Радиатор системы охлаждения – устройство | 🚘Авто Новости Онлайн
Содержание
- Предназначение и разновидности
- Устройство
- Принцип работы
- Выводы
При работе двигателя автомобиля каждый цилиндр постоянно повышает свою температуру за счет детонации подаваемого топлива. Если температуру не понижать, постоянные микровзрывы приведут к доведению мотора до критической температуры, превышение которой разрушит силовой агрегат.
Чтобы предотвратить это, устанавливается система охлаждения двигателя автомобиля. В представленной статье мы рассмотрим все базовые сведения о данном узле.
Предназначение и разновидности
Отвод тепла — далеко не единственное назначение системы охлаждения двигателя. Она дополнительно отвечает за выполнение ряда иных задач:
- нагрев воздушной массы для отопления салона транспортного средства;
- уменьшение времени ожидания, необходимого для доведения мотора до рабочей температуры;
- уменьшение температуры смазочных материалов, используемых для ДВС;
- если применяется рециркуляция —уменьшается температура выхлопных газов от двигателя внутреннего сгорания;
- если присутствует автоматическая КПП — охлаждается смазка, расположенная внутри.
Схема системы охлаждения двигателя напрямую зависит от того, каким является ее способ функционирования и принцип работы. Соответственно, принято классифицировать узел на несколько категорий:
- жидкостное — тепло отводится за счет постоянной циркуляции техжидкости;
- воздушное— при применении рассматриваемойсхемы систем охлаждения двигателей тепло будет отводиться циркулируемым воздухом;
- комбинированное — включает в себя применение 1-го и 2-го варианта одновременно.
Практика показывает, что комбинированный вариант является наиболее эффективным, обеспечивая стабильную работу мотора в целом.
Устройство
Рассматривая конструкцию, по которой создана система охлаждения двигателя внутреннего сгорания, можно заметить, что здесь практически отсутствует бак, в котором происходит хранение жидкости. В данном случае такой элемент конструкции не нужен, потому что жидкость постоянно находится в каналах/полостях ДВС и радиаторе.
Хотя бачок все же присутствует — его называют расширительным. Главная задача этой детали — комфортный залив рабочей жидкости в систему, а также возможность залива дополнительного количества жидкости, если ее герметичность по тем или иным причинам нарушена.
На картинке ниже можно посмотреть на устройство системы охлаждения двигателя.
Начнем ознакомление с водяного насоса, именуемого в народе «помпой». Это своеобразная мельница, в которой жидкость циркулирует по каналам ДВС под давлением. Конечной целью данной конструкции является проход воды через полости, расположенные в блоке мотора. Последние, исходя из компоновки двигателя автомобиля, могут быть разными.
Именно в цилиндрах присутствует максимально высокая температура, которая передается на другие детали. При отводе тепловой энергии охлаждается блок цилиндров, но сам антифриз нагревается. Соответственно, работа системы охлаждения двигателя обеспечивает выполнение простых физпроцессов, позволяющих уравнять температуру. Далее рабочая жидкость протекает по другим узлам мотора и проникает в радиатор.
С конструктивной точки зрения, радиатор охлаждения двигателя являет собой решетку, образованную из большого количества небольших вертикальных каналов, на поверхности которых находятся поперечные пластины. Устройство радиатора охлаждения двигателя может быть разным, исходя из того, насколько большой объем двигателя и насколько часто ему приходится набирать обороты.
Естественно, в спортивных моторах радиатор двигателя имеет увеличенные размеры. Возрастает и площадь обдува.Из чего состоит радиатор охлаждения двигателя? Большого количества сот, монтажных креплений, а также бачка, в который заливается антифриз. Он постепенно стекает вниз, в результате чего происходит охлаждение. В конструкции предусматривается наличие емкости снизу, которая снова передает антифриз в водяной насос.
Радиатор системы охлаждения двигателя эффективно справляется со своей задачей благодаря большому количеству каналов. Обеспечение качественного результата его работы также гарантируется за счет постоянного обдува корпуса воздушным потоком. Именно поэтому деталь практически всегда монтируется на «морде» авто.
Но даже этого порой может оказаться недостаточно, особенно тогда, когда транспортное средство находится в неподвижном состоянии. Поэтому с целью охлаждения дизельного двигателя (как и бензинового, в целом) используется специальный вентилятор. Он закреплен между мотором и радиаторным узлом, помогая усилить циркуляцию воздушной массы.
Чтобы гарантировать надежную работу системы, надо убедиться в исправном состоянии радиатора. Многие задаются вопросом — как проверить радиатор охлаждения двигателя? Сделать это достаточно просто — нужно быть уверенным в отсутствии повреждений каналов, а на асфальте должны отсутствовать следы течи из-за разгерметизации.
Проверять радиатор охлаждения двигателя надо перед каждой поездкой. Невыполнение этого требования может привести к детонации мотора, приводящей к невозможности восстановить его работоспособность.
Выше мы разобрались с тем, из чего состоит система охлаждения двигателя большинства транспортных средств. Но есть также и другая функция, которую выполняет система — это прогрев силового агрегата. Несмотря на ее противоречивость названию, при эксплуатации авто в зимнее время низкая температура сильно затрудняет процесс запуска мотора.
Охлаждение двигателя происходит немного хуже из-за мороза и повышенной влажности, топливо распыляется более проблематично, а технические жидкости страдают от повышения вязкости. Чтобы гарантировать нормальный принцип работы системы охлаждения двигателя, придется быстрее ее разогреть. Достичь требуемого эффекта позволяет работающий термостат. Он блокирует попадание антифриза в радиаторные соты.
Минуя данный узел, она перетекает опять в водяной насос, нагревая цилиндры. Термостат самостоятельно совершает подачу антифриза при достижении температуры 70-80 градусов Цельсия (исходя из настроек блока управления и компоновки силового агрегата). Патрубок, открытый в процессе разогрева, сразу же закрывается.
Последним прибором, благодаря которому работает схема охлаждения двигателя, является температурный датчик. Его обычно устанавливают в салоне транспортного средства. Водитель постоянно получает актуальную информацию о температуре мотора в режиме реального времени. При отклонении показателей от нормы владелец авто сможет быстро принять меры по локализации и ремонту поломки.
Практика показывает, что система охлаждения дизельного двигателя наиболее часто выходит из строя в связи с нарушением герметичности. В такой ситуации температура сразу повышается, потому что антифриза в системе становится меньше, и имеющегося объема недостаточно для полноценной работы.
Принцип работы
Принцип работы системы охлаждения двигателя постоянно контролируется штатнымблоком управления силовым агрегатом. В нынешних моделях транспортных средств детали охлаждения проверяются специальным математическим алгоритмом, позволяющим принимать во внимание самые разные параметры работы не только мотора, но и сопутствующих систем.
Отталкиваясь от того, как работает система охлаждения двигателя в нормальном режиме при исправных деталях, система стремится поддерживать их на нормальном уровне. Поэтому электроника включает или выключает на некоторое время те или иные элементы.
Чтобы более подробно узнать, как работает система охлаждения двигателя, рекомендуем посмотреть схему ниже.
Поскольку антифриз принудительно протекает по системе, за него отвечает центробежный насос. Благодаря ему техжидкость прокачивается посредством «рубашки». При выполнении данной работы применение систем охлаждения позволяет добиться охлаждения мотора и нагрева антифриза. Исходя из типа мотора и его схемы, жидкость протекает:
- продольно;
- поперечно.
Схема системы охлаждения двигателя предусматривает два циркуляционных круга — «малый» и «большой». Например, при включениизажигания, когда все детали не нагреты, термостат закрыт, жидкость протекает по малому кругу. Она не доходит до радиатора охлаждения двигателя.
Когда температурный режим доведется до требуемого уровня, происходит открывание термостата — антифриз проникает в радиатор, где и будет происходить уменьшение температуры за счет обдува. Это и есть большой цикл, повторяющийся многократно.
В этом и состоит общий принцип работы радиатора охлаждения двигателя вне зависимости от марки и модели транспортного средства.
В авто с турбиной охлаждение двигателя происходит по несколько иной схеме. Здесь присутствует два контура, где первый установлен с цельюснижения температуры анифриза, а второй охлаждает воздух. При этом первый контур также разделяется на 2 части — для обслуживания головки блока и блока цилиндров в целом.
Это сделано потому, что схема работы системы охлаждения двигателя предусматривает разницу температуры головки и блока на 15-20 градусов. Таким образом, степень вероятности детонации значительно уменьшается, да и камеры сгорания эффективнее наполняются горючим. В устройство системы охлаждениядобавлена одна особенность — в моторе с турбиной все рабочие контуры имеют собственный термостат.
Выводы
Система охлаждения двигателя присутствует на каждом транспортном средстве. Основноеназначение системы охлаждения — поддержаниеоптимальной температуры мотора автомобиля.
Базовые детали системы охлаждения двигателя следующие — радиатор, термостат, датчик температуры и вентилятор. Система состоит из нескольких контуров, отвечающих за правильность функционирования всей системы.
Устройство радиатора достаточно сложное, поскольку конструкция состоит из большого количества маленьких каналов, по которым протекает подогретая жидкость. Своевременная проверка позволяет гарантировать нормальную работу силовой установки в целом.
Источник
Устройство системы охлаждения двигателя. Основные части
Система охлаждения — это совокупность устройств, обеспечивающих принудительный отвод теплоты от нагревающихся деталей двигателя.
Потребность в системах охлаждения для современных двигателей вызвана тем, что естественное рассеивание теплоты наружными поверхностями двигателя и теплоотвод в циркулирующее моторное масло не обеспечивают оптимального температурного режима работы двигателя и некоторых его систем. Перегрев двигателя связан с ухудшением процесса наполнения цилиндров свежим зарядом, пригоранием масла, увеличением потерь на трение и даже заклиниванием поршня. На бензиновых двигателях возникает также опасность калильного зажигания (не от искры свечи, а вследствие высокой температуры камеры сгорания).
Система охлаждения должна обеспечивать автоматическое поддержание оптимального теплового режима двигателя на всех скоростных и нагрузочных режимах его работы при температуре окружающего воздуха -45…+45 °С, быстрый прогрев двигателя до рабочей температуры, минимальный расход мощности на приведение в действие агрегатов системы, малую массу и небольшие габаритные размеры, эксплуатационную надежность, определяемую сроком службы, простотой и удобством обслуживания и ремонта.
На современных колесных и гусеничных машинах применяются воздушная и жидкостная системы охлаждения.
При использовании воздушной системы охлаждения (рис. а) теплота от головки и блока цилиндров передается непосредственно обдувающему их воздуху. Через воздушную рубашку, образов ванную кожухом 3, охлаждающий воздух прогоняется с помощью вентилятора 2, приводимого в действие от коленчатого вала с использованием ременной передачи. Для улучшения теплоотвода цилиндры 5 и их головки снабжены ребрами 4. Интенсивность охлаждения регулируется специальными воздушными заслонками 6, управляемыми автоматически с помощью воздушных термостатов.
Большинство современных двигателей имеет жидкостную систему охлаждения (рис. б). В систему входят рубашки охлаждения 11 и 13 соответственно головки и блока цилиндров, радиатор 18, верхний 8 и нижний 16 соединительные патрубки со шлангами 7 и 15, жидкостный насос 14, распределительная труба 72, термостат 9, расширительный (компенсационный) бачок 10 и вентилятор 77. В рубашке охлаждения, радиаторе и патрубках находится охлаждающая жидкость (вода или антифриз — незамерзающая жидкость).
Рис. Схемы воздушной (а) и жидкостной (б) систем охлаждения двигателя: 1 — ременная передача; 2, 17 — вентиляторы; 3 — кожух; 4 — ребра цилиндра; 5 — цилиндр; 6 — воздушная заслонка; 7, 15 — шланги; 8, 16 — верхний и нижний соединительные патрубки; 9 — термостат; 10 — расширительный бачок; 77, — рубашки охлаждения головки и блока цилиндров; 12 — распределительная труба; 14 — жидкостный насос; 18 — радиатор
При работе двигателя приводимый в действие от коленчатого вала жидкостный насос создает в системе циркуляцию охлаждающей жидкости. По распределительной трубе 12 жидкость направляется сначала к наиболее нагретым деталям (цилиндры, головка блока), охлаждает их и по патрубку 8 поступает в радиатор 18. В радиаторе поток жидкости разветвляется по трубкам на тонкие струйки и охлаждается воздухом, продуваемым через радиатор. Охлажденная жидкость из нижнего бачка радиатора по патрубку 16 и шлангу 15 снова поступает в жидкостный насос. Поток воздуха через радиатор обычно создает вентилятор 77, приводимый в действие от коленчатого вала или специального электродвигателя. На некоторых гусеничных машинах для ,обеспечения потока воздуха применяется эжекционное устройство. Принцип действия этого устройства заключается в использовании энергии отработавших газов, вытекающих с большой скоростью из выпускной трубы и увлекающих за собой воздух.
Регулирует циркуляцию жидкости в радиаторе, поддерживая оптимальную температуру двигателя, термостат 9. Чем выше температура жидкости в рубашке, тем значительнее открыт клапан термостата и больше жидкости поступает в радиатор. При низкой температуре двигателя (например, непосредственно после его пуска) клапан термостата закрыт, и жидкость направляется не в радиатор (по большому кругу циркуляции), а сразу в приемную полость насоса (по малому кругу). Этим достигается быстрый прогрев двигателя после пуска. Интенсивность охлаждения регулируется также с помощью жалюзи, установленных на входе воздушного тракта или выходе из него. Чем больше степень закрытия жалюзи, тем меньше воздуха проходит через радиатор и хуже охлаждение жидкости.
В расширительном бачке 10, расположенном выше радиатора, имеется запас жидкости для компенсации ее убыли в контуре из-за испарения и утечек. В верхнюю полость расширительного бачка часто отводят образовавшийся в системе пар из верхнего коллектора радиатора и рубашки охлаждения.
Жидкостное охлаждение по сравнению с воздушным имеет следующие преимущества: более легкий пуск двигателя в условиях низкой температуры окружающего воздуха, более равномерное охлаждение двигателя, возможность применения блочных конструкций цилиндров, упрощение компоновки и возможность
изоляции воздушного тракта, меньший шум от двигателя и более низкие механические напряжения в его деталях. Вместе с тем жидкостная система охлаждения, имеет ряд недостатков, таких, как более сложная конструкция двигателя и системы, потребность в охлаждающей жидкости и более частой смене масла, опасность подтекания и замерзания жидкости, повышенный коррозионный износ, значительный расход топлива, более сложное обслуживание и ремонт, а также (в ряде случаев) повышенная чувствительность к изменению температуры окружающего воздуха.
Жидкостный насос 14 (см. рис. б) обеспечивает циркуляцию охлаждающей жидкости в системе. Обычно применяются центробежные крыльчатые насосы, но иногда используются шестеренные и поршневые насосы. Термостат 9 может быть одно- и двухклапанным с жидкостным термосиловым элементом или элементом, содержащим твердый наполнитель (церезин). В любом случае материал для термосилового элемента должен иметь очень большой коэффициент объемного расширения, чтобы при нагреве стержень клапана термостата мог перемещаться на довольно большое расстояние.
Практически, все двигатели наземных ТС с жидкостным охлаждением снабжены так называемыми закрытыми системами охлаждения, которые не имеют постоянной связи с атмосферой. При этом в системе образуется избыточное давление, что приводит к повышению температуры кипения жидкости (до 105… 110°С), увеличению эффективности охлаждения и уменьшению потерь, а также снижению вероятности появления в потоке жидкости пузырьков воздуха и пара.
Поддержание необходимого избыточного давления в системе и обеспечение доступа в нее атмосферного воздуха при разрежении осуществляется с помощью двойного паровоздушного клапана, который устанавливается в самой высокой точке жидкостной системы (обычно в крышке наливной горловины расширительного бачка или радиатора). Паровой клапан открывается, позволяя избытку пара уйти в атмосферу, если давление в системе превышает атмосферное на 20… 60 кПа. Воздушный клапан открывается, когда давление в системе снижается на 1… 4 кПа по сравнению с атмосферным (после остановки двигателя охлаждающая жидкость остывает, и ее объем уменьшается). Перепады давления, при которых открываются клапаны, обеспечиваются подбором параметров клапанных пружин.
Рекомендуем: Назначение и общее устройство раздаточной коробки автомобиля
В жидкостной вентиляционной системе охлаждения радиатор омывается потоком воздуха, создаваемым вентилятором. В зависимости от взаимного расположения радиатора и вентилятора могут применяться следующие типы вентиляторов: осевые, центробежные и комбинированные, создающие как осевой, так и радиальный потоки воздуха. Осевые вентиляторы устанавливают перед радиатором или за ним в специальном воздухоподводящем канале. К центробежному вентилятору воздух подводится по оси его вращения, а отводится — по радиусу (или наоборот). При нахождении радиатора перед вентилятором (в области всасывания) поток воздуха в радиаторе более равномерный, а температура воздуха не повышена из-за его перемешивания вентилятором. При нахождении радиатора за вентилятором (в области нагнетания) поток воздуха в радиаторе турбулентный, что повышает интенсивность охлаждения.
На тяжелых колесных и гусеничных ТС приведение вентилятора в действие обычно осуществляется от коленчатого вала двигателя. Могут использоваться карданные, ременные и зубчатые (цилиндрические и конические) передачи. В целях снижения динамических нагрузок на вентилятор в его приводе от коленчатого вала часто применяются разгружающие и демпфирующие устройства в виде торсионных валиков, резиновых, фрикционных и вязкостных муфт, а также гидромуфт. Для привода вентилятора относительно маломощных двигателей широко используются специальные электродвигатели, питание которых осуществляется от бортовой электросистемы. Это, как правило, уменьшает массу силовой установки и упрощает ее компоновку. Кроме того, применение электродвигателя для привода вентилятора позволяет регулировать частоту его вращения, а следовательно, и интенсивность охлаждения. При низкой температуре охлаждающей жидкости возможно автоматическое отключение вентилятора.
Радиаторы связывают друг с другом воздушный и жидкостный тракты системы охлаждения. Назначение радиаторов — передача теплоты от охлаждающей жидкости атмосферному воздуху. Основные части радиатора — входной и выходной коллекторы, а также сердцевина (охлаждающая решетка). Сердцевина изготавливается из меди, латуни или алюминиевых сплавов. По типу сердцевины различают следующие виды радиаторов: трубчатые, трубчато-пластинчатые, трубчато-ленточные, пластинчатые и сотовые.
В системах охлаждения колесных и гусеничных машин наибольшее распространение получили трубчато-пластинчатые и трубчато-ленточные радиаторы. Они жестки, прочны, технологичны в производстве и обладают высокой тепловой эффективностью. Трубки таких радиаторов имеют, как правило, плоскоовальное сечение. Трубчато-пластинчатые радиаторы могут также состоять из трубок круглого или овального сечения. Иногда трубки плоскоовального сечения располагают под углом 10… 15° к воздушному потоку, что способствует турбулизации (завихрению) воздуха и повышает теплоотдачу радиатора. Пластины (ленты) могут быть гладкими или гофрированными, с пирамидальными выступами или отогнутыми просечками. Гофрирование пластин, нанесение просечек и выступов увеличивают охлаждающую поверхность и обеспечивают турбулентное течение потока воздуха между трубками.
Рис. Решетки трубчато-пластинчатого (а) и трубчато-ленточного (б) радиаторов
Виды систем охлаждения двигателя
Регулирование температуры автомобильного двигателя может осуществляться при помощи охлаждающей жидкости (антифриза, ОЖ) и посредством циркуляции воздуха. Исходя из этого различают три вида систем:
- Воздушная. Физически представляет собой обдув, благодаря которому происходит вытеснение горячего воздуха из подкапотного пространства в атмосферу. Воздушное охлаждение может быть естественным и принудительным (с использованием вентилятора). В силу низкой эффективности как самостоятельная система практически не применяется.
- Жидкостная. Представляет собой систему трубчатых контуров, по которым циркулирует охлаждающая жидкость. Жидкостное охлаждение может быть принудительным (перекачка насосом), термосифонным (за счет разности в плотности нагретой и охлажденной жидкостей) и комбинированным (охлаждение головки блока цилиндров осуществляется принудительно, а остальные узлы термосифонным принципом). Такая система более эффективна в сравнении с воздушной, но при определенных режимах работы (длительный простой с включенным двигателем, повышенные температуры окружающей среды) может быть недостаточной для качественного охлаждения.
- Комбинированная. Представляет собой использование и воздушного обдува, и жидкостных контуров.
Системы охлаждения на основе жидкости также разделяются на открытые и закрытые. Первые имеют сообщение с атмосферой при помощи пароотводной трубки, а во вторых жидкость полностью изолирована от окружающей среды. В закрытых системах давление антифриза больше, а следовательно, выше и температура кипения. Это позволяет использовать их при высоких температурах нагрева жидкости (до 120°C).
Проверка уровня и плотности жидкости в системе охлаждения
Правильность заправки системы охлаждения проверяется по уровню жидкости в расширительном бачке, который на холодном двигателе (при 15-20°С) должен находиться на 3-4 мм выше метки «MIN», нанесённой на расширительном бачке.
Предупреждение.
Уровень охлаждающей жидкости рекомендуется проверять на холодном двигателе, т.к. при нагревании её объём увеличивается и у прогретого двигателя уровень жидкости может значительно подняться.
При необходимости проверяйте ареометром плотность охлаждающей жидкости, которая должна быть 1,078-1,085 г/см³. При низкой плотности и при высокой (больше 1,085-1,095 г/см³) повышается температура начала кристаллизации жидкости, что может привести к её замерзанию в холодное время года. Если уровень жидкости в бачке ниже нормы, то доливайте дистиллированную воду. Если плотность нормальная, доливайте жидкость той же плотности и марки, какая находится в системе. Если ниже нормы, доведите её до неё, используя жидкость ТО-СОЛ-А.
Устройство, конструкция, принцип работы
Жидкостная система охлаждения
Достоинством жидкостной системы охлаждения как раз и является возможность поддержания температуры в заданном диапазоне, поэтому она лучше воздушной. Но конструкция этой системы значительно сложнее.
В ее состав входит:
- Рубашка охлаждения
- Водяной насос
- Термостат
- Радиаторы
- Соединяющие патрубки
- Вентилятор
При этом основным рабочим элементом такой системы является специальная жидкость – антифриз, при помощи которой и осуществляется отвод тепла. Раньше вместо него использовалась обычная вода, но из-за низкого температурного порога замерзания и образования накипи от воды постепенно отказались.
Рубашка охлаждения
Рубашка охлаждения – специальная система каналов в блоке цилиндров и головке блока, по которой движется жидкость. Если рассматривать все по-простому, то выглядит это так: имеется блок, в который устанавливаются цилиндры, а также основные узлы и механизмы. Поверх этого блока сделана оболочка, а пространство между ними и используется как каналы для движения жидкости. Такая конструкция позволяет жидкости омывать цилиндры, проходить рядом с узлами, установленными в блоке и головке, что обеспечивает отвод тепла от них.
Рекомендуем: Трансмиссионное масло — что это такое?
Помпа
Так выглядит водяная помпа
В рубашку охлаждения установлена водяная помпа. Она состоит из приводного зубчатого колеса (шкива) и крыльчатки, которая помещается внутрь рубашки, посаженных на одну ось. Привод ее осуществляется от коленчатого вала при помощи ремня.
Именно водяной насос и обеспечивает циркуляцию жидкости по системе. Получая вращение от коленчатого вала, крыльчатка заставляет двигаться жидкость по каналам рубашки.
Замена жидкости и промывка
Если не пришлось заменять какой-либо узел в системе охлаждения раньше, то инструкции рекомендуют менять антифриз не реже чем в 5–10 лет. Если вам не приходилось доливать в систему воду из канистры, а еще хуже — из придорожной канавы, то при замене жидкости систему можно не промывать.
Для удаления охлаждающей жидкости в нижней части радиатора предусмотрено сливное отверстие с пробкой.
Для удаления охлаждающей жидкости в нижней части радиатора предусмотрено сливное отверстие с пробкой.
А вот если автомобиль многое повидал на своем веку, то при замене жидкости полезно произвести промывку системы охлаждения. Разомкнув в нескольких местах систему можно струей воды из шланга тщательно ее прополоскать. Либо просто слить старую жидкость и залить чистую, кипяченую воду. Запустить двигатель и прогреть до рабочей температуры. Выждав, пока система остынет, чтобы не обжечься, слить воду. Затем продуть воздухом систему и залить свежий антифриз.
Промывку системы охлаждения обычно затевают в двух случаях: когда перегревается двигатель (проявляется это прежде всего в летний период) и когда перестает греть печка зимой. В первом случае причина кроется в заросших грязью снаружи и засоренных изнутри трубках радиатора. Во втором — проблема в том, что забились отложениями трубки радиатора отопителя. Поэтому при плановой смене жидкости и при замене компонентов системы охлаждения не упускайте возможности хорошенько промыть все узлы.
Расскажите, с какими неисправностями системы охлаждения сталкивались вы. И желаю вам жаркого отопителя зимой и хорошего охлаждения летом.
Система охлаждения ДВС: как устроена и надо ли промывать ее зимой?
Устройство и принцип работы системы охлаждения ДВС
Система охлаждения двигателя
Наиболее популярной в современных автомобилях является комбинированная система охлаждения двигателя с принудительной циркуляцией воздуха и жидкости. Она состоит из следующих элементов:
- Радиатор системы охлаждения.
- Вентилятор радиатора.
- Малый и большой охлаждающие контуры.
- Рубашка системы охлаждения (система каналов в блоке цилиндров).
- Датчик температуры.
- Термостат.
- Расширительный бачок.
- Насос (помпа).
- Радиатор печки.
- Масляный радиатор (опционально).
- Радиатор системы рециркуляции отработавших газов (опционально).
Компоненты
Рубашка головки и блока цилиндров
представляют собой каналы, отлитые в алюминиевом или чугунном изделии. Каналы герметичны, а стык блока и головки цилиндров уплотнен прокладкой.
Насос охлаждающей жидкости
лопастной, центробежного типа. Приводится во вращение либо ремнем ГРМ, либо ремнем привода вспомогательных агрегатов.
Насос охлаждающей жидкости двигателя Chevrolet Lacetti
Насос охлаждающей жидкости двигателя Chevrolet Lacetti
Термостат
представляет собой автоматический клапан, срабатывающий при достижении определенной температуры. Он открывается, и часть горячей жидкости сбрасывается в радиатор, где и остывает. В последнее время стали применять электронное управление этим простым устройством. Охлаждающую жидкость начали подогревать специальным ТЭНом для более раннего открытия термостата в случае потребности.
Термостат двигателя Chevrolet Cruze: 1 — патрубок подвода жидкости к радиатору системы охлаждения; 2 — электрический разъем нагревательного элемента термостата; 3 — корпус; 4 — уплотнительное кольцо в соединении модуля с распределителем жидкости; 5 — основной клапан термостата; 6 — пружина термостата; 7 — баллон с термочувствительным наполнителем; 8 — дополнительный клапан термостата; 9 — шток термостата.
Термостат двигателя Chevrolet Cruze: 1 — патрубок подвода жидкости к радиатору системы охлаждения; 2 — электрический разъем нагревательного элемента термостата; 3 — корпус; 4 — уплотнительное кольцо в соединении модуля с распределителем жидкости; 5 — основной клапан термостата; 6 — пружина термостата; 7 — баллон с термочувствительным наполнителем; 8 — дополнительный клапан термостата; 9 — шток термостата.
Радиатор
представляет собой теплообменник, содержащий два бачка (входной и выходной), соединенных множеством алюминиевых трубок, по которым проходит охлаждающая жидкость. Для увеличения теплообмена к трубкам присоединены тонкие пластины, во много раз увеличивающие поверхность теплообмена. Для улучшения теплоотвода воздух протягивается через радиатор принудительно с помощью электровентилятора.
Радиатор и вентилятор системы охлаждения двигателя Лады Ларгус: 1 — дополнительный резистор; 2 — кожух; 3 — электродвигатель; 4 — крыльчатка; 5 — радиатор.
Радиатор и вентилятор системы охлаждения двигателя Лады Ларгус: 1 — дополнительный резистор; 2 — кожух; 3 — электродвигатель; 4 — крыльчатка; 5 — радиатор.
Радиатор отопителя
выполняет функцию нагревания воздуха, поступающего в салон автомобиля. Краны отопителя сейчас не устанавливают, а потому радиатор этот нагрет всегда, когда прогрет двигатель, и только воздушные заслонки не дают летом поступать горячему воздуху в салон автомобиля.
Радиатор отопителя кроссовера Renault Duster.
Радиатор отопителя кроссовера Renault Duster.
Расширительный бачок
это хранилище резерва жидкости. Но в зависимости от типа системы охлаждения (см. выше) он может быть циркуляционным или тупиковым. Соответственно, находиться под давлением или без него.
Пробка
, обеспечивающая герметичность системы, может быть установлена либо прямо на радиаторе, либо на расширительном бачке. Вне зависимости от места установки пробка обеспечивает повышенное давление в системе охлаждения. Такое давление (достигающее 1,1–1,3 бара) повышает температуру кипения жидкости, улучшает теплопередачу, предотвращает кавитацию насоса.
Пробка радиатора Лады 4х4. Пробка радиатора Лады 4х4. | Пробка расширительного бачка Chevrolet Cruze. Пробка расширительного бачка Chevrolet Cruze. |
И главный компонент системы — это сама рабочая жидкость
. Идеальной с точки зрения теплотехники была бы вода, но она вызывает коррозию и замерзает зимой. Поэтому применяют антифризы с низкой температурой замерзания (-40°C или — 65°C) и присадками, снижающими коррозию, пенообразование и т.д.
Основные неисправности системы
Если обратиться к пункту 2.3.1 ПДД и к «Перечню неисправностей…», с которыми ограничивается движение транспортных средств, то в них можно обнаружить полное отсутствие упоминаний о проблемах, связанных с системой охлаждения двигателя. Это означает, что поломки системы не позиционируются в качестве неисправностей, с которыми запрещается движение. А, следовательно, система охлаждения и ее ремонт – это личное дело каждого водителя, степень его комфорта на дороге.
Каковы же основные «несерьезные» проблемы, которые может испытывать система охлаждения ДВС?
Во-первых, наиболее распространена негерметичность или течь охлаждающей жидкости. Причем, ее причины могут заключаться в смене уличной температуры (чаще – наступления сезона морозов). Среди популярных причин – и закоксованность патрубков и шлангов, которые под постоянным воздействием высокой температуры теряют эластичность. Протекание охлаждающей жидкости обуславливается и физическими повреждениями основного радиатора и радиатора «печки», полученными либо химическим путем (например, реактивами, входящими в состав тосола), либо посредством механического воздействия (например, удара).
Во-вторых, не менее популярная неисправность – выход из строя (или заклинивание) термостата. Клапан термостата (устройство, находящееся в постоянном контакте с жидкостью), постепенно коррозирует. В конечном счете, происходит его заклинивание, что исключает срабатывание в системе «открыто-закрыто». Результаты подобного состояния термостата двояки:
- при заклинивании в положении «открыто» охлаждающая жидкость двигается только по большому кругу (с постоянным использованием радиатора), что приводит к слабому и длительному прогреву двигателя и, соответственно, плохой обогреваемости салона автомобиля;
- при заклинивании в положении «закрыто» охлаждающая жидкость, напротив, двигается только по малому кругу (без использования радиатора), что обусловливает перегрев двигателя и может привести к необратимым изменениям в структуре металла, уменьшению ресурса силового агрегата и даже к его поломке.
Что такое чиллер и как он работает? | Принцип работы промышленного чиллера
Если на вашем предприятии используются технологические жидкости или тяжелое оборудование, которое вырабатывает тепло, вам понадобится система промышленного чиллера для охлаждения ваших процессов и внутренних компонентов машины. Понимание того, как работает промышленный чиллер и какие типы чиллеров доступны, поможет вам сделать правильный выбор в соответствии с вашими потребностями в охлаждении.
Что такое чиллер?
Промышленный чиллер – это холодильная система, используемая для снижения температуры машин, промышленных помещений и технологических жидкостей путем отвода тепла из системы и передачи его в другое место. Промышленные чиллеры необходимы для регулирования температуры в нескольких промышленных процессах, таких как литье под давлением, металлизация, добыча нефти и пищевая промышленность.
Зачем использовать чиллер?
Промышленные холодильные системы выгодны для применений, где требуются строгие рабочие температуры. При интеграции с процессами, чувствительными к теплу, чиллеры предотвратят тепловое повреждение технологического оборудования и обеспечат отсутствие изменений в конечных продуктах из-за воздействия неподходящих температур.
Принципы работы
Промышленные чиллеры работают на основе следующих принципов работы.
- Изменение фазы : При нагревании жидкий теплоноситель претерпевает фазовый переход в газ, а при переохлаждении газообразный теплоноситель снова конденсируется в жидкость.
- Тепловой поток : Тепловая энергия всегда течет из области с высокой концентрацией в область с меньшей концентрацией.
- Температура кипения : Снижение давления над жидкостью снижает ее температуру кипения, а увеличение давления повышает ее температуру кипения.
Как работает чиллер?
Промышленная холодильная система работает по одному из двух принципов:
- Поглощение тепла
- Компрессионный пар
Чиллеры с абсорбцией тепла включают в себя теплообменники, которые отводят тепло от любых связанных процессов и рассеивают его наружу. Теплообменники обычно состоят из трубопроводов, содержащих охлаждающие жидкости (воздух, вода или смесь воды и других жидкостей).
Чиллеры с компрессией пара достигают охлаждающего эффекта за счет циркуляции хладагента в трубах в процессах, требующих охлаждения. Это будет отводить тепло от любых связанных процессов в хладагент, который затем циркулирует в системе хладагента, которая охлаждает охлаждающую жидкость и подготавливает ее к новому циклу технологического охлаждения.
Чиллеры состоят из четырех основных компонентов; испаритель, компрессор, конденсатор и расширительный блок. Кроме того, каждая система чиллера содержит хладагент.
Процесс начинается с подачи хладагента низкого давления в испаритель. Внутри испарителя хладагент чиллера нагревается, в результате чего он претерпевает фазовый переход в газ. Далее газообразный хладагент поступает в компрессор, который повышает его давление.
Хладагент высокого давления поступает в конденсатор, который отводит тепло с помощью охлаждающей воды из градирни или окружающего воздуха, конденсируя его в жидкость под высоким давлением.
Следовательно, это снижает давление хладагента и снова запускает процесс охлаждения. Весь процесс известен как холодильный цикл .
Основные компоненты чиллера
К основным компонентам чиллера относятся следующие:
- Конденсатор
- Компрессор
- Испаритель
- Расширительные клапаны
- Блок питания
- Блок управления
- Ящики для воды
Конденсатор
Функция конденсатора чиллера заключается в отводе тепла от хладагента, циркулирующего через чиллер. Это достигается за счет циркуляции воды между градирней и конденсатором для вариантов с водяным охлаждением или обдува трубопровода конденсатора холодным воздухом для чиллеров с воздушным охлаждением.
Компрессор
Компрессор является приводным узлом любой холодильной системы. Он создает градиент давления, необходимый для проталкивания хладагента по чиллеру для достижения технологического охлаждения. Доступны различные конденсаторы, самые популярные из которых включают центробежные, винтовые и поршневые компрессоры.
Испарители
Испаритель размещается между расширительным клапаном, а конденсатор отводит тепло от любого связанного процесса в циркулирующий хладагент. Затем он направляется в градирню или охлаждается воздухом в зависимости от конфигурации чиллера.
Терморегулирующие клапаны
Терморасширительные клапаны, расположенные между компрессором и испарителем, служат для расширения проходящего через них хладагента. Это действие снижает давление и улучшает отвод тепла от испарителя.
Блок питания
В каждом чиллере имеется блок питания, который управляет потоком электроэнергии через систему. Компоненты блока питания обычно включают в себя пускатели, панели контроля мощности и автоматические выключатели.
Панели управления
Панели управления служат для регулирования всего процесса охлаждения. Обычно они включают в себя датчики, сигнализацию и экраны дисплея, которые позволяют операторам настраивать параметры системы для оптимального контроля температуры.
Ящики для воды
Эти устройства могут быть установлены либо на испарителе системы чиллера, либо на его конденсаторе с водяным охлаждением. Их цель – эффективно проводить поток воды.
Типы промышленных чиллеров
В настоящее время используются три основных типа чиллеров: чиллеры с воздушным охлаждением, чиллеры с водяным охлаждением и абсорбционные чиллеры. Мы также кратко коснемся градирен (альтернативной или дополнительной системы охлаждения) и специальных чиллеров, таких как гликолевые и центробежные.
Правильный выбор чиллера для вашего применения поможет вам сократить расходы, сократить время простоя и повысить эффективность работы.
Чиллеры с водяным охлаждением
Чиллеры с водяным охлаждением используют воду из внешней градирни для отвода тепла от газообразного хладагента в конденсаторе до того, как он претерпит фазовый переход в жидкость.
Чиллеры с воздушным охлаждением
Вместо охлаждающей воды в чиллерах с воздушным охлаждением используется окружающий воздух для отвода тепла от хладагента в конденсаторе. Узнайте больше о чиллерах с воздушным и водяным охлаждением .
Чиллеры с парокомпрессором
Чиллеры этого типа используют хладагенты для охлаждения технологических жидкостей и помещений. Компрессор используется в качестве движущей силы для прокачки хладагента по системе.
Чиллеры с абсорбцией пара
Чиллеры с абсорбцией пара не имеют компрессора в блоке. Вместо этого они используют источник тепла, т.е. солнечная энергия или отработанное тепло для прогона хладагента через систему.
Как работает абсорбционный охладитель?Процесс начинается с жидкого хладагента в испарителе, который переводит его в газообразную форму. Затем газообразный хладагент поглощается концентрированным абсорбентом, таким как бромид лития или аммиак, подаваемым генератором. Наконец, разбавленный раствор поглощает охлаждающую жидкость, в то время как тепло поглощается охлаждающей водой.
Разбавленный раствор хладагента и абсорбента через теплообменник поступает в генератор, где нагревается. Теплоноситель испаряется из раствора, конденсируется и снова отправляется на охлаждение. Теперь концентрированный абсорбент также перерабатывается.
Гликолевые чиллеры
Гликолевые чиллеры — это специальные типы, в системе которых используется пропиленгликоль, антифриз. Они широко используются в пищевой промышленности, например, при производстве спирта и в системах охлаждения пивоварен.
Как работает гликолевый чиллер?Принцип работы гликолевых чиллеров такой же, как и у стандартных чиллеров.
Центробежные чиллеры
Центробежные чиллеры состоят из обычного испарителя, компрессора, конденсатора и расширительного устройства, но с дополнительными вращающимися крыльчатками, которые сжимают хладагент и транспортируют его по системе. Они подходят для средних и крупных операций по охлаждению (от 150 до 6000 тонн холода).
Использование промышленных чиллеров
Системы промышленных чиллеров могут использоваться для охлаждения в различных отраслях промышленности. Ниже приведены некоторые из наиболее распространенных применений:
- Пищевая промышленность — Промышленные охладители широко используются в производстве и переработке пищевых продуктов, где требуется высокая степень точности контроля температуры. Например, охладители винодельни используются для контроля температуры во время ферментации и хранения вина. Аналогичным образом, охладители для пекарен помогают в охлаждении миксера, охлаждении питьевой воды и охлаждении резервуаров с дрожжами с рубашкой, которые являются важными компонентами хлебобулочных изделий.
- Отделка металлов — Контроль температуры имеет важное значение в процессах отделки металлов, таких как гальваническое или химическое покрытие, для удаления избыточного тепла, поскольку они обычно требуют очень высоких температур (несколько сотен градусов) для соединения металлов. В некоторых отраслях промышленности используются чиллеры для чистовой обработки металлов для охлаждения анодирующей жидкости в теплообменнике или используют гликоль/воду в качестве охлаждающей среды для снижения температуры внутри резервуара.
- Литье под давлением — Литье под давлением — это метод массового производства пластиковых деталей с использованием литьевой машины, термопластичных гранул и пресс-формы. Процесс и расплав должны поддерживаться в точных температурных пределах, чтобы предотвратить такие проблемы, как трещины, коробление и внутренние напряжения в конечном продукте. Охладитель для литья под давлением может подавать поток переохлажденной жидкости для охлаждения формы с идеальной скоростью для обеспечения оптимального качества продукта.
- Охлаждение помещений — На производственных предприятиях, которые выделяют много тепла от используемого ими тяжелого оборудования, чиллер может помочь предотвратить экстремальные температуры в офисах и других рабочих помещениях. Они также помогают сэкономить на покупке отдельных систем HVAC для охлаждения.
Определение правильного размера чиллера для ваших нужд
Чиллер соответствующего размера имеет решающее значение для эффективных и экономичных процессов, оборудования и охлаждения помещений. Простой в использовании инструмент определения размеров чиллеров Cold Shot может помочь вам быстро определить оптимальную производительность, тоннаж и размер чиллера.
Получение максимальной отдачи от вашего чиллера
Стоимость установки и эксплуатации систем чиллера может быть довольно высокой. Чиллеры должны работать максимально эффективно, чтобы избежать дополнительных расходов во время обычной работы. Планирование и проведение регулярного технического обслуживания вашей системы предотвратит дорогостоящий ремонт чиллера в долгосрочной перспективе. Соответствующее техническое обслуживание чиллера должно включать осмотр и очистку змеевика конденсатора, воду конденсатора и техническое обслуживание хладагента. Приложения для мониторинга в режиме реального времени, такие как Cold Shot Guardian®, можно использовать для наблюдения за оборудованием, прогнозирования сбоев системы и предложения упреждающих вмешательств.
Доверьтесь охладителям Cold Shot для всех ваших потребностей!
Компания Cold Shot Chillers , обладающая более чем тридцатилетним опытом производства промышленных холодильных систем, предлагает охлаждающее оборудование и опыт для решения самых сложных задач технологического охлаждения.
Свяжитесь с нами по телефону или позвоните нам по телефону 1.800.473.9178 для получения дополнительной информации о наших коммерческих чиллерах и их частях.
Что такое Градирня?
Градирня представляет собой устройство для отвода тепла, использующее воду для передачи отработанного тепла в атмосферу. Точно так же промышленная градирня работает по принципу отвода тепла от воды путем испарения небольшой части воды, которая рециркулирует через установку. Смешивание теплой воды и более холодного воздуха высвобождает скрытую теплоту парообразования, в результате чего вода охлаждается. Если вы когда-либо смотрели вниз с высотного здания, вы могли заметить квадратную единицу с вентиляторами наверху на зданиях внизу. Это градирня.
Никто не хочет оставаться в здании с плохим кондиционером — по крайней мере, ненадолго. С другой стороны, здания с отличным охлаждением вызывают желание вернуться, хотя бы просто насладиться воздухом. Это во многом благодаря постоянной модернизации и инновациям коммерческой системы градирен.
Для чего нужна градирня?
Градирня используется для охлаждения воды и представляет собой огромный теплообменник, отводящий тепло здания в атмосферу и возвращающий более холодную воду в чиллер. Градирня получает теплую воду от чиллера. Эта теплая вода известна как вода конденсатора, потому что она нагревается в конденсаторе чиллера. Чиллер обычно находится на более низком уровне, например, в подвале. Роль градирни заключается в охлаждении воды, чтобы она могла вернуться в чиллер для получения большего количества тепла.
Как работает градирня?
Оборудование для кондиционирования воздуха и промышленные процессы могут генерировать тепло в виде тонн горячей воды, которую необходимо охладить. Вот где на помощь приходит промышленная градирня. Перегретая вода проходит через градирню, где она рециркулирует и подвергается воздействию прохладного сухого воздуха. Тепло уходит из оборотной воды градирни за счет испарения. Это называется испарительным охлаждением. Затем более холодная вода снова поступает в оборудование или процесс кондиционирования воздуха, чтобы охладить это оборудование, и цикл охлаждения повторяется снова и снова. Когда теплый конденсатор поступает в градирню, вода проходит через несколько форсунок, которые разбрызгивают воду в виде мелких капель по всему заполнителю, что увеличивает площадь поверхности воды и обеспечивает лучшую потерю тепла за счет большего испарения. Вентилятор наверху градирни предназначен для подачи воздуха из нижней части градирни и перемещения его вверх и наружу в направлении, противоположном направлению теплой воды конденсатора в верхней части градирни. Воздух будет переносить тепло за счет испарения воды из градирни в атмосферу.
Зачем нужна промышленная градирня?
Промышленная градирня является важнейшим компонентом многих систем охлаждения и может использоваться в таких отраслях, как электростанции, химическая промышленность, сталелитейные заводы и многие производственные компании, где необходимо технологическое охлаждение. Кроме того, коммерческие градирни можно использовать для обеспечения комфортного охлаждения больших коммерческих зданий, таких как аэропорты, школы, больницы или отели.
Промышленная градирня может быть больше, чем система HVAC, и используется для отвода тепла, поглощаемого в системах циркуляции охлаждающей воды, используемых на электростанциях, нефтеперерабатывающих заводах, нефтехимических заводах, заводах по переработке природного газа, предприятиях пищевой промышленности и других промышленных предприятиях. удобства.
С увеличением численности населения во всем мире произошел огромный рост потребностей и потребностей мира в промышленных продуктах. Это вынуждает промышленный сектор производить все больше и больше продукции с каждым днем, что приводит к большему выделению тепла в процессе производства. Машины и процессы в промышленности, которые производят огромное количество тепла, должны постоянно охлаждаться, чтобы эти машины могли продолжать работать эффективно. Наиболее эффективным, действенным и наименее затратным решением для отвода этого тепла является установка промышленной градирни.
Типы градирен
Системы градирен часто необходимы для промышленных процессов. Эти высокие цилиндрические конструкции с открытым верхом отвечают за охлаждение воды, генерируемой промышленным потоком воздуха или потоком воздуха для комфортного охлаждения HVAC. Различные типы градирен идентифицируются по классификации тяги (естественная или механическая) и по направлению воздушного потока (встречный или перекрестный).
Градирни с естественной тягой
обычно используются для крупных электростанций и промышленных предприятий с бесконечным потоком охлаждающей воды. Башня работает за счет отвода отработанного тепла путем подъема горячего воздуха, который затем выбрасывается в атмосферу. Эти башни высокие и имеют гиперболическую форму для создания надлежащего воздушного потока.
Системы градирен с механической тягойВ этих градирнях воздух нагнетается через конструкцию с помощью вентилятора, который обеспечивает циркуляцию воздуха через градирню. Обычные вентиляторы, используемые в этих башнях, включают пропеллерные вентиляторы и центробежные вентиляторы. Хотя градирни с механической тягой более эффективны, чем градирни с естественной тягой, они потребляют больше энергии и, как следствие, обходятся дороже в эксплуатации.
Градирни с поперечным потокомимеют конструкцию, которая позволяет воздуху проходить горизонтально через наполнитель и структуру градирни в открытое пространство. Горячая вода течет вниз из распределительных бассейнов. Однако вентиляторы и моторный привод требуют защиты от атмосферных воздействий и влаги, что может привести к замерзанию и снижению эффективности.
Противоточные градирниимеют конструкцию, в которой воздух движется вверх, а противоток с горячей водой падает вниз для охлаждения воздуха. Это позволяет добиться максимальной производительности в каждой области плана и помогает свести к минимуму требования к напору насоса. Кроме того, система противоточной градирни с меньшей вероятностью обледеневает в холодных погодных условиях и может экономить энергию в долгосрочной перспективе. Все градирни Delta являются противоточными, и все они обладают этими преимуществами.
Градирни с принудительной тягойобычно монтируются с вентилятором в верхней части градирни, который выпускает горячий воздух и нагнетает воздух повсюду. Высокая скорость выходящего воздуха снижает вероятность рециркуляции. Чтобы избежать захвата капель воды в выходящем потоке воздуха, используются каплеуловители. Градирни с принудительной тягой более эффективны, поскольку они потребляют на 30-75% меньше энергии по сравнению с конструкциями с принудительной тягой.
Системы градирни с принудительной тягойЭта система градирни аналогична системе с принудительной тягой, но основное отличие состоит в том, что вентилятор, перемещающий воздух, размещается в основании градирни, что позволяет воздуху проходить снизу. Их использование ограничено из-за проблем с водораспределением, вентиляторов высокой мощности и возможности рециркуляции.
Какой материал лучше всего подходит для градирни?
Системы с водяным охлаждением в основном изготавливаются из трех материалов: металла, стекловолокна и пластика. Как известно, металл может ржаветь и подвергаться коррозии, и все, что находится внутри, со временем может начать протекать. Неудивительно, что средний срок годности металлической градирни составляет всего 15 лет, и для ее обслуживания требуется эпоксидная краска, герметики и многое другое. Это обслуживание может привести к простою вашего бизнеса. Вот почему металл сейчас заменяется более совершенными технологиями. Производители градирен из стеклопластика, хотя и предлагают лучшую альтернативу металлу, по-прежнему подвержены трещинам и износу, что может привести к увеличению затрат на техническое обслуживание в долгосрочной перспективе.
Каковы преимущества использования искусственного пластика?
Градирня из инженерного пластика выдерживает износ. Он не ржавеет и не скалывается, а также может выдерживать суровые условия окружающей среды. Кроме того, он практически не требует обслуживания. Полиэтилен высокой плотности (HDPE), лучший в своем классе искусственный пластик, используемый Delta Cooling Systems, является бесшовным и устойчивым к коррозии, вызванной окружающей средой, в отличие от градирен из металла или стекловолокна. С ожидаемым сроком службы более 20 лет вы можете установить его один раз, зная, что вам не придется беспокоиться об этом впоследствии.
Достижения в производстве и проектировании современных пластиковых градирен изменили использование градирен с ценного вспомогательного инструмента на производительность и экономию затрат на градирни.
- Ожидаемый срок службы — Стандартная металлическая градирня имеет кожух с тонкими листами из оцинкованной стали. Эти листы обычно имеют сварные швы, которые могут испортиться в течение года и потребуют повторной сварки, исправления или покрытия для предотвращения утечки. Кроме того, обработанная вода имеет тенденцию воздействовать на гальванизированный металл, по существу изнашивая его за чрезвычайно короткое время. Условия окружающей среды, такие как солнечный свет, загрязнение, соленый воздух и агрессивные химические вещества, также способствуют раннему выходу из строя оцинкованной стали. Даже загрязнение окружающего воздуха может повлиять на оцинкованную сталь, что приведет к ее преждевременному выходу из строя. Поскольку металл расширяется и сжимается в зависимости от температуры, повторяющиеся циклы вызывают напряжение, которое также может ускорить коррозию, ржавчину и утечку. Даже низкокачественные варианты корпуса из нержавеющей стали серии 300 подвергаются воздействию химикатов для обработки воды и факторов окружающей среды и изнашиваются.
- Гибкая модульная конструкция — В прошлом пластиковые градирни были слишком малы для многих промышленных процессов. По этой причине градирни из оцинкованного металла традиционно использовались для большинства применений весом более 250 тонн, но ситуация резко изменилась. Компания Delta, например, представила серию пластиковых градирен заводской сборки TM Series®, которые можно комбинировать для обеспечения охлаждения до 2500 тонн в одном модульном блоке.
- Непрерывная, более экономичная эксплуатация — Специализированный пластик также может уменьшить ожидаемые и неудобные последствия эксплуатации градирни, в том числе: потребление электроэнергии, химикаты для очистки воды, рабочую силу и материалы для технического обслуживания, а также незапланированные технологические простои градирни. ремонт. Техническое обслуживание и ремонт обычно означают прерывание процесса, что является самой дорогостоящей из всех проблем, связанных с градирнями.
- Простая установка — К основным конструктивным преимуществам новейших пластиковых градирен также относится более простая установка, особенно на крышах, поскольку легкий пластиковый корпус весит на 40% меньше, чем стальная градирня, при этом будучи в 5-10 раз толще. Когда модульные градирни объединены в кластер, установка зачастую выполняется быстрее и проще.
Какая связь между системами градирен и болезнью легионеров?
По данным Центров по контролю и профилактике заболеваний (CDC), градирни могут быть рассадником бактерий Legionella, микробов, вызывающих болезнь легионеров. И вот почему: бактерии процветают в теплых и влажных условиях, что делает градирни идеальной средой. В результате люди могут заболеть болезнью легионеров, которая может вызвать пневмонию, когда они вдыхают капли воды, выбрасываемые из систем HVAC, которые содержат бактерии Legionella. Фактически, исследование, проведенное CDC в 2017 году, выявило шесть вспышек легионеров в Нью-Йорке, которые привели к 213 случаям заболевания и 18 смертельным исходам. Три из этих вспышек были связаны с градирнями.
Чтобы решить эту проблему общественного здравоохранения и решить эту проблему, компании обрабатывают воду внутри своих промышленных градирен противомикробными веществами, которые убивают бактерии. Для других целей водоподготовки часто используется воздушный десорбер. В качестве еще одной меры предосторожности пластиковые системы градирен могут быть изготовлены с использованием противомикробных смол, встроенных в материалы и компоненты устройства, чтобы обеспечить дополнительный уровень защиты от легионеллы. Узнайте больше о технологии противомикробных продуктов в градирнях Delta.
Является ли градирня экологически чистой?
В связи с растущим беспокойством по поводу соблюдения экологических стандартов и повышения рентабельности капиталовложений в оборудование необходимо учитывать некоторые стандарты. Системный подход к экологизации градирен повысит устойчивость, повысит энергоэффективность, добавит экономии воды и уменьшит углеродный след; при этом улучшая некоторые последствия затрат, связанные с достижением таких экологических целей. Предприятия могут сэкономить до 40 процентов на затратах на электроэнергию. В то время как обычные градирни, часто изготавливаемые с облицовкой из листового металла, являются экологически сложными и требуют интенсивного обслуживания, альтернатива использованию градирен с формованным бесшовным пластиком сразу же выгодна как для окружающей среды, так и для вашей прибыли.
Традиционные металлические градирни, срок службы которых во многих случаях составляет всего несколько лет, сталкиваются с экологическими и экономическими проблемами, включая увеличение использования химикатов, более высокие затраты на техническое обслуживание, затраты на замену и требования по утилизации. Градирни из инженерного полиэтилена высокой плотности с пластиковой конструкцией позволяют использовать самые агрессивные доступные варианты очистки воды. Это может позволить пользователям работать с более высокими циклами концентрации, тем самым экономя воду для подпитки. Это может сэкономить десятки тысяч галлонов воды в год. Эта экономия воды и химикатов может быть значительной и помочь решить проблемы с водой, а также сэкономить на эксплуатационных расходах. Градирни этой конструкции с противотоком также сохраняют воду полностью закрытой и защищенной от солнечного света, тем самым уменьшая возможность биологического роста, для которого требуются менее агрессивные химикаты для обработки воды. Получите более подробную информацию об экологичных технологиях и продуктах Delta здесь.
Как градирни могут помочь компаниям сэкономить деньги?
Подумайте об этом так: системы градирен необходимы многим предприятиям, а это означает, что стремление к эффективности операций и продуктов может помочь повлиять на конечный результат. Потребление воды может быть основной статьей эксплуатационных расходов, а градирни могут повторно использовать около 98 % воды, используемой для технологического охлаждения или кондиционирования воздуха. Если устройство изготовлено из пластика и использует воду вместо воздуха в качестве метода охлаждения, владельцы бизнеса могут рассчитывать на снижение затрат на электроэнергию, минимальное техническое обслуживание или его отсутствие и более длительный срок службы продукта по сравнению со старыми металлическими системами. Это очень желательный сценарий для любого бизнеса, чтобы сократить расходы. Кроме того, многим клиентам нравится знать, что предприятия и отрасли, поддерживающие сообщества, заботятся об окружающей среде и работают над устойчивыми методами. Возможно, это не является фактором экономии денег, но может повысить доверие потребителей. И это тоже хорошо для бизнеса.
Как видите, о системах градирен можно многое узнать. Мало того, что они выполняют функцию, без которой многие из нас не могут жить (конечно, это кондиционер), они высокотехнологичны и, да, круты. Возможно, зная больше о градирнях, вы лучше оцените прохладный воздух.
Основы градирни: каковы общие термины системы охлаждения?
Подход – это разница между температурой холодной воды, выходящей из градирни, и температурой воздуха по влажному термометру. Установление подхода фиксирует рабочую температуру градирни и является наиболее важным параметром при определении как размера градирни, так и ее стоимости.
Отвод:
Биоцид: химическое вещество, предназначенное для контроля популяции вредных микробов путем их уничтожения.
Продувка: – это вода, специально сбрасываемая из системы для контроля концентрации солей или других примесей в оборотной воде. Единицы % расхода оборотной воды или GPM.
Британская тепловая единица (БТЕ) : тепловая энергия, необходимая для повышения температуры одного фунта воды на один градус Фаренгейта в диапазоне от 32° F до 212° F
Диапазон охлаждения: — разница в температура между горячей водой, поступающей в градирню, и холодной водой, выходящей из градирни.
Циклы концентрирования: сравнивает растворенные твердые вещества в подпиточной воде с твердыми веществами, сконцентрированными в результате испарения в циркулирующей воде. Например, хлориды растворимы в воде, поэтому циклы концентрирования равны соотношению хлоридов в оборотной воде и хлоридов в подпиточной воде.
Растворенные твердые вещества : общее количество твердых веществ, растворенных в жидкости. Они могут быть ионными и/или полярными по своей природе.
Дрейф: – это вода, увлекаемая воздушным потоком и выбрасываемая в атмосферу. Потери на дрейф не включают потери воды в результате испарения. Правильная конструкция градирни может свести к минимуму потери на дрейф.
Теплообменник: — это устройство для передачи тепла от одного вещества к другому. Теплопередача может быть прямой контактной, как в градирне, или косвенной, как в кожухотрубном конденсаторе. Также могут быть трубные или ребристые пучки труб в мокрой/сухой градирне.
Тепловая нагрузка: Количество тепла, отводимого от циркулирующей воды в градирне. Тепловая нагрузка равна скорости циркуляции воды (GPM), умноженной на диапазон охлаждения, умноженному на 500, и выражается в БТЕ/ч. Тепловая нагрузка также является важным параметром при определении размера и стоимости градирни.