоростью, чем растут обороты, и мощность уменьшается.

Это соответствует физической интерпретации процессов в двигателе. На малых оборотах в двигатель поступает мало топлива и воздуха, мощность невысокая. По мере увеличения оборотов сгорает больше топлива, вырабатывается больше энергии. При дальнейшем увеличении количества оборотов двигателя мощность начинает снижаться по причинам:

  • увеличение потерь на процессы трения;
  • кислородное голодание;
  • инерционные и другие механические потери;
  • тепловые потери.

Конструкторы ДВС стремятся расширить диапазон стабильного участка характеристики зависимости крутящего момента. В качестве одного из широко распространенных конструктивных решений применяются системы интеллектуального турбонаддува. Они позволяют избежать ситуации кислородного голодания на различных оборотах.

Крутящий момент относительно стабилен при оборотах двигателя от 2500 до 5500 об/мин. Водители могут смело начинать процесс обгона даже на малых оборотах.

Высокооборотные двигатели имеют стабильный момент до 6500 – 7500 об/мин. Это позволяет развить максимальную мощность на оборотах около 7500 об/мин, как приведено на рисунке 3.

Если вы подходите к покупке автомобиля серьезно, желательно покопаться в справочниках, на форумах, ознакомиться с дилерской информацией, погуглить, и найти зависимости крутящего момента и мощности. Тогда вы с научной точки зрения будете судить о ходовых параметрах автомобиля.

Выбирая автомобиль для эксплуатации в городских условиях, целесообразно приобрести дизельный авто, если вы любитель погонять с ветерком на автобанах, подойдет высокооборотный бензиновый двигатель.

Как увеличить крутящий момент

Характеристики крутящего момента двигателя формируются еще на этапе конструкторской разработки конкретной модели движка. Они также учитываются при расчетах тормозной системы, КПП, подвески и других систем. Самостоятельное увеличение крутящего момента двигателя может привести к преждевременному износу деталей авто.

Существует несколько способов повышения крутящего момента:

  • форсирование двигателя изменением параметров поршневой группы;
  • внесение изменений в топливную систему;
  • увеличение производительности воздухозабора;
  • чип-тюнинг.

Многие участники различных любительских автосостязаний используют комплексное форсирование двигателя. Однако следует помнить, что увеличение мощности и крутящего момента двигателя на четверть, уменьшает его ресурс вдвое.

Видео

Простое объяснение технологии: Крутящий момент в автомобилях

Время считывания 6 минут

Мощность двигателя, максимальная скорость, ускорение от 0 до 60 миль в час (от 0 до 100 км/ч) — вот ключевые цифры для автомобилей, о которых знают даже дети. Тем не менее, когда дело доходит до крутящего момента, даже заядлым фанатикам моторов может быть трудно объяснить это. Его значение при вождении автомобиля гораздо больше, чем многие думают. Итак, что такое крутящий момент? И как это влияет на автомобили? Читайте дальше, чтобы узнать ответы.

13 апреля 2021 г.

Активируйте push-уведомления

Инновационная мобильность, захватывающие тенденции будущего и высокие обороты в минуту: подпишитесь сейчас, чтобы получать уведомления о новом контенте.

Подписка успешная .

Подписка  не удалась . Если вам нужна помощь, перейдите по ссылке для получения поддержки.

Как это звучит?

Эту статью также можно прослушать в официальном подкасте BMW Change Lanes.

Помимо этой и других статей, «Changing Lanes» каждую неделю предлагает вам свежие новые эпизоды, наполненные эксклюзивными сведениями о технологиях, образе жизни, дизайне, автомобилях и многом другом, которые вам принесут ведущие Ники и Джонатан.

Найдите и подпишитесь на Change Lanes на всех основных платформах подкастинга.

applepodcast googlepodcast Spotify Deezer

  • Объяснение BMW
  • Опыт вождения
  • Технологии

Краткие факты

  • В физике крутящий момент определяется силой, которая воздействует на тело рычагом.

  • Применительно к двигателям внутреннего сгорания или электродвигателям крутящий момент указывает силу, которой подвергается приводной вал.

  • Крутящий момент выражается в фунт-футах (lb-ft) или ньютон-метрах (Nm).

  • Взаимодействие крутящего момента и частоты вращения двигателя (об/мин) определяет мощность двигателя.

Если вы никогда не путешествовали на электромобиле (➜ Подробнее: Объяснение электромобилей и подключаемых гибридов), время пришло. Это не только хорошо для вашей зеленой совести, но и удовольствие от вождения (➜ Читать далее: Развенчание мифов об электромобилях), безусловно, тоже не осталось без внимания. Одной из причин этого является крутящий момент. Или, точнее: мгновенность, с которой это применяется, когда вы нажимаете на акселератор. Но какую роль в этом играет мощность двигателя, т.е. показатель в кВт или в л.с.?

