Момент двигателя: Мощность и крутящий момент — что это?

Содержание

Что Такое Крутящий Момент Двигателя Автомобиля



Большинство автовладельцев и водителей оценивают ходовые качества своих автотранспортных средств мощностью двигателя. В процессе эксплуатации транспортных средств часто возникают ситуации необходимости намеренного обгона сопутствующих машин в процессе движения. Находясь в определенном ритме движения, водитель «давит» на педаль акселератора и не получает желаемого ускорения обгона. В этом случае более информативной характеристикой приемистости двигателя является крутящий момент на определенных оборотах двигателя.

Максимальная мощность, указываемая в технических характеристиках двигателя, приводится на соответствующих оборотах. Для бензиновых ДВС обычно эта величина соответствует 5000 – 6000 оборотов в минуту, дизельных – приблизительно 3500 – 4500 об/мин. Поэтому считается, что все бензиновые движки являются высокооборотными, дизельные – низкооборотными. Это не всегда так.

Каждый автовладелец, особенно тот, который желает показать мастерство пилотирования симпатичным девушкам, должен знать характеристики крутящего момента своего авто.

Определение крутящего момента двигателя

Крутящий М момент силы согласно определению равен произведению F силы, действующей на рычаг L длиной. Формула, известная многим из школьного курса физики, представляет:

М=F*L

Если переводить входные величины в единую систему измерений, сила F измеряется в ньютонах, длина (в СИ) в метрах, М будет измеряться в ньютон на метр.

Сила, образуемая при воспламенении воздушно-топливной смеси, приводит в действие кривошипно-шатунный механизм. Чем больше рычаг, то есть разность расстояний от центра воздействия до места его осуществления, тем выше крутящий момент. Теоретически крутящий момент возможно пропорционально длине рычага увеличить. Но при этом уменьшится частота вращения двигателя, и увеличатся размеры механизма коленвала. В судах морских плаваний такие изменения несущественны, но автомобиль требует минимизации размеров всех комплектующих.

Крутящий момент ДВС определяет его мощность. Упрощенная формула для пересчета момента в параметр мощности имеет вид:

Р=М*n / 9549, где М – крутящий момента (в Н*м) на оборотах n (в об/мин). Р – мощность в киловаттах. 9549 – округленное число, полученное в результате сокращения констант.

Для пересчета мощности в более привычные для автолюбителей л.с. результат требуется умножить на 1,36.

Таким образом, мощность прямо пропорциональна количеству оборотов. В силу особенности конструкции бензиновые двигатели эффективно работают на оборотах до 8000 об/мин и выше. Таким образом, высокооборотные движки могут развить достаточно высокую мощность. У дизельных движков максимальная характеристика крутящего момента приходится на оборотах порядка 3500 – 4500 об/минуту. Обычно на таких оборотах происходит крейсерское движение автомобиля в городском ритме. Поэтому совершать маневры обгона и перестроения, резко увеличивая скорость на невысоких оборотах, на автомобилях с дизельными ДВС легче.

Характеристики момента приводятся в технических параметрах транспортного средства только вместе с величиной оборотов, для которых они измерены. В некоторых справочных данных автопроизводители указывают крутящий момент двигателя на холостых оборотах.

Наиболее полную картину ходовых параметров двигателя дают зависимости крутящего момента.

Зависимость мощности и крутящего момента двигателя

Крутящий момент по мере увеличения оборотов двигателя постепенно возрастает, при оборотах около 2800 немного стабилизируется, достигая своего максимума приблизительно 178 н*метр при 4500 об/мин. Мощность двигателя по мере увеличения оборотов продолжает возрастать, что согласуется с приведенной выше формулой. Однако после достижения величины оборотов 5400 об/мин, крутящий момент снижается с большей скоростью, чем растут обороты, и мощность уменьшается.

Это соответствует физической интерпретации процессов в двигателе. На малых оборотах в двигатель поступает мало топлива и воздуха, мощность невысокая. По мере увеличения оборотов сгорает больше топлива, вырабатывается больше энергии. При дальнейшем увеличении количества оборотов двигателя мощность начинает снижаться по причинам:

  • увеличение потерь на процессы трения;
  • кислородное голодание;
  • инерционные и другие механические потери;
  • тепловые потери.

Конструкторы ДВС стремятся расширить диапазон стабильного участка характеристики зависимости крутящего момента. В качестве одного из широко распространенных конструктивных решений применяются системы интеллектуального турбонаддува. Они позволяют избежать ситуации кислородного голодания на различных оборотах.

Крутящий момент относительно стабилен при оборотах двигателя от 2500 до 5500 об/мин. Водители могут смело начинать процесс обгона даже на малых оборотах.

Высокооборотные двигатели имеют стабильный момент до 6500 – 7500 об/мин. Это позволяет развить максимальную мощность на оборотах около 7500 об/мин, как приведено на рисунке 3.

Если вы подходите к покупке автомобиля серьезно, желательно покопаться в справочниках, на форумах, ознакомиться с дилерской информацией, погуглить, и найти зависимости крутящего момента и мощности. Тогда вы с научной точки зрения будете судить о ходовых параметрах автомобиля.

Выбирая автомобиль для эксплуатации в городских условиях, целесообразно приобрести дизельный авто, если вы любитель погонять с ветерком на автобанах, подойдет высокооборотный бензиновый двигатель.

Как увеличить крутящий момент

Характеристики крутящего момента двигателя формируются еще на этапе конструкторской разработки конкретной модели движка. Они также учитываются при расчетах тормозной системы, КПП, подвески и других систем. Самостоятельное увеличение крутящего момента двигателя может привести к преждевременному износу деталей авто.

Существует несколько способов повышения крутящего момента:

  • форсирование двигателя изменением параметров поршневой группы;
  • внесение изменений в топливную систему;
  • увеличение производительности воздухозабора;
  • чип-тюнинг.

Многие участники различных любительских автосостязаний используют комплексное форсирование двигателя. Однако следует помнить, что увеличение мощности и крутящего момента двигателя на четверть, уменьшает его ресурс вдвое.

Крутящий момент двигателя автомобиля – откуда берётся и что означает

Мало кто может в полной мере рассказать о том, что представляет собой крутящий момент силового агрегата. Редко кто из автолюбителей при покупке автомобиля обращает внимание на такой параметр. Многим достаточно узнать о количестве «лошадок» под капотом и числе ступеней в коробке переключения передач.

Однако, этот параметр является одним из самых важных для автомобиля. Мощность, максимальная скорость, ускорение, напрямую зависит не только от количества «лошадок», спрятанных под капотом, но и от того какой крутящий диапазон может развить ваш «стальной конь». Например, в гонках «Формулы-1» недостаток этого параметра вполне может стоить пилоту победы.

Вы когда-нибудь спрашивали себя о том, почему вы переключаете передачи при достижении стрелки тахометра в четыре тысячи оборотов в минуту? Задавали себе вопрос о том, почему при подъёме в гору необходимо понижать передачу для сохранения скорости движения автомобиля? Всё это необходимо для поддержания оптимального крутящего пика, так как если он упадёт до критического минимума, то автомобиль попросту заглохнет.

Зарождение крутящего момента

Итак, для того чтобы узнать, откуда всё-таки берётся это явление, нам, прежде всего, необходимо будет понять сам принцип работы двигателя внутреннего сгорания. Весь процесс рассматривать не будем, так как для подобного параметра нам понадобится только то, что происходит в цилиндрах двигателя.

Сначала в цилиндр впрыскивается топливо-воздушная смесь (бензин либо дизельное топливо, смешанное с воздухом), воздух необходим для дальнейшего возгорания топливной жидкости в цилиндре. После чего поршень, находящийся внизу цилиндра, поднимается вверх, тем самым сжимая поступившую порцию топливо-воздушной смеси до максимально возможного предела.

Далее, в процесс работы подключается свеча зажигания. Подавая искру в цилиндр, свеча зажигает сжатую в нём поршнем топливо-воздушную смесь. В результате этих действий загоревшаяся смесь мгновенно нагревает остатки воздуха и само топливо. Из-за высокой температуры сжатая смесь резко расширяется, тем самым заставляя поршень вновь смещаться вниз по цилиндру.

Поршень, спускаясь в обратном направлении, используя при этом шатун и его шейку, заставляет вращаться коленчатый вал. Это и является проявлением этого эффекта в двигателе внутреннего сгорания. За один полный цикл (вверх и вниз) поршень заставляет коленчатый вал совершить один полный оборот вокруг своей оси.

Нажимая на педаль газа, вы увеличиваете объём одной порции топливо-воздушной смеси, подаваемой в цилиндр, тем самым заставляя поршень двигаться быстрее, который, в свою очередь, увеличивает скорость вращения коленчатого вала. Вот таким образом повышаются обороты и, соответственно, крутящий момент двигателя.

На что влияет этот параметр силового агрегата

Давайте, прежде всего, определим, что и отчего зависит в работе силового агрегата. Начнём с максимальной скорости автомобиля.

Максимальная скорость напрямую зависит от быстроты разгона машины. Чем быстрее автомобиль ускоряется, тем быстрее он достигнет своей максимально допустимой скорости. На ускорение, в свою очередь, влияет мощность силового агрегата. Мощность машины − сила непостоянная и она регулируется количеством оборотов двигателя, чем выше обороты, тем выше будет мощность в этот отрезок времени. То с какой скоростью автомобиль будет увеличивать обороты напрямую зависит от количества вращений на этот промежуток времени. А вот скорость набираемых оборотов, в свою очередь, уже напрямую зависит от крутящего момента. Ну а крутящий момент автомобиля имеет прямую зависимость от количества вращений, силового агрегата на этот промежуток времени.

Из всего этого мы видим, что явление описываемого нами параметра влияет на скорость разгона автомобиля, так как ускорение зависимо от мощности силового агрегата, а для того, чтобы быстро набрать полную мощность машине, требуется максимальный пик описываемого нами явления. Именно от этого явления зависит то, за какой промежуток времени ваш «стальной друг» разгонится от нуля до ста километров в час. Вот такой замкнутый круг получается в работе двигателя.

Как рассчитать крутящий момент

Крутящий момент на примере работы двигателя

В физике расчёт крутящего момента производится по формуле:

M = F x R

F – это постоянно действующая сила, а R – плечо, к которому и приложена эта сила.

Но точно измерить наше явление в автомобиле по такой формуле невозможно из-за того, что сила, заставляющая поршень спускаться вниз по цилиндру, непостоянна. При движении поршня вниз в цилиндре увеличивается свободное место, в результате чего сила, воздействующая на поршень, теряет свою мощность вплоть до полного исчезновения. Также не обходится и без системы охлаждения цилиндров, от действия которой топливо-воздушная смесь быстро охлаждается и прекращает своё дальнейшее расширение. Трение поршня о стенки цилиндра тоже играет свою роль в его замедлении.

Поэтому этот параметр не рассчитывается в двигателях внутреннего сгорания, а определяется по количеству оборотов. Но не стоит думать, что крутящий момент будет постоянно расти вместе с увеличением оборотов. Этот параметр начинает постепенно увеличиваться и достигает своего максимально возможного пика при трёх, четырёх тысячах оборотов в минуту, а максимально допустимое число оборотов при этом может составлять от семи до восьми тысяч. Что же будет с моментом, когда число оборотов превысит четыре тысячи? Начнётся постепенное снижение этого параметра. Это можно увидеть на примере разгона автомобиля.

Многие замечали такой факт, что при старте машина разгоняется медленнее, но через небольшой промежуток времени скорость ускорения увеличивается, а затем снова начинает постепенно снижаться. Это, собственно, и является наглядным примером того, как работает крутящий момент двигателя.

Итак, теперь вы в полной мере знакомы с таким параметром, как крутящий момент. Зная самое важное по этой теме, вы легко станете первоклассным водителем и сможете совершать стремительные обгоны более медленных участников дорожного движения, автомобиль в ваших руках станет намного резвее. Вы будете приятно удивлены тем, какой потенциал скрывал в себе ваш «стальной конь».

Момент инерции нагрузки и обратная ЭДС шагового двигателя

При выборе шагового двигателя первой характеристикой, на которую обращают внимание, является его выходной крутящий момент. Сразу как следствие возникает вопрос о скорости работы шагового двигателя, так как этот параметр напрямую связан с моментом. Технически подкованные пользователи следующим этапом принимают во внимание момент инерции нагрузки, приведенной к валу двигателя, так как инерционность нагрузки влияет и на требуемый момент, и на точность позиционирования (вернее, на поведение двигателя при разгоне и торможении). Совсем немногие специалисты знают о связи момента инерции с вибрацией двигателя и резонансной частотой двигателя, и принимают во внимание этот аспект. Однако, почти никогда пользователи не учитывают, что инерционная нагрузка в некоторых случаях является причиной выхода из строя шаговых приводов и приводит к непредсказуемым последствиям в результате возникновения больших величин ЭДС.

Давайте вспомним, что такое инерционность нагрузки. Момент инерции — это характеристика объекта, которая препятствует изменению его угловой скорости. В случае разгона двигателя инерционность нагрузки создает дополнительный момент сопротивления, который привод должен преодолеть, и ограничивает максимальные значения скорости и ускорения, при которых шаговый двигатель будет работать. В случае замедления и остановки момент инерции мешает торможению нагрузки.

Еще одна важная особенность работы любого электродвигателя — генерирование обратной электро-движущей силы. Вспомним, что по законам электродинамики на проводник с током, помещенный в магнитное поле, действует сила Ампера, которая создает крутящий момент. Верно и обратное — при движении проводника в магнитном поле в нем (проводнике) возникает электрический ток (генерируется ЭДС). Таким образом очевидно, что шаговый двигатель может работать и как генератор. Однако, если работа двигателя в качестве генератора не контролируется, это свойство может приводить к негативным последствиям.

При запитанных фазах и корректной коммутации обмоток драйвером движение вала двигателя контролируется блоком управления. В случае внезапного отключения питания фаз двигателя (например, при срабатывании аварийного датчика или обрыве фазы) во время работы на высокой скорости момент инерции нагрузки вызывает дальнейшее вращение ротора. В этот момент вращающийся ротор работает как генератор, продуцируя некоторое значение обратной ЭДС. Чем выше скорость вращения и чем больше индуктивность фаз двигателя, тем выше это значение. В случае, когда инерционность нагрузки велика, а привод работает на больших скоростях, это значение обратной ЭДС может быть сравнимо или превосходить напряжение, подаваемое на двигатель при коммутации фаз. Это явление зачастую приводит к выходу из строя силовой цепи драйвера управления шаговым двигателем и порче оборудования.

Так как из-за недостаточности исходных данных расчет обратной ЭДС обычно не делается, есть общая рекомендация по выбору шагового двигателя ля работы с инерционной нагрузкой: момент инерции нагрузки должен быть сопоставим с моментом инерции ротора двигателя. Рекомендуемые соотношения моментов инерции — 1:1…1:10. При больших величинах момента инерции могут возникать и проблемы с позиционированием, ухудшаются динамические характеристики системы, возникает опасность выхода системы из строя под воздействием больших величин обратной ЭДС.

Таким образом, мы хотим напомнить, что важнейшим параметром при подборе шагового двигателя является момент инерции нагрузки по нескольким причинам:

  • Момент инерции нагрузки, приведенный к валу шагового двигателя, влияет на положение пиков резонанса на кривой зависимости момента от скорости.
  • Инерционность нагрузки влияет на вибрацию и шум при работе шагового двигателя.
  • Момент инерции нагрузки участвует в создании момента сопротивления при разгоне привода.
  • В случае, если инерционность нагрузки слишком большая, может ухудшиться точность позиционирования в результате пропуска двигателем шагов.
  • При чрезмерно инерционной нагрузке шаговый двигатель не сможет стартовать.
  • Инерционная нагрузка приводит к возникновению обратной ЭДС, которая может вывести из строя блок управления и сопутствующее оборудование.

Основные показатели двигателя: мощность, крутящий момент, расход

Крутящий момент двигателя — это тяговая характеристика двигателя, которая в отличие от мощности дает весьма отдаленное представление об истинных возможностях автомобиля. Для более полного раскрытия этого понятия необходимо прежде всего уяснить, что момент двигателя и момент на колесах автомобиля — это две большие разницы. Крутящий момент двигателя, будучи величиной равной силе на плечо (Н*м) — сила давления сгоревших в двигателе газов через поршень и шатун на плечо кривошипа коленвала, показывает лишь потенциал мотора, а сам автомобиль, в конечном итоге, движет крутящий момент на колесах.

Для оценки реальных тягово-динамических возможностей автомобиля на основе крутящего момента двигателя необходимо провести довольно утомительный расчет крутящего момента на колесах автомобиля. Для данного расчета также понадобятся, указанные в технических характеристиках, величины оборотов двигателя, передаточных чисел КПП и главной передачи, диаметра колес и т.д. Тогда как указанная величина мощности двигателя, не требуя дополнительных данных и расчетов, наглядно демонстрирует тягово-динамические возможности автомобиля, то есть крутящий момент на колесах.

Момент вращения

Если выражаться языком физики, то понятие о вращающем моменте легко уяснить, зная принцип получения преимущества от использования рычага. Вычисляемые путем сложения приложенных на рычаг усилий (вес груза) к длине плеча (рычага) «ньютон-метры», показывают потенциальное количество выполняемой работы. В случае с ДВС вес груза – это усилие с которым поршень после сгорания топливно-воздушной смеси совершает возвратно-поступательное движение. Длина плеча будет не чем иным, как ходом поршня (расстояние от ВМТ до НМТ). Вращающее усилие создается только во время рабочего такта.

От чего зависит полка крутящего момента

Согласно расчетной формуле Мкр = F х L, где F – это сила, а L – длина плеча, момент вращения будет зависеть от КПД сгорания топливно-воздушной смеси (F) и величины хода поршней (L).

Поскольку автомобиль – это комплексный механизм, на крутящий момент двигателя влияет ряд характеристик других узлов и агрегатов. Ведущие колеса автомобиля будут получать максимальное тяговое усилие лишь в тот момент, когда взаимодействие механизмов является оптимальным. Пик крутящего момента достигается на таких оборотах двигателя, когда наполнение камеры сгорания рабочей смесью, сжигание продуктов горение и вывод отработавших газов осуществляется с минимальными механическими потерями. Для каждого двигателя этот параметр колеблется в зависимости от конструктивных особенностей и типа используемого топлива.

Что такое крутящий момент

Крутящий момент представляет собой качественный показатель, выражающий силу вращения коленвала, и рассчитывается произведением силы, давящей на поршень, на плечо (расстояние между центром вращения оси коленчатого вала до места крепления поршня к шатуну). Измеряется в количестве ньютонов на метр (Нм).

Рекомендуем: Течь масла из-под сальника коленвала: причины и устранение проблемы

Сила крутящего момента зависит от давления на поршень при сгорании газов, рабочего объема камеры сгорания и двигателя в целом, степени сжатия горючей смеси в камере сгорания.

Традиционно более высокий крутящий момент у дизелей, это объясняется степенью сжатия, превосходящей бензиновые двигатели практически вдвое.

Сильный крутящий момент дает автомобилю повышенную динамику набора скорости даже при низких оборотах, и заметно повышает тяговые свойства двигателя. Максимальных значений данная характеристика достигает при определенной частоте вращения коленвала, причем у дизелей этот показатель ниже, чем у бензиновых.

Мощность

Количество полезной работы, преобразованное возвратно-поступательными движениями КШМ, обозначается ньютон-метрами (крутящий момент). Тогда что такое мощность двигателя? Мощностью именуется количество произведенной работы за единицу времени. Иными словами, количество единиц крутящего момента, которое мотор способен выдать за определенный промежуток времени. Мощность двигателя измеряется в киловаттах (кВт).

Формула для расчета мощности в киловаттах:

P=Mkp*n/9549, где n – количество оборотов коленвала в минуту; Mkp – вращающий момент на коленчатом валу.

Нехитрое логическое умозаключение приводит нас к тому, что мощность мотора зависит от количества оборотов.

На что влияет крутящий момент двигателя

Если производить аналогию с человеческим организмом, то можно условно определить, что крутящий момент — это аналог силы, а мощность — это аналог выносливости. Именно от мощности двигателя внутреннего сгорания в конечном итоге зависит то, какую максимальную скорость может развить автомобиль, а от крутящего момента — то, как быстро сможет он это сделать. Именно поэтому далеко не все мощные автомобили имеют хорошую динамику разгона, и далеко не все, у которых она находится на высоком уровне, располагают очень мощными моторами.

Опытные автомобилисты отлично знают, что лучше всего выбирать для себя автомобиль с таким двигателем, показатель крутящего момента которого при работе на тех оборотах, на которых он обычно функционирует, является наилучшим. Дело в том, что это позволяет им использовать потенциал мощности ДВС в максимальной степени.

Следует заметить, что производители двигателей внутреннего сгорания всячески стремятся увеличить их крутящие моменты, причем во всем диапазоне работы моторов. Чаще всего пытаются достичь этого (и, кстати говоря, достаточно успешно) с помощью турбонаддува, управляемых фаз газораспределения (это оптимизирует процесс сгорания топливной смеси), повышения степени сжатия, использованием особых конструкций впускного коллектора и целым рядом других способов.

Рекомендуем: Как завести долго стоявшую дизельную машину

Соотношение крутящего момента к мощности

Для получения наглядного представления о взаимодействии двух величин рассмотрим основные характеристики мотора на графике. Он демонстрирует выдаваемую двигателем мощность и крутящий момент двигателя в зависимости от оборотов коленчатого вала.

График отчетливо демонстрирует тот факт, что тяговое усилие на колесах не прямо пропорционален количеству оборотов либо мощности. Двигатель достигает пика крутящего момента уже на 3 тыс. об/мин. Максимум мощности доступно на 5500 об/мин. В обоих случаях обороты продолжают расти, но отдача падает. Для обозначенного двигателя обороты от 2500 до 5 тыс. наиболее оптимальные.

В этом режиме работы близкая к максимальному значению «полка» момента позволит полноценно реализовать потенциал мотора на протяжении всего отрезка.

Приведенный график является примером гражданской настройки современных бензиновых моторов. Преимущества очевидны:

  • стабильный прирост мощности;
  • достаточно широкая «полка» с плавным приростом и затуханием.

Настройка подобного типа позволяет добиться «эластичности» двигателя. Такая работа обеспечивается не только программно (настройка ЭБУ), но и применением различных вспомогательных технологий (изменяемые фазы газораспределения).

Разница мощностных характеристик во многом зависит от конструкции системы впуска и выпуска. К примеру, двигатели оснащенные турбонаддувом в точке выхода на «буст» получают значительную прибавку в динамике. Крутящий момент и количество лошадиных сил таких моделей значительно превышают своих атмосферных собратьев.

Какому двигателю отдать предпочтение

Сегодня множество моделей производители оснащают разными типами моторов: бензиновым или дизельным. Эти модели идентичны только по цене и другим характеристикам.

Из-за разных типов мотора одна и та же модель может отличаться по показателям мощности мотора и крутящему моменту, при этом разница может быть значительной.

Бензиновый двигатель

Бензиновый двигатель формирует воздушно-топливную смесь, заполняющую цилиндр. Температура внутри него поднимается до примерно 500 градусов. У таких моторов номинальный коэффициент сжатия составляет порядка 9-10, реже 11 единиц. Поэтому, когда происходит впрыск необходимо использование свечей зажигания.

Дизельный двигатель

В цилиндрах работающего на дизеле движка коэффициент сжатия смеси может достигать показателя в 25 единиц, температура – 900 градусов. Поэтому смесь зажигается без использования свечи.

Электродвигатель

Автомобильный трехфазный асинхронный электродвигатель работает по совершенно другим законам, поэтому его мощность и КМ отличаются от традиционных кардинально. Электромотор состоит из ротора и статора, кратность которых позволяет выдавать пиковый КМ (600 Нм) на любой скорости. При этом мощность электродвигателя, например, у Теслы, составляет 416 л. с.

Чтобы ответить на вопрос – дизельный, бензиновый или электродвигатель лучше, надо сначала исключить третий вариант, поскольку электродвигатели пока не так распространены, как первые два типа.

ВАЖНО! Что касается выбора между бензиновым и дизельным двигателями, они в первую очередь отличаются мощностью и крутящим моментом. На практике это означает, что при одинаковом объеме двигателя дизельный быстрее разгоняется, а бензиновый позволяет давать более высокую скорость.

Кроме того, благодаря большему крутящему момент автомобиль, использующийся как грузовой, обладает большей грузоподъемностью за счет двигателя. Особенно если двигатель дизель-генераторный.

Что такое лошадиные силы

Наблюдательный читатель, скорей всего, отметит подозрительным тот факт, что до сих пор не прозвучало, всеми так любимое «лошадиные силы». Суть в том, что «скакуны» – это лишь дань моде тех времен, когда механизмам приходилось доказывать свое преимущество над живой рабочей силой. Поэтому превосходство (способность выполнить определенное количество работы) удобно было выражать в пересчете на потенциал одной лошади. Фактически 1 л.с – это усилие, которого достаточно для поднятия груза массою 75 кг на 1 м за 1 с.

Для того чтобы получить «лошадиные силы» достаточно умножить значение мощности в киловаттах на коэффициент 1,36.

Покупатели не потеряют ровным счетом ничего, если производители откажутся использовать «л.с» в качестве показателя мощностных характеристики автомобилей. Обозначить крутящий момент и мощность в кВт вполне достаточно. Но традиция настолько глубоко запечатлелась в сознании, что тратить усилия на ее разрушения попросту нецелесообразно.

Зависимости вращающего момента и мощности ДВС от частоты оборотов

В большинстве случаев зависимости величины крутящего момента и мощности двигателя от количества оборотов имеют такой вид, как на графике 1:

Из графика зависимости видно, что при малых оборотах крутящий момент небольшой, по мере их увеличения он достигает максимума 178 ньютон на метр при величине оборотов около 4500 в минуту, затем начинает падать. Вместе с тем мощность, пропорциональная произведению количества оборотов на крутящий момент до 5500 оборотов в минуту продолжает увеличиваться вплоть до 124 лошадиных сил, как на примере, затем после значительного уменьшения крутящего момента, также падает.

Физически это объяснить нетрудно. На малых оборотах в область сгорания в единицу времени поступает незначительное количество топливно-воздушной смеси, соответственно, сила, воздействующая на поршни, обеспечивающие крутящий момент, небольшие. При увеличении оборотов сгорание больше, крутящий момент увеличивается. Его уменьшение при дальнейшем увеличении оборотов связано с:

  • увеличивающимися потерями мощности на трение механизмов двигателя;
  • инерционными потерями;
  • кислородным голоданием двигателя.

Современные двигатели с турбонаддувом обеспечивают поступление топливно-воздушной смеси в полном объеме и на малых оборотах, кроме этого имеют отлаженную систему электронного регулирования. За счет этого характеристика крутящего момента на различных оборотах более равномерная, как показано на графике 2:

Из графика видно, что высокий крутящий момент обеспечивается на низких оборотах вплоть до 2000 об./минуту и не сильно уменьшается до 5500 об./минуту.

Высокооборотные двигатели позволяют увеличить мощность за счет увеличения количества оборотов до 7.000 – 8.000 в минуту и более, как показано на графике 3:

Как видно из графиков, мощность двигателя является зависимой от крутящего момента и количества оборотов двигателя величиной. Приобретая автомобиль, желательно ознакомиться с динамическими характеристиками двигателя, зависимостью крутящего момента от величины оборотов.

Если вы желаете комфортно передвигаться в городском ритме движения, совершая уверенные обгоны и перестроения, лучше приобрести автомобиль с низкооборотным двигателем либо турбонаддувом. В том случае, если вы любитель погонять с ветерком на автобане, подходит вариант высокооборотного движка.

Видео — взаимосвязь мощности и вращающего момента ДВС:

Мощность и крутящий момент

Пользуясь случаем хотелось бы пролить свет на вечные споры о мощности и крутящем моменте двигателей внутреннего сгорания. Одни считают главным показателем максимальную мощность мотора, другие ставят во главу угла крутящий момент. Встречаются люди, которые считают, что 100 «дизельных» л.с. соответствуют примерно 140 «бензиновым» л.с. Также бытует мнение, что VW Golf TDI c 330 Нм крутящего момента будет ускоряться лучше, чем Porsche 911 с 320 Нм.

Пользуясь случаем хотелось бы пролить свет на вечные споры о мощности и крутящем моменте двигателей внутреннего сгорания. Одни считают главным показателем максимальную мощность мотора, другие ставят во главу угла крутящий момент. Встречаются люди, которые считают, что 100 «дизельных» л.с. соответствуют примерно 140 «бензиновым» л.с. Также бытует мнение, что VW Golf TDI c 330 Нм крутящего момента будет ускоряться лучше, чем Porsche 911 с 320 Нм.

Очевидно, что эти утверждения не соответствуют действительности.

Определения и разъяснения:

Крутящий момент:

Крутящий момент двигателя прилагается к коленчатому валу двигателя или к первичному валу коробки передач. Крутящий момент изменяется в зависимости от частоты вращения двигателя. Крутящий момент на колесах зависит от передаточного отношения трансмиссии.

Крутящий момент на колесах:

Это преобразованный трансмиссией крутящий момент двигателя.

Мощность двигателя непосредственно взаимосвязана с крутящим моментом двигателя, а именно, через соотношение P=M*n/9550, где М- крутящий момент двигателя. Единица измерения 1 Н*м, n – частота вращения двигателя в об/мин.

Диаграммы крутящего момента достаточно, чтобы просчитать кривую мощности (и наоборот).

Возьмем два двигателя. У обоих максимальный крутящий момент 200 Нм при 4000 об/мин и мощность 147 л.с. при 6000 об/мин. Несмотря на то, что основные данные этих двух моторов одинаковы, они все же отличаются по динамическим характеристикам. Диапазон крутящего момента и мощности первого двигателя лучше чем у второго. Предположим, что переключение передач происходит при 6500 об/мин и обороты двигателя на следующей, более высокой передаче опускаются до 4300 об/мин. Первый двигатель имеет до точки при 6000 об/мин непрерывно больший крутящий момент и мощность. Таким образом, первый автомобиль будет ускоряться лучше. Это показывает, что основные данные двигателя дают только частичную информацию.

Так что мы теперь знаем о «крутящем моменте» и «мощности двигателя»? На самом деле сравнительно мало. Поскольку трансмиссия и ее передаточное отношение играю существенную роль в движении автомобиля. Старые американские автомобили были оборудованы 2-3 ступенчатыми коробками передач, и несмотря на значительные мощности двигателей, разгонялись они достаточно скромно, т.к. падение оборотов при переключении передач было слишком большим. Как грубое сравнение можно привести Mercedes S-Klasse. Он оборудован 7-ступенчатым автоматом, который позволяет полностью использовать имеющуюся в распоряжении мощность двигателя.

Почему это так?

Все мы знаем, что ускоряется автомобиль лучше в определенной области оборотов двигателя. Оптимально, когда обороты двигателя постоянно находятся в этом диапазоне. Но это возможно лишь на немногих автомобилях оборудованных CVT (безступенчатыми трансмиссиями).

Чем больше передач имеется в распоряжении, тем меньше становится скачок оборотов и тем ближе мы становимся к оптимальному числу оборотов двигателя между переключениями. Усилие на ведущих колесах, это то, что приводит автомобиль в движение. Это сила, приложенная по касательной к окружности колеса. Она несет в себе всю информацию (Крутящий момент, передаточное отношение трансмиссии, размер колес) и направлена противоположно силе сопротивления движению и силе инерции.

Когда нужно переключаться?

Оптимальная точка переключения достигается тогда, когда на следующей высшей передаче имеется большее усилие на ведущих колесах чем на актуальной передаче. Чтобы найти оптимальную точку переключения, необходимо воспользоваться кривой крутящего момента. Диаграмма тягового усилия на ведущих колесах зависит от передаточного отношения трансмиссии и размера установленных шин. Как только пересекутся кривые отдельных передач, нужно переключиться на следующую передачу, чтобы достичь лучшего ускорения. Если же кривые не пересекаются, тогда следует выкручивать двигатель до ограничителя. Далее отображены диаграммы тягового усилия на ведущих колесах, чтобы можно было прочувствовать теорию в деле.

Влияние передаточного отношения

Турбодизель достигает очень высоких значений крутящего момента при низких оборотах двигателя.

Но это только цифры, по которым можно судить о том, как автомобиль будет ускоряться и по ним нельзя делать окончательные выводы. Почему? Потому что дизелю нужно значительно дольше переключаться, чтобы достичь одинаковую с бензином скорость(т.к. число оборотов дизеля существенно ниже чем у бензинового двигателя). Это приводит к тому, что бензиновый двигатель свой низкий крутящий момент преобразует значительно лучше за счет коротких передач, чем дизель с длинными передачами.

Турбодизель против высокооборотистого атмосферного двигателя.

Несмотря на длинные передаточные отношения дизель как правило имеет лучшую тяговитость при низких оборотах. Наглядно это отображено на диаграмме сравнения BMW М3 3.2 л двигателя и BMW 535d. Несмотря на гигантский крутящий момент дизеля (520Нм), бензиновый двигатель (365Нм) в очень широком диапазоне оборотов двигателя имеет значительно большее тяговое усилие на ведущих колесах. Так что этот бензиновый двигатель (вопреки многим мнениям) может ездить с редкими переключениями, иногда даже ленивее чем 535d (на шестой передаче тяговое усилие на колесах стабильно выше чем у 535d, независимо при каких оборотах и какой скорости). Но можно говорить о том, что большая часть турбированных двигателей имеет лучшую приемистость (на низких оборотах) чем атмосферные двигатели. Так что предпочитаете ли вы двигатели имеющие «подрыв» на низких скоростях, или те, которые выдают тягу плавно, это остается делом вкуса.

Турбодизель против турбобензина

Сравним BMW E90 335i с 306 л.с. и 400 Нм и BMW E90 335d с 286 л.с. и 560 Нм. На низших передачах в среднем диапазоне оборотов тяга на колесах дизеля существенно выше, чем у бензинового двигателя. При высоких оборотах бензин свою мощность отыгрывает. На 6-й передаче бензин имеет стабильно большее усилие на колесах чем дизель.

Диаграмма тягового усилия BMW E90 335i и E90 335d

Дизель или бензин как тягач

Широко распространено мнение, что дизельный двигатель из-за его высокого крутящего момента лучше подходит для буксировки. Тем не менее из-за огромного скачка в развитии бензиновых двигателей это не совсем верно. Современные бензиновые двигатели все чаще оснащаются турбонагнетателями, которые могут создавать достаточное давление наддува при низких оборотах, и следовательно достигать высокого крутящего момента. Сравним двигатели 1.4 TSI (170 л.с., 240 Нм) и 2.0TDI (170 л.с., 350 Нм) в VW Golf5.

За основу взят 5% уклон, коэффициент лобового сопротивления 0.7, площадь лобового сопротивления 5.87 м2 и общая масса 3250 кг. 1-я передача для лучшего рассмотрения исключена.

Все режимы выше голубой линии возможны с вышеназванными условиями. Все режимы ниже голубой линии ведут к снижению скорости и в конечном счете к переходу на низшую передачу. Можно увидеть, что дизель может использовать первые четыре передачи, TSI – первые пять. Максимально допустимые скорости следующие:

TDI:

68 км/ч на второй передаче (в ограничителе оборотов)

104 км/ч на третьей передаче (вблизи ограничителя оборотов около 4400 об/мин)

TSI:

99 км/ч на второй передаче (вблизи ограничителя оборотов около 7000 об/мин)

106 км/ч на третьей передаче (при около 5500 об/мин)

90 км/ч на четвертой передаче (при около 3500 об/мин)

65 км/ч на пятой передаче (при около 2300 об/мин)

В целом TSI гораздо лучше подходит для движения с прицепом. Единственным недостатком может быть значительный рост расхода топлива у бензина.

Как выглядит диаграмма тягового усилия авто со ступенчатыми коробками передач мы уже знаем.

Для полноты картины следует отметить бесступенчатую трансмиссию Audi «Multitronic».

Рассмотрим кратко, так как эта трансмиссия имеет призрачные шансы на существование. Это безступенчатая трансмиссия с различными профилями вождения. Спортивно настроенный водитель использует голубую линию для максимального ускорения, с высокими оборотами и большим расходом. Средний водитель будет использовать более низкие обороты. А значит тяга на колесах будет не так высока как в спорт режиме. Соответственно автомобиль ускоряется медленнее. CVT, как уже говорилось ранее, превосходное решение. Теоретически она позволяет получить максимальную производительность. На практике все выглядит по другому. Авто с Мультитроником ускоряются хуже, чем авто с МКПП. Потери в трансмиссии слишком велики и перекрывают все преимущества.

А что же насчет двигателей грузовиков и коммерческих автомобилей?

Глядя на кривые мощности и крутящего момента грузовиков можно быстро обнаружить существенные отличия от легковых автомобилей. В то время как на двигателях легковых авто целью является как можно более равномерное и высокое значение крутящего момента, двигателям грузовиков необходим пик крутящего момента. Покажем качественные отличия грузовых и легковых турбодизелей:

Почему так?

Области применения полностью различны. Легковому автомобилю необходимо достичь максимального ускорения и как можно более высокой максимальной скорости. В тоже время необходимо принять во внимание тот факт, что эти двигатели практически постоянно используются в режимах частичной нагрузки. Грузовые же двигатели (в качестве простого примера возьмем двигатели бульдозера или трактора) обычно используются на максимальной нагрузке. Максимальные крутящие момент и мощность ему необходимы при низких оборотах, а также как можно большее нарастание крутящего момента. Почему не падение а именно нарастание крутящего момента станет ясно в следующем абзаце.

Цель этого нарастания величины крутящего момента может быть хорошо объяснена на примере бульдозера. Насыпь земли перед ковшом бульдозера всегда большая, поэтому возникает необходимость увеличить мощность, чтобы продвинуть насыпь дальше. При этой нагрузке частота вращения двигателя падает и вместе с тем падает скорость сдвига. Снижение числа оборотов двигателя благодаря типичной для грузовых транспортных средств кривой крутящего момента ведет к росту крутящего момента и мощности двигателя (смотри график). Таким образом в некоторой степени предотвращается дальнейшее падение оборотов и скорости сдвига – чем сильнее падение числа оборотов, тем больше мощности отдает двигатель. В переносном смысле можно сказать: кривая крутящего момента таких двигателей позволяет независимо от нагрузки относительно сохранять необходимую скорость. Такие моторы имеют «иммунитет» против увеличения нагрузки и становятся ненамного медленнее при ее увеличении. Но все же почему «нарастание крутящего момента» а не «падение»? Теперь нужно смотреть на график в направлении рабочих оборотов. При нагрузке число оборотов падает и происходит РОСТ крутящего момента.

Крутящий момент двигателя это…

  Каждый, кто хоть раз созерцал информацию о технических характеристиках автомобиля, украдкой, но все же обращали внимание на строку – «Крутящий момент двигателя…». Многие задерживались на ней, пытаясь соизмерить насколько он велик или мал, и как это будет влиять на динамику, словно они сами уже давили на педаль акселератора в представляемом ими авто. Другие просто «проходили» мимо, словно строки этой и не было.
  Что же такое крутящий момент двигателя? На что он влияет? Вопросы более риторические, и не требующие ангажирования для большинства, но мы не стремимся пойти на поводу у многих, так как истина не всегда является приоритетной прерогативой для большинства. А раз это так, то все же попробуем разобрать этот частный вопрос – что же такое крутящий момент двигателя?

Определение крутящего момента (момент силы) пока без привязки к двигателю машины

  Прежде, чем перейти к комплексному понятию как кутящий момент двигателя попробуем разобраться с частным, а именно с тем, что такое крутящий момент или его синонимы: вращательный момент, вертящий момент, вращающий момент, момент силы. Здесь в принципе мы не будем забивать голову формулами и умными изречениями из википедий, попробуем справиться сами, объяснив все так, как понимаем и своими словами.
 Явление крутящего момента встречается нам ежедневно и повсеместно, просто мы не часто задумываемся об этом и в большинстве случаев знаем о нем уже не понаслышке, разве что формулируем это не в виде нудных изречений, а интуитивно, словно были уже рождены с этими знаниями. Так предположим наши обычные двери, коих мы открываем за день порой не один десяток. Вспомните, где находится ручка у дверей. Да, конечно, на противоположной стороне от петель. И ни у кого из нас не возникает мысли открыть дверь поближе к ним. Мы даже иногда пробовали или пробуем это сделать, но в итоге, все ощущают на себе, насколько все же тяжело манипулировать дверным полотном вблизи петель на которых они весят. Теперь давайте разберемся в сути процесса.  Здесь можно провести аналогию с редуктором, когда крутишь много, но легко или пару оборотов, но ой как тяжело. Так и с крутящим моментом. Он велик, когда перемещения незначительны, при этом крутящий момент гораздо меньше, если добавить плечо и поворачивать через него, по большему радиусу, то есть с большим перемещением.  Отношения плеча и силы здесь прямо пропорциональны, чем больше плечо, тем легче поворачивать, чем больше сила, тем меньшее надо плечо для поворота.
 Итак, вроде все понятно, если нет, то попробуйте прочитать сначала этот абзац и все же вдуматься в суть каждого предложения.  Теперь, хоть мы вам и обещали не приводить формул, но удержаться не возможно, мы все же напишем одну, основную …

M=F*L;

…где М – наш крутящий момент; F – сила прикладываемая к концу плеча,  L – та самая длина плеча, к которому прикладывается сила.

В принципе, из формулы еще раз видно, что для сохранения значения крутящего момента, в случае изменения одной из величин (сила или плечо), вторая должна возрасти или уменьшится аналогично.

Крутящий момент двигателя создается на коленчатов валу

 Итак, с дверьми мы разобрались, но как же наш двигатель. Здесь все аналогично. У двигателя (ДВС) есть коленчатый вал, что не является новостью. Именно на нем и расположен маховик, через который посредством сцепления крутящий момент передается на КПП.  Так вот, тот самый крутящий момент на коленчатом валу двигателя является очень важным техническим показателем для любой из машин. Если он слишком мал, то двигателю придется «крутить много» (об/мин), чтобы через редуктор — КПП, обеспечить крутящий момент, который в состоянии будет сдвинуть нашу машину.  Опять же при большом крутящем моменте, двигатель будет «крутить мало» (об/мин), чтобы также сдвинуть машину и обеспечить ту же скорость. Развивая нашу мысль можно представить следующее. Если скажем к коленчатому валу двигателя приварить длинный стержень, для того чтобы удержать вал от вращения при работающем ДВС, то есть почувствовать силу крутящего момента. То в этом случае, в зависимости от крутящего момента силового агрегата, стержень на валу у двигателя с маленьким крутящим моментом будет короче, а с большим длинее. Вот в принципе и вся суть вопроса о крутящем моменте двигателя.

Крутящий момент двигателя для бензиновых и дизельных двигателей

Здесь хотелось бы сказать об одном удивительном обстоятельстве.  Кроме крутящего момента двигателя важно также и то, насколько он равномерно выдержан относительно частоты вращения коленчатого вала. Так у бензиновых двигателей пик крутящего момента двигателя появляется ближе к 5000-6500 обо/ мин, а вот у дизельных агрегатов он в максимуме уже на 2500-3000 об/мин. Такая особенность позволяет почувствовать намного лучшую приемистость машин с дизельным двигателем. Это очень важно при разгоне с места, а особенно при обгоне на трассе.
 Как вы поняли, значение крутящего момента будет различно от частоты вращения коленчатого вала. Так какую же характеристику крутящего момента мы видим в руководствах по эксплуатации, в технических характеристиках на сайтах с машинами? Ведь по сути, она изменяется во всем диапазоне частоты вращения коленчатого вала от 0 до максимального значения.

Какой крутящий момент нам предоставляют автопроизводители в характеристиках на машину?

 Здесь все банально как и всегда. Хочешь чем-то блеснуть перед другими, обязательно скажи о лучшем твоем результате. То же самое получается и с предоставленными характеристиками от автопроизводителей. Крутящий момент в технических характеристиках всегда пишется максимальный, пиковый. Больше этого крутящего момента машина просто не сможет выдать. А так как мы в предыдущем абзаце определились с тем, что крутящий момент и частота вращения коленчатого вала величины неразрывные, то максимальный крутящий момент всегда пишут вместе с той частотой, на которой он возникает.

В каком диапазоне частоты коленчатого вала должен быть максимальный крутящий момент двигателя?

 Наиболее правильный будет утверждение о том, что максимальный крутящий момент должен быть в «потребительском» диапазоне частота вращения двигателя. То есть в том, в каком диапазоне вращения коленчатого вала эксплуатируется машина.
 Наиболее востребованная частота для нас с вами, это порядка 1000-4000 оборотов. Именно с этой частоты мы стартуем, то есть включаем первую передачу, затем переключаемся на последующие и в итоге едем на последней. Очень редко обыватель использует частоту более 4000 об/мин, разве только в экстремальных случаях или если он «автогонщик».
 Из этого делаем вывод о том, что оптимальным будет тот вариант, когда максимальный крутящий момент двигателя находится в том же диапазоне 1000-4000 об/мин. Именно такой вариант и относится к дизельным двигателям, о чем мы уже упоминали выше.

 Итак, теперь вы не только будете знать, что собой представляет крутящий момент  двигателя, но и сможете кому-то поведать, насколько это важная характеристика.  Важность ее, прежде всего, в том, что двигатель работающий «без напряга», то есть с высоким крутящим моментом, может больше служить, от одного капитального ремонта до другого. Ведь он работает, что говорится «не на износ». Также в некоторых случая двигатель с большим объемом и большим крутящим моментом может оказаться более экономичным по топливу, так как меньшее количество оборотов и высокий крутящий момент на коленчатом валу будут более выигрышным вариантом, чем высокие обороты двигателя с меньшим объемом при меньшем крутящем моменте.  Часто такую аналогию мы можем наблюдать если сравнивать дизельный и бензиновый двигатель, особенно на низких оборотах. Подробнее о таких особенностях вы можете узнать из статьи «Какой двигатель лучше, бензиновый или дизельный».

Необходимость определения понятия электромагнитный момент асинхронного двигателя.

Электромагнитный момент – момент, возникающий на валу электродвигателя при протекании по его обмоткам электрического тока. В литературе встречаются синонимы этого термина: вращающий момент двигателя или крутящий момент электродвигателя. Так же часто попадаются вариации с более развернутой формулировкой: электромагнитный вращающий момент или электромагнитный крутящий момент.

Это один из ключевых параметров теории, определяющий способность асинхронного двигателя вращать подсоединенную к его валу нагрузку в требуемых статических и динамических режимах. По этой причине при принятии решения об использовании двигателя для решения конкретной задачи важно принимать во внимание характер повидения электромагнитного момента. В самом общем случае электромагнитный момент на валу двигателя определяют по формуле: Мэм = (?Еф х Iф)/?2
Где: Мэм – электромагнитный момент;
Еф — мгновенное значение э.д.с. фазы асинхронного двигателя;
Iф — мгновенное значение тока фазы асинхронного двигателя;
?2 — угловая частота вращения ротора;
Еще статьи по теме:
Анализ формулы для определения электромагнитного крутящего момента двигателя.
Перечень формул для расчета электромагнитного вращающего момента двигателя.

В процессе изменения величины электромагнитного момента при работе электродвигателя выделяют ряд состояний, для которых введены собственные термины. К этим терминам относятся пусковой, номинальный и критический моменты, а так же тормозной момент. Первые три термина относятся к работе электрической машины в режиме двигателя, последний термин относится к работе в режиме торможения.

Что еще почитать про электромагнитный вращающий момент асинхронников:

Понятие пускового момента в теории асинхронных двигателей.

Что понимают под номинальным моментом асинхронной электрической машины?

На что влияет критический момент электродвигателя?

Режимы торможения асинхронного двигателя и тормозной момент.

< Предыдущая   Следующая >
Мощность

в зависимости от крутящего момента — x-engineer.org

В этой статье мы собираемся понять, как создается крутящий момент двигателя , как рассчитывается мощность двигателя и что такое крутящий момент и кривая мощности . Кроме того, мы собираемся взглянуть на карты крутящего момента и мощности двигателя (поверхности).

К концу статьи читатель сможет понять разницу между крутящим моментом и мощностью, как они влияют на продольную динамику автомобиля и как интерпретировать кривые крутящего момента и мощности при полной нагрузке.

Определение крутящего момента

Крутящий момент можно рассматривать как вращающее усилие , приложенное к объекту. Крутящий момент (вектор) — это произведение между силой (вектором) и расстоянием (скаляр). Расстояние, также называемое плечом рычага , измеряется между усилием и точкой поворота. Подобно силе, крутящий момент является вектором и определяется амплитудой и направлением вращения.

Изображение: Момент затяжки на колесном болте

Представьте, что вы хотите затянуть / ослабить болты колеса.Нажатие или вытягивание рукоятки гаечного ключа, соединенного с гайкой или болтом, создает крутящий момент (усилие поворота), который ослабляет или затягивает гайку или болт.

Крутящий момент Т [Нм] является произведением силы F [Н] и длины плеча рычага a [м] .

\ [\ bbox [# FFFF9D] {T = F \ cdot a} \]

Чтобы увеличить величину крутящего момента, мы можем либо увеличить силу, либо длину плеча рычага, либо и то, и другое.

Пример : Рассчитайте крутящий момент, полученный на болте, если рычаг гаечного ключа имеет значение 0.25 м и приложенная сила 100 Н (что приблизительно эквивалентно толкающей силе 10 кг )

\ [T = 100 \ cdot 0,25 = 25 \ text {Нм} \]

Тот же крутящий момент можно было бы получить, если бы плечо рычага было 1 м и усилие всего 25 Н .

Тот же принцип применяется к двигателям внутреннего сгорания. Крутящий момент на коленчатом валу создается силой, прикладываемой к шейке шатуна через шатун.

Изображение: Крутящий момент на коленчатом валу

Крутящий момент T будет создаваться на коленчатом вале на каждой шейке шатуна каждый раз, когда поршень находится в рабочем ходе.Плечо рычага и в данном случае имеет радиус кривошипа (смещение) .

Величина силы F зависит от давления сгорания внутри цилиндра. Чем выше давление в цилиндре, тем выше усилие на коленчатом валу, тем выше выходной крутящий момент.

Изображение: функция расчета крутящего момента двигателя для давления в цилиндре

Длина плеча рычага влияет на общую балансировку двигателя . 2} {4} = \ frac {\ pi \ cdot 0.2 \]

Во-вторых, мы вычислим силу, приложенную к поршню. Чтобы получить силу в Н, (Ньютон), мы будем использовать давление, преобразованное в Па (Паскаль).

\ [F = p \ cdot A_p = 120000 \ cdot 0,0056745 = 680.94021 \ text {N} \]

Предполагая, что вся сила в поршне передается на шатун, крутящий момент рассчитывается как:

\ [T = F \ cdot a = 680.94021 \ cdot 0.062 = 42.218293 \ text {Нм} \]

Стандартная единица измерения крутящего момента — Н · м (Ньютон-метр).В особенности в США единицей измерения крутящего момента двигателя является фунт-сила · фут (фут-фунт). Преобразование между Н · м и фунт-сила · фут :

\ [\ begin {split}
1 \ text {lbf} \ cdot \ text {ft} & = 1.355818 \ text {N} \ cdot \ text {m} \\
1 \ text {N} \ cdot \ text {m} & = 0.7375621 \ text {lbf} \ cdot \ text {ft}
\ end {split} \]

Для нашего конкретного примера крутящий момент в имперских единицах (США):

\ [T = 42.218293 \ cdot 0.7375621 = 31.138615 \ text {lbf} \ cdot \ text {ft} \]

Крутящий момент T [N] также может быть выражен как функция среднее эффективное давление двигателя.

\ [T = \ frac {p_ {me} V_d} {2 \ pi n_r} \]

где:
p me [Па] — среднее эффективное давление
V d [m 3 ] — рабочий объем двигателя
n r [-] — количество оборотов коленчатого вала за полный цикл двигателя (для 4-тактного двигателя n r = 2 )

Определение мощности

В физике мощность — это работа, выполненная во времени, или, другими словами, скорость выполнения работы .В системах вращения мощность P [Вт] является произведением крутящего момента T [Нм] и угловой скорости ω [рад / с] .

\ [\ bbox [# FFFF9D] {P = T \ cdot \ omega} \]

Стандартная единица измерения мощности — Вт, (ватт) и скорости вращения — рад / с, (радиан в секунду) . Большинство производителей транспортных средств предоставляют мощность двигателя в л.с., (мощность торможения) и скорость вращения в об / мин, (оборотов в минуту).Поэтому мы будем использовать формулы преобразования как для скорости вращения, так и для мощности.

Чтобы преобразовать об / мин в рад / с , мы используем:

\ [\ omega \ text {[rad / s]} = N \ text {[rpm]} \ cdot \ frac {\ pi} { 30} \]

Чтобы преобразовать рад / с в об / мин , мы используем:

\ [N \ text {[rpm]} = \ omega \ text {[rad / s]} \ cdot \ frac {30 } {\ pi} \]

Мощность двигателя также может быть измерена в кВт вместо Вт для более компактного значения.Чтобы преобразовать кВт в л.с. и наоборот, мы используем:

\ [\ begin {split}
P \ text {[bhp]} & = 1.36 \ cdot P \ text {[кВт]} \\
P \ text {[кВт]} & = \ frac {P \ text {[bhp]}} {1.36}
\ end {split} \]

В некоторых случаях вы можете найти л.с., (мощность в лошадиных силах) вместо л.с. как единица измерения мощности.

Имея скорость вращения, измеренную в об / мин , и крутящий момент в Нм , формула для расчета мощности следующая:

\ [\ begin {split}
P \ text {[кВт]} & = \ frac {\ pi \ cdot N \ text {[об / мин]} \ cdot T \ text {[Нм]}} {30 \ cdot 1000} \\
P \ text {[HP]} & = \ frac {1.36 \ cdot \ pi \ cdot N \ text {[rpm]} \ cdot T \ text {[Nm]}} {30 \ cdot 1000}
\ end {split} \]

Пример . Рассчитайте мощность двигателя как в кВт, , так и в л.с. , если крутящий момент двигателя составляет 150 Нм, , а частота вращения — 2800 об / мин .

\ [\ begin {split}
P & = \ frac {\ pi \ cdot 2800 \ cdot 150} {30 \ cdot 1000} = 44 \ text {kW} \\
P & = \ frac {1.36 \ cdot \ pi \ cdot 2800 \ cdot 150} {30 \ cdot 1000} = 59,8 \ text {HP}
\ end {split} \]

Динамометр двигателя

Скорость двигателя измеряется с помощью датчика на коленчатом валу (маховике).В идеале, чтобы рассчитать мощность, мы должны также измерить крутящий момент на коленчатом валу с помощью датчика. Технически это возможно, но не применяется в автомобильной промышленности. Из-за условий эксплуатации коленчатого вала (температуры, вибрации) измерение крутящего момента двигателя с помощью датчика не является надежным методом. Также довольно высока стоимость датчика крутящего момента. Поэтому крутящий момент двигателя измеряется во всем диапазоне скорости и нагрузки с помощью динамометра (испытательный стенд) и отображается (сохраняется) в блоке управления двигателем.

Изображение: Схема динамометра двигателя

Динамометр — это в основном тормоз (механический, гидравлический или электрический), который поглощает мощность, производимую двигателем. Самым используемым и лучшим типом динамометра является электрический динамометр . Фактически это электрическая машина , которая может работать как генератор или как двигатель . Изменяя крутящий момент нагрузки генератора, двигатель может быть переведен в любую рабочую точку (скорость и крутящий момент).Кроме того, при отключенном двигателе (без впрыска топлива) генератор может работать как электродвигатель для раскрутки двигателя. Таким образом можно измерить трение двигателя и потери крутящего момента насоса.

У электрического динамометра ротор соединен с коленчатым валом. Связь между ротором и статором электромагнитная. Статор закреплен через плечо рычага на датчике нагрузки . Чтобы уравновесить ротор, статор будет давить на датчик нагрузки. Крутящий момент T рассчитывается путем умножения силы F , измеренной в датчике нагрузки, на длину плеча a рычага.

\ [T = F \ cdot a \]

Параметры двигателя: тормозной момент, тормозная мощность (л.с.) или удельный расход топлива при торможении (BSFC) содержат ключевое слово «тормоз», потому что для их измерения используется динамометр (тормоз). .

В результате динамометрического испытания двигателя получается карт крутящего момента (поверхности), которые дают значение крутящего момента двигателя при определенных оборотах двигателя и нагрузке (стационарные рабочие точки). Нагрузка двигателя эквивалентна положению педали акселератора.

Пример карты крутящего момента для бензинового двигателя с искровым зажиганием (SI) :

900
Двигатель
крутящий момент
[Нм]
Положение педали акселератора [%]
5 10 20 30 40 50 60 100
Двигатель
оборотов

0 [об / мин]

45 90 107 109 110 111 114 116
1300 60 105 132 133 134 136 138 141
1800 35 89 133 141 1 42 144 145 149
2300 19 70 133 147 148 150 151 155
2800 3 55 133 153 159 161 163 165
3300 0 41 126 152 161 165 167 171
3800 0 33 116 150 160 167 170 175
4300 0 26 110 155 169 176 180 184
4800 9008 2 0 18 106 155 174 179 185 190
5300 0 12 96 147 167 175 181 187
5800 0 4 84 136 161 170 175 183
6300 0 0 72 120 145 153 159 171

Пример карты мощности для бензинового двигателя с искровым зажиганием (SI) :

Двигатель
мощность
[ Л.с.]
Положение педали акселератора [%]
5 10 20 9 0082 30 40 50 60 100
Двигатель
скорость
[об / мин]
800 582 1282 12 13 13 13 13
1300 11 19 24 25 25 25 26 26
1800 9 23 34 36 36 37 37 38
2300 6 23 44 48 48 49 49 51
2800 1 22 53 61 63 64 65 66
3300 0 19 59 71 76 78 78 80
3800 0 18 63 81 87 90 92 95
4300 0 16 67 95 103 108 110 113
4800 0 12 72 106 119 122 126 130
5300 0 9 72 111 126 132 137 141
5800 0 90 082 3 69 112 133 140 145 151
6300 0 0 65 108 130 137 143 153

Электронный блок управления (ЕСМ) ДВС имеет карту крутящего момента, хранящуюся в памяти.Он вычисляет (интерполирует) функцию крутящего момента двигателя от текущих оборотов двигателя и нагрузки. В ECM нагрузка выражается как давление во впускном коллекторе для бензиновых двигателей (искровое зажигание, SI) и время впрыска или масса топлива для дизельных двигателей (воспламенение от сжатия, CI). Стратегия расчета крутящего момента двигателя имеет поправки, основанные на температуре и давлении всасываемого воздуха.

График данных крутящего момента и мощности, функции частоты вращения и нагрузки двигателя дает следующие поверхности:

Изображение: Поверхность крутящего момента двигателя SI

Изображение: Поверхность мощности двигателя SI

Для Для лучшей интерпретации карт крутящего момента и мощности можно построить двухмерную линию крутящего момента для фиксированного значения положения педали акселератора.

Изображение: кривые крутящего момента двигателя SI

Изображение: кривые мощности двигателя SI

Крутящий момент и мощность двигателя при полной нагрузке

Как вы видели, крутящий момент и мощность внутреннего сгорания двигатель зависит как от частоты вращения двигателя, так и от нагрузки. Обычно производители двигателей публикуют характеристики крутящего момента и кривых (кривые) при полной нагрузке (100% положение педали акселератора). Кривые крутящего момента и мощности при полной нагрузке подчеркивают максимальный крутящий момент и распределение мощности во всем диапазоне оборотов двигателя.

Изображение: параметры крутящего момента и мощности двигателя при полной нагрузке

Форма приведенных выше кривых крутящего момента и мощности не соответствует реальному двигателю, их цель — объяснить основные параметры. Тем не менее, формы аналогичны реальным характеристикам искрового зажигания (бензин), левого впрыска, атмосферного двигателя.

Частота вращения двигателя N e [об / мин] характеризуется четырьмя основными моментами:

N min — минимальная стабильная частота вращения двигателя при полной нагрузке
N Tmax — частота вращения двигателя при максимальном крутящем моменте двигателя
N Pmax — частота вращения двигателя при максимальной мощности двигателя; также называется номинальная частота вращения двигателя
N max — максимальная стабильная частота вращения двигателя

На минимальной частоте вращения двигатель должен работать плавно, без колебаний и остановок.Двигатель также должен позволять работать на максимальной скорости без каких-либо повреждений конструкции.

крутящий момент двигателя при полной нагрузке кривая T e [Нм] характеризуется четырьмя точками:

T 0 — крутящий момент двигателя при минимальных оборотах двигателя
T max — максимальный двигатель крутящий момент (максимальный крутящий момент или номинальный крутящий момент )
T P — крутящий момент двигателя при максимальной мощности двигателя
T M — крутящий момент двигателя при максимальной частоте вращения двигателя

В зависимости от типа всасываемого воздуха (атмосферный или с турбонаддувом) максимальный крутящий момент может быть точечным или линейным.Для двигателей с турбонаддувом или наддувом максимальный крутящий момент может поддерживаться постоянным между двумя значениями частоты вращения двигателя.

Мощность двигателя при полной нагрузке кривая P e [л.с.] характеризуется четырьмя точками:

P 0 — мощность двигателя при минимальных оборотах двигателя
P max — максимальная мощность двигателя мощность (пиковая мощность или номинальная мощность )
P T — мощность двигателя при максимальном крутящем моменте двигателя
P M — мощность двигателя при максимальной частоте вращения двигателя

Область между минимальными оборотами двигателя N мин и максимальная частота вращения двигателя Н Tmax называется зоной нижнего конца крутящего момента.Чем выше крутящий момент в этой области, тем лучше возможности запуска / ускорения транспортного средства. Когда двигатель работает в этой области при полной нагрузке, если сопротивление дороги увеличивается, частота вращения двигателя будет уменьшаться, что приведет к падению крутящего момента двигателя и остановке двигателя . По этой причине эта область также называется областью нестабильного крутящего момента .

Область между максимальной частотой вращения двигателя N Tmax и максимальной частотой вращения двигателя N Pmax называется диапазоном мощности .Во время разгона автомобиля для достижения наилучших характеристик переключение передач (вверх) следует выполнять на максимальной мощности двигателя. В зависимости от передаточных чисел коробки передач после переключения на выбранной передаче частота вращения двигателя снижается до максимального крутящего момента, что обеспечивает оптимальное ускорение. Переключение передач на максимальной мощности двигателя позволит удерживать частоту вращения двигателя в пределах диапазона мощности.

Область между максимальной частотой вращения двигателя N Pmax и максимальной частотой вращения двигателя N max называется зоной верхнего конца крутящего момента.Более высокий крутящий момент приводит к более высокой выходной мощности, что означает более высокую максимальную скорость автомобиля и лучшее ускорение на высокой скорости.

Когда частота вращения двигателя поддерживается между максимальной частотой вращения двигателя N Tmax и максимальной частотой вращения двигателя N max , если сопротивление транспортного средства увеличивается, частота вращения двигателя упадет, а выходной крутящий момент увеличится, таким образом компенсация увеличения дорожной нагрузки. По этой причине эта область называется областью стабильного крутящего момента .

Ниже вы можете найти несколько примеров кривых крутящего момента и мощности при полной нагрузке для различных типов двигателей. Обратите внимание на форму кривых в зависимости от типа двигателя (с искровым зажиганием или с компрессионным зажиганием) и типа воздухозаборника (атмосферный или с турбонаддувом).

Крутящий момент и мощность двигателя Honda 2.0 при полной нагрузке

9008 0
Архитектура цилиндров 4-рядный

Изображение: Двигатель Honda 2.0 SI — кривые крутящего момента и мощности при полной нагрузке

Топливо бензин (SI)
Объем двигателя [см 3 ] 1998
Впрыск топлива порт клапана
Воздухозаборник атмосферный
Синхронизация клапана переменная
T макс. [Нм] 190
N Tmax [об / мин] 4500
33 P Л.с.] 155
N Pmax [об / мин] 6000
N макс. [об / мин] 6800

Saab 2.Крутящий момент и мощность двигателя 0T при полной нагрузке

Архитектура цилиндров 4-рядный

Изображение: Двигатель Saab 2.0T SI — кривые крутящего момента и мощности при полной нагрузке

Топливо бензин (SI)
Объем двигателя [см 3 ] 1998
Впрыск топлива порт клапана
Воздухозаборник с турбонаддувом
Синхронизация клапана фиксированная
T макс. [Нм] 265
N Tmax [об / мин] 2500
P макс [л.с. 175
N Pmax [об / мин] 5500
N 9013 2 макс. [об / мин] 6300

Audi 2.0 Крутящий момент и мощность двигателя TFSI при полной нагрузке

9 0081 N max [об / мин]
Архитектура цилиндров 4-рядный

Изображение: Двигатель Audi 2.0 TFSI SI — кривые крутящего момента и мощности при полной нагрузке

Топливо бензин (SI)
Объем двигателя [см 3 ] 1994
Впрыск топлива прямой
Воздухозаборник с турбонаддувом
Синхронизация клапана фиксированная
T max [Нм] 280
N Tmax [об / мин] 1800 — 5000
P max [ Л.с.] 200
N Pmax [об / мин] 5100 — 6000
6500

Toyota 2.0 Крутящий момент и мощность двигателя D-4D при полной нагрузке

900 Выбор фаз газораспределения
Архитектура цилиндров 4-рядный

Изображение: Двигатель Toyota 2.0 CI — кривые крутящего момента и мощности при полной нагрузке

Топливо дизель (CI)
Объем двигателя [см 3 ] 1998
Впрыск топлива прямой
Воздухозаборник с турбонаддувом
фиксированный
T max [Нм] 300
N Tmax [об / мин] 2000 — 2800
33 P [Л.с.] 126
N Pmax [об / мин] 3600
N макс. [об / мин] 5200

«Мерседес-Бенц» 1.8 Крутящий момент и мощность двигателя Kompressor при полной нагрузке

90 085
Архитектура цилиндров 4-рядный

Изображение: Двигатель Mercedes Benz 1.8 Kompressor SI — кривые крутящего момента и мощности при полной нагрузке

Топливо бензин
Объем двигателя [см 3 ] 1796
Впрыск топлива порт клапана
Впуск воздуха с наддувом
с наддувом
синхронизация фиксированная
T макс. [Нм] 230
N Tmax [об / мин] 2800 — 4600
P макс [ P макс. ] 156
N Pmax [об / мин] 5200
N макс. [об / мин] 6250

BMW 3.0 Крутящий момент и мощность двигателя TwinTurbo при полной нагрузке

900 Синхронизация клапана
Архитектура цилиндров 6-рядный

Изображение: Двигатель BMW 3.0 TwinTurbo SI — кривые крутящего момента и мощности при полной нагрузке

Топливо бензин
Объем двигателя [см 3 ] 2979
Впрыск топлива прямой
Воздухозаборник двухступенчатый
с турбонаддувом
переменная
T max [Нм] 400
N Tmax [об / мин] 1300 — 5000
33 P [Л.с.] 306
Н Pmax [об / мин] 5800
N макс. [об / мин] 7000

Mazda 2.Крутящий момент и мощность роторного двигателя 6 при полной нагрузке

Архитектура цилиндров 2 Ванкеля

Изображение: Двигатель Mazda 2.6 SI — кривые крутящего момента и мощности при полной нагрузке

Топливо бензин
Объем двигателя [см 3 ] 1308 (2616)
Впрыск топлива порт клапана
Воздухозаборник атмосферный
Выбор фаз газораспределения фиксированный
T макс. [Нм] 211
N Tmax [об / мин] 5500
P макс. 231
N Pmax [об / мин] 8200
N макс. [об / мин] 9500

Porsche 3.6 крутящий момент и мощность двигателя при полной нагрузке

Архитектура цилиндров 6 плоских

Изображение: двигатель Porsche 3.6 SI — кривые крутящего момента и мощности при полной нагрузке

Топливо бензин
Объем двигателя [см 3 ] 3600
Впрыск топлива порт клапана
Воздухозаборник атмосферный
Регулировка фаз газораспределения регулируемая
T макс. [Нм] 405
N Tmax [об / мин] 5500
P макс.
N Pmax [об / мин] 7600
N макс. [об / мин] 8400

Ключевые положения, которые следует учитывать в отношении мощности и крутящего момента двигателя:

крутящий момент

  • крутящий момент является составляющей мощности
  • крутящий момент может быть увеличен путем увеличения среднего эффективного давление двигателя или за счет снижения потерь крутящего момента (трение, накачивание)
  • с более низким максимальным крутящим моментом, распределенным в диапазоне скоростей двигателя, с точки зрения тяги лучше, чем с более высокой точкой максимального крутящего момента
  • с низким конечным крутящим моментом очень важен для пусковых возможностей автомобилей
  • высокий крутящий момент полезен в условиях бездорожья, когда автомобиль эксплуатируется на больших уклонах дороги, но на низкой скорости

Мощность

  • Мощность двигателя зависит как от крутящего момента, так и от скорости
  • мощность может быть увеличена за счет увеличения крутящего момента или частоты вращения двигателя
  • высокая мощность важна для высоких скоростей автомобиля eds: чем выше максимальная мощность, тем выше максимальная скорость автомобиля.
  • Распределение мощности двигателя при полной нагрузке в диапазоне оборотов двигателя влияет на способность автомобиля к ускорению на высоких скоростях. работать в диапазоне мощности между максимальным крутящим моментом двигателя и мощностью

По любым вопросам или наблюдениям относительно этого руководства, пожалуйста, используйте форму комментариев ниже.

Не забывайте ставить лайки, делиться и подписываться!

Что важнее? »Oponeo.co.uk

Производители автомобилей используют разные единицы для измерения и выражения мощности двигателя автомобиля. Лошадиная сила и крутящий момент — одни из наиболее часто используемых терминов, особенно когда речь идет об ускорении автомобиля. Что они собой представляют и насколько они важны?

При ускорении имеют значение крутящий момент и мощность.

Что такое крутящий момент и что такое мощность?

Крутящий момент и мощность — это сила.Крутящий момент выражает способность двигателя вращать (способность вращать маховик), а мощность означает общую выходную мощность двигателя. Проще говоря, крутящий момент — это сила, которую вы чувствуете, толкая вас назад в сиденье при ускорении, а мощность — это скорость, достигаемая в конце этого ускорения.

Как мощность, так и крутящий момент можно измерить разными способами, например: в лошадиных силах тормоза, стандарте мощности, метре Ньютона, ваттах, фунтах / футах и ​​так далее. Мы предпочитаем л. С. Для тормозной мощности (количество мощности, производимой двигателем за вычетом количества, которое теряется из-за трения) и фунт / фут для преобразования крутящего момента (фунты на фут вращения вокруг одной точки).

Фактически, тормозная мощность получается из расчета, основанного на крутящем моменте: BHP = Torque X RPM / 5252. Проще говоря, умножьте крутящий момент на скорость вращения оси в минуту (RPM), и вы получите мощность двигателя. конечная выходная мощность.

Что важнее для ускорения: крутящий момент или мощность?

Важность крутящего момента и мощности зависит от характера ваших потребностей, и, конечно же, вы никогда не сможете получить одно без другого.

По правде говоря, нет однозначного ответа, что важнее.Более важным соображением является понимание баланса между ними, того, как они взаимодействуют или, возможно, как повлиять на двигатель, давая ему больше того или другого. Если вы хотите измельчить автомобильные шины, вам нужен небольшой крутящий момент, но если вы стремитесь к рекордам наземной скорости, то мощность всегда будет побеждать.

Технические характеристики двигателя для большей мощности двигателя

Не все двигатели одинаковы, поскольку даже два агрегата, вытянутые из одной линии, будут отличаться на динамометрическом стенде двигателя.Даже в этом случае это должна быть полностью контролируемая среда, поскольку давление, температура и влажность воздуха будут влиять на показания мощности двигателя, тем более, когда мы вводим в уравнение принудительную индукцию.

Можно формировать характеристики мощности: например, длинноходный двигатель обычно дает больший крутящий момент, чем короткоходный двигатель. На этой же основе мы можем поиграть с синхронизацией кулачка, чтобы повлиять на подачу мощности — продвижение синхронизации кулачка должно обеспечить более низкий крутящий момент, в то время как замедление его приравнивается к мощности с высокими оборотами в минуту.

Большинство современных двигателей стремятся к балансу крутящего момента и мощности.

Еще один элемент, который следует учитывать, — это принудительная индукция (FI). Наддув или турбонаддув двигателя — отличный способ увеличить его мощность, обычно довольно экономичным способом. Здесь, опять же, у нас есть два маршрута, каждый из которых предлагает разные варианты. С одной стороны, наддув, как правило, дает больше крутящего момента двигателя, тогда как турбонаддув дает дополнительную мощность.

Конечно, нужно добавить нюанс. Любой из этих методов увеличивает «мощность», но вам следует учитывать множество других факторов.Однако для простоты это то, что вы могли ожидать, выбрав путь FI.

Еще одно соображение, которое следует учитывать при проектировании, типе и мощности двигателя, — это выбор топлива. Эти отношения становятся все более размытыми, поскольку когда-то дизельное топливо считалось топливом для грузовиков, а бензин — автомобильным топливом.

Это уже не так, поскольку в последние годы дизельные автомобили стали почти такими же популярными, как и бензиновые, что оказало огромное влияние на гоночную трассу. Например, такие производители, как Audi и Peugeot, использовали только дизельные автомобили в знаменитой 24-часовой гонке Ле-Ман, потому что крутящий момент и экономия топлива идеально подходят для гонок на выносливость.

Применение лошадиных сил и крутящего момента

Когда дело доходит до зависимости крутящего момента от лошадиных сил, это действительно вопрос применения; если вы пытаетесь вытащить пень из земли, лошадиные силы вам не помогут (если только вы не добавите 100-метровую веревку и не разогнётесь). Тем не менее, если это что-то более спортивное, то впереди должна быть мощность. Большинство производителей нашли баланс, но иногда они немного корректируют цифры.

По правде говоря, хотя многие из нас могут просто знать, что конкретный двигатель или автомобиль по своей сути крутящий или мощный, очень немногие смогут различать характеристики «нормального» дорожного автомобиля с любой степенью точности. По общему мнению, вам потребуется минимум около 10% разницы, чтобы почувствовать ее, если только ваше сиденье дино для брюк не откалибровано особенно хорошо.

Будущее крутящего момента в электромобилях

В общем, разговоры о крутящем моменте и мощности, несомненно, станут спорным вопросом в будущем, поскольку его заменит одно простое измерение: кВт.

Если забыть обо всех причинах и причинах, электрическая энергия может выдавать огромный крутящий момент из состояния покоя, а это означает, что ускорение всегда быстрое, несмотря на снижение веса из-за того, что сотни аккумуляторов ноутбука приклеены к шасси.

Баланс между мощностью и крутящим моментом вполне может быть заменен электромобилями в будущем.

Фактически, Tesla Model S P90D только что установила рекорд для серийного полностью электрического автомобиля в спринте на мили, преодолев его всего за 10.9 секунд. Для сравнения, Bugatti Veyron сделает то же самое за 10,175 секунды. На самом деле кажется, что электроэнергия — это путь вперед, поскольку разрыв в производительности сокращается очень и очень быстро.

Заключение

Будь то принудительная индукция, длинный или короткий ход, размер отверстия, степень сжатия или конструкция распределительного вала, все это играет роль в изменении характеристик мощности двигателя. Нет простого ответа на вопрос, что лучше всего, поэтому, возможно, простой вопрос: что подходит вам лучше всего?

Как преобразовать крутящий момент двигателя в лошадиные силы?

Вы когда-нибудь смотрели спецификации двигателя в журнале и видели что-то вроде «этот двигатель развивает 300 фунт-фут крутящего момента при 4000 об / мин» и задавались вопросом, сколько это была мощность? О какой мощности мы здесь говорим? Вы можете рассчитать, сколько фут-фунтов мощности производит этот двигатель, используя общее уравнение:

Двигатель, развивающий 300 фунт-фут крутящего момента при 4000 об / мин, выдает [(300 x 4000) / 5,252] 228 лошадиных сил при 4000 об / мин.Но откуда взялось число 5252?

Чтобы перейти от фунт-футов крутящего момента к лошадиным силам, вам нужно пройти несколько преобразований. Число 5 252 — это результат объединения нескольких различных коэффициентов пересчета в одно число.

Во-первых, 1 лошадиная сила определяется как 550 фунт-футов в секунду (прочтите «Как работает мощность в лошадиных силах», чтобы узнать, как они получили это число). Единицы крутящего момента — фунт-футы. Таким образом, чтобы перейти от крутящего момента к лошадиным силам, вам нужен показатель «в секунду». Вы получаете это, умножая крутящий момент на частоту вращения двигателя.

Но скорость двигателя обычно выражается в оборотах в минуту (об / мин). Поскольку мы хотим «в секунду», нам нужно преобразовать обороты в минуту в «что-то в секунду». Секунды просты — мы просто делим на 60, чтобы получить секунды. Теперь нам нужна безразмерная единица оборотов: радиан. Радиан на самом деле представляет собой отношение длины дуги к длине радиуса, поэтому единицы длины сокращаются, и вы остаетесь с безразмерной мерой.

Вы можете думать о вращении как об измерении угла.Один оборот — это 360 градусов окружности. Поскольку длина окружности равна (2 x пи x радиус), в одном обороте есть 2 пи радиана. Чтобы преобразовать количество оборотов в минуту в радианы в секунду, умножьте число оборотов в минуту на (2-пи / 60), что равно 0,10472 радиана в секунду. Это дает нам количество «в секунду», необходимое для расчета лошадиных сил.

Давайте соберем все вместе. Нам нужно получить мощность, равную 550 фунт-фут в секунду, используя крутящий момент (фунт-фут) и частоту вращения двигателя (об / мин). Если мы разделим 550 фут-фунтов на 0.10472 радиан в секунду (обороты двигателя), получаем 550 / 0,10472, что равно 5,252.

Таким образом, если вы умножите крутящий момент (в фунт-футах) на частоту вращения двигателя (в оборотах в минуту) и разделите произведение на 5 252, количество оборотов в минуту преобразуется в «радианы в секунду», и вы можете перейти от крутящего момента к лошадиным силам — от «фунта- футы «к» фут-фунтам в секунду «.

Чтобы найти соответствующие статьи о крутящем моменте, лошадиных силах и двигателях, воспользуйтесь ссылками на следующей странице.

Как измерить крутящий момент (крутящий момент) вашего автомобиля

Независимо от того, покупаете ли вы новый автомобиль или собираете хотрод в своем гараже, при определении характеристик двигателя играют роль два фактора: мощность и крутящий момент.Если вы похожи на большинство механиков DIY или автомобильных энтузиастов, вы, вероятно, хорошо понимаете взаимосвязь между мощностью и крутящим моментом, но можете с трудом понять, как достигаются эти «фут-фунты». Вы не поверите, но это не так уж и сложно.

Прежде чем перейти к техническим аспектам, давайте разберем несколько простых фактов и определений, которые помогут понять, почему мощность и крутящий момент являются важными факторами, которые необходимо учитывать. Мы должны начать с определения трех элементов измерения производительности двигателя внутреннего сгорания: скорости, крутящего момента и мощности.

Часть 1 из 4: Понимание того, как частота вращения, крутящий момент и мощность двигателя влияют на общую производительность

В недавней статье журнала Hot Rod одна из величайших загадок характеристик двигателя была наконец разгадана, вернувшись к основам фактического учета мощности. Большинство людей полагают, что динометры (динометры двигателя) предназначены для измерения мощности двигателя.

На самом деле динометры измеряют не мощность, а крутящий момент. Это значение крутящего момента умножается на число оборотов в минуту, при котором он измеряется, а затем делится на 5 252 для получения значения мощности в лошадиных силах.

Вот уже более 50 лет динометры, используемые для измерения крутящего момента и оборотов двигателя, просто не могут справиться с большой мощностью, производимой этими двигателями. Фактически, один цилиндр на этих 500 кубических дюймах, сжигающий нитрометан Hemis, производит примерно 800 фунтов тяги через одну выхлопную трубу.

Все двигатели внутреннего сгорания или с электрическим приводом работают с разной скоростью. По большей части, чем быстрее двигатель завершает свой рабочий такт или цикл, тем больше мощности он производит.Что касается двигателя внутреннего сгорания, три элемента, которые влияют на общую производительность этого двигателя, — это скорость, крутящий момент и мощность.

Скорость определяется как скорость двигателя, выполняющего свою работу. Когда мы применяем скорость двигателя к числу или единице измерения, мы измеряем скорость двигателя в оборотах в минуту или об / мин. «Работа», которую выполняет двигатель, — это сила, приложенная к измеренному расстоянию. Крутящий момент определяется как особый вид работы, вызывающей вращение. Это происходит, когда сила действует на радиус (или, в случае двигателя внутреннего сгорания, на маховик), и обычно измеряется в фут-фунтах.

лошадиных сил — это скорость, с которой выполняется работа. В прежние времена, если предметы нужно было переместить, люди обычно использовали лошадь, чтобы переместить их. Было подсчитано, что одна лошадь могла двигаться приблизительно 33 000 футов фунтов в минуту. Отсюда и возник термин «лошадиные силы». В отличие от скорости и крутящего момента, мощность в лошадиных силах может быть измерена в нескольких единицах, включая: 1 л.с. = 746 Вт, 1 л.с. = 2545 БТЕ и 1 л.с. = 1055 джоулей.

Эти три элемента работают вместе, чтобы произвести мощность двигателя.Поскольку крутящий момент остается постоянным, скорость и мощность остаются пропорциональными. Однако по мере увеличения частоты вращения двигателя увеличивается и мощность, чтобы поддерживать постоянный крутящий момент. Однако многие люди не понимают, как крутящий момент и мощность влияют на скорость двигателя. Проще говоря, с увеличением крутящего момента и мощности увеличивается и скорость двигателя. Верно и обратное: когда уменьшаются крутящий момент и мощность, уменьшается и частота вращения двигателя.

Часть 2 из 4: Как устроены двигатели для достижения максимального крутящего момента

Современный двигатель внутреннего сгорания можно модифицировать для увеличения мощности или крутящего момента, изменяя размер или длину шатуна и увеличивая отверстие или диаметр цилиндра.Это часто называют соотношением диаметр цилиндра / ход поршня.

Крутящий момент измеряется в Ньютон-метрах. Проще говоря, это означает, что крутящий момент измеряется при круговом движении на 360 градусов. В нашем примере используются два идентичных двигателя с одинаковым диаметром отверстия (или диаметром цилиндра сгорания). Однако один из двух двигателей имеет более длинный «ход» (или глубину цилиндра, создаваемую более длинным шатуном). Двигатель с более длинным ходом имеет более прямолинейное движение при вращении через камеру сгорания и имеет больше рычагов для выполнения той же задачи.

Крутящий момент измеряется в фунт-футах или величине «крутящей силы», прилагаемой для выполнения задачи. Например, представьте, что вы пытаетесь ослабить ржавый болт. Предположим, у вас есть два разных трубных ключа: один длиной 2 фута, другой — длиной 1 фут. Предполагая, что вы прикладываете такое же усилие (в данном случае 50 фунтов давления), вы фактически прикладываете 100-футовый крутящий момент для двухфутового ключа (50 x 2) и всего 50 фунтов. крутящего момента (1 x 50) с помощью гаечного ключа на одну ногу. Какой ключ поможет вам легче ослабить болт? Ответ прост — тот, у которого больше крутящего момента.

Инженеры разрабатывают двигатель, обеспечивающий более высокое соотношение крутящего момента к мощности для транспортных средств, которым требуется дополнительная «мощность» для ускорения или подъема. Как правило, вы видите более высокие значения крутящего момента для грузовиков большой грузоподъемности, используемых для буксировки, или двигателей с высокими рабочими характеристиками, где ускорение имеет решающее значение (например, приведенный выше пример NHRA Top Fuel Engine).

Вот почему производители автомобилей часто подчеркивают потенциал двигателей с высоким крутящим моментом в рекламе грузовиков. Крутящий момент двигателя также может быть увеличен путем изменения угла опережения зажигания, регулирования подачи воздуха к топливным смесям и даже манипулирования для увеличения выходного крутящего момента в определенных сценариях.

Часть 3 из 4: Понимание других переменных, влияющих на общий крутящий момент двигателя

Когда дело доходит до измерения крутящего момента, вы должны учитывать три уникальных параметра в двигателе внутреннего сгорания:

Сила, создаваемая при определенных оборотах: это максимальная мощность двигателя, развиваемая при желаемых оборотах. Когда двигатель ускоряется, отображается кривая оборотов или мощности. По мере увеличения оборотов двигателя увеличивается и мощность, пока не достигнет максимального уровня.

Расстояние: это длина хода шатуна: чем длиннее ход, тем больше крутящего момента создается, как мы объясняли выше.

Константа крутящего момента: это математическое число, которое присваивается всем двигателям, 5252 или постоянная частота вращения, при которой мощность и крутящий момент уравновешены. Число 5252 было получено из наблюдения, что одна лошадиная сила эквивалентна 150 фунтам, которые преодолевают 220 футов за одну минуту. Чтобы выразить это в фут-фунтах крутящего момента, Джеймс Ватт ввел математическую формулу, которая изобрела первый паровой двигатель.

Формула выглядит следующим образом:

Предполагая, что сила в 150 фунтов приложена к одному футу радиуса (или круга, который находится, например, внутри цилиндра двигателя внутреннего сгорания), вам придется преобразовать это в фут-фунты крутящего момента.

220 футов в минуту необходимо экстраполировать в число оборотов в минуту. Для этого вам нужно дважды умножить число Пи (или 3,141593), что равно 6,283186 фута. Возьмите 220 футов и разделите на 6,28, и мы получим 35,014 оборотов в минуту на каждый оборот.

Возьмите 150 футов и умножьте на 35,014, и вы получите 5252,1 — это наша константа, учитываемая при измерении крутящего момента в фут-фунтах.

Часть 4 из 4: Как рассчитать крутящий момент автомобиля

Формула для вычисления крутящего момента: крутящий момент = мощность двигателя x 5252, который затем делится на число оборотов в минуту.

Проблема с крутящим моментом, однако, заключается в том, что он измеряется в двух разных местах: непосредственно от двигателя и до ведущих колес.Другие механические компоненты, которые могут увеличивать или уменьшать номинальный крутящий момент на колесах, включают: размер маховика, передаточные числа трансмиссии, передаточные числа ведущей оси и окружность шины / колеса.

Для того, чтобы вычислить крутящий момент на колесе, все эти элементы должны быть учтены в уравнении, которое лучше всего оставить компьютеризированной программе, включенной в динамометрический стенд. На этом типе оборудования автомобиль размещается на стойке, а ведущие колеса размещаются рядом с рядом роликов.Двигатель подключен к компьютеру, который отслеживает обороты двигателя, кривую расхода топлива и передаточные числа. Эти числа учитываются со скоростью вращения колес, ускорением и оборотами переключения, поскольку транспортное средство движется на динамометрическом стенде в течение желаемого промежутка времени.

Расчет крутящего момента двигателя определить намного проще. Следуя приведенной выше формуле, становится ясно, как крутящий момент двигателя пропорционален мощности и частоте вращения двигателей, как описано в первом разделе. Используя эту формулу, вы можете вычислить номинальные крутящий момент и мощность в каждой точке кривой частоты вращения.Для расчета крутящего момента вам необходимо иметь данные о мощности двигателя, указанные производителем двигателя.

Калькулятор крутящего момента

Некоторые люди используют онлайн-калькулятор, предлагаемый MeasureSpeed.com, который требует, чтобы вы вводили максимальные значения мощности двигателя (предоставленные производителем или полученные во время профессионального динамического тестирования двигателя) и желаемое число оборотов в минуту.

Если вы заметили, что ваш двигатель с трудом ускоряется и не обладает необходимой мощностью, попросите одного из сертифицированных механиков YourMechanic провести осмотр, чтобы определить источник проблемы.

Значение мощности и крутящего момента / Блог о производительности ROUSH

Пожалуй, наиболее часто используемый термин для описания характеристик транспортного средства — это лошадиные силы. В этой статье мы подробно рассмотрим, что именно означает этот термин, как он соотносится со своим сопутствующим термином «крутящий момент» и как мы можем лучше всего взглянуть на них, чтобы получить представление о реальной полезной производительности.

Определение лошадиных сил
Термин «лошадиные силы» используется довольно давно. В 1702 году Томас Савери сослался на потенциальную работу, которую может выполнять лошадь, как на мерило силы.В своей книге «Друг шахтера» он пишет: «Так что машина, которая поднимет столько воды, сколько две лошади, одновременно работая вместе на такой работе, могла сделать, и для которой необходимо постоянно держать десять или двенадцать лошадей для делать то же самое. Затем я говорю, что такой двигатель может быть сделан достаточно большим, чтобы выполнять работу, необходимую для использования восьми, десяти, пятнадцати или двадцати лошадей, которые будут постоянно поддерживаться и поддерживаться для выполнения такой работы … »

Джеймс Ватт позже упомянул о потенциальной работе, которую может выполнять лошадь (в лошадиных силах), как о способе продвижения на рынок нового улучшенного парового двигателя.Он определил, что лошадь может выполнить 33 000 фут-фунтов работы за одну минуту (что эквивалентно вытягиванию одного фунта веса на расстояние 33 000 футов).

Определение крутящего момента
Крутящий момент — это тенденция силы перемещаться вокруг точки. Другими словами, крутящий момент относится к скручивающей силе. Единица измерения крутящего момента, которую мы все знаем, «фут-фунт», «фунт-фут» или «фут-фунт» — это сила поворота, прилагаемая для перемещения одного фунта на расстояние в один фут вокруг оси на радиус в один фут.

Итак, один полный оборот вокруг оси на радиусе одного фута с сопротивлением в один фут дает следующий объем работы:

работа = (2 * пи) * 1 фунт-фут = 6,2832 фунт-фут

Где сходятся крутящий момент и мощность в лошадиных силах
Как вы можете видеть выше, мощность в лошадиных силах — это мера работы / времени, а крутящий момент — это мера работы. Итак, если мы используем 6,2832 фунт-фут на оборот, которые мы придумали выше, теперь мы можем определить число оборотов в минуту (обороты в минуту => работа / время), чтобы выяснить, при каких оборотах у нас будет одна лошадиная сила с 1 фунтом- фут крутящего момента.Посмотрим, что у нас получится:

33000 фунт-фут / мин / 6,2832 фунт-фут / оборот = 5252 об / мин

Даже несмотря на то, что мы использовали случай одного фунт-фут крутящего момента и одной лошадиной силы, чтобы найти, где сходятся эти два числа, значения мощности и крутящего момента всегда будут одинаковыми при этих оборотах. Проверьте это утверждение. Посмотрите на несколько графиков мощности и крутящего момента. Вы обнаружите, что на всех из них линии крутящего момента и лошадиных сил пересекаются в этот момент. См. Ниже пример нагнетателя ROUSH Performance M90.

Что это означает
Как мы доказали выше, мощность в лошадиных силах — это просто экстраполяция крутящего момента, приложенного с течением времени. Когда двигатель измеряется на предмет его потенциальной мощности на динамометре, мощность и крутящий момент не измеряются как отдельные единицы. Скорее, измеряется крутящий момент, а затем вычисляется мощность с учетом крутящего момента на определенном уровне оборотов в минуту.

Владельцы автомобилей часто используют «лошадиные силы» в качестве конечной оценки характеристик двигателя.Эта перспектива ошибочна. Прежде всего, когда вы слышите о машине, имеющей X лошадиных сил, это относится только к пиковой мощности на динамограмме. Во-вторых, это не указывает на форму кривой крутящего момента. Вы можете почувствовать крутящий момент, создаваемый двигателем, когда вас отталкивают обратно на сиденье.

Пример Ford F-350 6.7L 2011 года выпуска
Одним из примеров того, насколько обманчивой может быть только величина лошадиных сил, является случай с дизельным двигателем грузовика. Ниже представлена ​​динамическая диаграмма для Ford F-350 6 2011 года выпуска.7-литровый двигатель V8:

Как видите, этот двигатель — монстр с крутящим моментом более 640 фунт-фут на низких оборотах. Однако, поскольку кривая крутящего момента падает до точки схождения крутящего момента и мощности, которую мы нашли выше (при 5252 об / мин), мощность остается значительно ниже уровня крутящего момента для всего диапазона мощности. Означает ли относительно низкая пиковая мощность 307 л.с., что у этого двигателя небольшая мощность? Точно нет. Двигатель грузовика выше не предназначен для работы на высоких оборотах.Его рабочие обороты находятся в соответствующем диапазоне мощности, и он имеет высокий уровень тягового усилия от линии, что идеально подходит для буксировки большого веса.

Когда вы слышите, что кто-то ссылается на двигатель с высоким крутящим моментом, на самом деле они имеют в виду, что диапазон крутящего момента начинается с высокого при низких оборотах (и, вероятно, падает в начале континуума оборотов в минуту по сравнению с двигателями, которые не считаются высокими по крутящему моменту).

The Case of the Horsepower Bastard
На другом конце спектра мы видим цифры мощности, которые нереальны, но поскольку кривая крутящего момента благоприятствует только диапазону высоких оборотов, полезная мощность, генерируемая данным двигателем, намного меньше, чем число лошадиных сил заставит вас поверить.Вы могли бы увидеть это там, где нет устойчивой кривой крутящего момента на используемых оборотах, а скорее наклоненная вверх кривая крутящего момента, которая сильно способствует более высоким оборотам. Вы можете убедиться в этом на примере систем принудительной индукции, для наматывания которых требуется слишком много времени.

Лучшая перспектива на мощность
Хорошее практическое правило, которое следует использовать при попытке определить реальную полезную мощность, — это посмотреть на форму кривой крутящего момента. Для приложений с высокими эксплуатационными характеристиками, таких как модифицированный Ford Mustang, форма кривой должна быть достаточно постоянной в диапазоне оборотов, который предназначен для использования.Вы хотите увеличить площадь под этой кривой во всем диапазоне оборотов в минуту. Действительно, нужна лучшая единица измерения для определения полезной мощности двигателя. Одна из возможностей — получить средний крутящий момент в этом диапазоне. Другой будет область под кривой крутящего момента. Конечно, есть много других возможностей, но идею вы поняли.

Электродвигатели — крутящий момент в зависимости от мощности и частоты вращения

  • Работа является результатом силы, действующей на некотором расстоянии.Работа измеряется в джоулях (Нм) или фут-фунтах.
  • Крутящий момент — это сила вращения, создаваемая коленчатым валом двигателя. Чем больший крутящий момент производит двигатель, тем выше его способность выполнять работу. Поскольку крутящий момент является вектором, действующим в определенном направлении, его обычно определяют в единицах Нм или фунт-фут.
  • Мощность — это скорость выполнения работы — работа за заданный промежуток времени. Мощность измеряется в ваттах (Дж / с) или лошадиных силах.

Обратите внимание, что движущая сила электродвигателя крутящего момента , а не лошадиных сил.Крутящий момент — это крутящая сила, которая заставляет двигатель работать, и крутящий момент активен от 0% до 100% рабочей скорости.

Мощность, производимая двигателем, зависит от скорости двигателя и составляет

  • ноль при 0% скорости и
  • обычно на максимальной скорости при рабочей скорости

Примечание ! — полный крутящий момент с нулевой скорости является большим преимуществом для электромобилей.

Для полного стола — поворот экрана!

9227 (фунт на дюйма) 9008 1 41 9008 1142 9 0081210 814
Мощность Скорость двигателя (об / мин)
3450 2000 1750 1000 500
Крутящий момент
(фунт на дюйм)
(фунт на фут)
(Нм) (фунт на дюйм) f фута) (Нм) (фунт f дюйм) (фунт f фут) (Нм) 7 (фунт на фут) (Нм) (фунт на дюйм) (фунт на фута) (Нм)
1 0.75 18 1,5 2,1 32 2,6 3,6 36 3,0 4,1 63 5,3 7,1 126 10,5 14,2
1,5 1,1 27 2,3 3,1 47 3,9 5,3 54 4,5 6,1 95 7.9 10,7 189 15,8 21,4
2 1,5 37 3,0 4,1 63 5,3 7,1 72 6,0 8,1 126 10,5 14,2 252 21,0 28,5
3 2,2 55 4,6 6,2 95 7.9 10,7 108 9,0 12 189 15,8 21,4 378 31,5 42,7
5 3,7 91 7,6 10 158 13,1 18 180 15 20 315 26,3 36 630 52,5 71
7.5 5,6 137 11 15 236 20 27 270 23 31 473 39 53 945 79 107
10 7,5 183 15 21 315 26 36 360 30 41 630 53 71 1260 105 142
15 11 274 23 31 473 39 53 540 45 61 945 79 107 1891 158 214
20 15 365 30 630 53 71 720 60 81 1260 105 142 2521 210 285
25 19 457 38 52 788 66 89 900 75 102 1576 131 178 3151 263 356
30 22 548 46 62 945 79 107 1080 90 122 1891 158 214 3781 315 427
40 30 731 61 83 1260 105 1441 120 163 2521 210 285 5042 420 570
50 37 913 76 103 1576 131 178 1801 150 204 3151 263 356 6302 525 712
60 45 1096 91 124 1891 158 214 2161 180 244 3781 315 427 7563 630 855
70 52 1279 107 145 2206 184 249 2521 285 4412 368 499 8823 735 997
80 60 1461 122 165 2521 210 285 2881 240 326 5042 420 570 10084 840 1140
90 67 1644 137 186 2836 236 321 3241 270 366 5672 473 641 11344 945 1282
100 75 1827 207 3151 263 356 3601 300 407 6302 525 712 12605 1050 1425
125 93 2283 190 258 3939 328 445 4505 328 445 4505 509 7878 657 891 15756 1313 1781
150 112 2740 228 310 4727 394 5402 450 611 9454 788 1069 18907 1576 2137
175 131 3197 266 361 5515 66023 361 5515 66023 6302 525 712 1 1029 919 1247 22058 1838 2494
200 149 3654 304 413 6302 525 712 7203 60082 2 7203 12605 1050 1425 25210 2101 2850
225 168 4110 343 465 7090 591 80103 890 675 916 14180 1182 1603 28361 2363 3206
250 187 4567 381 516 7878 657 9003 750 1018 15756 90 082 1313 1781 31512 2626 3562
275 205 5024 419 568 8666 722 980 9904 1125 825 17332 1444 1959 34663 2889 3918
300 224 5480 457 620 9454 788 1069 10804 1221 18907 1576 2137 37814 3151 4275
350 261 6394 533 723 11029 919 126082 1247 11029 919 1247 900 1050 1425 22058 1838 2494 44117 3676 4987
400 298 7307 609 826 12605 1050 1425 14405 1625 144082 1200 25210 2101 2850 50419 4202 5699
450 336 8221 685 929 14180 1182 1603 1320 1320 1832 28361 2363 3206 56722 4727 6412
550 410 10047 837 1136 17332 1444 1980 1959 1651 2239 34663 2889 3918 69326 5777 7837
600 448 10961 913 1239 18907 1576 2137 2160882 2443 37814 3151 4275 75629 6302 8549

Мощность, скорость и крутящий момент электродвигателя Уравнения

Крутящий момент в британских единицах можно рассчитать как

T

дюйм-фунт = P л. двигатель (л.с.)

n = число оборотов в минуту (об / мин)

Альтернативно

T фут-фунт = P л.

Крутящий момент в единицах СИ можно рассчитать как

T Нм = P W 9.549 / n (2)

где

T Нм = крутящий момент (Нм)

P W = мощность (Вт)

n = обороты в минуту (об / мин) 935

Электродвигатель — зависимость крутящего момента от мощности и скорости

мощность (кВт)

скорость (об / мин)

Электродвигатель — мощность в зависимости от крутящего момента и скорости

крутящий момент (Нм)

скорость (об / мин)

Электродвигатель — Зависимость скоростиМощность и крутящий момент

мощность (кВт)

крутящий момент (Нм)

Пример — крутящий момент электродвигателя

крутящий момент, передаваемый электродвигателем мощностью 0,75 кВт (750 Вт) при скорости 2000 об / мин можно рассчитать как

T = ( 750 Вт ) 9,549 / (2000 об / мин)

= 3,6 (Нм)

Пример — Крутящий момент от электродвигателя

Крутящий момент, передаваемый от электродвигателя мощностью 100 л.с. при скорости 1000 об / мин можно рассчитать как

T = (100 л.с.) 63025 / (1000 об / мин)

= 6303 (фунт f дюйм)

Для преобразования в фунт-сила-фут — разделите крутящий момент на 12 .

Крутящий момент важнее мощности?

Люди постоянно говорят о крутящем моменте и лошадиных силах, и оба числа будут обсуждаться до смерти на автомобильных форумах. Но что именно они означают и какой из них важнее?

Что такое крутящий момент?

Огромные 740 фунт-футов, но «всего» 490 л.с.

Крутящий момент — это величина крутящего момента, которую обеспечивает двигатель.Обычно его измеряют на кривошипе (если вы не Илон Маск, и в этом случае вы измеряете его на колесе, чтобы завышать свои цифры и сбивать с толку всех, кто не имеет инженерных объяснений). Обычно единицы измерения — фунт-фут (сила 1 фунт на расстоянии 1 фута от кривошипа) или Нм (сила 1 Н на расстоянии 1 м от кривошипа).

Автомобиль обычно дает максимальный крутящий момент. Это максимальный крутящий момент, который двигатель может обеспечить в любой момент своего диапазона оборотов. Обычно он сообщает, при каких оборотах достигается этот крутящий момент, или иногда показывает диапазон.На других оборотах вращающий момент будет ниже заявленного значения. Помните об этом факте.

Что такое лошадиные силы?

Ужасно звучащий 260 фунт-фут, но около 950 л.с. Это также не похоже ни на что другое на Земле.

лошадиных сил — это крутящий момент, умноженный на число оборотов в минуту (умноженное на константу — число зависит от того, какие единицы вы используете).Это показатель того, сколько работы ваш двигатель выполняет за определенный промежуток времени. Одна лошадиная сила составляет около 745 Вт, или, если вы думаете об этом в реальном выражении, примерно мощность, необходимая для того, чтобы поднять среднестатистического человека на 1 метр за 1 секунду. Еще раз, большинство производителей указывают значение пиковой мощности, которое применимо только при определенных оборотах.

Равен ли крутящий момент ускорению?

Рассмотрим следующие два двигателя:

  • Двигатель 1: 300 л.с. при 4000 об / мин, 500 фунт-фут при 1500 об / мин
  • Двигатель 2: 300 л.с. при 8000 об / мин, 250 фунт-фут при 3000 об / мин

Какой двигатель ускоряет ускорение автомобиля?

Ответ в том, что они оба одинаковы, если вы допускаете разные передаточные числа.Если вы примените редуктор 2: 1 к двигателю 2, вы уменьшите вдвое все обороты, удвоите все крутящие моменты и оставите мощность такой же (поскольку удвоение чего-то, а затем уменьшение чего-то вдвое ничего не дает). Что дает вам те же характеристики, что и у Engine 1.

Мораль этой истории заключается в том, что число оборотов в минуту имеет такое же значение, как и крутящий момент, поскольку мощность (и, в конечном счете, то, сколько работы двигатель может сделать за определенный промежуток времени) зависит от обоих.

Что на самом деле означает крутящий момент?

Рассмотрим еще три двигателя:

  • Двигатель 1: 300 л.с. при 6000 об / мин, 290 фунт-футов при 2500 об / мин
  • Двигатель 2: 300 л.с. при 6000 об / мин, 390 фунт-футов при 2500 об / мин
  • Двигатель 3: 300 л.с. при 6000 об / мин, 290 фунт-футов при 4500 об / мин

Оба двигателя имеют одинаковую мощность и пиковую частоту вращения, поэтому при 6000 об / мин все они будут работать одинаково.Но крутящие моменты разные!

Теперь посмотрим на графики мощности / крутящего момента:

Кривая крутящего момента на самом деле не имеет большого значения, потому что на нее легко влияет передача. Мощность в лошадиных силах не зависит от передачи, поэтому сосредоточьтесь на кривой мощности.

Двигатель 1 имеет кривую мощности, которая поднимается примерно линейно, потому что его кривая крутящего момента почти плоская.Однако двигатель 2 имеет больший крутящий момент на более низких оборотах, поэтому его кривая мощности поднимается вверх. Двигатель 3 имеет такой же пиковый крутящий момент, что и Двигатель 2, но на более высоких оборотах. На более низких оборотах он имеет меньший крутящий момент, поэтому там меньше мощности.

Ничего из этого не имеет значения, если вы постоянно находитесь рядом с красной линией, потому что все они производят там одинаковую мощность. Но большинство людей не ездят так [необходима цитата], поэтому им нужна мощность, даже когда они прижимают ногу при крейсерской скорости 2000 об / мин, чтобы обогнать.Двигатель 2 имеет заметно большую мощность на этих оборотах, поэтому он быстрее всех преодолеет обгон.

Таким образом, в целом, чем больше крутящий момент и ниже указанные обороты, тем шире диапазон мощности и тем сильнее толчок, который вы почувствуете при «разумном» вождении. Электромобили доводят это до крайности, поскольку их максимальный крутящий момент составляет 0 об / мин.

Где числа падают

Проблема с этими показателями мощности и крутящего момента заключается в том, что они дают только два снимка двигателя на двух очень определенных оборотах в минуту.Остается только догадываться, что происходит между ними. Взгляните на эти два двигателя. Оба они имеют те же характеристики заголовка, что и Engine 2, но разные характеристики:

Оба этих двигателя работают одинаково при 6000 об / мин и 2500 об / мин. Но на других оборотах двигатель 1 намного лучше. При 4000 об / мин Двигатель 1 развивает 294 л.с., а Двигатель 2 — 207 л.с.Конечно, большинство двигателей будут иметь в целом похожую форму кривой мощности, но вы должны быть осторожны, потому что некоторые технологии (гибриды, принудительная индукция, VTEC и т. Д.) Могут значительно исказить кривую крутящего момента.

Мораль здесь? Посмотрите на всю кривую крутящий момент / мощность, а не только на заголовки.

Вкратце

  • Лошадиная сила — лучший показатель как ускорения, так и максимальной скорости (при условии, что вес, сцепление, сопротивление и все остальное одинаковы).
  • Крутящий момент не имеет большого значения без числа оборотов в минуту или диапазона.
  • Больший крутящий момент и более низкие обороты с максимальным крутящим моментом обычно означают больше толчка на низких частотах, что способствует лучшему повседневному вождению.
  • Однако цифры в заголовках не отражают всей картины.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *