Вакансии компании Компания Дизель — работа в Ярославле, Тутаеве
ООО «Компания Дизель» (www.comd.ru) — крупнейший в России производитель дизельных электростанций (ДЭС) единичной мощностью от 16 до 1000 кВт.
Вся продукция изготавливается на собственном заводе, оснащенном современным оборудованием ( г. Тутаев). Офис Компании Дизель расположен в г. Ярославле.
Сегодня каждая четвертая дизельная электростанция российского производства (24,3%) — выходит с завода Компании Дизель.
С 2014 года Компания Дизель занимает 1 место по объему поставок ДЭС на объекты нефтегазового комплекса России (среди всех производителей и поставщиков).
В связи с активным импортозамещением, происходящем в отрасли, Компания Дизель осваивает новые направления продаж, расширяет уже имеющиеся сферы влияния на рынке и нуждается в высококвалифицированных, нацеленных на достижение результата, активных сотрудниках!
МЫ ПРЕДЛАГАЕМ:
- Интересную работу в молодой и дружной команде профессионалов
- Стабильность и уверенность в завтрашнем дне
- Оформление по трудовому кодексу РФ и достойную официальную заработную плату
- Возможность расти и развиваться в профессии: опыт и помощь старших сотрудников, участие в отраслевых мероприятиях
- Профессиональный рост: с развитием Компании появляются новые интересные функции и должности, на которых мы хотим видеть проверенных сотрудников
- Возможность участия в развитии компании: у нас приветствуются инициативы и поддерживаются здравые идеи
- Комфортное рабочее окружение: на наш взгляд, сотрудники компании достойны работать на современном производстве и в красивых и просторных офисах
- Нормированный рабочий график: с понедельника по пятницу, с перерывом на обед
- Участие в интересных корпоративных мероприятиях: у нас любят не только хорошо работать, но и весело отдыхать
Реализуйте свой потенциал и профессиональные умения, став частью коллектива Компании Дизель!
https://www. youtube.com/watch?v=yDD8VDJWvvA
Синхронизация дизель-генераторов (электростанций) – основные способы, цели и виды
Совместная работа дизельных электрогенерирующих установок может потребоваться для решения комплекса задач, в числе которых — повышение надежности электроснабжения, наращивание мощности и оптимизация других выходных характеристик системы и т. д.
После синхронизации электростанции могут эксплуатироваться в качестве основного или резервного источника питания. Подобные решения широко востребованы при крупном строительстве (например, возведении мостов, аэродромов и т. п.), на морских и речных судах, в промышленности, иных отраслях.
Способы синхронизации электростанций
В зависимости от специфики обслуживаемых потребителей, требований к нагрузке и иных параметров, существуют следующие методы объединения электрогенерирующих установок:
Точная. Требуется обеспечить равные значения частоты тока, фазировки и уровня напряжения на каждом устройстве.
Грубая. При таком способе не предъявляются строгие требования к совпадению частоты, напряжений и совпадения фаз. Но следует учитывать, что после синхронизации электростанций коммутация нагрузки каждой из них будет приводить к скачкам тока, снижению напряжения и дополнительному износу системы.
Самосинхронизация. Двигатель электрогенерирующей установки разгоняется до номинальной частоты вращения, после чего подается ток возбуждения. В результате дизель-генератор самостоятельно выполняет синхронизацию, подстраиваясь под требуемые параметры.
В любом случае нужно учитывать совместимость оборудования для корректного введения в совместную работу двух или нескольких установок.
Цели синхронизации дизель-генераторов
Объединение электрогенерирующих устройств позволяет справляться со многими актуальными задачами:
оптимизацией нагрузки для каждой электростанции, участвующей в синхронизации;
обеспечением надежности системы энергоснабжения;
компенсацией нехватки мощности основной установки при старте потребителей с высокими пусковыми токами;
возможностью увеличения производительности системы энергообеспечения: синхронизация выгодна, поскольку несколько маломощных дизель-генераторов обойдутся дешевле, чем один большой.
Выбор оптимального варианта осуществляется с учетом специфики ситуации.
Виды синхронизаций дизель-генераторов
Можно объединить оборудование разной мощности — например, когда потребность в ней различается в зависимости от времени суток (днем нагрузка больше, ночью — меньше). Это актуально, поскольку дизельное генерирующее оборудование не рекомендуется долго использовать при менее чем 30%-й загрузке.
Для потребителей с плавающими токами удобно объединять станции с одинаковой производительностью. Еще один распространенный вариант — когда несколько единиц оборудования поровну делят между собой потребляемую нагрузку, причем интенсивность работы каждого из них ниже 100% своих возможностей.
Как осуществить синхронизацию электростанций
Процесс специфичен, требует точного соблюдения технологий и последовательности процедур, знания допусков, электротехнических стандартов и иных нормативных показателей. Заниматься такой работой должны профессионалы соответствующей квалификации, поскольку малейшая ошибка может привести к порче дорогостоящего оборудования, травмам людей и иным неприятностям.
Поэтому заказывайте синхронизацию дизель-генераторов в компании «Русь-Нова».
Жесткая работа дизеля. Причина | Дизельный двигатель
Одной из основных особенностей процесса сгорания в дизелях является «жесткость» работы. Так как в начальный период второй фазы горения значительное количество топлива сгорает с большими скоростями, возникает существенное увеличение давления газов на поршень. Под «жесткой» работой двигателя понимают рабочий процесс, при котором давление сгорания в цилиндре увеличивается чрезвычайно быстро. Казалось бы, чем «жестче» работа, тем больше должна развиваться мощность и улучшаться экономичность двигателя, так как при этих условиях должны сокращаться потери, связанные с несовершенством динамики сгорания. Однако это вызывает рост динамических нагрузок на детали кривошипно-шатунного механизма, появление вибраици и уменьшает долговечность двигателя.
«Жесткость» работы двигателя оценивается приращением давления на один градус угла поворота коленчатого вала:
wp = дельта р/ дельта ф
Средняя величина «жесткости» работы дизелей (дельта р/ дельта ф)ср обычно 1-1,5 МПа/°.
Работа карбюраторных двигателей также характеризуется определенной «жесткостью», но она составляет всего 0.2—0,3 МПа/°.
Чем больше топлива, подготовленного к воспламенению, оказывается в цилиндре, тем больше теплоты выделяется во второй фазе горения, и тем больше «жесткость» работы двигателя.
При разработке дизеля стремятся обеспечить эффективную теплоотдачу при умеренной «жесткости» его работы, не превышая допустимых значений.
Примером «жесткой» работы дизеля является его работа во время прогрева, особенно при низких температурах окружающей среды. В этих условиях период задержки самовоспламенения затягивается, что и приводит к высоким значениям показателя дельта р/ дельта ф.
Причиной жесткой работы дизеля может быть ранний впрыск топлива. О данной причине неисправности может свидетельствовать светлый (сизый) дым, а также то, что при вытягивание тяги холодного пуска усиливается жесткость звука, а после прогрева звук уменьшается. Для устранения неисправности рекомендуется продиагностировать угол впрыска и скорректировать его.
Параллельная работа дизель-генераторов
Режим параллельной работы дизель-генераторов необходим в случае значительного колебания суточной или сезонной величины потребляемой мощности (в несколько раз). Особенность работы дизель-генератора заключается в том, что длительная минимальная нагрузка на него не должна быть менее 30% и поэтому работа одного дизель-генератора,в этом случае, недопустима. В силу этих причин, используется комплекс из нескольких станций, работающих синхронно на общую нагрузку и включающихся или отключающихся автоматически, в зависимости от величины нагрузки.
Параллельная работа энергосистем на базе дизельных генераторов возможна также с основной питающей сетью, при необходимости компенсации её недостаточной мощности или для мгновенного бесперебойного перехода на работу от ДГУ при пропадании сети. При этом дизель-генераторы синхронизируются по частоте и напряжению с основной сетью и работают на общую нагрузку.
При параллельной работе энергосистем, состоящих из двух и более ДГУ, необходимо использовать программируемые контроллеры, предназначенные для их синхронизации и параллельной работы, способные также контролировать процесс включения и отключения ДГУ в зависимости от мощности нагрузки и режима работы системы.
Для автоматического управления ТНВД при синхронизации работы нескольких ДГУ устанавливаются электронные актуаторы.
- Возможность наработки равного количества моточасов на обоих ДГУ, за счет попеременной работы ДГУ при снижении общей нагрузки, что позволяет снизить затраты на ТО и проводить ТО одновременно.
- Экономия на маслах и расходных материалах за счет увеличения сроков ТО.
- Существенная экономия топлива при суточных и сезонных спадах энергопотребления, за счет работы только одной ДГУ (необходимо помнить, что эксплуатация одной ДГУ с загрузкой по мощности менее 50% длительное время не рекомендуется, а с загрузкой менее 30% — ведет к отказу поставщика от гарантийных обязательств на оборудование. Оптимальная загрузка ДГУ – 70 – 90%).
- Увеличение общего моторесурса оборудования.
- Увеличение надежности оборудования за счет резервирования мощностей.
- Оптимизация капитальных вложений в системы электроснабжения.
- Поставка всего комплекса сложного энергетического оборудования.
- Доукомплектация стандартного оборудования Заказчика по условиям технического задания.
- Переоборудование стандартной системы автоматики под условия объекта.
- Разработка, изготовление и монтаж «под ключ» систем сложной автоматики.
Оригинал статьи
Работа дизельного двигателя
Работа дизельного двигателя, а точнее его рабочий цикл состоит из четырех постоянно повторяющихся тактов: впуск, сжатие, рабочий ход и выпуск.
В начале работы дизельного двигателя в цилиндр поступает воздух. Воздух начинает сжиматься с очень высокой степенью сжатия, это приводит к повышению давления и соответственно температуры. В конце такта сжатия в определенное время в нагретый воздух происходит впрыск дизельного топлива с помощью специального устройства —форсунки. Дизельное топливо от соприкосновения с горячим сжатым воздухом самовоспламеняется, поэтому вы наверно слышали, дизельный двигатель так и называют двигатель с воспламенением от сжатия. Рабочая смесь в таком двигателе образуется непосредственно в цилиндре.
Работа дизельного двигателя на такте впуска.Поршень движется от верхней мертвой точки к нижней мертвой точке. Во время этого такта в цилиндре создается разрежение. Впускной клапан открывается и происходит наполнение чистым воздухом (очистку воздуха обеспечивает воздухоочиститель). В цилиндре остаются отработавшие газы, которые смешиваются с воздухом. Во время такта впуска давление воздуха в цилиндре может колебатся от 80 до 90 кПа, а температура где-то от 50 до 75 градусов.
Работа дизельного двигателя во время
такта сжатия.Поршень движется от нижней мертвой точки к верхней мертвой точке. При этом впускной и выпускной клапаны находятся в закрытом положении. Объем воздуха уменьшается, а давление пропорционально увеличивается, при этом увеличивается и температура. Давление воздуха может составлять 3,5 МПА, а температура держится на уровне 650-700 градусов. Чтобы обеспечить надежную раюоту двигателя необходимо, чтобы температура была значительно выше температуры самовоспламенения дизельного топлива.
Работа дизельного двигателя во время такта
рабочего хода.При такте расширения, так его еще называют. Оба клапана находятся в закрытом состоянии. Когда поршень приближается к верхней мертвой точке в горячий и сжатый воздух впрыскивается мелко распыленное, дисперсное дизельное топливо давление составляет 20—22 МПа. Это давление нагнетает топливный насос. Топливо поступает в цилиндр, перемешиваясь с воздухом нагревается, далее испаряется и воспламеняется. При сгорании топлива в цилиндре давление составляет около 6-8 Мпа, а температура 1800-200 градусов. Образовавшиеся газы действуют на днище поршня и перемещают его от верхней мертвой точки к нижней мертвой точке. Этот такт совершает работа, поэтому он считается основным тактом рабочего цикла.
Работа дизельного двигателя во время такта выпуска.Поршень движется от нижней мертвой точки к верхней мертвой точке. При этом открыт выпускной клапан, через который вытесняются отработавшие газы из цилиндра. Давление при такте пуска составляет 110-120 кПа, а температура, 600-700 градусов.
{jcomments on}
Параллельная работа дизель-генераторных установок постоянной и переменной частоты вращения Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»
СУДОВЫЕ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИЕ КОМПЛЕКСЫ И СИСТЕМЫ
DOI: 10.24143/2073-1574-2018-1-93-99 УДК 621.313.3
О. С. Хватов, Е. М. Бурда, И. А. Тарпанов, А. Б. Дарьенков, Д. С. Кобяков
ПАРАЛЛЕЛЬНАЯ РАБОТА ДИЗЕЛЬ-ГЕНЕРАТОРНЫХ УСТАНОВОК ПОСТОЯННОЙ И ПЕРЕМЕННОЙ ЧАСТОТЫ ВРАЩЕНИЯ
В контексте разработки концепции новых пассажирских судов с колесно-движительным рулевым комплексом в качестве одного из вариантов энергетической установки рассмотрена судовая единая электростанция с общим звеном постоянного тока и дизель-генератором переменной частоты вращения. Отмечается, что работа дизель-генераторной установки при постоянной (номинальной) частоте вращения, но переменной нагрузке характеризуется неоптимальным (завышенным) удельным расходом топлива. В то же время принудительное регулирование частоты вращения двигателя внутреннего сгорания, в соответствии с величиной электрической нагрузки генератора, позволяет обеспечивать энергоэффективный режим генерирования электроэнергии. Одним из способов повышения энергетических показателей судовой единой электростанции может быть перевод одного из параллельно работающих дизель-генераторов в режим переменной частоты вращения. При этом нагрузка между параллельно работающими дизель-генераторами распределяется пропорционально их частотам вращения независимо от индивидуальной загрузки гребных электродвигателей. Для стабилизации напряжения дизель-генератора, работающего в режиме переменной частоты вращения, используется силовой полупроводниковый преобразователь. Представлены функциональная схема и математическая имитационная модель судовой единой электростанции, графики переходных процессов при изменении нагрузки в канале электродвижения судна.
Ключевые слова: электростанция, электродвижение, звено постоянного тока, дизель-генератор переменной частоты вращения.
Состояние проблемы
В настоящее время в судостроении все больше внимания уделяется гребным электрическим установкам (ГЭУ), которые имеют ряд преимуществ перед установками с непосредственной передачей мощности от тепловых двигателей на винт: повышенные маневренные качества, надежность и живучесть судна, возможность отбора мощности от ГЭУ для вспомогательных нужд.
В Волжском государственном университете водного транспорта разрабатывается концепция новых пассажирских судов с использованием ГЭУ с колесно-движительным рулевым комплексом. Суда планируется использовать на реках, где в настоящее время судоходство ограничено небольшими глубинами, например на Оке.
Опираясь на опыт эксплуатации судов проекта ПКС-40, одним из вариантов энергетической установки судна выбрано использование единой электростанции, содержащей два дизель-генератора (ДГ1, ДГ2) и являющейся общей для питания как ГЭУ, так и общесудовых потребителей. В качестве движителей рассматриваются гребные колеса диаметром 4,5-6 м, электродвигатели которых питаются от преобразователей частоты (ПЧ).
Эксплуатация судов проекта ПКС-40 показала их высокую экономичность и маневренность, однако были выявлены и существенные недостатки:
— неравномерное и быстроизменяющееся распределение мощности между гребными электродвигателями при активном маневрировании;
— сложность включения генераторов на параллельную работу и распределения между ними активной мощности, связанная с наличием высших гармонических в сети при работе ПЧ.
Практика показывает, что один из ДГ может быть загружен на 150-170 % от номинальной мощности, а другой существенно недогружен. Для ПЧ и электрических двигателей данные перегрузки являются допустимыми. Однако перегрузка генераторов может составлять не более 110-115 % от их номинальной мощности.
Решение данной проблемы заключается в реализации так называемой псевдопараллельной работы генераторов, когда ПЧ каналов электродвижения соединены на стороне постоянного тока. Такое решение было предложено авторами статьи в [1].
Научно обосновано и подтверждено экспериментально, что работа дизель-генераторной установки при постоянной (номинальной) частоте вращения, но переменной нагрузке характеризуется неоптимальным (завышенным) удельным расходом топлива. В то же время принудительное регулирование частоты вращения ДВС в соответствии с величиной электрической нагрузки генератора позволяет обеспечивать энергоэффективный режим генерирования электроэнергии [2-5].
Задачи, методы и результаты исследования
С целью повышения энергетических показателей судовой единой электростанции (СЭС) нами предложен вариант ее структуры, когда один из параллельно работающих ДГ переводится в режим переменной частоты вращения (рис. 1).
Рис. 1. Функциональная схема судовой единой электростанции с общим звеном постоянного тока и дизель-генератором переменной частоты вращения
Принцип работы схемы заключается в принудительном регулировании частоты вращения ДВС2 при снижении нагрузки в канале электродвижения судна. Цель данного регулирования обусловлена поддержанием высоких энергетических показателей процесса генерирования электроэнергии за счет сохранения оптимального (близкого к номинальному) удельного расхода топлива ДВС. При этом нагрузка между параллельно работающими генераторами СГ1 и СГ2 будет распределяться пропорционально их частотам вращения и независимо от индивидуальной загрузки гребных электродвигателей АД1 и АД2. Для стабилизации напряжения СГ2, работающего в режиме переменной частоты вращения, используется повышающий трансформатор ТУ и широтно-импульсный преобразователь, реализованный на транзисторе Т3.
Преобразователи обоих ДГ соединены на стороне постоянного тока. Регулятор нагрузки Рнаг воздействует на систему возбуждения СГ1, изменяя величину напряжения на его статоре.
Согласно структурной схеме (рис. 1) нами разработана математическая имитационная модель (рис. 2).
о
Рис. 2. Структурная схема математической модели единой судовой электростанции с общим звеном постоянного тока и дизель-генератором переменной частоты вращения
Результаты имитационного моделирования динамических режимов при снижении нагрузки в канале электродвижения судна на 20 % представлены на рис. 3-6.
Рис. 3. Зависимость частоты вращения ГЭУ при снижении нагрузки
Графики зависимости частоты вращения ГЭУ и частот вращения ДГ1 и ДГ2 представлены на рис. 3 и рис. 4 соответственно.
п, об/мин
Рис. 4. Зависимости частоты вращения ДГ1 (1) и ДГ2 (2) при снижении нагрузки в канале электродвижения
При снижении на 20-й секунде нагрузки на гребные электродвигатели система регулирования снижает частоту вращения ДГ2 до 80 % от номинальной, при этом регулятор нагрузки Рнаг увеличивает напряжение на выходе СГ1, а распределение нагрузки между ДГ1 и ДГ2 происходит пропорционально их частотам вращения и независимо от величин нагрузок на гребные электродвигатели.
На рис. 5 представлены графики зависимости напряжений на выходе выпрямителя НВ1 (иНш) и ШИП-преобразователя (Цщд).
и*
t, c
Рис. 5. Зависимости иНВ1 и ишип при снижении нагрузки в канале электродвижения Графики зависимости изменения токовой загрузки генераторов СГ1 и СГ2 приведены на рис. 6.
I*
09
м
о; ос
0е, 0«
с
Рис. 6. Зависимости !СпИ !СГ2 при снижении нагрузки в канале электродвижения
Таким образом, разработанная математическая имитационная модель единой судовой электростанции позволяет проводить анализ переходных процессов при параллельной работе двух дизель-генераторов, один из которых имеет переменную частоту вращения.
Заключение
Предложена структура системы параллельной работы дизель-генераторных агрегатов в составе электростанции судна с электродвижением. С целью повышения энергетических показателей СЭС обоснована целесообразность перевода одного из ДГ агрегатов в режим переменной частоты вращения. Разработана математическая имитационная модель динамических режимов параллельной работы ДГ агрегатов постоянной и переменной частоты вращения.
СПИСОК ЛИТЕРА ТУРЫ
1. Бурда Е. М., Хватов О. С., Тарпанов И. А., Кшталтный Н. И. Вариант единой электростанции колесного судна с электродвижением // Вестн. Астрахан. гос. техн. ун-та. Сер.: Морская техника и технология. 2016. № 2. С. 102-108.
2. Хватов О. С., Дарьенков А. Б. Дизель-генераторная электростанция переменной скорости вращения // Электротехника. 2014. № 3. С. 28-32.
3. Хватов О. С., Дарьенков А. Б. Единая электростанция транспортного объекта с электродвижением на базе дизель-генераторной установки переменной частоты вращения // Электротехника. 2016. № 3. С. 35-40.
4. Хватов О. С., Дарьенков А. Б., Самоявчев И. С., Поляков И. С. Автономные генераторные установки на основе двигателей внутреннего сгорания переменной частоты вращения: моногр. Н. Новгород: Нижегор. гос. техн. ун-т им. Р. Е. Алексеева. 2016. 172 с.
5. Хватов О. С., Дарьенков А. Б., Самоявчев И. С. Топливная экономичность единой электростанции автономного объекта на базе двигателя внутреннего сгорания переменной скорости вращения // Эксплуатация морского транспорта. 2012. № 1 (71). С. 47-50.
Статья поступила в редакцию 26.12.2017
ИНФОРМАЦИЯ ОБ АВТОРАХ
Хватов Олег Станиславович — Россия, 603950, Нижний Новгород; Волжский государственный университет водного транспорта; д-р техн. наук, профессор; зав. кафедрой электротехники и электрооборудования объектов водного транспорта; [email protected].
Бурда Евгений Мордкович — Россия, 603950, Нижний Новгород; Волжский государственный университет водного транспорта; канд. техн. наук, доцент; доцент кафедры электротехники и электрооборудования объектов водного транспорта; [email protected].
Тарпанов Илья Александрович — Россия, 603950, Нижний Новгород; Волжский государственный университет водного транспорта; канд. техн. наук, доцент; старший преподаватель кафедры электротехники и электрооборудования объектов водного транспорта; [email protected].
Дарьенков Андрей Борисович — Россия, 603950, Нижний Новгород; Нижегородский государственный технический университет им. Р. Е. Алексеева; канд. техн. наук, доцент; зав. кафедрой электрооборудования, электропривода и автоматики; [email protected].
Кобяков Дмитрий Сергеевич — Россия, 603950, Нижний Новгород; Волжский государственный университет водного транспорта; аспирант кафедры электротехники и электрооборудования объектов водного транспорта; [email protected].
O. S. Khvatov, E. M. Burda, I. A. Tarpanov, A. B. Dar’enkov, D. S. Kobyakov
PARALLEL OPERATION OF DIESEL GENERATOR SETS OF CONSTANT AND VARIABLE SPEED
Abstract. The paper focuses on the operation of the ship’s single power station with a common link of direct current and a diesel generator of variable speed are considered. It is shown that the operation of a diesel generator set at a constant (nominal) rotational speed, but variable load is characterized by a nonoptimal (overrated) specific fuel consumption. At the same time, forced regulation of the internal combustion engine rotation speed in accordance with the electric load of the generator make it possible to provide energy-efficient mode of generating electricity. One way to improve the energy performance of the ship single power station is to convert one of the parallel operating diesel generators into a variable speed mode. In this case, the load between the parallel operating diesel generators is distributed in proportion to their rotation frequencies, regardless of the individual loading of the propulsion motors. To stabilize voltage of the diesel generators operating in the variable speed mode, a power semiconductor converter is used. Functional scheme and mathematical simulation model of the ship single power station, graphs of transient processes with load changes in the channel of electric propulsion system of the vessel are presented.
Key words: power plant, electric propulsion system, DC link, variable speed diesel generator.
REFERENCES
1. Burda E. M., Khvatov O. S., Tarpanov I. A., Kshtaltnyi N. I. Variant edinoi elektrostantsii kolesnogo sud-na s elektrodvizheniem [Variant of the integral power plant of wheeled vessel with electric propulsion system].
Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta. Seriia: Morskaia tekhnika i tekhnologiia, 2016, no. 2, pp. 102-108.
2. Khvatov O. S., Dar’enkov A. B. Dizel’-generatornaia elektrostantsiia peremennoi skorosti vrashcheniia [Diesel-generator power plant of variable speed]. Elektrotekhnika, 2014, no. 3, pp. 28-32.
3. Khvatov O. S., Dar’enkov A. B. Edinaia elektrostantsiia transportnogo ob»ekta s elektrodvizheniem na ba-ze dizel’-generatornoi ustanovki peremennoi chastoty vrashcheniia [Integral power plant of a cargo ship with electric propulsion based on variable speed diesel generator]. Elektrotekhnika, 2016, no. 3, pp. 35-40.
4. Khvatov O. S., Dar’enkov A. B., Samoiavchev I. S., Poliakov I. S. Avtonomnye generatornye ustanovki na osnove dvigatelei vnutrennego sgoraniia peremennoi chastoty vrashcheniia: monografiia [Autonomous generator units based on variable speed internal combustion engines: monograpg]. Nizhniy Novgorod, Nizhegorodskii gosudarstvennyi tekhnicheskii universitet im. R. E. Alekseeva, 2016. 172 p.
5. Khvatov O. S., Dar’enkov A. B., Samoiavchev I. S. Toplivnaia ekonomichnost’ edinoi elektrostantsii avtonomnogo ob»ekta na baze dvigatelia vnutrennego sgoraniia peremennoi skorosti vrashcheniia [Fuel efficiency of the integral power plant on autonomous facility based on variable speed internal combustion engine]. Ek-spluatatsiia morskogo transporta, 2012, no. 1 (71), pp. 47-50.
The article submitted to the editors 26.12.2017
INFORMATION ABOUT THE AUTHORS
Khvatov Oleg Stanislavovich — Russia, 603950, Nizhniy Novgorod; Volga State University of Water Transport; Doctor of Technical Sciences, Professor; Head of the Department of Electric Engineering and Electric Equipment of Water Transport; [email protected].
Burda Evgeny Mordcovich — Russia, 603950, Nizhniy Novgorod; Volga State University of Water Transport; Candidate of Technical Sciences, Assistant Professor; Assistant Professor of the Department of Electric Engineering and Electric Equipment of Water Transport; [email protected].
Tarpanov Ilya Aleksandrovich — Russia, 603950, Nizhniy Novgorod; Volga State University of Water Transport; Candidate of Technical Sciences, Assistant Professor; Senior Lecturer of the Department of Electric Engineering and Electric Equipment of Water Transport; [email protected].
Dar’enkov Andrey Borisovich — Russia, 603950, Nizhny Novgorod; Nizhny Novgorod State Technical University n.a. R. E. Alekseev; Candidate of Technical Sciences, Senior Lecturer; Head of the Department of Electrical Equipment, Electric Drive and Automation; [email protected].
Kobyakov Dmitry Sergeevich — Russia, 603950, Nizhny Novgorod; Volga State University of Water Transport; Postgraduate Student of the Department of Electric Engineering and Electric Equipment of Water Transport; [email protected].
Параллельная работа дизельных электростанций Scania
Преимущества параллельной работы дизельных электростанций
- увеличение ресурса дизельной генераторной электростанции + уменьшение затрат на генерацию электроэнергии
за счет работы дизель-генераторов на оптимальной мощности. Эксплуатация одного ДГУ высокой мощности на малой нагрузке — менее 25% основной мощности – существенно, до 40%, повышает удельный расход топлива и в 2-3 раза увеличивает износ двигателя. Использование нескольких ДГУ меньшей мощности с возможностью запуска / остановки части ДГУ в зависимости от текущей нагрузки и наработки моточасов каждым дизель-генератором, оптимальное распределение нагрузки между ДГУ максимально продлевают жизнь энергокомплекса и минимизируют эксплуатационные издержки; - максимальная надежность
– даже при отказе одного из ДГУ, система автоматически перераспределит нагрузку на остальные дизель-генераторы, гарантированно обеспечив электроснабжение потребителя и позволив спокойно произвести ремонт неисправного дизель-генератора; - возможность проведения ТО без перерывов в электроснабжении,
возможность оптимизации периодов технического обслуживания ДГУ, входящих в энергокомплекс, благодаря автоматическому контролю и регулированию наработки моточасов каждым ДГУ; - гибкость наращивания мощности, минимум первоначальных вложений
— в любое время Вы можете подключить дополнительные генераторные установки (до 32 ДГУ одинаковой / различной мощности) исходя из возросших потребностей в энергоснабжении. Это позволяет не переплачивать за запас мощности «на развитие», обеспечивая минимум первоначальных вложений.; - гибкость использования
— одно или несколько ДГУ из параллели без каких-либо доработок всегда могут быть использованы в другом месте — в одиночном режиме / в составе нового энергокомплекса; - меньшие весогабаритные характеристики
отдельных ДГУ, входящих в состав энергокомплекса, упрощают и удешевляют процесс погрузки, перевозки и установки оборудования.
Для работы в параллели ДГУ должны быть синхронизированы — иметь одинаковое чередование фаз, выходное напряжение и частоту тока. С этой задачей великолепно справляются специализированные пульты управления нашей собственной разработки — на основе микропроцессорных контроллеров ComAp InteliCompactNT MINT (Чехия ), которые обеспечивают интеллектуальное управление распределением нагрузки, исключают провалы напряжения при подключении / отключении ДГУ, гарантируя обеспечение потребителя высококачественной электроэнергией.
Энергокомплексы размещаются в одном или нескольких контейнерах, позволяющих установить не только дизель-генераторы, но и общую силовую часть, системы автоматики, АВР, коммуникации, и даже оборудовать баковое помещение – с системами дозаправки дизельного топлива и моторного масла.
Как работают дизельные двигатели | HowStuffWorks
Одна из самых популярных статей HowStuffWorks — «Как работают автомобильные двигатели», в которой объясняются основные принципы внутреннего сгорания, обсуждается четырехтактный цикл и рассказывается обо всех подсистемах, которые помогают двигателю вашего автомобиля выполнять свою работу. В течение долгого времени после того, как мы опубликовали эту статью, одним из наиболее частых вопросов (и одним из наиболее частых предложений, внесенных в ящик для предложений) был: «В чем разница между бензиновым и дизельным двигателями?».
История Diesel фактически начинается с изобретения бензинового двигателя .Николаус Август Отто изобрел и запатентовал бензиновый двигатель к 1876 году. В этом изобретении использовался принцип четырехтактного сгорания, также известный как «цикл Отто», и это основная предпосылка для большинства автомобильных двигателей сегодня. На начальном этапе бензиновый двигатель был не очень эффективным, и другие основные способы транспортировки, такие как паровой двигатель , также не справлялись. Только около 10 процентов топлива, используемого в этих типах двигателей, действительно приводило в движение транспортное средство. Остальное топливо просто произвело бесполезное тепло.
В 1878 году Рудольф Дизель посещал среднюю политехническую школу Германии (эквивалент инженерного колледжа), когда узнал о низкой эффективности бензиновых и паровых двигателей. Эта тревожная информация вдохновила его на создание двигателя с более высоким КПД , и он посвятил большую часть своего времени разработке «двигателя внутреннего сгорания». К 1892 году Дизель получил патент на то, что мы теперь называем дизельным двигателем.
Если дизельные двигатели настолько эффективны, почему бы нам не использовать их чаще? Вы можете увидеть слова «дизельный двигатель» и подумать о больших, здоровенных грузовых автомобилях, извергающих черный, сажистый дым и создающих громкий грохочущий звук.Этот негативный образ дизельных грузовиков и двигателей сделал дизельное топливо менее привлекательным для случайных водителей в Соединенных Штатах — хотя дизельное топливо отлично подходит для перевозки крупных грузов на большие расстояния, оно не было лучшим выбором для повседневных пассажиров. Однако это начинает меняться, поскольку люди улучшают дизельный двигатель, чтобы сделать его чище и менее шумным.
Если вы еще этого не сделали, вы, вероятно, сначала захотите прочитать «Как работают автомобильные двигатели», чтобы получить представление об основах внутреннего сгорания.Но поспешите назад — в этой статье мы раскрываем секреты дизельного двигателя и узнаем о некоторых новых достижениях.
Что такое дизельный двигатель? Как это работает? — Welland Power
Что такое дизельный двигатель?
Дизельный двигатель — это тип двигателя внутреннего сгорания, в котором воспламенение от сжатия используется для преобразования энергии дизельного топлива в механическую энергию вращения. Дизельный двигатель был назван в честь его изобретателя Рудольфа Дизеля, который родился в Париже в 1958 году. Первый дизельный двигатель был прототипирован в 1893 году и изначально проектировался для работы на арахисовом масле.
Дизельное топливо было названо так потому, что оно использовалось для работы дизельных двигателей, дизельные двигатели не были названы в честь топлива, которое во времена первого дизельного двигателя было бесполезным побочным продуктом при извлечении парафина и керосина из сырой нефти. В 1894 году этот продукт отходов получил окончательное название «дизельное топливо».
Как работает дизельный двигатель?
Дизельный двигатель использует поршни для сжатия смеси воздуха (содержащего кислород) с дизельным топливом. Когда этот воздух сжимается в соотношении примерно 15: 1, смесь взрывается, заставляя поршень подниматься и создавая возвратно-поступательное движение.Затем это движение преобразуется коленчатым валом двигателя во вращательное.
Какие основные компоненты в дизельном двигателе?
Топливная система двигателя
Топливная система включает топливный насос высокого давления, подъемный насос, форсунки и все топливопроводы. Также будут некоторые топливные фильтры и, возможно, водоотделитель, предотвращающий повреждение дизельного двигателя некачественным топливом.
Система смазки двигателя / масляная система
Система смазки обеспечивает бесперебойную работу двигателя, предотвращая износ движущихся частей за счет использования масла под давлением для смазки и уменьшения трения.Масляная система будет иметь масляный насос и масляные фильтры, чтобы масло было чистым от загрязнений.
Система охлаждения двигателя
Система охлаждения обрабатывает охлаждающую жидкость двигателя — обычно смесь дистиллированной воды и гликоля с некоторыми дополнительными присадками для предотвращения коррозии. На некоторых двигателях также может быть фильтр охлаждающей жидкости и «водяной насос», который на самом деле является насосом охлаждающей жидкости. Насос охлаждающей жидкости используется для проталкивания охлаждающей жидкости вокруг двигателя и любого устройства, используемого для охлаждения жидкости — обычно радиатора, но иногда и теплообменника.
Выхлопная система двигателя
Очень важно избавиться от отработавших газов сгорания — отводить отработанные газы из цилиндров двигателя через выпускной коллектор в основную систему глушителя, которая снижает уровень шума. Глушитель обычно не является частью двигателя, а является дополнением для снижения шума в соответствии с требованиями клиентов. Выхлопные газы проходят через турбонагнетатель, заставляя его вращаться там, где он установлен.
Двигатели Турбонагнетатель
Большинство двигателей оснащено турбонаддувом.Это устройство сжимает воздух для горения, чтобы сделать двигатель более мощным.
Дизельный двигатель состоит из сотен компонентов, но каковы основные части дизельного двигателя?
- Блок двигателя
- Поршни
- Вал коленчатый
- ТНВД и система управления двигателем
- Форсунки
- Стартер
- Головка
- Клапаны
- Часто Турбокомпрессор
- Топливные фильтры
- Масляные фильтры
- Воздушные фильтры
- Маховик
Что заставляет тепловоз работать? — Музей железных дорог Среднего континента
Зажигание дизельного топлива толкает поршни, подключенные к электрогенератору.Получающееся электричество приводит в действие двигатели, подключенные к колесам локомотива. «Дизельный» двигатель внутреннего сгорания использует тепло, выделяемое при сжатии воздуха во время восходящих циклов хода, для воспламенения топлива. Этот тип двигателя сконструировал изобретатель доктор Рудольф Дизель. Он был запатентован в 1892 году.
- Дизельное топливо хранится в топливном баке и подается в двигатель электрическим топливным насосом. Дизельное топливо стало предпочтительным топливом для использования на железнодорожных локомотивах из-за его более низкой летучести, более низкой стоимости и общедоступности.
- Дизельный двигатель (A) является основным компонентом дизель-электрического локомотива. Это двигатель внутреннего сгорания, состоящий из нескольких цилиндров, соединенных с общим коленчатым валом. Топливо воспламеняется от сильного сжатия, толкая поршень вниз. Движение поршня вращает коленчатый вал.
- Дизельный двигатель подключен к главному генератору (B) , который преобразует механическую мощность двигателя в электрическую. Затем электричество распределяется между тяговыми двигателями (C) через цепи, установленные различными компонентами распределительного устройства.
- Поскольку он всегда вращается, независимо от того, движется ли локомотив или нет, выход главного генератора управляется током возбуждения, подаваемым на его обмотки.
- Инженер контролирует мощность локомотива с помощью дроссельной заслонки с электрическим управлением. Когда он открывается, в цилиндры двигателя впрыскивается больше топлива, что увеличивает его механическую мощность. Возбуждение основного генератора увеличивается, увеличивая его электрическую мощность.
- Каждый тяговый двигатель (C) напрямую связан с парой ведущих колес.Использование электричества в качестве «трансмиссии» для локомотива намного надежнее, чем использование механической трансмиссии и сцепления. Пуск тяжелого поезда с полной остановки быстро сожжет сцепление.
Объяснение функции двигателей с воспламенением от сжатия
Дизельные двигатели — это рабочие лошадки как в промышленности, так и в производительности. Но чтобы по-настоящему оценить их, важно понять, как они работают.
Дизельные двигатели являются основным двигателем в промышленности.Применение дизельных двигателей в тяжелых условиях, требующих высокого крутящего момента, долговечности и превосходной экономии топлива, повсеместно. Отрасли автомобильного, морского и железнодорожного транспорта в значительной степени полагаются на дизельную энергию, а не на бензиновые двигатели. Даже многие электростанции вырабатывают электроэнергию с помощью больших дизельных двигателей. И, конечно же, почти все тяжелое строительное, сельскохозяйственное и горнодобывающее оборудование работает на дизельном топливе. Мировая торговля эффективно работает на дизельной энергии. Несмотря на то, что они похожи по внешнему виду, важные различия отделяют дизельные и бензиновые двигатели друг от друга и определяют, какой тип двигателя лучше всего подходит для любого конкретного применения, включая грузовики и автомобили.
В отличие от обычного бензинового двигателя, дизель впрыскивает топливо непосредственно в цилиндр во время рабочего такта, который затем воспламеняется из-за высоких температур цилиндра.Дизельные и бензиновые двигатели относятся к двигателям внутреннего сгорания (ВС). Топливо и воздух объединяются и сжигаются внутри двигателя для получения энергии. Подобно бензиновому двигателю, дизельный двигатель имеет цилиндры, коленчатый вал, шатуны и поршни для передачи энергии топлива от линейного движения к вращательному.Основное различие заключается в способе воспламенения топливно-воздушной смеси. Бензиновые двигатели — это двигатели с искровым зажиганием, а дизельные двигатели — это двигатели с воспламенением от сжатия.
Четырехтактный двигатель внутреннего сгорания, циклы
- Впуск
- Сжатие
- Сгорание (расширение)
- Выхлоп
Эти циклы по существу одинаковы для обоих типов двигателей, за исключением цикла сгорания, когда бензиновый двигатель запускается искрой, а дизель — сжатием.Разница является ключевой в превосходстве дизеля для применений, требующих высокой эффективности и высокого крутящего момента с хорошей топливной экономичностью.
СГОРАНИЕ
Бензиновый двигатель внутреннего сгорания забирает предварительно смешанное топливо и воздух через систему впуска, сжимает его в каждом цилиндре с помощью поршня и воспламеняет смесь с помощью свечи зажигания. Топливо добавляется во время такта впуска, чтобы создать желаемую топливно-воздушную смесь, готовую к сгоранию. Последующий цикл сгорания расширяет горящую смесь и повышает давление в цилиндре, чтобы толкнуть поршень вниз и создать крутящий момент.
В дизельном двигателе воздух и топливо предварительно не смешиваются. Воздух вводится в цилиндры и сжимается поршнем до гораздо более высокого давления, чем в бензиновом двигателе; в некоторых случаях до 25: 1. Это механическое или адиабатическое сжатие перегревает воздух до 400 ° или более. В этот момент топливо впрыскивается в горячий сжатый воздух, вызывая его мгновенное возгорание. Создается более высокое давление в цилиндре, создавая больший крутящий момент для привода автомобиля.
Вот деталь, которую вы не найдете в дизельном двигателе.В отличие от бензиновых двигателей, которым требуется триггерное событие — сильный электрический разряд — для инициирования сгорания, дизельные двигатели полагаются исключительно на температуру сжатого воздуха в верхней мертвой точке.КАЧЕСТВО СМЕСИ
Дизельные двигателиобеспечивают более высокий КПД по нескольким причинам. Одна веская причина заключается в том, что более высокое давление в цилиндре во время впрыска топлива создает гораздо более плотную смесь, которая обладает более сильным ударом; плотность смеси имеет первостепенное значение для создания энергии.Более высокая степень сжатия также заставляет топливо сгорать более полно, высвобождая больше энергии, поскольку дизельное топливо дает более высокую плотность энергии. Кроме того, уникальная способность дизеля впрыскивать топливо на протяжении большей части рабочего хода помогает создать более высокое среднее давление в цилиндре, чем сопоставимый бензиновый двигатель. Дизельное топливо также имеет смазывающий компонент, который помогает снизить трение в цилиндрах.
Камера сгорания в головке поршня дизельного двигателя представляет собой неглубокую камеру с центральным конусом для облегчения распределения смеси из топлива под высоким давлением, впрыскиваемого непосредственно над ней.«В высокопроизводительных приложениях решающее значение имеет сочетание угла распыления впрыска и конструкции тарелки», — отмечает JJ Zimmerman из Diamond Pistons. «Большая часть нашего времени инженеров тратится на эту конкретную арену, поскольку именно здесь можно выиграть или проиграть гонки».Хотя начало сгорания отличается от типичного бензинового двигателя, фундаментальное отличие также существует в конструкции камеры сгорания для оптимизации распыления топлива. Большинство бензиновых двигателей имеют камеру сгорания в головке блока цилиндров, но в дизельном двигателе камера сгорания расположена внутри днища поршня.Поршень дизеля имеет контурное углубление или чашу в центре днища поршня, где происходит сгорание. В центре чаши конусообразный выступ находится прямо под топливной форсункой.
Конус и камера захваченного поршня под головкой блока цилиндров способствуют оптимизированному распылению топлива в пространстве сгорания высокого давления. Эта форма камеры конуса в короне обычно упоминается как конструкция «мексиканской шляпы» (сомбреро), и она почти универсальна для дизельных поршней.Высокоэффективная камера в центре поршня централизует большую часть силы, создаваемой циклом расширения (сгорания), и направляет ее прямо вниз по шатуну к ходу коленчатого вала.
Кованые сменные поршни Diamond Pistons из сплава 2618 для Cummins, Duramax и Power Stroke (показаны) заполняют пустоту для тех, кто восстанавливает рабочие характеристики, нуждающихся в высококачественных сменных поршнях, которые соответствуют коэффициентам сжатия OEM и предлагают полное покрытие поршней и штифты из инструментальной стали DLC h23.Другое отличие состоит в том, что дизельный двигатель дросселируется за счет подачи топлива, в то время как бензиновый двигатель дросселируется за счет подачи воздуха. Поскольку воздушный поток не дросселируется, дизельный двигатель также не создает вакуума. Подача топлива осуществляется прямым впрыском в цилиндр, направленным прямо на верхнюю часть поршня. Это очень важно для качества топливной смеси и последующей эффективности сгорания.
Прямой впрыск делает процесс сгорания проще и эффективнее.Дизельные двигатели работают при значительно более бедном соотношении воздух-топливо, чем бензиновые двигатели, обычно от 25: 1 до 40: 1 по сравнению с обычным бензиновым диапазоном от 12: 1 до 15: 1. Современные дизельные двигатели с прямым впрыском впрыскивают топливо при давлении, приближающемся (или в некоторых случаях превышающем) 30 000 фунтов на квадратный дюйм. Это обеспечивает наилучшее возможное распыление не только для эффективного сжигания, но и с низким уровнем отходящего тепла. А бедные смеси являются ключевой причиной такой топливной экономичности дизелей.
СРОКИ
Еще одно интересное различие между дизельным и бензиновым двигателями — это синхронизация форсунок по сравнению с синхронизацией зажигания.В бензиновых двигателях момент зажигания относится к точке, в которой горение инициируется свечой зажигания. В дизельном двигателе синхронизация относится к началу события впрыска топлива, которое рассчитывается по времени, чтобы воспользоваться точкой максимального сжатия смеси.
Хотя в основном он используется в грузовых автомобилях, дизельные двигатели нашли большой успех в грузовых автомобилях. 6,8-литровый автомобиль Райана Милликена ’66 Nova с двигателем Cummins — это автомобиль с радиальными шинами, который доказывает, что дизельное топливо многогранно. В двигателе используются поршни Diamond Pistons и турбонагнетатель Massive Garrett GTX5533R, позволяющий совершать дымные прохождения на четверть мили.ТУРБОНАДДУВ
Для дизельных двигателейтребуются более прочные компоненты, прежде всего из-за более высокого давления в цилиндрах и высокого крутящего момента. Давление в цилиндрах возрастает до 3600 фунтов на квадратный дюйм в современных приложениях с турбонаддувом и до более 8000 фунтов на квадратный дюйм в приложениях с высокой производительностью. На 4-дюймовом отверстии это может составлять 45 000 фунтов давления, толкающего поршень вниз. Таким образом, блок цилиндров, коленчатый вал, шатуны, поршни, головки цилиндров и клапаны значительно более прочны, чем у бензинового двигателя.Поскольку они предназначены для работы под высоким давлением, большая часть дизельных двигателей оснащена турбонаддувом.
Турбокомпрессорыидеально подходят для дизелей, поскольку они повторно используют отработанные выхлопные газы для эффективного наддува двигателя, который уже спроектирован для работы при высоком давлении в цилиндрах. Тепловой КПД дизельного двигателя эффективно повышается за счет турбонаддува, поскольку он существенно увеличивает объем воздуха, поступающего в двигатель, что позволяет впрыскивать больше топлива.Топливо создает энергию, но для ее разблокировки требуется воздух.
Отношение крутящего момента к мощности дизельных двигателей обычно составляет около 2: 1, но многие промышленные двигатели достигают отношения 3: 1 или 4: 1 в отличие от типичного отношения 1: 1, создаваемого бензиновым двигателем. Дизели обладают эффективным крутящим моментом, потому что они создают высокое давление в цилиндре за счет очень эффективного сгорания, и они применяют его к длинному ходу коленчатого вала, что увеличивает рычаг. Турбонаддув добавляет совершенно новый фактор в уравнение крутящего момента, поскольку он снижает насосные потери во время такта впуска и значительно увеличивает давление в цилиндре во время рабочего такта.Дизели любят повышать давление. Дизельные двигатели нередко работают в два, три или более раз над давлением наддува, обычно используемым в бензиновых двигателях.
На отечественном рынке дизельных двигателей преобладают двигатели GM Duramax, Dodge Cummins и Ford PowerStroke.УПРАВЛЕНИЕ ВПРЫСКАМИ
Среди других распространенных практик настройки увеличение времени впрыска и его более ранний запуск создает большее давление в цилиндре. Множественные события впрыска (пилотный впрыск) за цикл мощности теперь также являются обычным явлением.Таким образом, сгорание инициируется и усиливается за счет дополнительных впрысков в течение каждого цикла. Это позволяет максимально использовать преимущества более высоких уровней наддува с эффективностью сгорания для создания более высокого давления в цилиндрах.
По своей природе процесс сгорания дизельного двигателя имеет тенденцию сопротивляться плавности и однородности, в первую очередь из-за колебаний нагрузки и температуры. Важнейшей целью ужесточения контроля за процессом впрыска является уменьшение отклонений сгорания от цикла к циклу. Современные датчики и система управления двигателем помогают сгладить ситуацию, а современные дизели тише и мощнее, чем когда-либо.Системы управления и впрыск Common Rail под более высоким давлением теперь могут производить до трех впрысков на одно событие сгорания, и они могут варьировать каждый впрыск с большим или меньшим количеством топлива и более высоким или более низким давлением, что считается необходимым для оптимального сгорания.
Diamond предлагает поршни для популярных дизелей в кованых конфигурациях 2618, а также термическое покрытие и покрытие юбки, а также штифты из инструментальной стали.УПРАВЛЕНИЕ ДИЗЕЛЬНЫМ ПОРШНЕМ
Все это делает поршень главным героем в повышении давления сгорания.Хотя дизели, как правило, имеют очень прочную архитектуру, поршень — это игрок, которому необходимо постоянно совершенствовать свою игру.
Diamond Pistons представляет собой полную линейку сменных поршней из кованого алюминия для всех распространенных дизельных платформ последних моделей. Из них основными игроками являются Dodge Cummins, GM Duramax и Ford Power Stroke. Эти поршни поддерживают рынок дизельных двигателей для восстановления рабочих характеристик за счет стандартных и негабаритных поршней из сплава 2618, изготовленных из сплава 2618, которые жестко анодированы и поставляются с наручными штифтами из инструментальной стали H23 с алмазоподобным покрытием DLC (алмазоподобное покрытие) — отличный шаг в обеспечении высококачественных поршней для соревнований и гоночных дизелей. Приложения.
Рынок дизельного топлива стремительно растет уже более десяти лет. OEM-производители и энтузиасты бешено продвигают технологию. Diamond быстро реагирует на растущий рыночный спрос, чтобы гарантировать, что они могут поставлять поршни, которые удовлетворят все потребности своих клиентов в производительности.
20 фактов, которые необходимо знать о жидкости для выхлопных газов дизельных двигателей (DEF)
Агентство по охране окружающей среды было создано в соответствии с Законом о чистом воздухе 1970 года.В течение 46 лет EPA постоянно совершенствовалось и принимало законы, направленные на удовлетворение экологических потребностей этой страны. В течение многих лет владельцы трехчетвертных и однотонных легких пикапов не имели на своих автомобилях дополнительного оборудования для защиты от дыма. Все это изменилось в 2008 году, когда Агентство по охране окружающей среды потребовало использовать дизельные фильтры для твердых частиц на всех грузовиках грузоподъемностью три четверти тонны и более, а также требовалось проводить два раза в год тесты на смог, которые включали визуальный осмотр автомобиля, чтобы убедиться, что детали сажевого фильтра все еще включены. грузовик.В 2010 году правила стали еще жестче.
Многие думали, что эпоха большой мощности и крутящего момента закончилась, и поклялись никогда больше не покупать новый грузовик. Однако произошло нечто впечатляющее, и произошло прямо противоположное. Оказывается, американцы действительно приспосабливаются и побеждают. Каждый из производителей придумал способ снизить уровень NOx, одновременно увеличивая мощность и крутящий момент, чем когда-либо прежде. Инновации — это хлеб из раздоров.
Инженерный прорыв произошел благодаря использованию селективного каталитического восстановления.В подавляющем большинстве этих систем используется выхлопная жидкость дизельного двигателя (смесь мочевины и деионизированной воды), распыляемая в выхлопную систему для разложения образовавшихся NOx на безвредные молекулы азота и воды. Поскольку DEF (жидкость для выхлопных газов дизельного двигателя) вводится в выхлопные газы, также называемые технологией последующей обработки, производитель может создавать столько мощности, сколько они хотят. DEF хранится в отдельном резервуаре, который изолирован и нагревается и помечен синей крышкой заливной горловины.
Тем не менее, есть две фракции дизельных парней; те, кто согласился с изменениями EPA, и те, кто по-прежнему категорически против любых правил, несмотря на работу вокруг технологических достижений.Для тех, кто не желает принимать изменения, произошел переход на старые бывшие в употреблении дизельные двигатели или модернизированные дизельные двигатели, которые были унаследованы от дедушки. Эта статья направлена на то, чтобы раскрыть неопровержимые факты о DEF и научить население принимать более разумные решения оператора дизельного топлива. .
1. Что такое жидкость для выхлопных газов дизельных двигателей (DEF)?DEF представляет собой смесь, состоящую из 67,5% деионизированной воды и 32,5% мочевины. Мочевина — это соединение азота, которое при нагревании превращается в аммиак и используется в различных отраслях промышленности.Технически мочевина получается из побочного продукта мочи, но для целей массового производства она производится синтетическим путем. Большинство продуктов DEF регулируются Американским институтом нефти. Давайте посмотрим на науку, стоящую за DEF в смеси с выхлопными газами. Химически DEF в первую очередь состоит из (Nh3) 2CO; и при впрыске в горячий выхлопной газ вода испаряется, оставляя аммиак и изоциановую кислоту.
ШАГ 1: DEF превращается в аммиак и изоциановую кислоту: (Nh3) 2CO → Nh4 + HNCO
ШАГ 2: Изоциановая кислота химически разлагается с водой на диоксид углерода и аммиак:
HNCO + h3O → CO2 + В целом Nh4, который выглядит следующим образом: (Nh3) 2CO + h3O → 2Nh4 + CO2
ШАГ 3: На этом этапе химической реакции Аммиак в присутствии кислорода и катализатора восстанавливает оксиды азота:
2NO + 2Nh4 + ½O2 -> 2N2 + 3h3O и 3NO2 + 4Nh4 -> 7 / 2N2 + 6h3O
ШАГ 4: Общее восстановление NOx мочевиной составляет:
2 (Nh3) 2CO + 4NO + O2 → 4N2 + 4h3O + 2CO2 и 2 (Nh3) 2CO + 3NO2 -> 7 / 2N2 + 4h3O + 2CO2
Этот вопрос конкретно зависит от миль на галлон и использования рассматриваемого дизельного грузовика. Независимо от того, насколько тяжелая нагрузка, по словам производителя оригинального оборудования, типичный легкий грузовик средней грузоподъемности потребляет 2–3 галлона DEF на 800 миль. Тем не менее, большинство новых грузовиков со средней оценкой миль на галлон 20+ миль на галлон проедут примерно 8000-10 000 миль с полным баком (10 галлонов) сажевого фильтра. Каждый грузовик отличается, например, на Dodge Ram есть датчик, показывающий, сколько именно DEF осталось в баке, GM имеет цифровое считывание, а Ford имеет простой индикатор низкого DEF.
Топливные модели для средних и тяжелых условий эксплуатации могут различаться, но согласно Cummins Filtration потребление DEF будет составлять примерно 2% от потребляемого топлива. На каждые 50 галлонов сожженного дизельного топлива вы будете использовать 1 галлон DEF. Вот некоторые прогнозы потребления для средних и тяжелых условий эксплуатации, сделанные нашими друзьями из Cummins Filtration:
3. Где купить DEF?Не обманывайтесь, думая, что DEF можно купить где угодно. DEF в основном продается на стоянках для грузовиков в больших кувшинах, содержащих несколько галлонов материала.На некоторых заправках есть DEF, но не рассчитывайте на это, если вы в рассоле. Важно понимать, что если вы не заправляете пустой бак DEF, двигатель автоматически выключится. Вы не хотите застрять где-нибудь с пустым баком DEF, потому что он продается не везде. Обычно DEF покупают в TravelCenters of America, Walmart, Target, Love’s Travel Shop, SAPP Brothers, Flying J Truck Stops, в остановочных центрах Petro и в пилотных туристических центрах, O’Reilly’s, NAPA и Advanced Auto.Мы также составили здесь список самых популярных производителей DEF.
4. Каковы плюсы и минусы грузовика DEF?У DEF очень мало минусов, поскольку это довольно простая процедура. Однако, когда дело доходит до дизельного сажевого фильтра (DPF) и избирательного каталитического восстановления (SCR), может возникнуть множество проблем с обслуживанием и ремонтом, поскольку они склонны к засорению. Эти системы имеют сложную конструкцию, и простой засоренный фильтр может вызвать перепады давления и температуры, которые могут повлиять на общую производительность двигателя.
Единственные минусы DEF включают дополнительные первоначальные затраты на самосвал, дополнительный номинальный вес и некоторое дополнительное пространство для хранения дополнительного галлона жидкости. Плюсы — лучшая экономия топлива, увеличенная мощность, более оптимизированное сгорание, меньше проблем с регенерацией, меньший износ двигателя и, кроме того, в воздух выделяются только азот и водяной пар.
5. Является ли производство выбросов важным вопросом?Независимо от того, является ли это большим делом или нет, на самом деле не обсуждается, учитывая, что все легкие и средние дизельные двигатели 2008 года и выше должны соответствовать правилам EPA.NOx обвиняют в смоге, увеличении выбросов парниковых газов и кислотных дождях. DEF как часть системы избирательного каталитического восстановления (SCR) превращает NOx в чистый азот и водяной пар. Изменение климата — это жаркие споры, но мы все можем согласиться с тем, что выброс большего количества газов любого вида в окружающую среду — это не то, чего нам нужно больше.
6. Уменьшит ли DEF мой расход топлива?Естественно думать, что любые изменения в дизельном двигателе, вызванные EPA, обязательно являются плохими, однако это совсем наоборот.Крупные производители дизельного топлива обнаружили, что он может точно настроить двигатель так, как сочтет нужным, а затем позволяет SRC и DEF удалять твердые частицы. Двигатели сначала создаются с учетом производительности, а затем SRC, DPF и DEF удаляют то, что необходимо, в качестве второстепенного. Производители обнаружили, что двигатели, использующие технологию SCR, часто имеют лучший расход топлива по сравнению с другими внутренними системами уменьшения смога. Топливо, смешанное с SCR, находит дополнительный источник элементов для сжигания. Расход топлива можно увеличить на 5-7%
7.Применялась ли когда-нибудь эта новая технология DEF? ТехнологияDEF десятилетиями использовалась в стране в сельском хозяйстве, промышленности и крупномасштабной энергетике. Концепция везде одинакова: мочевина, смешанная с теплом, создает аммиак, который вызывает химическую реакцию, которая снижает NOx на 70-95%. Фактически, 90% производимого карбамида используется в качестве азотных удобрений. Важно отметить, что автомобильный мочевина имеет гораздо более высокую чистоту, чем мочевина удобрений.Если в автомобильных двигателях используется мочевина удобрения более низкого сорта, вы рискуете разложить SCR и вывести двигатель из строя. Это может даже привести к срабатыванию датчиков ECM для неправильного вывода предупреждения DEF Tank Empty.
8. Испаряется ли DEF после периода неиспользования?Ответ — да и нет. Температура, при которой DEF сочетается с выхлопом NOx прямо из головки блока цилиндров с широко открытыми клапанами, составляет 1400-1600 F. Химическая реакция происходит при гораздо более высоких температурах, чем в жаркий солнечный день.Например, потребуется более двух лет при постоянной скорости 125 градусов по Фаренгейту, чтобы DPF превратился в аммиак и испарился. Однако при любой температуре выше 86 F вы рискуете испаряться из-за того, что DEF составляет почти 2/3 воды. Вам не нужно беспокоиться о том, что галлон или два материала испортятся или испарятся из-за неиспользования, если только вы не окажетесь в постоянном жарком климате.
9. Является ли DEF токсичным и вредным химическим веществом?Активный ингредиент DEF, мочевина, был химически синтезирован с 1828 года первым немецким ученым Фридрихом Велером после обработки цианата серебра хлоридом аммония.Впервые мочевина была обнаружена в моче голландским химиком Германом Бурхаве в 1727 году. Мочевина в основном используется в удобрениях для сельского хозяйства, но также используется в химической промышленности, взрывчатых веществах, лосьонах, кремах для кожи, средствах для удаления волос, пластике, мыле для посуды и топливных элементах. Мочевина и, следовательно, DEF не слишком токсичны для человека. Мочевина может вызывать раздражение глаз, кожи и дыхательных путей, но не опасна для жизни. Высокие концентрации в крови могут быть вредными для человека, однако прием мочевины в низких концентрациях при достаточном поступлении воды с водой не является вредным.В природе мочевина может вызывать бум водорослей, которые при разложении выше температуры нагревания или плавления могут образовывать токсичные газы. Смешивание с некоторыми окислителями, хлоридами, нитритами может вызвать пожар или даже взрыв.
10. Что произойдет с двигателем, если бак DEF пустой?Агентство по охране окружающей среды требует от всех производителей дизельных двигателей интегрировать несколько многоуровневую систему предупреждения (внутренние датчики на приборной панели), чтобы водитель точно знал, насколько близок к опустошению бак DEF. Если вы проигнорируете предупреждение DEF, грузовик перестанет работать.Некоторые производители дизельных двигателей позволяют двигателю переходить в режим пониженной мощности, чтобы грузовик «хромал», или ограничивают количество раз, когда вы можете переворачивать двигатель. Однако в какой-то момент дизельный двигатель не запускается. Обращайтесь с баком DEF так же, как с топливным баком; Вы не хотите оказаться где-нибудь в затруднительном положении из-за того, что не заправили бак DEF.
11. Имеет ли DEF низкую точку замерзания?Стандартный 32,5% раствор DEF начинает кристаллизоваться и замерзать при температуре 12 F.Мочевина и вода в DEF при смешивании замерзают с одинаковой скоростью. Это выгодно для пользователя, поскольку при оттаивании жидкости раствор DEF не становится разбавленным или чрезмерно концентрированным. Циклы замораживания и оттаивания не влияют на качество продукта. При замораживании DEF расширяется на 6,5–7% по объему. Упаковка позволяет использовать время заморозки.
12. Как лучше всего предотвратить замерзание DEF?Хранить в автомобиле пару галлонов DEF совершенно безопасно, однако это не рекомендуется.DEF начинает разлагаться при температуре 86 F. Очень легко забыть о DEF, сидящем в задней части вашего грузовика, и учитывая продолжительный период жарких дней, жидкость может стать нестабильной и разлагаться, но с очень минимальной скоростью. Разбавленный DEF без смеси 32,5% мочевины может повредить DEF и SCR, но такие случаи редки. Следовательно, DEF замерзнет в баке DEF в очень холодные дни при температуре ниже 12 F. Это совершенно нормально и не повредит двигатель. Системы SCR предназначены для обеспечения теплом резервуара DEF, который быстро оттаивает резервуар и поддерживающие линии подачи.
13. Могу ли я добавить раствор незамерзания к смеси DEF, чтобы она не замерзла?DEF — это очень специфическая формула, состоящая из 32,5% мочевины и воды, однако раствор содержит другие соединения в незначительных количествах для стабилизации продукта. Добавка к смеси нарушила бы очень точный химический состав и, таким образом, снизила бы свойства снижения NOx. Дальнейшее смешивание смеси DEF поставит под угрозу ее способность работать должным образом, так как нанесет вред системе SCR.
14. Сколько весит DEF и будет ли он загружать мою группировку?DEF весит около 9 фунтов на галлон. Типичный грузовик малой / средней грузоподъемности будет иметь резервуар примерно 3-5 галлонов.
15. Как регулируется производство DEF и могу ли я сделать его самостоятельно?Непосредственным потребителям не рекомендуется производить собственные DEF. DEF строго регулируется и имеет точные требования для поддержания химической чистоты и содержит ингредиенты, которые имеют решающее значение для работы в сочетании с системой SCR.Компании Caterpillar, Cummins, Detroit Diesel, в частности, требуют, чтобы DEF использовался с системами SCR и отвечал всем руководящим принципам ISO и требованиям API. Сертификация API — это полностью добровольная программа, учрежденная Американским институтом нефти (API), которая удостоверяет химическую чистоту DEF и соответствие производителей спецификациям ISO. Все основные бренды DEF, доступные на потребительском рынке, соответствуют сертификации API.
16. Каков срок хранения DEF?Если DEF хранится при температуре окружающей среды 75 F без значительных периодов воздействия тепла свыше 86 F, то партии DEF хватит примерно на два года.Если упаковка DEF подвергается периодам нагревания, жидкости хватит примерно на один год.
17. Кто основные производители жидкости DEF?Есть много производителей жидкости DEF. На сайте «Автоцистерны для нефтяников» составлен список из 13 основных производителей. DEF можно найти на большинстве крупных остановок грузовиков, в магазинах автозапчастей и мини-маркетах по цене от 2 до 3 долларов за галлон.
18. Как определить возраст контейнера с DEF?На каждом пакете DEF где-то на продукте есть дата производителя.Скорее всего, он находится на лицевой стороне упаковки рядом с дном. Этот код даты будет указывать точную дату производства партии и, следовательно, возраст бутылки DEF. На бутылках емкостью 1 галлон нанесен лазерный код. На больших резервуарах емкостью 2–5 галлонов обычно есть небольшой код даты, нанесенный на этикетку продукта. Большие бочки с жидкостью DEF (55 галлонов +) и бочки (275-355 галлонов) будут иметь этикетку большего размера, прикрепленную к боковой или верхней части бочки. Чтение кода производителя может быть немного сложным, и каждый из них немного отличается.Обычно первая цифра кода даты представляет номер партии, а следующие 6 цифр отражают дату заполнения партии на заводе.
19. Как определить заправочный насос DEF Vs. дизельный топливный насос?Были приняты многочисленные меры для предотвращения закачки дизельного топлива в бак DEF и наоборот. «Зеленый» — международный цвет дизельных АЗС и насосов. «Синий» был выбран в качестве цвета для обозначения жидкости DEF.Стандартный диаметр сопла 19 мм был разработан для подачи DEF; стандартная форсунка для дизельного топлива — 22 мм. Крышка бака почти на всех грузовиках также должна быть «ярко-синего цвета» в качестве последней профилактической визуальной меры, чтобы предотвратить попадание дизельного топлива в бак DEF.
20. Что делать, если я случайно залил дизельное топливо в DEF?Во-первых, не паникуйте. Во-вторых, ни в коем случае не запускайте двигатель. Простая заливка дизельного топлива в DEF и наоборот (DEF в топливный бак) не повредит вашему двигателю, если вы не запустите двигатель.SCR должен распознать, что в баке есть другое решение, кроме DEF, и уведомить водителя с помощью считывания ECM на приборной панели. Также важно не перемещать автомобиль. Перемещение автомобиля может вызвать распространение топлива в трубопроводы и в SCR. Лучше всего слить воду из бака, когда автомобиль находится в исходном положении. Если двигатель запускается даже на короткое время, дизельное топливо разрушит катализатор SCR, замена которого очень затратна и на него не распространяется гарантия. Если DEF попадет в топливную систему и распространится по двигателю, это в конечном итоге приведет к выходу из строя дизельного двигателя.Линии топливной системы несовместимы с DEF и со временем медленно корродируют.
Категории товаров
Без категории,Как работает воздушный компрессор с дизельным приводом?
Воздушные компрессоры с дизельным приводом могут представлять собой сложные системы с множеством компонентов, но каждый воздушный компрессор состоит из двух основных компонентов:
Воздухозаборник — это «сердце» воздушного компрессора. Это часть воздушного компрессора, которая сжимает воздух, забирает воздух из атмосферы и затем выталкивает его в гораздо меньшее пространство.В ротационных винтовых воздушных компрессорах воздушная часть состоит из роторов и корпуса ротора. В поршневых воздушных компрессорах воздухозаборник содержит поршни.
Но для работы воздушной части нужен источник энергии, и именно здесь вступает в силу дизельный двигатель. Дизельный двигатель преобразует дизельное топливо в движение, заставляя воздушную часть двигаться, а систему сжимать воздух.
Воздушный компрессор с дизельным приводом VMAC выглядит так:
Внешне система кажется гладкой и простой.По сути, это черный ящик с некоторой вентиляцией и торчащим масляным фильтром. Но внутри происходит гораздо больше:
Разобрав эту систему и рассмотрев компоненты по отдельности, мы сможем лучше понять, что происходит внутри воздушного компрессора с дизельным приводом.
Каждый из этих компонентов играет важную роль в воздушном компрессоре с дизельным приводом и вместе они позволяют системе сжимать воздух.Слева направо идентифицированные компоненты:
Компонент | Назначение |
---|---|
Сервисная панель | Защищает систему воздушного компрессора от элементов и загрязнений; обеспечивает доступ для обслуживания. |
Радиатор двигателя | Охлаждает тепло, выделяемое системой |
Аккумулятор | Обеспечивает питание дизельного двигателя |
Панель управления | Управляет работой системы и сохраненными настройками |
Топливный фильтр | Фильтрует загрязнения в дизельном топливе |
Двигатель Kubota Diesel D902 | Вращает воздушную часть и передает энергию от аккумуляторной батареи системе воздушного компрессора |
Воздушный фильтр двигателя и компрессора | Фильтрует загрязнения в воздухе |
Воздушный блок VMAC | Сжимает воздух |
Коалесцирующий фильтр | Удаляет водные и масляные аэрозоли из сжатого воздуха |
Бак сепаратора воздуха / масла | Удаляет масло из сжатого воздуха, обеспечивая рециркуляцию масла в системе |
Масляный радиатор компрессора | Поддерживает оптимальную температуру компрессорного масла |
Как работает небольшой дизельный двигатель?
Дизельные двигатели используют сгорание для воспламенения топлива и выработки энергии.Горячий сжатый воздух и дизельное топливо смешиваются в камере сгорания, и реакция между воздухом и топливом вызывает взрыв.
Вот разбивка того, что происходит, когда вы включаете небольшой дизельный двигатель:
Двигатель нагревается
Когда вы включаете двигатель, аккумулятор приводит в движение поршни цилиндра вверх и вниз. Поршни проталкивают воздух через цилиндры в камеру сгорания, где он сжимается. Сжатие заставляет молекулы в воздухе двигаться быстрее, что естественным образом нагревает воздух.Затем топливо впрыскивается в горячий сжатый воздух и воспламеняется. Этот процесс повторяется непрерывно, пока двигатель не будет выключен.
Если температура двигателя слишком низкая, можно использовать свечу накаливания, чтобы помочь воздуху достичь температуры, необходимой для воспламенения. Свечи накаливания нагревают воздух внутри цилиндра в течение первых нескольких секунд запуска двигателя. После первого воспламенения топлива свеча накаливания выключается.
Топливо подается в цилиндры
Пока происходит вышеуказанный процесс, система подает дополнительное топливо.Топливо перекачивается из топливного бака, проходя по пути через фильтры, насос с более высоким давлением и подающую трубку (называемую топливной рампой). Затем топливо под давлением достигает топливных форсунок, которые подают топливо в цилиндры.
(Система впрыска топливной рампы, Источник: Dummies.com)
Воздух закачивается в цилиндры
В процессе зажигания воздух также нагнетается в цилиндры. На некоторых двигателях этот воздух проходит через простой воздухоочиститель по пути к цилиндрам.В других случаях турбокомпрессор используется для увеличения количества сжатого воздуха в цилиндрах, что приводит к лучшей экономии топлива и мощности. В любом случае воздух проходит через впускной клапан и попадает в цилиндры.
Хотите узнать больше о воздушных компрессорах? Ознакомьтесь с нашим руководством по роторным винтовым воздушным компрессорам!
ИнициативаСреднего Запада по чистому дизельному топливу | Закон о сокращении выбросов дизельного топлива (DERA), финансирование
Инициатива по чистому дизельному топливу Среднего Запада (MCDI) — это сотрудничество федеральных, государственных и местных агентств, а также сообществ, некоммерческих организаций и частных компаний, которые работают вместе, чтобы внести заметные изменения в жизнь наших сообществ за счет снижения воздействия выбросов от дизельных двигателей. и оборудование.MCDI адресует дизельные двигатели и оборудование, принадлежащие и эксплуатируемые в Иллинойсе, Индиане, Мичигане, Миннесоте, Огайо и Висконсине через:
- установка экологически чистых дизельных технологий, подтвержденных EPA и CARB,
- замена старых двигателей и оборудования на более новые и более чистые версии, сертифицированные EPA,
- установка технологий снижения холостого хода, таких как вспомогательные силовые установки, системы отопления / охлаждения и береговое электроснабжение,
- Использование чистого дизельного языка в контрактах, политиках и постановлениях,
- внедрение методов повышения эффективности эксплуатации автопарков и центров с высокой нагрузкой на дизельные двигатели (железнодорожные станции, склады, интермодальные терминалы, гаражи автопарка и т. Д.))
- продвижение возможностей финансирования действий по экологически чистому дизельному топливу из EPA или других федеральных, государственных и местных источников
- информирование партнеров и общественности об опасностях воздействия дизельных выбросов и действиях, которые могут быть предприняты для снижения воздействия дизельных выбросов
С 2008 года MCDI реализует Национальную кампанию по чистому дизельному топливу и ее программы во всем Регионе EPA 5. Уделяя особое внимание перемещению товаров и работе с местными сообществами, MCDI продолжит нашу работу по сокращению выбросов дизельного топлива на Среднем Западе.
Наша структура
Руководящий комитетMCDI состоит из государственных, национальных и других организаций, которые регулярно встречаются для обсуждения возникающих и возникающих проблем, определения общих целей MCDI и расширения действий государственной коалиции по чистому дизельному топливу. Руководящий комитет MCDI состоит из следующих членов от каждой государственной коалиции:
- Иллинойс: Дарвин Беркхарт, Агентство по охране окружающей среды Иллинойса; Брайан Урбашевски, Ассоциация респираторного здоровья столичного Чикаго; Саманта Бингэм, город Чикаго; Сьюзан Мадд, Центр экологического права и политики
- IN: Шон Силс, Департамент управления окружающей средой штата Индиана; Карл Лисек, South Shore Clean Cities
- MI: Дебра Шварц, Департамент качества окружающей среды штата Мичиган; Мэгги Стриз-Калнин, Управление по охране окружающей среды Юго-Западного Детройта,
- MN: Эрик Дэвид, Агентство по контролю за загрязнением Миннесоты; Билл Дресслер, Экологическая инициатива
- OH: Кэролин Уоткинс, EPA Огайо; Джо Конселик, Franz Ward LLP, Sam Spofforth, Clean Fuels Ohio
- Висконсин: Питер МакМаллен, Департамент природных ресурсов Висконсина; Джон Роджерс, округ Милуоки,
- Агентство по охране окружающей среды США, регион 5: Энтони Майетта, Фрэнк Асеведо, Кэролайн Персун, Лиза Хольшер
- Управление транспорта и качества воздуха Агентства по охране окружающей среды США: Фэй Свифт, Национальная кампания за чистое дизельное топливо
Национальные группы:
- Анджела Тин, Американская ассоциация легких
- Доун Фентон, Volvo
- Эзра Финкин, Diesel Technology Forum
- Антонио Сантос, производитель Ассоциации по контролю за выбросами
- Шеннон Кили-Хейдер, Cummins
- Гленн Луксик, Caterpillar Emission Solutions
- Том Сконечка, MTU America
Каждую из шести государственных коалиций за чистое дизельное топливо MCDI поощряют и поддерживают через MCDI.Государственные коалиции создают форумы для связи заинтересованных флотов с технологической информацией и возможностями финансирования. Они также могут работать вместе над установлением политики и практики. MCDI поддерживает развитие государственных коалиций за счет технической помощи и проектных средств.
В каждом штате разные приоритеты и возможности по сокращению выбросов дизельного топлива. Они могут варьироваться от географических областей до целевых, сфер деятельности или возможностей для финансирования на уровне штата или на местном уровне.Представители каждой государственной коалиции за чистое дизельное топливо входят в состав Руководящего комитета MCDI.
Коалиции поощряются и поддерживаются через MCDI. Государственные коалиции создают форумы для связи заинтересованных флотов с технологической информацией и возможностями финансирования. Они также могут работать вместе над установлением политики и практики. MCDI поддерживает развитие государственных коалиций за счет технической помощи и проектных средств.