Чтобы ответить на этот вопрос, вам нужно вернуться на шаг назад, как объясняет эксперт BMW Михаэль Гризе: «Важно то, что вы, как водитель, ожидаете от своего автомобиля. Это высокий уровень мощности двигателя или крутящего момента?» В конце концов, все сводится к тому, действительно ли вам нужна высокая максимальная скорость или быстрая реакция на педаль акселератора.

Начнем с теории. В физике крутящий момент определяется как сила, действующая на точку вращения с помощью плеча рычага. Формула крутящего момента, закон рычага: крутящий момент = сила (Н) х плечо рычага (м). Единицами крутящего момента являются ньютон-метры (Нм) или фунт-футы (фунт-фут). Ньютон (или фунт) обозначает действующую силу, а метры (или футы) обозначают длину плеча рычага. Другое название крутящего момента, которое, возможно, дает более четкое представление о его значении, — вращательная сила. Как следует из этого названия, сила вращения или крутящий момент обеспечивают вращение объекта. Таким образом, он указывает силу, действующую на приводной вал автомобиля при его вращении. Сила (N), с другой стороны, линейно ускоряет объекты. Мощность двигателя есть произведение силы и скорости действия этой силы. Мощность двигателя и крутящий момент являются показателями, которые зависят от частоты вращения двигателя.

Высокий крутящий момент обеспечивает эффективное и энергосберегающее вождение. Высокая мощность двигателя позволяет автомобилю быстро разгоняться и достигать высокой максимальной скорости.

Михаэль Гризе

Руководитель проекта по системам электропривода, BMW Group

Итак, это была теория, а теперь перейдем к практике. В конструкции двигателя внутреннего сгорания цель состоит в том, чтобы обеспечить водителю высокий крутящий момент даже при низких оборотах двигателя (вращения). В то же время крутящий момент следует прикладывать в максимально возможном диапазоне частоты вращения двигателя. С точки зрения опыта вождения, высокий крутящий момент означает максимально короткую задержку между нажатием водителем на педаль газа и реакцией двигателя. Высокий крутящий момент воспринимается водителем как отличная тяга при трогании с места или обгоне.

Таким образом, заблаговременное применение мощного крутящего момента означает высокую степень уверенности (при обгоне), удовольствие от вождения и эффективную тягу для водителя. Тем не менее, со всеми двигателями внутреннего сгорания всегда есть мгновенная задержка (хотя и небольшая, в зависимости от конструкции) перед тем, как крутящий момент начнет действовать — в отличие от двигателя электромобиля, как мы увидим ниже. Короче говоря, высокий крутящий момент, доступный на раннем этапе, дает только преимущества для водителей.

Крутящий момент и его значение для водителей лучше всего иллюстрируется его отличием от термина «мощность двигателя» или «выходная мощность». Здесь также лучше привести краткий теоретический фон в качестве основы для объяснения эксперта BMW: с мощностью двигателя в игру вступает фактор времени. Проще говоря, это указывает на энергию, преобразованную в данный период времени. Физическая формула такова: мощность = сила х скорость. Он указывается в киловаттах (кВт), ранее в лошадиных силах (л.с.). Один ватт (Вт) соответствует одному ньютон-метру в секунду, а 1 лошадиная сила — это мощность, необходимая для подъема 33 000 фунтов ровно на один фут за одну минуту. Двигатель достигает высокой мощности либо за счет высокого крутящего момента, либо за счет высокой скорости вращения двигателя. Максимальная мощность двигателя, заявленная производителями, а также указанная в техпаспорте автомобиля, обычно доступна при высоких оборотах двигателя.

Измерение стандартного ускорения (➜ Подробнее: От 0 до 60: Разогнаться до скорости) Сюда хорошо подходит: передачи полностью выдвинуты, двигатель работает в высоких (вращательных) диапазонах оборотов, максимальные номинальные можно призвать силу. Чтобы понять крутящий момент и мощность двигателя, а также повседневное использование автомобиля, важно знать, что двигатель внутреннего сгорания достигает своего максимального крутящего момента при частоте вращения ниже максимальной выходной мощности. Поэтому, когда мы говорим о хорошей мощности в нижнем диапазоне оборотов двигателя, мы имеем в виду высокий крутящий момент даже при низких оборотах двигателя. Это полезно знать для ограничения переключения передач при вождении автомобилей с механической коробкой передач. Или для буксировки прицепов в вашем автомобиле и для движения в гору.

Пример иллюстрирует разницу между крутящим моментом и мощностью двигателя. Если, как водитель автомобиля с двигателем внутреннего сгорания, вы будете следить за циферблатами на дисплее, вы увидите, что по мере увеличения частоты вращения двигателя (об/мин) вы достигнете точки, в которой крутящий момент равен его максимум. В то же время мощность двигателя увеличивается с увеличением оборотов двигателя. Когда водитель чувствует, что мощность двигателя, производительность двигателя падает по отношению к оборотам двигателя, он переключается на более высокую передачу (конечно, автомат делает это сам). Затем обороты двигателя падают, и игра начинается сначала.

Вопреки распространенному мнению (то есть тому, что думают ваши друзья), в повседневной жизни с автомобилем крутящий момент двигателя играет более важную роль, чем (максимальная) мощность двигателя. Это потому, что для сохранения ресурсов — окружающей среды, кошельков людей и их нервов — инженеры хотят, чтобы водители ехали с хорошей тягой в диапазоне низких оборотов двигателя. Что подводит нас к двигателю электромобиля. В чем большой плюс электромобилей? Они обеспечивают полный крутящий момент с самого начала. Безо всяких задержек. Вот почему ускорение электромобилей (➜ Подробнее: Факты об электромобилях со всего мира) так запоминается как водителям, так и пассажирам. И не только это, но и без рывков и без переключения передач, так как многие электромобили идут с одноступенчатой ​​автоматической коробкой передач.

При низких оборотах двигателя важен крутящий момент, при высоких оборотах — мощность двигателя.

Михаэль Гризе

Руководитель проекта по системам электропривода, BMW Group

Эксперт BMW Гриз объясняет, в чем особенность электромобилей. «Высокий крутящий момент электродвигателя позволяет транспортным средствам с такими двигателями эффективно передвигаться и экономить энергию». Максимально возможная скорость, которая достигается за счет высокой мощности двигателя, — не единственная цель электромобилей. Электромобили обладают отличным сцеплением с дорогой, что обеспечивает комфортное и эффективное вождение, но они также не пренебрегают удовольствием от вождения!

Другими словами, максимальный крутящий момент электродвигателя фактически достигается при низких оборотах. «И она остается близкой к постоянной до тех пор, пока вы не достигнете максимальной мощности двигателя», — поясняет далее инженер Гризе. Оттуда крутящий момент падает, а мощность двигателя остается постоянной. Как только достигается точка максимального крутящего момента, автомобиль больше не разгоняется быстрее. Эксперт BMW Гриз резюмирует следующим образом: «При низких оборотах двигателя важен крутящий момент, при высоких — мощность двигателя».

Что важнее, высокая мощность двигателя или высокий крутящий момент? Все сводится к тому, что вам как водителю нужно. Если, например, вы предпочитаете высокую максимальную скорость, вы найдете ее в автомобиле с высокой номинальной выходной мощностью. Если, с другой стороны, вы предпочитаете эффективный и комфортный стиль вождения с быстрым стартом на светофоре, вы полагаетесь на фактор крутящего момента — как в случае с электромобилями.

Что такое крутящий момент в автомобиле?

Крутящий момент — это физическая величина, которая указывает тяговое усилие в конструкции двигателя. Физической единицей крутящего момента является ньютон-метр (Нм). Для автомобилей с двигателем внутреннего сгорания цель состоит в том, чтобы как можно раньше достичь высокого крутящего момента при низких оборотах двигателя. В электромобилях крутящий момент доступен сразу, и это преимущество.

Автор: Нильс Арнольд; Иллюстрации: Майкл Блосс; Фото/Видео: BMW

  • Automotive Life
  • Insight
  • Performance
  • Technology

Крутящий момент и вращательное движение Учебное пособие

Что такое крутящий момент?

Крутящий момент — это мера того, насколько сила, действующая на объект, заставляет этот объект вращаться. Объект вращается вокруг оси, которую мы назовем точкой поворота и обозначим ‘\(O\)’. Мы будем называть силу ‘\(F\)’. Расстояние от точки вращения до точки, где действует сила, называется плечом момента и обозначается «\(r\)». Обратите внимание, что это расстояние ‘\(r\)’ также является вектором и указывает от оси вращения до точки, где действует сила. (Обратитесь к рисунку 1 для графического представления этих определений.)

Рисунок 1: Определения

Крутящий момент определяется как  \(\Gamma = r \times F = rF \sin (\theta)\).

Другими словами, крутящий момент представляет собой перекрестное произведение между вектором расстояния (расстояние от точки вращения до точки приложения силы) и вектором силы, где ‘\(a\)’ представляет собой угол между \(r\) и \(F.\)

Перекрестное произведение

Перекрестное произведение, также называемое векторным произведением, представляет собой операцию над двумя векторами. Перемножение двух векторов дает третий вектор, который перпендикулярен плоскости, в которой лежат первые два. То есть для пересечения двух векторов \(A\) и \(B\) мы размещаем \(A\) и \(B\) так, чтобы их хвосты находились в одной точке. Затем их векторное произведение \(A \times B\) дает третий вектор, скажем, \(C\), хвост которого также находится в той же точке, что и у \(A\) и \(B.\) Вектор \(C\) указывает направление, перпендикулярное (или нормальное) к обоим \(A\) и \(B). Направление \(C\) зависит от правила правой руки.

Рисунок CP 1: \(A \times B = C\)

Если угол между \(A\) и \(B\) равен , то векторное произведение \(A\) и \(B\ ) можно выразить как 

\(A \times B = A B \sin(\theta)\)

Рисунок CP2: \(B \times A = D\)

Если компоненты для векторов \(A\) и \ (B\) известны, то мы можем выразить компоненты их векторного произведения \(C = A \times B\) следующим образом A_xB_z\)
\(C_z = A_xB_y — A_yB_x\)
 
Далее, если вы знакомы с определителями, \(A \times B\), это 

\(A \times B = \Biggr| \begin {matrix} i \quad j \quad k \\ A_x \; A_y \; A_z \\ B_x \; B_y \; B_z \end{matrix} \Biggr|\)

Сравнивая рисунки CP1 и CP2, мы замечаем, что 
\(A \times B = — B \times A\)

Очень хорошая симуляция, позволяющая исследовать свойства перекрестного произведения, доступна по ссылке ЗДЕСЬ. Используйте кнопку «назад», чтобы вернуться в это место.

 

Используя правило правой руки , мы можем найти направление вектора крутящего момента. Если мы направим пальцы в направлении \(r,\) и согнем их в направлении \(F,\), то большой палец будет указывать в направлении вектора крутящего момента.

Правило правой руки

Вопрос

В каком направлении крутящий момент на этой диаграмме относительно точки вращения, обозначенной \(O\)?

Рисунок RHR 1: Схема проблемы Рисунок RHR 2: Схема проблемы, сила была преобразована, чтобы упростить использование правила правой руки

Решение

Здесь мы предполагаем, что векторы силы \(F,\) и плеча момента r были первоначально размещены «голова к голове» (то есть \(F\) указывал на острие стрелки \(r,\) не в своей точке вращения). Это показано на рис. RHR 1. Однако, переводя вектор силы в его положение на рис. RHR 2, использование правила правой руки становится более очевидным.

Без этого уточнения можно интерпретировать рисунок RHR 2 как вектор силы, проходящий через точку вращения, и в этом случае крутящего момента не будет. Это связано с определением плеча момента, которое представляет собой расстояние между точкой вращения и точкой, в которой действует сила. Если сила действует прямо на точку вращения, то \(r = 0,\), поэтому крутящего момента не будет. (Имея плечо момента, равное нулю, это все равно, что пытаться открыть дверь, нажимая на ее петли; ничего не происходит, потому что приложенная сила не создает крутящего момента.)

Вспомните использование правила правой руки при расчете крутящего момента. Пальцы должны быть направлены в сторону первого вектора и согнуты в сторону второго вектора. В этом случае крутящий момент представляет собой перекрестное произведение плеча момента и крутящего момента. Таким образом, пальцы будут указывать в том же направлении, что и плечо момента, и свернуты в направлении силы (по часовой стрелке). Направление вашего большого пальца — это направление крутящего момента; в этом случае крутящий момент попадает на экран.

Мы можем представить «внутри» и «из» с помощью символов при рисовании трехмерных диаграмм. Символ «в» – это  (предполагается, что это конец стрелки), а «из» –  (это кончик стрелки).

Рисунок RHR 3: Схема решенной проблемы (результирующий крутящий момент попадает на экран)

 

Представьте, что вы толкаете дверь, чтобы открыть ее. Сила вашего толчка (\(F\)) заставляет дверь вращаться вокруг своих петель (точка вращения, \(O\)). То, насколько сильно вам нужно нажимать, зависит от расстояния, на котором вы находитесь от петель (\(r\)) (и от нескольких других вещей, но давайте их сейчас проигнорируем). Чем ближе вы к петлям (т.е. чем меньше \(r\)), тем труднее нажимать. Вот что бывает, когда пытаешься толкнуть дверь не с той стороны. Крутящий момент, создаваемый вами на двери, меньше, чем если бы вы отодвинули правильную сторону (от ее петель).

Обратите внимание, что приложенная сила \(F,\) и плечо момента \(r,\) не зависят от объекта. Кроме того, сила, приложенная к точке поворота, не вызовет крутящего момента, поскольку плечо момента будет равно нулю (\(r = 0\)).

Другой способ выражения приведенного выше уравнения заключается в том, что крутящий момент представляет собой произведение величины силы и расстояния по перпендикуляру от силы до оси вращения (т. е. точки поворота).

Пусть сила, действующая на объект, разбита на тангенциальную (\(F_{tan}\)) и радиальную (\(F_{rad}\)) составляющие (см. рис. 2). (Обратите внимание, что тангенциальная составляющая перпендикулярна плечу момента, а радиальная составляющая параллельна плечу момента.) Радиальная составляющая силы не влияет на крутящий момент, поскольку она проходит через точку поворота. Таким образом, только тангенциальная составляющая силы влияет на крутящий момент (поскольку она перпендикулярна линии между точкой действия силы и точкой поворота).

Рисунок 2: Тангенциальная и радиальная составляющие силы F

На объект может действовать более одной силы, и каждая из этих сил может действовать на разные точки объекта. Тогда каждая сила будет вызывать крутящий момент. Чистый крутящий момент представляет собой сумму отдельных крутящих моментов.

Вращательное равновесие аналогично поступательному равновесию, где сумма сил равна нулю. При вращательном равновесии сумма крутящих моментов равна нулю. Другими словами, на объекте нет чистого крутящего момента.

\(\sum \tau = 0\)

Обратите внимание, что единицами крутящего момента в системе СИ является ньютон-метр , что также является способом выражения джоуля (единицы энергии). Однако крутящий момент — это не энергия. Итак, чтобы избежать путаницы, мы будем использовать единицы Н·м, а не Дж. Различие возникает из-за того, что энергия — это скалярная величина, а крутящий момент — это вектор.

Полезное и интересное интерактивное занятие по вращательному равновесию.

Крутящий момент и угловое ускорение

В этом разделе мы рассмотрим взаимосвязь между крутящим моментом и угловым ускорением. Для этого раздела вам необходимо иметь общее представление о моментах инерции.

Момент инерции

Момент инерции является аналогом массы при вращении. Просмотрите определения, как объяснено в вашем учебнике.

В следующей таблице приведены моменты инерции для различных распространенных тел. «М» в каждом случае — это общая масса объекта. 92\)

 

Рис. 3. Радиальная и тангенциальная составляющие силы, два измерения

Представьте силу F, действующую на некоторый объект на расстоянии r от его оси вращения. Мы можем разбить силу на тангенциальную (\(F_{tan}\)), радиальную (\(F_{rad}\)) (см. рис. 3). (Это предполагает двумерный сценарий. Для трех измерений — более реалистичной, но и более сложной ситуации — у нас есть три компонента силы: тангенциальная составляющая \(F_{tan}\), радиальная составляющая \( F_{rad}\) и z-компонента \(F_z\). Все компоненты силы взаимно перпендикулярны или нормальны.) 92\), умноженное на угловое ускорение, \(\альфа\).

\(\sum \tau = I\cdot \alpha\)

Панель 4: Радиальная, тангенциальная и z-компоненты силы, три измерения

Если провести аналогию между поступательным и вращательным движением, то это соотношение между угловое ускорение аналогично второму закону Ньютона. А именно, принимая крутящий момент за аналог силы, момент инерции за аналог массы и угловое ускорение за аналог ускорения, мы получаем уравнение, очень похожее на второй закон.

Пример задачи: Качающаяся дверь

Вопрос

В спешке, чтобы поймать такси, вы мчитесь через плавно вращающуюся дверь на тротуар. Сила, которую вы приложили к двери, была \(50 Н,\) приложена перпендикулярно плоскости двери. Ширина двери \(1,0\;м\). Предполагая, что вы толкнули дверь за ее край, каков был крутящий момент на распашной двери (принимая петлю за точку опоры)?

Подсказки

  1. Где точка разворота?
  2. Какая сила была приложена?
  3. На каком расстоянии от точки вращения была приложена сила?
  4. Какой угол между дверью и направлением силы?

Решение

Точка поворота находится на петлях двери, напротив того места, где вы толкали дверь. Сила, которую вы использовали, была \(50 Н,\) на расстоянии \(1,0\;м\) от точки вращения. Вы ударили по двери перпендикулярно ее плоскости, поэтому угол между дверью и направлением силы был \(90\) градусов.

Так как
\(\tau = r \times F = r F \sin (\theta)\)

Диаграмма примера задачи

, то крутящий момент на двери был:
\(\tau = (1,0 м) (50 Н ) \sin(90)\)
\(\tau = 50 Н·м\)

Обратите внимание, что это только величина крутящего момента; чтобы завершить ответ, нам нужно найти направление крутящего момента. Используя правило правой руки , мы видим, что направление крутящего момента выходит за пределы экрана.

Что такое крутящий момент? И почему крутящий момент имеет значение?

Думаете, вы ничего не знаете о крутящем моменте? Если вы когда-нибудь выкручивали помаду из тюбика, вы видели крутящий момент в действии. Фото: Дарья Гордова на Unsplash

Ваши глаза стекленеют, когда кто-то из звезд говорит о фунтах-футах крутящего момента? Ты не одинок.

Крутящий момент — один из самых недооцененных аспектов любого автомобиля, но очень важно понимать его, когда вы ищете новый автомобиль. Представьте, что вы пытаетесь объяснить кому-то, почему им нужно попробовать вашу любимую еду, не упоминая ее вкус, или почему они должны тратить деньги на роскошный отдых, не говоря о том, почему это стоит такой цены. Это невозможно!

Серьезно. Крутящий момент так важен. Но даже самые большие редукторы не всегда понимают, что такое крутящий момент или почему эти значения крутящего момента имеют значение.

Готовься, девочка. Мы собираемся разбить его для вас шаг за шагом.

Добро пожаловать в «Путеводитель для девочек», нашу новую серию, посвященную самым запутанным техническим элементам автомобилей. Мы здесь, чтобы разобрать вещи и демистифицировать эти концепции, чтобы помочь вам понять все, что вам нужно знать о своем автомобиле, о любом автомобиле, который вы можете купить в будущем. Если есть концепция, которую вы хотите решить, сообщите нам об этом в комментариях!

Связанный: Руководство для девочек по безопасности автомобиля

Что такое крутящий момент?

У вас поблизости есть тюбик губной помады или гигиенической помады? Возьми это для меня. Раскройте его, затем закрутите вверх. Вы только что испытали крутящий момент.

Теперь откройте пластиковую бутылку из-под газировки. Поверните дверную ручку. Крути велосипед. Вот и весь крутящий момент в действии.

Крутящий момент — это научное слово, которое описывает усилие, необходимое для того, чтобы что-то крутить, а в автомобильном мире оно измеряет крутящее усилие вашего двигателя, когда ваш двигатель работает. Вернемся к нашей помаде. Вы прикладываете силу к тюбику, когда выкручиваете помаду из тюбика. Эта сила прикладывается к трубке, которая поднимает помаду. Приложите большее усилие — то есть крутите быстрее или приложите больший крутящий момент — и вы измените величину прилагаемой силы и, следовательно, скорость, с которой помада покидает тюбик. Поворачивайте медленнее, и вы уменьшаете усилие, поэтому помада не покидает тюбик так быстро.

Логично, правда?

Связанный: Плюсы и минусы перехода на электромобиль


Посмотрите это видео на YouTube

Что это значит для двигателя?

Я буду говорить проще, так как вам не нужно знать технические подробности, чтобы понять крутящий момент, но некоторым людям может понравиться описание.

В двигателе внутреннего сгорания топливо смешивается с воздухом и затем закачивается в цилиндр. Ваш двигатель состоит из цилиндра и поршня (или нескольких цилиндров и поршней!). Сила нагнетания воздуха в цилиндр и расширение этого воздуха при нагревании заставляют поршень двигаться. Поршни передают силу этого расширяющегося газа на коленчатый вал, который затем обеспечивает вращательное движение маховика, который затем помогает передавать мощность через трансмиссию и трансмиссию на колеса.

Ключевое слово здесь вращательная сила, которую мы теперь распознаем как крутящий момент.

См. также: Безопасность на дорогах: выбор наиболее безопасной полосы движения и другие советы по обеспечению безопасности на дороге

Почему крутящий момент имеет значение?

Если вы уже некоторое время занимаетесь покупкой автомобилей, вы, возможно, помните время, когда слово «крутящий момент» не имело значения. На самом деле, автопроизводители даже не афишировали это — если вообще делились этой информацией с потребителями.

Но это потому, что крутящий момент  сделал вдруг как будто начал иметь значение. Мы помним, что старые автомобили были тяжелыми, но в наши дни мы ожидаем гораздо большего от наших автомобилей — от эвакуатора до мобильного офиса — что они оснащены дополнительными технологиями, а крутящий момент стал более важным. .

Проще говоря, крутящий момент равен мощности — , хотя и совсем другого типа, чем лошадиные силы. Крутящий момент — это то, что позволяет вам делать что-то. Мощность измеряется прямым ускорением, в то время как крутящий момент является более надежным. Лошадиная сила похожа на 200-метровый спринт, а крутящий момент — на марафон; если вы пытаетесь измерить выносливость или рассчитать среднюю скорость, вы получите больше информации из марафона. Но это не делает 200-метровый спринт меньшей формой бега; это просто лучше для разных видов измерений.


Посмотрите это видео на YouTube

Как оценить крутящий момент

Так же, как ваша губная помада просто не работает, если вы не принимаете во внимание, как она работает с остальной частью вашего макияжа, крутящего момента не существует в вакууме. Число крутящего момента не так уж много значит, если вы не рассматриваете его вместе с мощностью вашего автомобиля или его весом.

При этом более высокий крутящий момент обычно означает лучшую производительность, потому что двигатель, который может развивать больший крутящий момент, уже способен развивать большую мощность и, следовательно, более высокую скорость. Более высокий крутящий момент также обычно увеличивает такие параметры, как тяговое усилие.

Однако вам нужен баланс . Иметь двигатель с тоннами крутящего момента, но без лошадиных сил — очень неэффективный двигатель, и, вероятно, им будет сложно управлять. Автолюбители скажут вам, что вы хотите, чтобы значение крутящего момента было как можно ближе к числу лошадиных сил, поскольку это означает, что ваш автомобиль вращается и движется вперед с одинаковой предсказуемой скоростью. Но мы поговорим подробнее о взаимосвязи между крутящим моментом и лошадиными силами в следующей статье.

Некоторые отличия

Как вы понимаете, не все машины устроены одинаково. Возьмем, к примеру, дизельный двигатель. Грузовики с дизельным двигателем часто являются хорошими тягачами, потому что они обеспечивают больший крутящий момент на более низких оборотах, а это означает, что вы получаете большую мощность без необходимости нажимать на педаль и изнашивать двигатель.

Или электромобили. Чтобы создать крутящий момент в обычном бензиновом двигателе, вы должны сжигать топливо для создания мощности, поэтому между моментом, когда вы нажимаете на педаль газа, и временем, когда двигатель дает вам ответ, есть небольшая задержка. Электрическая батарея не нуждается в сжигании топлива. Нажимаешь на педаль, и машина сразу едет вперед. Вам не нужно возиться со всеми этими деталями двигателя, так что все становится намного быстрее.

  • Био
  • Твиттер
  • Последние посты

Я Элизабет Блэксток, главный редактор AGGTC, блоггер, журналист, писатель, редактор, аспирантка магистратуры и магистра, жена, фанатик автоспорта и обладательница многих других титулов! Я начал вести автоспортивный блог в 2017 году и с тех пор писал для Red Bull Racing, Jalopnik, Frontstretch, The Drive и AGGTC. Вы можете найти меня в солнцезащитных очках в форме сердца на гоночных трассах по всему миру.

  • 10 наших самых любимых кроссоверов и компактных внедорожников — 2 сентября 2022 г.
  • Как две мамы и новички в бездорожье изучают спорт на ралли Rebelle с Ford Bronco Sport — 21 августа 2022 г.
  • 13 наших самых любимых электромобилей, гибридов и подключаемых гибридных электромобилей — 29 июля 2022 г.

Что такое крутящий момент? — CADENAS PARTsolutions

Нужна помощь с распространенными техническими терминами? Ознакомьтесь с нашим руководством по инженерной терминологии, чтобы ознакомиться с основами.

Как сказал бы Энди Двайер: «Я не знаю, что такое крутящий момент, и на данный момент я слишком боюсь спрашивать».

Слово «крутящий момент» постоянно звучит в цехах, но что это такое?

Крутящий момент в производстве

Производители могут использовать крутящий момент для запуска конвейерных лент и другого оборудования автоматизации. Двигатель с высоким крутящим моментом на конвейерной ленте означает, что лента движется с большей силой, что облегчает перемещение тяжелых предметов.

Редукторы скорости с креплением на валу, такие как редукторы серии Vortex VXT компании Baart Industrial Group, обеспечивают крутящий момент для привода конвейеров и оборудования промышленной автоматизации.

Крутящий момент также является причиной того, что гайки, болты и другие крепежные детали могут скреплять материалы. Если крутящего момента недостаточно, крепежные детали не смогут удерживать материалы вместе. Слишком большой крутящий момент, и крепеж может сломаться от напряжения. Вот почему строители используют динамометрические ключи, которые прикладывают определенный крутящий момент, выбранный пользователем.

Прямо сейчас вам, наверное, интересно, какое отношение все это имеет к выбору мотора.

Все сводится к соотношению между…

Крутящий момент, Мощность, и Об/мин

Наша техподдержка вообще слышит много однотипных вопросов: «Хочу побыстрее», «Мне нужно разгонять увеличить производительность», «Мне нужен двигатель помощнее, чтобы выдерживать более тяжелые нагрузки». Распространенным заблуждением является то, что увеличение одной из трех переменных приведет к увеличению их всех, но это не так! Нуууу, что теперь?!?

С некоторой помощью наших инженеров мы смогли немного лучше визуализировать взаимосвязь между оборотами в минуту, лошадиными силами и двигателями. Увеличение числа оборотов на самом деле может быть не тем решением, которое вы ищете, если вам нужна большая мощность.

Только представьте себе полуприцеп против корвета, у них может быть одинаковое количество очков боеспособности, но только один сможет буксировать прицеп… при этом жертвуя скоростью.

То же самое можно сказать и об электродвигателях!

Если вы оставите мощность на том же уровне, вы потеряете крутящий момент, если будете использовать двигатель с более высокой номинальной скоростью вращения.

Теперь, когда мы лучше понимаем, что такое крутящий момент на самом деле, и его связь с HP и RPM, мир двигателей должен быть немного менее загадочным. Не стесняйтесь обращаться в нашу службу технической поддержки по адресу [email protected] для получения помощи в выборе размера вашего следующего двигателя.

Morgan Spano

Визуальный мыслитель в цифровом спектре, или с точки зрения непрофессионала…. Я создаю весь визуальный контент для Marshall Wolf Automation 🙂 Имея опыт работы в видеорекламе и кинопроизводстве, я работаю с отделом маркетинга MWA, чтобы сохранить наших клиентов чтение наших блогов и просмотр наших продуктов.

Что такое крутящий момент и почему это важно? | Пользовательский

Узнайте о крутящем моменте, о том, как он применяется к двигателям, и почему номинальный крутящий момент так важно учитывать в ваших проектах.

Прокрутите, чтобы продолжить содержание

В основах физики вы, вероятно, привыкли думать о линейных силах, например, о силе гравитации, притягивающей объекты прямо вниз, или о силе, которую вы оказываете на тележку для покупок, толкая ее. Крутящий момент похож на линейные силы, но там, где линейные силы заставляют объект двигаться по прямой линии, крутящий момент заставляет объекты вращаться.

Если вы когда-нибудь открывали дверь, значит, у вас есть интуитивное представление о крутящем моменте. Когда вы открываете дверь, вы прикладываете усилие к той стороне двери, которая находится дальше всего от петли. Поскольку дверь жесткая, ваша сила, действующая на расстоянии от центра вращения двери (петли), заставляет дверь вращаться и открываться. Вы можете открыть дверь, толкнув сторону двери, ближайшую к петле, однако, как вы знаете, для этого потребуется гораздо больше усилий, чтобы дверь открылась. Это связано с тем, что вы создаете меньший крутящий момент за счет уменьшения расстояния между вами и центром вращения двери.

Крутящий момент рассчитывается путем умножения линейной силы на расстояние, на которое действует сила от центра вращения. Классическим примером крутящего момента является гаечный ключ, которым закручивают гайку. Если у вас есть гаечный ключ длиной 20 см, и вы нажимаете на гаечный ключ с усилием 2 кг, крутящий момент на гайке составляет (20 см x 2 кг =) 40 кг·см.

Классический пример крутящего момента можно увидеть, когда вы используете гаечный ключ для закрепления гайки.

Когда мы смотрим на двигатели, расчет крутящего момента такой же — сила, умноженная на расстояние.

Единственное отличие состоит в том, что, в отличие от гаечного ключа, где сила прикладывается к рычагу, с двигателем крутящий момент прикладывается непосредственно к центру вращения, создавая линейную силу на конце рычага. Думая о крутящем моменте двигателя, вы можете представить, что двигатель использует руку для подъема груза. Максимальный вес, который двигатель может поднять, будет его максимальным крутящим моментом.

В двигателях крутящий момент прикладывается к центру вращения для создания линейной силы.

Двигатели, предназначенные для обеспечения большего крутящего момента, способны оказывать большее воздействие на другие объекты.

Почему важен крутящий момент?

Крутящий момент, и особенно проектирование систем с двигателями, обеспечивающими правильное значение крутящего момента, невероятно важны в огромном диапазоне различных приложений.

Допустим, вы строите робота. Если вы хотите построить более крупного робота или робота, способного поднимать более тяжелые предметы, вам потребуются более мощные двигатели, способные обеспечить больший крутящий момент, чтобы заставить робота двигаться. Взгляните на видео ниже, которое показывает, что произойдет, если вы создадите робота, не тратя время на расчет того, какой крутящий момент потребуется двигателям.

Для самолетов крутящий момент двигателей напрямую определяет максимальную подъемную силу, которую могут создать пропеллеры.

Если вы строите автомобиль и хотите, чтобы он разгонялся быстрее, вам потребуется больший крутящий момент от двигателей — в автомобиле сила, толкающая его вперед, равна (примерно) крутящему моменту двигателя, деленному на радиус шин.

Электрические автомобили, такие как Tesla Model S, известны своим быстрым ускорением, потому что их электродвигатели генерируют огромный крутящий момент. Этот крутящий момент напрямую переводится в большую силу, с которой шины действуют на поверхность дороги. Как учат в основах физики, приложение большей силы к объекту заставит его ускоряться быстрее.

Какие факторы влияют на номинальный крутящий момент двигателя

Существуют три различных, но взаимосвязанных фактора, ограничивающих максимальный крутящий момент двигателя.

Механические свойства материалов

Во-первых, это механические свойства используемых материалов. Различные модели сервоприводов являются хорошим примером такого конструктивного решения.

В более дешевых сервоприводах с меньшим крутящим моментом используются пластиковые шестерни, обычно изготовленные из нейлона. Пластиковые шестерни недороги в производстве, что делает сервоприводы с нейлоновыми шестернями дешевле в производстве и дешевле при покупке. Нейлоновые шестерни также легкие по сравнению с металлическими, что является важным фактором для робототехники или самолетов. Однако, если на эти нейлоновые шестерни будет воздействовать слишком большой крутящий момент, они сломаются.

Сервоприводы с более высоким номинальным крутящим моментом имеют металлические шестерни, поэтому они могут развивать более высокий крутящий момент без поломок. Материалы, используемые в конструкции двигателя, играют огромную роль в определении того, какой крутящий момент способен обеспечить двигатель.

Двигатели изготавливаются из различных материалов, но, как правило, двигатели из металла имеют более высокий номинальный крутящий момент, чем двигатели из нейлона или другого пластика.

Максимальное напряжение двигателя

Вторым фактором, влияющим на максимальный крутящий момент двигателя, является максимальное напряжение, на которое рассчитан двигатель. Если вы посмотрите на любую страницу с техническими характеристиками сервопривода, вы найдете разные значения крутящего момента для разных напряжений. Более высокое напряжение дает двигателю большую мощность для обеспечения более высокого крутящего момента. Тем не менее, двигатель и его приводная схема могут принять только такое большое напряжение, прежде чем перегреются и сгорят. Максимальное напряжение, которое двигатель может принять без отказа, влияет на его максимальный номинальный крутящий момент.

Максимальное напряжение двигателя указано в спецификациях производителей.

Выработка тепла двигателем

Это подводит нас к последнему ограничивающему фактору для максимального крутящего момента двигателя. Когда двигатели работают, они выделяют тепло.

Добавить комментарий

Ваш адрес email не будет опубликован.