Назначение поршня – : ,

Содержание

Что такое поршень двигателя автомобиля? Основное назначение

Поршень занимает центральное место в процессе преобразования энергии топлива в тепловую и механическую. Поговорим про поршни двигателя, что это такое и как они работают.

Что это такое?
Поршень — деталь цилиндрической формы, совершающая возвратно-поступательное движение внутри цилиндра двигателя. Нужен для изменения давления газа в механическую работу, или наоборот — возвратно-поступательного движения в изменение давления. Т.е. он передаёт на шатун усилие, возникающее от давления газов и обеспечивает протекание всех тактов рабочего цикла. Он имеет вид перевёрнутого стакана и состоит из днища, головки, направляющей части (юбки). В бензиновых моторах применяются поршни с плоским днищем из-за простоты изготовления и меньшего нагрева при работе. Хотя на некоторых современных авто делают специальные выемки под клапаны. Это нужно, чтобы при обрыве ремня ГРМ поршни и клапана не встретились и не повлекли серьёзный ремонт. Днище поршня дизеля делают с выемкой, которая зависит от степени смесеобразования и расположения клапанов, форсунок. При такой форме днища лучше перемешивается воздух с поступающим в цилиндр топливом.

Поршень подвержен действию высоких температур и давлений. Он движется с высокой скоростью внутри цилиндра. Поэтому изначально для автомобильных двигателей их отливали из чугуна. С развитием технологий стали использовать алюминий, т.к. он давал следующие преимущества: рост оборотов и мощности, меньшие нагрузки на детали, лучшую теплоотдачу.


С тех пор мощность моторов выросла многократно. Температура и давление в цилиндрах современных автомобильных двигателей (особенно дизельных моторов) стали такими, что алюминий подошёл к пределу своей прочности. Поэтому в последние годы подобные моторы оснащаются стальными поршнями, которые уверенно выдерживают возросшие нагрузки. Они легче алюминиевых за счет более тонких стенок и меньшей компрессионной высоты, т.е. расстояния от днища до оси алюминиевого пальца. А еще стальные поршни не литые, а сборные. Помимо прочего, уменьшение вертикальных габаритов поршня при неизменном блоке цилиндров дает возможность удлинить шатуны. Это позволит снизить боковые нагрузки в паре «поршень-цилиндр, что положительно скажется на расходе топлива и ресурсе двигателя. Или, не меняя шатунов и коленвала, можно укоротить блок цилиндров. Таким образом облегчим мотор.
Какие требования?
  • Поршень, перемещаясь в цилиндре, позволяет расширяться сжатым газам, продукту горения топлива, и совершать механическую работу. Следовательно, он должен быть устойчивым к высокой температуре, давлению газов и надежно уплотнять канал цилиндра.
  • Он должен наилучшим образом отвечать требованиям пары трения с целью минимизировать механические потери и, как следствие, износа.
  • Испытывая нагрузки со стороны камеры сгорания и реакцию от шатуна, он должен выдерживать механическое воздействие.
  • Совершая возвратно-поступательное движение с высокой скоростью, должен как можно меньше нагружать кривошипно-шатунный механизм инерционными силами.
Основное назначение
Топливо, сгорая в надпоршневом пространстве, выделяет огромное количество тепла в каждом цикле работы двигателя. Температура сгоревших газов достигает 2000 градусов. Только часть энергии они передадут движущимся деталям мотора, все остальное в виде тепла нагреет двигатель. То, что останется, вместе с отработанными газами улетит в трубу. Следовательно, если не будем охлаждать поршень, он через некоторое время расплавится. Это важный момент для понимания условий работы поршневой группы.

Еще раз повторим известный факт, что тепловой поток направлен от более нагретых тел к менее нагретым.


Наиболее нагретым является рабочее тело, или, другими словами, газы в камере сгорания. Совершенно понятно, что тепло будет передано окружающему воздуху – самому холодному. Воздух, омывая радиатор и корпус двигателя, остудит охлаждающую жидкость, блок цилиндров и корпус головки. Остается найти мостик, по которому поршень отдает свое тепло в блок и антифриз. Есть для этого четыре пути.

Итак, первый путь, обеспечивающий наибольший поток, – это поршневые кольца. Причем первое кольцо играет главную роль, как расположенное ближе к днищу. Это наиболее короткий путь к охлаждающей жидкости через стенку цилиндра. Кольца одновременно прижаты и к поршневым канавкам, и к стенке цилиндра. Они обеспечивают более 50% теплового потока.

Второй путь менее очевиден. Вторая охлаждающая жидкость в двигателе – масло. Имея доступ к наиболее нагретым местам мотора, масляный туман уносит и отдает в поддон картера значительную часть тепла от самых горячих точек. В случае применения масляных форсунок, направляющих струю на внутреннюю поверхность днища поршня, доля масла в теплообмене может достигать 30 – 40%. Понятно, что, нагружая масло функцией теплоносителя, мы должны позаботиться, чтобы его остудить. Иначе перегретое масло может потерять свои свойства. Также, чем выше температура масла, тем меньше тепла оно способно перенести.

Третий путь. Часть тепла отбирает на нагрев свежая топливовоздушная смесь, поступившая в цилиндр. Количество свежей смеси и количество тепла, которое она отберет, зависит от режима работы и степени открытия дросселя. Надо заметить, что тепло, полученное при сгорании, также пропорционально заряду. Поэтому этот путь охлаждения носит импульсный характер; отличается скоротечностью и высокоэффективен благодаря тому, что тепло отбирается с той стороны, с которой поршень нагревается.

В силу большей значимости следует уделить пристальное внимание передаче тепла через поршневые кольца. Понятно, что если этот путь мы перекроем, то маловероятно, что двигатель выдержит сколько-нибудь длительные форсированные режимы. Температура вырастет, материал поршня «поплывет», и двигатель разрушится.


Вспомним такую характеристику, как компрессия. Представим, что кольцо не прилегает по всей длине к стенке цилиндра. Тогда сгоревшие газы, прорываясь в щель, создадут барьер, препятствующий передаче тепла от поршня через кольцо в стенку цилиндра. Это то же самое, как если бы закрыли часть радиатора и лишили его возможности охлаждаться воздухом.

Более страшна картина, если кольцо не имеет тесного контакта с канавкой. В тех местах, где газы имеют возможность протекать мимо кольца через канавку, участок поршня лишается возможности охлаждаться. Как результат – прогар и выкрашивание части, прилегающей к месту утечки.

Сколько колец нужно для поршня? С точки зрения механики, чем меньше колец, тем лучше. Чем они уже, тем меньше потери в поршневой группе. При уменьшении их количества и высоты ухудшаются условия охлаждения поршня, увеличивая тепловое сопротивление днище – кольцо – стенка цилиндра. Поэтому выбор конструкции – всегда компромисс.

amastercar.ru

Поршень — Энциклопедия журнала «За рулем»

Рис. Поршень дизельного двигателя (а) грузового автомобиля и формы поршней разных двигателей (б)

: 1 — канавка нижнего маслосъемного кольца;
2 — проточка под стопорное кольцо поршневого пальца;
3 — внутренняя поверхность бобышки;
4 — отверстие для смазки поршневого пальца;
5 — канавка верхнего маслосъемного кольца;
6 — канавки компрессионных колец;
7 — головка поршня;
8 — камера сгорания в поршне;
9 — днище поршня;
10 — отверстия для отвода масла;
11 — юбка

Поршень имеет довольно сложную конструкцию, потому что он подвергается очень большим и непостоянным по величине нагрузкам.
Наружная поверхность направляющей части носит название юбки. Во время рабочего хода на поршень воздействует высокое давление расширяющихся при высокой температуре газов. С другой стороны, при работе двигателя, особенно на высоких оборотах, поршень подвергается большим знакопеременным инерционным нагрузкам. При нахождении поршня в ВМТ и НМТ его ускорение равно нулю, а затем поршень резко ускоряется и движется с большой скоростью, причем направление движения меняется сотни раз в секунду. Для уменьшения инерционных нагрузок необходимо максимально уменьшать массу поршня. В то же время он должен иметь высокую прочность, чтобы противостоять высокому давлению и нагреву при соприкосновении с горячими газами с последующим охлаждением при подаче в цилиндр холодного свежего заряда. В настоящее время поршни бензиновых и дизельных автомобильных двигателей изготавливают из алюминиевых сплавов. При производстве поршня в отливку в процессе изготовления часто закладывают стальные вставки, которые повышают его жесткость и препятствуют температурному расширению. Иногда стальную вставку располагают в канавке под верхнее компрессионное (наиболее нагруженное) поршневое кольцо.

При нагревании поршень расширяется. Для компенсации температурного расширения поршня при нагревании ему придают специальную форму. Юбка поршня в поперечной плоскости имеет форму овала, а не окружности. В продольной плоскости юбка поршня выглядит как усеченный конус. Части поршня с большой температурой или с большим объемом металла расширяются сильнее (например, часть юбки, где расположены бобышки), и при достижении рабочей температуры в двигателе поршень принимает форму цилиндра.
За время своего существования поршни претерпели значительные изменения конструкции. Если сравнить поршень двигателя современного автомобиля с его предшественником, можно заметить, что поршни стали значительно короче. Большая часть юбки обрезается с каждой стороны, и остаются только две небольшие секции для того, чтобы предотвратить перекос поршня в цилиндре. Благодаря совершенству конструкции силы, воздействующие на поршень, сбалансированы таким образом, чтобы свести к минимуму тенденцию к повороту. Расстояние от днища поршня до верхней канавки под поршневое кольцо уменьшают с целью снижения возможности образования нагара в этой части. За счет уменьшения размеров сечений в конструкции поршня удалось значительно снизить его массу. Для уменьшения потерь на трение и повышения долговечности деталей КШМ на боковую поверхность поршня наносят слой антифрикционного материала, содержащего дисульфид молибдена или графит.
Днище поршня может быть плоским, выпуклым, вогнутым, иметь канавки, для того чтобы при полном открытии клапанов они не касались поршня. У дизельного двигателя камера сгорания может быть выполнена в поршне.
Поршни двигателей с непосредственным впрыском топлива имеют особую форму, необходимую для обеспечения процесса сгорания топлива.
Поршневые кольца изготавливаются из специально модифицированного чугуна. В двигателях современных автомобилей используют несколько типов колец. Верхние компрессионные кольца служат для того, чтобы предотвратить прорыв газов в картер двигателя, а нижнее маслосъемное — контролирует количество масла на стенках цилиндра (стенки смазываются маслом, поступающим из картера в виде масляного тумана). Масло необходимо для предотвращения износа ЦПГ, но его излишки нежелательны. Поэтому следует подавать его больше, чем нужно, а излишки удалять с помощью маслосъемного кольца, работающего как скребок. Один из способов получения более компактных и легких поршней — выполнение колец более узкими и мелкими с компактным размещением их в верхней части головки поршня. При этом предъявляются повышенные требования к материалу, из которого они изготовлены, и к точности их изготовления.

wiki.zr.ru

Что такое поршень — разбираемся вместе

Поршни Когда мы садимся за руль автомобиля, поворачиваем ключ в замке зажигания и нажимаем педаль газа, под капотом начинает происходить множество очень сложных механизмов, которые и производят движение. Эти все механизмы нас совсем не интересуют, главное чтобы автомобиль ехал. Но вот когда происходит поломка – мы начинаем ломать голову над тем, в чем же кроется причина и нам приходится осваивать всю необходимую информацию об устройстве и функционировании каждой отдельной детали. Но чтобы не тратить на это время, когда этого времени у Вас не будет, перед тем как садиться за руль, следует хорошо разобраться в особенностях автомобильных деталей.

В частности, сегодня мы поговорим с вами о поршне. Ведь эта деталь является центральной в процессе переработки топливной энергии в тепловую и механическую. Разберемся с Вами, что такое поршень, его назначение, основные требования к нему и особенности его конструкции.

1. Поршень двигателя и его основные характеристики

Поршень двигателя

Мы конечно надеемся, что опытным автомобилистам не нужно долго объяснять, что же такое поршень двигателя. Однако, если среди наших читателей есть «начинающие», то специально для них мы объясним, что поршень является деталью автомобиля, которая преобразует изменения давление газа, пара и жидкости внутри двигателя в механическую силу. Поршень имеет форму цилиндра, внутри которого постоянно совершаются возвратно-поступательные движения, благодаря которым и образуется механическая сила.

Обязанность у этой детали очень ответственная и от того, насколько он хорошо с нею справляется и зависит его эффективность. На самом деле он является наиболее сложной деталью автомобиля, разобраться в особенностях и противоречивых свойствах которой неподготовленному уму довольно трудно. Мало кто знает, но практически ни один автомобильный концерн не занимается самостоятельным изготовлением поршней для своих автомобилей, а заказывают их специально под свои моторы. Усложняет ситуацию для простых автомобилистов и тот факт, что на сегодняшний день существует большое количество разных форм и размеров поршней. Поэтому, обслуживание и ремонт этой детали может всегда проводиться по-разному.

Каким требованиям должен соответствовать надежный поршень?

Поршни Поскольку поршень – деталь довольно сложная, то и требований к ней выставляется великое множество. В связи со сложностями производства, изготовителей поршней двигателей не так уж и много, да и стоит эта деталь на авторынке совсем не мало. И так, давайте разберемся, каким требованиям должен соответствовать хороший поршень:

1. Перемещаясь внутри цилиндра, именно поршень двигателя обеспечивает расширение сжатых газов, которые являются продуктом горения топлива. Благодаря этому газы могут выполнять механическую работу – приводить в действие все остальные механизмы автомобиля. Как следствие, основное требование к поршням – возможность сопротивляться высокой температуре при которой проходят все эти процессы, высокому давлению газов и хорошо уплотнять канал цилиндра (иначе он не сможет влиять на давление газов).

2. Поршень не является одиночным устройством, он действует вместе с цилиндром и поршневыми кольцами. Вместе эти детали образуют линейный подшипник скольжения. В связи с этим подшипник обязательно должен отвечать всем требованиям и особенностям пары трения. Если все требования будут учтены с самой высокой точностью, то это не только поможет минимизировать механические потери при сгорании топлива, но и износ всех деталей.

Поршневая группа 3. Поршень постоянно находится под сильными нагрузками, самыми сильными из которых являются нагрузки от камеры сгорания топлива и реакции от шатуна. Его конструкция обязательно должна учитывать все эти факторы и выдерживать такое сильное механическое воздействие.

4. Не смотря на то, что поршень в процессе работы движется с довольно большой скоростью, он не должен сильно нагружать инерционными силами кривошипно-шатунный механизм автомобиля, иначе это может привести к поломке.

2. Назначение поршней или их функциональные обязанности

Мы уже неоднократно упоминали, что поршень выполняет очень важную роль во всей работе автомобильного двигателя. Так, основное назначение поршней заключается в том, чтобы:

— принимать давления газов из камеры сгорания и передавать эти давления на коленчатый вал двигателя в виде механической силы;

— уплотнять полость цилиндра двигателя, которая находится над поршнем. Таким образом, он предохраняет весь автомобильных механизм от прорыва газов в кратер и от того, чтобы в него проникало смазочное масло.

Поршневая группа Причем вторая функция является более важной, поскольку именно благодаря этому поршень сам себе обеспечивает нормальные условия для работы. Даже о том, в каком техническом состоянии находится двигатель специалисты делают вывод только после осмотра поршневой группы и проверки ее уплотняющей способности. Ведь если расход масла превышает 3% от расхода топлива (а происходит это по причине его угара при проникновении в камеру сгорания), то весь автомобильный двигатель необходимо срочно отправлять в ремонт иле же он вообще может быть снят с эксплуатации. Понять, что с Вашим двигателем происходит что-то не то, можно по дымности отработанных газов. Но такого лучше не допускать.

Наверное, читая о том, что поршень и его элементы работают в условиях с очень высокими температурами, Вы удивляетесь, как это устройство само не выходит из строя? Добавим к этому, что кроме сложных температурных условий работу поршня постоянно сопровождают циклические, резко изменяющиеся, нагрузки. При всем этом элементам описываемой детали даже не всегда хватает смазки. Но об этом все конечно же подумали конструкторы и разработчики поршней.

Во-первых, конструируются они с учетом назначение и типа двигателя, на который они будут устанавливаться (стационарный, дизельный, двухтактный, форсированный или транспортный), поэтому для этого используются только самые устойчивые материалы.

Поршневая группа Во-вторых, существует несколько путей, благодаря которым осуществляется охлаждение данной детали. Но сначала немного о том, как и куда перетекает тепло (или даже жар) из камеры сгорания. Оно выходит в окружающий холодный воздух, который омывает радиатор и двигатель, а также блок цилиндров. Но какими же путями поршень одает тепло блоку и антифризу?

1. Через поршневые кольца. Самое главное из них – первое, поскольку оно располагается ближе всего к днищу поршня. Так как кольца одновременно прижимаются и к поршневым канавкам и к стенке цилиндра, то благодаря им отдается около 50% всего потока тепла от поршня.

2. Благодаря второй «охлаждающей жидкость», роль которой выполняет моторное масло. Поскольку масло подступает к самым нагретым частям двигателя, то именно ему удается унести в картерный поддон очень большое количество тепла с наиболее разогретых точек. Однако, чтобы масло могло охлаждать поршни, оно также должно охлаждаться, иначе его очень скоро придется менять.

3. Тепло проходит через бобышки в палец, в шатун и в масло. Менее эффективный путь, однако, и он играет свою важную роль.

Поршни 4. Как не странно, но топливо также помогает охлаждаться поршню и двигателю в целом. Так, когда в камеру сгорания поступает свежая смесь из топлива и воздуха, она перетягивает на себя довольно много тепла, хотя потом отдает его в еще больших количествах. Однако, количество смеси и тепла, которое она сможет поглотить, напрямую зависит от режима работы автомобиля и того, насколько открыт дроссель. Преимущество данного пути заключается в том, что смесь поглощает тепло именно с той стороны, с которой поршень больше всего и нагревается.

Однако, мы немного забежали наперед, поскольку начали говорить о функционировании поршня, не разобравшись до конца в конструктивных особенностях данной детали. Этому и посвятим следующий раздел.

3. Конструкция поршня: все, что необходимо знать о детали обычному автолюбителю

Вообще говорить о поршне в одиночку – все равно, что говоря о хлебе, обсуждать только свойства муки. Более логично ознакомиться со всей поршневой группой двигателя, которая представлена такими деталями:

— непосредственно сам поршень;

— поршневые кольца;

— поршневой палец.

Поршень Подобная конструкция поршневой группы является неизменной еще с момента появления самых первых двигателей внутреннего сгорания. Поэтому, данное описание будет общим практически для всех двигателей.

Естественно, самые важные функции выполняет поршень, конструкция которого не меняется вот уже как 150 лет. Если Вы не желаете стать профессиональным механиком, то Вам необходимо знать только о таких важных зонах поршня и их функциональных предназначениях:

1. Днище поршня. Поверхность детали, которая непосредственно обращена к камере сгорания двигателя. Своим профилем днище и определяет нижнюю поверхность этой самой камеры. Зависть эта форма может от: формы камеры сгорания, от ее объема, особенностей подачи в нее топливно-воздушной массы, от расположения клапанов. Бывают случаи, когда на днище имеется углубление за счет которого увеличивается объем камеры сгорания. Но, поскольку подобное является не желательным, то для уменьшения объема камеры приходится применять специальные вытеснители – определенный объем металла, расположенный выше плоскости днища.

2. «Жаровой (огневой) пояс». Таким термином обозначается расстояние, которое пролегает от днища поршня до его первого кольца. Важно знать, что чем меньше расстояние от днища до колец, тем более высокая тепловая нагрузка будет попадать на эти самые элементы, и тем сильнее они будут изнашиваться.

Поршни 3. Уплотняющий участок. Речь идет о канавках, которые располагаются на боковой поверхности цилиндрообразного поршня. Эти канавки являются непосредственным путем установки колец, которые, в свою очередь, обеспечивают подвижность уплотнения. Также, в канавке для маслосъемного кольца обязательно должно быть отверстие, благодаря которому излишки масла могут выводиться во внутреннюю полость поршня.

Еще одна функция уплотняющего участка – отводить часть тепла от поршня двигателя используя для этого, как мы уже упоминали, поршневые кольца. Однако, для эффективного отвода тепла очень важно, чтобы поршневые кольца плотно прилегали как к канавкам, так и к поверхности цилиндра. Так, торцевой зазор первого компрессионного кольца должен составлять о 0,045 до 0,070 миллиметра, для второго – от 0,035 до 0,06 миллиметра, а для маслосъемного – от 0,025 до 0,005 миллиметра. А вот между кольцами и канавками показатель радиального зазора может составлять от 1,2 до 0,3 миллиметра. Но и эти показатели не являются значительными для человеческого глаза, их можно определить только при помощи специального оборудования.

4. Головка поршня. Это обобщенный участок, который включает в себя уже описанные выше днище и уплотняющую часть.

5. Компрессионная высота поршня. Расстояние, которое рассчитывается от оси поршневого пальца до днища поршня.

Поршни двигателя 6. «Юбка». Нижняя часть поршня. Включает в себя бобышки с отверстиями, в которые устанавливается поршневой палец. Внешняя поверхность этого участка является опорной и направляющей поверхностью для поршня. Благодаря ей обеспечивается правильное соотношение оси поршня и оси цилиндра двигателя. Не менее важную роль играет и боковая поверхность «юбки», благодаря которой к цилиндру передаются поперечные усилия, возникающие периодически в поршневой группе двигателя. А специально для того, чтобы улучшить прорабатываемость поверхности юбки и уменьшить трение, она покрывается специальным защитным покрытием из олова (в основе покрытия может также использоваться графит и дисульфид молибдена. Или же вместо покрытия на юбку могут наноситься канавки специального профиля, которые удерживают масло и создают гидродинамическую силу, препятствующую контакту со стенками цилиндра.

Как и из чего: особенности изготовления автомобильных поршней

Понятно, что для выполнения таких функций, которые выполняет поршень, требуется достаточно «выносливый» металл. Однако, это далеко не сталь. Изготавливают поршни из сплавов алюминия, в состав которого всегда добавляют кремний. Делается это для того, чтобы снизить коэффициент расширения под воздействием высоких температур и увеличить стойкость детали к износу.

Однако, для изготовления поршней могут использовать сплав с разным процентом содержания кремний. К примеру, чаще всего для этой цели используют 13%-кремневые сплавы, которые называют эвтектическими. Есть сплавы и с более высоким содержанием кремния, которые называются заэвтектическими. И чем больше показатель этого процента, тем выше теплопроводные характеристики сплава. Но это не делает такой материал идеальным для изготовления поршней.

ПоршеньДело в том, что при охлаждении такой материал начинает выделять зерна кремния, размерами от 0,5 до 1 миллиметра. Очевидно, что подобный процесс отражается на литейных и механических свойствах как материала, так и детали, которая из него изготовлена. По этой причине, кроме кремния в подобные сплавы вводят и следующий перечень регулирующих добавок:

— марганец;

— медь;

— никель;

— хром.

Как же изготавливается основная часть автомобильного поршня? Существует даже два способа, благодаря котором можно получить заготовку этой детали. Первый из них предполагает заливку горячего сплава в специальную форму под названием «кокиль». Данный способ является наиболее распространенным. Второй же вариант изготовления заготовки – это горячая штамповка. Но после механической обработки формы, будущий поршень также подвергают различным термическим обработкам, что позволяет повысить твердость металла, прочность и стойкость к износам. Также, подобные процедуры позволяют снять остаточное напряжение в металле.

Не смотря на то, что благодаря использованию кованого металла повышается прочность детали, у них есть и свои недостатки. Подобные изделия обычно изготавливаются в классическом варианте с высокой «юбкой», из-за чего они получаются слишком тяжелыми. Также, подобные изделия не позволяют использовать вместе с ними термокомпенсирующие кольца или же пластины. По причине увеличенного веса такого поршня, увеличивается и его тепловая деформация, как следствие – приходится увеличивать размер зазора между поршнем и цилиндром.

Последствия подобного совсем не порадуют водителя, поскольку ими являются повышенный шум работы двигателя, быстрый износ цилиндров и высокий расход масла. Оправдывает себя использование кованых поршней только в тех случаях, если автомобиль регулярно эксплуатируется на самых придельных режимах.

Поршеневая группа На сегодняшний день конструкторы и физики направляют все усилия на то, чтобы сделать конструкцию поршней как можно более идеальной и точной. В частности, самые главные тенденции направлены на следующий перечень:

— уменьшение веса детали;

— использование на поршне только «тонких» колец;

— уменьшение компрессионной высоты поршня;

— уменьшение поршневых пальцев и использование в конструкции поршня только самых коротких;

— усовершенствование защитных покрытий и применение их по всех поверхностях детали.

Подобные достижение сегодня можно увидеть на Т-образной конструкции поршней последнего поколения. называют данную конструкцию Т-образной именно благодаря внешнему сходству детали с буквой «Т». Главное отличие таких поршней – уменьшенная высота юбки и площадь ее направляющей части. Изготавливаются такие поршни из заэвтектического сплава, который содержит в себе достаточно большое количество кремния. А изготавливаются они преимущественно путем горячей штамповки.

Поршень Однако, какую именно конструкцию поршня двигателя захотят поставить на автомобиль его разработчики будет зависеть от многих факторов. Такому решению всегда предшествует длительный период подсчетов и анализа поведения всех узлов шатунно-поршневой группы под влиянием новой детали. Расчет всех деталей проводится на их самых предельных возможностях их конструкций и тех материалов, из которых они изготовлены. Однако, как это ни печально, но в этом случае производитель не будет переплачивать. Он выберет тот вариант, который как раз «в пору» обеспечивает необходимый ресурс, и не будет тратиться на его повышение.

Как бы там ни было, но обычным автомобилисту приходится разбираться и эксплуатировать то, что уже было установлено на его автомобиль. Надеемся, что наша статья помогла Вам лучше узнать о том, каким образом функционирует и в чем заключается назначение поршней. Желаем Вам, чтобы с этой деталью у Вас никогда не возникало проблем, для чего необходимо обеспечивать ей правильные условия эксплуатации – слишком не «гонять» и вовремя менять моторное масло.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

auto.today

Поршень — Словарь автомеханика

Поршень является одной из деталей кривошипно-шатунного механизма двигателя и представляет собой целостный элемент условно разделяемый на головку и юбку. Он является основой процесса преобразования энергии горения топлива в тепловую, а далее в механическую. От качества работы данной детали напрямую зависит производительность двигателя, а также его надежность и долговечность.


Предназначение и виды поршней

В моторе поршень двигателя выполняет ряд функций, в частности, это:

  1. трансформация давления газов в усилие, передаваемое на шатун;
  2. обеспечение герметичности камеры сгорания;
  3. теплоотвод.

Поршень работает в экстремальных условиях под стабильно высокими механическими нагрузками. Поэтому для современных двигателей их изготавливают из специальных алюминиевых сплавов, отличающихся легкостью и прочностью при достаточных показателях термостойкости. Несколько менее распространены стальные поршни. Ранее они в основном производились из чугуна. Обязательно присутствующая на каждом изделии маркировка поршней расскажет, из чего оно изготовлено. Изготавливаются данные детали двумя методами – литьем и штамповкой. Кованые поршни, распространенные в тюнинге, изготовлены именно методом штамповки, а не выкованы вручную.


Конструкция поршня

Устройство поршня не является сложным. Это цельная деталь, которую для удобства определения принято условно разделять на юбку и головку. Конкретная форма и конструктивные особенности поршня определяются типом и моделью двигателя. В распространенных видах бензиновых ДВС можно увидеть только поршни с плоскими или крайне приближенными к такой форме головками. Часто они имеют канавки, предназначенные для максимального полного открывания клапанов. В моторах с непосредственным впрыском топлива поршни выполняются в несколько более сложной форме. Поршень дизельного двигателя имеет головку со специфической конфигурацией для обеспечения оптимального завихрения с целью качественного смесеобразования.

Схема поршня двигателя.

Под головкой на поршне размещаются канавки, в которые устанавливаются поршневые кольца. Юбки у различных поршней тоже разные: с формой, подобной конусу или бочке. Такая конфигурация позволяет компенсировать расширение поршня, существующее при его нагревании в работе. Следует отметить что, поршень приобретает полностью рабочий объем только после разогрева двигателя до нормальной температуры.

Чтобы максимально снизить эффект от постоянного бокового трения поршня о цилиндр на его боковую поверхность наносится специальный антифрикционный материал, тип которого также зависит от вида двигателя. Также в юбке поршня есть специальные отверстия с приливами, предназначенные для монтажа поршневого пальца.

Работа поршня предполагает его интенсивное нагревание. Он охлаждается, причем в разных моторах различными способами. Вот наиболее распространенные среди них:

  • с помощью подачи масляного тумана в цилиндр;
  • через разбрызгивание масла сквозь шатун или специальную форсунку;
  • через впрыскивание масла по кольцевому каналу;
  • с помощью постоянной циркуляции масла по змеевику, расположенному непосредственно в головке поршня.

Вплотную соприкасается со стенками цилиндра не сам поршень, а его кольца. Для обеспечения наивысшей износостойкости они производятся из особого сорта чугуна. Количество и точное расположение этих колец зависит от вида мотора. Чаще всего на поршень приходится пара компрессионных колец и еще одно маслосъемное.

Компрессионные колца предназначены не давать газам из камеры сгорания прорываться в картер. На первое кольцо приходится самая серьезная нагрузка, поэтому во всех дизельных и мощных бензиновых моторах в канавке первого кольца дополнительно присутствует стальная вставка, что позволяет повысить прочность конструкции. Существует множество видов компрессионных колец, которые уникальны практически у каждого самостоятельного производителя.

Маслосъемные кольца — для удаления лишнего масла из цилиндра и недопущения его проникновения в камеру сгорания. Такие кольца выполняются с большим количеством дренажных отверстий, а также с пружинными расширителями, хоть и не во всех моделях двигателей.

Устройство поршня

С шатуном поршень двигателя соединяется через поршневой палец, стальную деталь трубчатой формы. Самым распространенным способом крепления пальца является плавающий, благодаря которому деталь может прокручиваться в процессе работы. Специальные стопорные кольца не дают пальцу смещаться в стороны. Жесткий зацеп пальцев на данный момент практически не распространен из-за очевидной большей уязвимости таких конструкций.


Поломки поршня и сопутствующих деталей

В процессе интенсивной или просто продолжительной эксплуатации поршень может выйти из строя по причине присутствия в цилиндре постороннего тела, на которое поршень постоянно наталкивается во время движения. Таким предметом может стать частица шатуна, коленвала или чего-то другого, отлетевшего от детали. Поверхности такого излома имеют серый цвет, они не характеризуются истиранием, трещинами и прочими визуальными признаками. Поршень распадается быстро и внезапно.

Излом, вызванный усталостью металла, характеризуется образованием в проблемном месте растровых линий. Это позволяет заблаговременно определить наличие поломки и заменить поршень. Помимо старения причиной такого излома может стать детонационное воспламенение, усиленные сотрясения поршня из-за сталкивания его головки с головкой цилиндра или чрезмерного зазора юбки. В любом случае на детали образуются трещины, свидетельствующие о ее скором выходе из строя.

После износа колец, повреждения головки поршня наиболее часто встречаемы.

Помимо износа и старения металла, связанные с поршнями поломки могут случаться по целому ряду разнообразных причин, среди которых:

  • нарушение режима сгорания, например из-за задержки зажигания;
  • неправильная организация пуска холодного двигателя;
  • заполнение цилиндра маслом или водой при выключенном моторе, что называется гидравлическим ударом;
  • необоснованное повышение мощности в результате перенастройки электроники;
  • использование неподходящих деталей;
  • другие причины.

Чаще всего ремонт осуществляется методом замены – поршня, колец или всей поршневой группы.

Связанные термины

etlib.ru

Что такое поршень двигателя? Основное назначение


Что такое поршень двигателя? Основное назначение

Поршень занимает центральное место в процессе преобразования химической энергии топлива в тепловую и механическую. В данной статье поговорим про поршни двигателя внутреннего сгорания, что это такое и основное назначение в работе.
Что такое поршень двигателя?
Поршень двигателя — это деталь цилиндрической формы, совершающая возвратно-поступательное движение внутри цилиндра и служащая для превращения изменения давления газа, пара или жидкости в механическую работу, или наоборот — возвратно-поступательного движения в изменение давления.

Насколько хорошо поршни двигателя справляется с возложенными обязанностями — зависят его эффективность и надежность. В силу множества функций и противоречивости свойств поршень превращается в одну из самых сложных и наукоемких деталей мотора. Такое положение подтверждается тем, что редкие автомобилестроительные компании проектируют и изготавливают их самостоятельно для своих моторов.

Многообразие форм и размеров поршней является одной из причин, почему много тайн и секретов распространяется вокруг этого причудливой формы куска металла.

Требования к поршням двигателя
как выглядят поршни двигателяВо-первых, поршень, перемещаясь в цилиндре, позволяет расширяться сжатым газам, продукту горения топлива, и совершать механическую работу. Следовательно, он должен сопротивляться высокой температуре, давлению газов и надежно уплотнять канал цилиндра.

Во-вторых, представляя собой вместе с цилиндром и поршневыми кольцами линейный подшипник скольжения, он должен наилучшим образом отвечать требованиям пары трения с целью минимизировать механические потери и, как следствие, износ.

В-третьих, испытывая нагрузки со стороны камеры сгорания и реакцию от шатуна, он должен выдерживать механическое воздействие.

В-четвертых, совершая возвратно-поступательное движение с высокой скоростью, должен как можно меньше нагружать кривошипно-шатунный механизм инерционными силами.

Основное назначение поршней в работе двигателя
поршень двигателя с шатуномТопливо, сгорая в надпоршневом пространстве, выделяет огромное количество тепла в каждом цикле работы двигателя. Температура сгоревших газов достигает 2000 градусов. Только часть своей энергии они передадут движущимся деталям мотора, все остальное в виде тепла нагреет двигатель, а то, что останется, вместе с отработанными газами улетит в трубу. Следовательно, если мы не будем охлаждать поршень, он через некоторое время расплавится. Это важный момент для понимания условий работы поршневой группы.

Еще раз повторим известный факт, что тепловой поток направлен от более нагретых тел к менее нагретым. Тогда мы сможем увидеть распределение температур по поршню во время его работы и определить важные конструктивные моменты, влияющие на его температуру, т. е. понять, за счет чего он охлаждается.

Наиболее нагретым является рабочее тело, или, другими словами, газы в камере сгорания. Совершенно понятно, что тепло будет передано окружающему воздуху – самому холодному. Воздух, омывая радиатор и корпус двигателя, остудит охлаждающую жидкость, блок цилиндров и корпус головки. Остается найти мостик, по которому поршень отдает свое тепло в блок и антифриз. Есть для этого четыре пути.

Итак, первый путь, обеспечивающий наибольший поток, – это поршневые кольца. Причем первое кольцо играет главную роль, как расположенное ближе к днищу. Это наиболее короткий путь к охлаждающей жидкости через стенку цилиндра. Кольца одновременно прижаты и к поршневым канавкам, и к стенке цилиндра. Они обеспечивают более 50% теплового потока.

Второй путь менее очевиден. Вторая охлаждающая жидкость в двигателе – масло. Имея непосредственный доступ к наиболее нагретым местам мотора, масляный туман уносит с собой и отдает в поддон картера значительную часть тепла именно от самых горячих точек. В случае применения масляных форсунок, направляющих струю на внутреннюю поверхность днища поршня, доля масла в теплообмене может достигать 30 – 40%. Понятно, что, нагружая масло в большей степени функцией теплоносителя, мы должны позаботиться, чтобы его остудить. Иначе перегретое масло может потерять свои свойства. Также, чем выше температура масла, тем меньше тепла оно способно перенести через себя.

Третий путь – через массивные бобышки в палец, затем в шатун, а оттуда в масло. Он менее интересен, так как на пути есть существенные тепловые сопротивления в виде зазоров и стальных деталей, имеющих значительную протяженность и низкий коэффициент теплопроводности.

Четвертый путь. Часть тепла отбирает на свой нагрев свежая топливовоздушная смесь, поступившая в цилиндр. Количество свежей смеси и количество тепла, которое она отберет, зависит от режима работы и степени открытия дросселя. Надо заметить, что тепло, полученное при сгорании, также пропорционально заряду. Поэтому этот путь охлаждения носит импульсный характер, отличается скоротечностью и высокоэффективен благодаря тому, что тепло отбирается с той стороны, с которой поршень нагревается.

кольца двигателя важны в работе поршнейВ силу большей значимости следует уделить более пристальное внимание передаче тепла через поршневые кольца. Совершенно понятно, что если этот путь мы перекроем, то маловероятно, что двигатель выдержит сколько-нибудь длительные форсированные режимы. Температура вырастет, материал поршня «поплывет», и двигатель разрушится.

Тут хочу упомянуть такую характеристику, как компрессия. Давайте представим, что кольцо не прилегает по всей своей длине к стенке цилиндра. Тогда сгоревшие газы, прорываясь в щель, создадут барьер, препятствующий передаче тепла от поршня через кольцо в стенку цилиндра. Это то же самое, как если бы мы закрыли часть радиатора и лишили его возможности охлаждаться воздухом.

Более страшна картина, если кольцо не имеет тесного контакта с канавкой. В тех местах, где газы имеют возможность протекать мимо кольца через канавку, участок поршня лишается принципиальной возможности охлаждаться и, даже более того, оказывается в «тепловом мешке». Как результат – прогар и выкрашивание части огневого пояса, прилегающей к месту утечки. Поэтому всегда уделяется много внимания геометрии цилиндра, кольца и износу канавки.

Сколько колец будет у нового поршня? С точки зрения механики, чем меньше колец, тем лучше. Чем они уже, тем меньше потери в поршневой группе. Однако при уменьшении их количества и высоты мы неизбежно ухудшаем условия охлаждения поршня, увеличивая тепловое сопротивление днище – кольцо – стенка цилиндра. Поэтому выбор конструкции – всегда компромисс.

Нужно одновременно, чтобы кольца были и узкие и широкие. И два для быстроходности и три для эффективного охлаждения поршня. Разрешение этой задачи – суть компетентность конструктора.

real-avto.com

Поршни двигателя внутреннего сгорания, что это такое и основное назначение в работе.

Поршень двигателя — это деталь цилиндрической формы, совершающая возвратно-поступательное движение внутри цилиндра и служащая для превращения изменения давления газа, пара или жидкости в механическую работу, или наоборот — возвратно-поступательного движения в изменение давления.

Изначально поршни для автомобильных двигателей внутреннего сгорания отливали из чугуна. С развитием технологий стали использовать алюминий для изготовления поршней, т.к. он давал следующие преимущества: рост оборотов и мощности, меньшие нагрузки на детали, лучшую теплоотдачу.

С тех пор мощность моторов выросла многократно, температура и давление в цилиндрах современных автомобильных двигателей (особенно дизельных моторов) стали такими, что алюминий подошёл к пределу своей прочности. Поэтому в последние годы подобные моторы оснащаются стальными поршнями, которые уверенно выдерживают возросшие нагрузки. Они легче алюминиевых за счет более тонких стенок и меньшей компрессионной высоты, т.е. расстояния от днища до оси алюминиевого пальца. А еще стальные поршни не литые, а сборные.

Помимо прочего, уменьшение вертикальных габаритов поршня при неизменном блоке цилиндров дает возможность удлинить шатуны. Это позволит снизить боковые нагрузки в паре «поршень-цилиндр, что положительно скажется на расходе топлива и ресурсе двигателя. Или, не меняя шатунов и коленвала, можно укоротить блок цилиндров и таким образом облегчить двигатель.

Требование к поршням двигателя

Во-первых, поршень, перемещаясь в цилиндре, позволяет расширяться сжатым газам, продукту горения топлива, и совершать механическую работу. Следовательно, он должен сопротивляться высокой температуре, давлению газов и надежно уплотнять канал цилиндра.

Во-вторых, представляя собой вместе с цилиндром и поршневыми кольцами линейный подшипник скольжения, он должен наилучшим образом отвечать требованиям пары трения с целью минимизировать механические потери и, как следствие, износ.

В-третьих, испытывая нагрузки со стороны камеры сгорания и реакцию от шатуна, он должен выдерживать механическое воздействие.

В-четвертых, совершая возвратно-поступательное движение с высокой скоростью, должен как можно меньше нагружать кривошипно-шатунный механизм инерционными силами.

Основное назначение поршней в работе двигателя

porshni dvs Топливо, сгорая в надпоршневом пространстве, выделяет огромное количество тепла в каждом цикле работы двигателя. Температура сгоревших газов достигает 2000 градусов. Только часть своей энергии они передадут движущимся деталям мотора, все остальное в виде тепла нагреет двигатель, а то, что останется, вместе с отработанными газами улетит в трубу. Следовательно, если мы не будем охлаждать поршень, он через некоторое время расплавится. Это важный момент для понимания условий работы поршневой группы.

Еще раз повторим известный факт, что тепловой поток направлен от более нагретых тел к менее нагретым. Тогда мы сможем увидеть распределение температур по поршню во время его работы и определить важные конструктивные моменты, влияющие на его температуру, т. е. понять, за счет чего он охлаждается.

Наиболее нагретым является рабочее тело, или, другими словами, газы в камере сгорания. Совершенно понятно, что тепло будет передано окружающему воздуху – самому холодному. Воздух, омывая радиатор и корпус двигателя, остудит охлаждающую жидкость, блок цилиндров и корпус головки. Остается найти мостик, по которому поршень отдает свое тепло в блок и антифриз. Есть для этого четыре пути.

Итак, первый путь, обеспечивающий наибольший поток, – это поршневые кольца. Причем первое кольцо играет главную роль, как расположенное ближе к днищу. Это наиболее короткий путь к охлаждающей жидкости через стенку цилиндра. Кольца одновременно прижаты и к поршневым канавкам, и к стенке цилиндра. Они обеспечивают более 50% теплового потока.

Второй путь менее очевиден. Вторая охлаждающая жидкость в двигателе – масло. Имея непосредственный доступ к наиболее нагретым местам мотора, масляный туман уносит с собой и отдает в поддон картера значительную часть тепла именно от самых горячих точек. В случае применения масляных форсунок, направляющих струю на внутреннюю поверхность днища поршня, доля масла в теплообмене может достигать 30 – 40%. Понятно, что, нагружая масло в большей степени функцией теплоносителя, мы должны позаботиться, чтобы его остудить. Иначе перегретое масло может потерять свои свойства. Также, чем выше температура масла, тем меньше тепла оно способно перенести через себя.

Третий путь – через массивные бобышки в палец, затем в шатун, а оттуда в масло. Он менее интересен, так как на пути есть существенные тепловые сопротивления в виде зазоров и стальных деталей, имеющих значительную протяженность и низкий коэффициент теплопроводности.

Четвертый путь. Часть тепла отбирает на свой нагрев свежая топливовоздушная смесь, поступившая в цилиндр. Количество свежей смеси и количество тепла, которое она отберет, зависит от режима работы и степени открытия дросселя. Надо заметить, что тепло, полученное при сгорании, также пропорционально заряду. Поэтому этот путь охлаждения носит импульсный характер; отличается скоротечностью и высокоэффективен благодаря тому, что тепло отбирается с той стороны, с которой поршень нагревается.

В силу большей значимости следует уделить более пристальное внимание передаче тепла через поршневые кольца. Совершенно понятно, что если этот путь мы перекроем, то маловероятно, что двигатель выдержит сколько-нибудь длительные форсированные режимы. Температура вырастет, материал поршня «поплывет», и двигатель разрушится.

Тут хочу упомянуть такую характеристику, как компрессия. Давайте представим, что кольцо не прилегает по всей своей длине к стенке цилиндра. Тогда сгоревшие газы, прорываясь в щель, создадут барьер, препятствующий передаче тепла от поршня через кольцо в стенку цилиндра. Это то же самое, как если бы мы закрыли часть радиатора и лишили его возможности охлаждаться воздухом.

Более страшна картина, если кольцо не имеет тесного контакта с канавкой. В тех местах, где газы имеют возможность протекать мимо кольца через канавку, участок поршня лишается принципиальной возможности охлаждаться и, даже более того, оказывается в «тепловом мешке». Как результат – прогар и выкрашивание части огневого пояса, прилегающей к месту утечки. Поэтому всегда уделяется много внимания геометрии цилиндра, кольца и износу канавки.

 

Сколько колец будет у нового поршня? С точки зрения механики, чем меньше колец, тем лучше. Чем они уже, тем меньше потери в поршневой группе. Однако при уменьшении их количества и высоты мы неизбежно ухудшаем условия охлаждения поршня, увеличивая тепловое сопротивление днище – кольцо – стенка цилиндра. Поэтому выбор конструкции – всегда компромисс. .

Если Вам понравился материал, поставьте, пожалуйста, лайк в вашей социальной сети.

cto-torsion.by

Кривошипно-шатунный механизм (КШМ). Назначение, устройство, принцип действия

Кривошипно-шатунный механизм предназначен для преобразования возвратно-поступательного движения поршня во вращательное движение коленчатого вала.

Детали кривошипно-шатунного механизма можно разделить на:

  • неподвижные — картер, блок цилиндров, цилиндры, головка блока цилиндров, прокладка головки блока и поддон. Обычно блок цилиндров отливают вместе с верхней половиной картера, поэтому иногда его называют блок-картером.
  • подвижные детали КШМ — поршни, поршневые кольца и пальцы, шатуны, коленчатый вал и маховик.

Кроме того, к кривошипно-шатунному механизму относятся различные крепежные детали, а также коренные и шатунные подшипники.

Кривошипно-шатунный механизм

Блок-картер

Блок-картер — основной элемент остова двигателя. Он подвергается значительным силовым и тепловым воздействиям и должен обладать высокой прочностью и жесткостью. В блок-картере устанавливают цилиндры, опоры коленчатого вала, некоторые устройства механизма газораспределения, различные узлы смазочной системы с ее сложной сетью каналов и другое вспомогательное оборудование. Блок-картер изготавливают из чугуна или алюминиевого сплава литьем.

Цилиндр

Цилиндры представляют собой направляющие элементы ⭐ кривошипно-шатунного механизма. Внутри их перемещаются поршни. Длина образующей цилиндра определяется ходом поршня и его размерами. Цилиндры работают в условиях резко изменяющегося давления в надпоршневой полости. Их стенки соприкасаются с пламенем и горячими газами, имеющими температуру до 1500… 2 500 °С.

Цилиндры должны быть прочными, жесткими, термо- и износостойкими при ограниченном количестве смазки. Кроме того, материал цилиндров должен обладать хорошими литейными свойствами и легко обрабатываться на станках. Обычно цилиндры изготавливают из специального легированного чугуна, но могут применяться также алюминиевые сплавы и сталь. Внутреннюю рабочую поверхность цилиндра, называемую его зеркалом, тщательно обрабатывают и покрывают хромом для уменьшения трения, повышения износостойкости и долговечности.

В двигателях с жидкостным охлаждением цилиндры могут быть отлиты вместе с блоком цилиндров или в виде отдельных гильз, устанавливаемых в отверстиях блока. Между наружными стенками цилиндров и блоком имеются полости, называемые рубашкой охлаждения. Последняя заполняется жидкостью, охлаждающей двигатель. Если гильза цилиндра своей наружной поверхностью непосредственно соприкасается с охлаждающей жидкостью, то ее называют мокрой. В противном случае она называется сухой. Применение сменных мокрых гильз облегчает ремонт двигателя. При установке в блок мокрые гильзы надежно уплотняются.

Цилиндры двигателей воздушного охлаждения отливают индивидуально. Для улучшения теплоотвода их наружные поверхности снабжают кольцевыми ребрами. У большинства двигателей воздушного охлаждения цилиндры вместе с их головками крепят общими болтами или шпильками к верхней части картера.

В V-образном двигателе цилиндры одного ряда могут быть несколько смещены относительно цилиндров другого ряда. Это связано с тем, что на каждом кривошипе коленчатого вала крепятся два шатуна, один из которых предназначен для поршня правой, а другой — для поршня левой половины блока.

Блок цилиндров

На тщательно обработанную верхнюю плоскость блока цилиндров устанавливают головку блока, которая закрывает цилиндры сверху. В головке над цилиндрами выполнены углубления, образующие камеры сгорания. У двигателей жидкостного охлаждения в теле головки блока предусмотрена рубашка охлаждения, сообщающаяся с рубашкой охлаждения блока цилиндров. При верхнем расположении клапанов в головке имеются гнезда для них, впускные и выпускные каналы, отверстия с резьбой для установки свечей зажигания (у бензиновых двигателей) или форсунок (у дизелей), магистрали смазочной системы, крепежные и другие вспомогательные отверстия. Материалом для головки блока обычно служит алюминиевый сплав или чугун.

Плотное соединение блока цилиндров и головки блока обеспечивается с помощью болтов или шпилек с гайками. Для герметизации стыка с целью предотвращения утечки газов из цилиндров и охлаждающей жидкости из рубашки охлаждения между блоком цилиндров и головкой блока устанавливается прокладка. Она обычно изготавливается из асбестового картона и облицовывается тонким стальным или медным листом. Иногда прокладку с обеих сторон натирают графитом для защиты от пригорания.

Нижняя часть картера, предохраняющая детали кривошипно-шатунного и других механизмов двигателя от загрязнения, обычно называется поддоном. В двигателях сравнительно малой мощности поддон служит также резервуаром для моторного масла. Поддон чаще всего выполняется литым или изготавливается из стального листа штамповкой. Для устранения подтекания масла между блок-картером и поддоном устанавливается прокладка (на двигателях небольшой мощности для уплотнения этого стыка часто используется герметик — «жидкая прокладка»).

Остов двигателя

Соединенные друг с другом неподвижные детали кривошипно-шатунного механизма являются остовом двигателя, воспринимающим все основные силовые и тепловые нагрузки, как внутренние (связанные с работой двигателя), так и внешние (обусловленные трансмиссией и ходовой частью). Силовые нагрузки, передающиеся на остов двигателя от несущей системы ТС (рама, кузов, корпус) и обратно, существенно зависят от способа крепления двигателя. Обычно он крепится в трех или четырех точках так, чтобы не воспринимались нагрузки, вызванные перекосами несущей системы, возникающими при движении машины по неровностям. Крепление двигателя должно исключать возможность его смещения в горизонтальной плоскости под действием продольных и поперечных сил (при разгоне, торможении, повороте и т.д.). Для уменьшения вибрации, передающейся на несущую систему ТС от работающего двигателя, между двигателем и подмоторной рамой, в местах крепления, устанавливаются резиновые подушки разнообразных конструкций.

Поршневую группу кривошипно-шатунного механизма образует поршень в сборе с комплектом компрессионных и маслосъемных колец, поршневым пальцем и деталями его крепления. Ее назначение заключается в том, чтобы во время рабочего хода воспринимать давление газов и через шатун передавать усилие на коленчатый вал, осуществлять другие вспомогательные такты, а также уплотнять надпоршневую полость цилиндра для предотвращения прорыва газов в картер и проникновения в него моторного масла.

Поршень

Поршень представляет собой металлический стакан сложной формы, устанавливаемый в цилиндре днищем вверх. Он состоит из двух основных частей. Верхняя утолщенная часть называется головкой, а нижняя направляющая часть — юбкой. Головка поршня содержит днище 4 (рис. а) и стенки 2. В стенках проточены канавки 5 для компрессионных колец. Нижние канавки имеют дренажные отверстия 6 для отвода масла. Для увеличения прочности и жесткости головки ее стенки снабжены массивными ребрами 3, связывающими стенки и днище с бобышками, в которых устанавливается поршневой палец. Иногда оребряют также внутреннюю поверхность днища.

Юбка имеет более тонкие стенки, чем у головки. В ее средней части расположены бобышки с отверстиями.

Конструкции поршней с различной формой днища и их элементов

Рис. Конструкции поршней с различной формой днища (а—з) и их элементов:
1 — бобышка; 2 — стенка поршня; 3 — ребро; 4 — днище поршня; 5 — канавки для компрессионных колец; 6 — дренажное отверстие для отвода масла

Днища поршней могут быть плоскими (см. а), выпуклыми, вогнутыми и фигурными (рис. б—з). Их форма зависит от типа двигателя и камеры сгорания, принятого способа смесеобразования и технологии изготовления поршней. Самой простой и технологичной является плоская форма. В дизелях применяются поршни с вогнутыми и фигурными днищами (см. рис. е—з).

При работе двигателя поршни нагреваются сильнее, чем цилиндры, охлаждаемые жидкостью или воздухом, поэтому расширение поршней (особенно алюминиевых) больше. Несмотря на наличие зазора между цилиндром и поршнем, может произойти заклинивание последнего. Для предотвращения заклинивания юбке придают овальную форму (большая ось овала перпендикулярна оси поршневого пальца), увеличивают диаметр юбки по сравнению с диаметром головки, разрезают юбку (чаще всего выполняют Т- или П-образный разрез), заливают в поршень компенсационные вставки, ограничивающие тепловое расширение юбки в плоскости качания шатуна, или принудительно охлаждают внутренние поверхности поршня струями моторного масла под давлением.

Поршень, подвергающийся воздействию значительных силовых и тепловых нагрузок, должен обладать высокой прочностью, теплопроводностью и износостойкостью. В целях уменьшения инерционных сил и моментов у него должна быть малая масса. Это учитывается при выборе конструкции и материала для поршня. Чаще всего материалом служит алюминиевый сплав или чугун. Иногда применяют сталь и магниевые сплавы. Перспективными материалами для поршней или их отдельных частей являются керамика и спеченные материалы, обладающие достаточной прочностью, высокой износостойкостью, низкой теплопроводностью, малой плотностью и небольшим коэффициентом теплового расширения.

Поршневые кольца

Поршневые кольца обеспечивают плотное подвижное соединение поршня с цилиндром. Они предотвращают прорыв газов из надпоршневой полости в картер и попадание масла в камеру сгорания. Различают компрессионные и маслосъемные кольца.

Компрессионные кольца (два или три) устанавливают в верхние канавки поршня. Они имеют разрез, называемый замком, и поэтому могут пружинить. В свободном состоянии диаметр кольца должен быть несколько больше диаметра цилиндра. При введении в цилиндр такого кольца в сжатом состоянии оно создает плотное соединение. Для того чтобы обеспечить возможность расширения установленного в цилиндре кольца при нагревании, в замке должен быть зазор 0,2…0,4 мм. С целью обеспечения хорошей приработки компрессионных колец к цилиндрам часто применяют кольца с конусной наружной поверхностью, а также скручивающиеся кольца с фаской на кромке с внутренней или наружной стороны. Благодаря наличию фаски такие кольца при установке в цилиндр перекашиваются в сечении, плотно прилегая к стенкам канавок на поршне.

Маслосъемные кольца (одно или два) удаляют масло со стенок цилиндра, не позволяя ему попадать в камеру сгорания. Они располагаются на поршне под компрессионными кольцами. Обычно маслосъемные кольца имеют кольцевую канавку на наружной цилиндрической поверхности и радиальные сквозные прорези для отвода масла, которое по ним проходит к дренажным отверстиям в поршне (см. рис. а). Кроме маслосъемных колец с прорезями для отвода масла используются составные кольца с осевыми и радиальными расширителями.

Для предотвращения утечки газов из камеры сгорания в картер через замки поршневых колец необходимо следить за тем, чтобы замки соседних колец не располагались на одной прямой.

Поршневые кольца работают в сложных условиях. Они подвергаются воздействию высоких температур, а смазывание их наружных поверхностей, перемещающихся с большой скоростью по зеркалу цилиндра, недостаточно. Поэтому к материалу для поршневых колец предъявляются высокие требования. Чаще всего для их изготовления применяют высокосортный легированный чугун. Верхние компрессионные кольца, работающие в наиболее тяжелых условиях, обычно покрывают с наружной стороны пористым хромом. Составные маслосъемные кольца изготавливают из легированной стали.

Поршневой палец

Поршневой палец служит для шарнирного соединения поршня с шатуном. Он представляет собой трубку, проходящую через верхнюю головку шатуна и установленную концами в бобышки поршня. Крепление поршневого пальца в бобышках осуществляется двумя стопорными пружинными кольцами, расположенными в специальных канавках бобышек. Такое крепление позволяет пальцу (в этом случае он называется плавающим) проворачиваться. Вся его поверхность становится рабочей, и он меньше изнашивается. Ось пальца в бобышках поршня может быть смещена относительно оси цилиндра на 1,5…2,0 мм в сторону действия большей боковой силы. Благодаря этому уменьшается стук поршня в непрогретом двигателе.

Поршневые пальцы изготавливают из высококачественной стали. Для обеспечения высокой износоустойчивости их наружную цилиндрическую поверхность подвергают закалке или цементации, а затем шлифуют и полируют.

Поршневая группа состоит из довольно большого числа деталей (поршень, кольца, палец), масса которых по технологическим причинам может колебаться; в некоторых пределах. Если различие в массе поршневых групп в разных цилиндрах будет значительным, то при работе двигателя возникнут дополнительные инерционные нагрузки. Поэтому поршневые группы для одного двигателя подбирают так, чтобы они несущественно отличались по массе (для тяжелых двигателей не более чем на 10 г).

Шатунная группа кривошипно-шатунного механизма состоит из:

  • шатуна
  • верхней и нижней головок шатуна
  • подшипников
  • шатунных болтов с гайками и элементами их фиксации

Шатун

Шатун соединяет поршень с кривошипом коленчатого вала и, преобразуя возвратно-поступательное движение поршневой группы во вращательное движение коленчатого вала, совершает сложное движение, подвергаясь при этом действию знакопеременных ударных нагрузок. Шатун состоит из трех конструктивных элементов: стержня 2, верхней (поршневой) головки 1 и нижней (кривошипной) головки 3. Стержень шатуна обычно имеет двутавровое сечение. В верхнюю головку для уменьшения трения запрессовывают бронзовую втулку 6 с отверстием для подвода масла к трущимся поверхностям. Нижнюю головку шатуна для обеспечения возможности сборки с коленчатым валом выполняют разъемной. У бензиновых двигателей разъем головки обычно расположен под углом 90° к оси шатуна. У дизелей нижняя головка шатуна 7, как правило, имеет косой разъем. Крышка 4 нижней головки крепится к шатуну двумя шатунными болтами, точно подогнанными к отверстиям в шатуне и крышке для обеспечения высокой точности сборки. Чтобы крепление не ослабло, гайки болтов стопорят шплинтами, стопорными шайбами или контргайками. Отверстие в нижней головке растачивают в сборе с крышкой, поэтому крышки шатунов не могут быть взаимозаменяемыми.

Детали шатунной группы

Рис. Детали шатунной группы:
1 — верхняя головка шатуна; 2 — стержень; 3 — нижняя головка шатуна; 4 — крышка нижней головки; 5 — вкладыши; 6 — втулка; 7 — шатун дизеля; S — основной шатун сочлененного шатунного узла

Для уменьшения трения в соединении шатуна с коленчатым валом и облегчения ремонта двигателя в нижнюю головку шатуна устанавливают шатунный подшипник, который выполнен в виде двух тонкостенных стальных вкладышей 5, залитых антифрикционным сплавом. Внутренняя поверхность вкладышей точно подогнана к шейкам коленчатого вала. Для фиксации вкладышей относительно головки они имеют отогнутые усики, входящие в соответствующие пазы головки. Подвод масла к трущимся поверхностям обеспечивают кольцевые проточки и отверстия во вкладышах.

Для обеспечения хорошей уравновешенности деталей кривошипно-шатунного механизма шатунные группы одного двигателя (как и поршневые) должны иметь одинаковую массу с соответствующим ее распределением между верхней и нижней головками шатуна.

В V-образных двигателях иногда используются сочлененные шатунные узлы, состоящие из спаренных шатунов. Основной шатун 8, имеющий обычную конструкцию, соединен с поршнем одного ряда. Вспомогательный прицепной шатун, соединенный верхней головкой с поршнем другого ряда, нижней головкой шарнирно крепится с помощью пальца к нижней головке основного шатуна.

Коленчатый вал

Коленчатый вал, соединенный с поршнем посредством шатуна, воспринимает действующие на поршень силы. На нем возникает вращающий момент, который затем передается на трансмиссию, а также используется для приведения в действие других механизмов и агрегатов. Под влиянием резко изменяющихся по величине и направлению сил инерции и давления газов коленчатый вал вращается неравномерно, испытывая крутильные колебания, подвергаясь скручиванию, изгибу, сжатию и растяжению, а также воспринимая тепловые нагрузки. Поэтому он должен обладать достаточной прочностью, жесткостью и износостойкостью при сравнительно небольшой массе.

Конструкции коленчатых валов отличаются сложностью. Их форма определяется числом и расположением цилиндров, порядком работы двигателя и числом коренных опор. Основными частями коленчатого вала являются коренные шейки 3, шатунные шейки 2, щеки 4, противовесы 5, передний конец (носок 1) и задний конец (хвостовик 6) с фланцем.

К шатунным шейкам коленчатого вала присоединяют нижние головки шатунов. Коренными шейками вал устанавливают в подшипниках картера двигателя. Соединяются коренные и шатунные шейки при помощи щек. Плавный переход от шеек к щекам, называемый галтелью, позволяет избежать концентрации напряжений и возможных поломок коленчатого вала. Противовесы предназначены для разгрузки коренных подшипников от центробежных сил, возникающих на кривошипах вала во время его вращения. Их, как правило, изготавливают как единое целое со щеками.

Для обеспечения нормальной работы двигателя к рабочим поверхностям коренных и шатунных шеек необходимо подавать моторное масло под давлением. Масло поступает из отверстий в картере к коренным подшипникам. Затем оно через специальные каналы в коренных шейках, щеках и шатунных шейках попадает к шатунным подшипникам. Для дополнительной центробежной очистки масла в шатунных шейках имеются грязеуловительные полости, закрытые заглушками.

Коленчатые валы изготавливают методом ковки или литья из среднеуглеродистых и легированных сталей (может применяться также чугун высококачественных марок). После механической и термической обработки коренные и шатунные шейки подвергают поверхностной закалке (для повышения износостойкости), а затем шлифуют и полируют. После обработки вал балансируют, т. е. добиваются такого распределения его массы относительно оси вращения, при котором вал находится в состоянии безразличного равновесия.

В коренных подшипниках применяют тонкостенные износостойкие вкладыши, аналогичные вкладышам шатунных подшипников. Для восприятия осевых нагрузок и предотвращения осевого смещения коленчатого вала один из его коренных подшипников (обычно передний) делают упорным.

Маховик

Маховик крепится к фланцу хвостовика коленчатого вала. Он представляет собой тщательно сбалансированный чугунный диск определенной массы. Кроме обеспечения равномерного вращения коленчатого вала маховик способствует преодолению сопротивления сжатия в цилиндрах при пуске двигателя и кратковременных перегрузок, например, при трогании ТС с места. На ободе маховика закреплен зубчатый венец для пуска двигателя от стартера. Поверхность маховика, которая соприкасается с ведомым диском сцепления, шлифуют и полируют.

Коленчатый вал

Рис. Коленчатый вал:
1 — носок; 2 — шатунная шейка; 3 — коренная шейка; 4 — щека; 5 — противовес; 6 — хвостовик с фланцем

Видео-уроки о КШМ

ustroistvo-avtomobilya.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *