Работа клапанов в двигателе: Клапанный механизм двигателя: устройство, работа и регулировка

Содержание

Двигатели, в которых могут загнуться клапана: Зачем они нужны

 

Вы знаете, что такое «интерференционный двигатель»? Нет? Но тогда вы наверняка слышали, что существуют двигатели, в которых клапана могут встретиться с поршнями, в результате чего силовой агрегат серьезно выйдет из строя. Такие моторы и называют интерференционными. На самом деле многие читатели представляют, что это за двигатели. Особенно те, кому приходится часто менять ремень ГРМ, чтобы предотвратить его обрыв, который в интерференционных двигателях приводит к встрече клапанов с поршнями. Но почему при обрыве ремня или цепи ГРМ во многих автомобилях происходит подобное? И зачем нужны двигатели с большим риском повреждения в случае несвоевременного технического обслуживания? Давайте разбираться. 

 

Вы наверняка знаете, что в двигателях внутреннего сгорания главную работу превращения кинетической энергии в механическую выполняют поршни блока цилиндров, которые под воздействием энергии, получаемой при сгорании топлива, начинают двигаться внутри блока силового агрегата, передавая энергию на коленвал. Но помимо поршней не менее важную работу выполняют клапана, которые движутся в головке блока двигателя вверх и вниз, открывая и закрывая впускные и выпускные порты блока цилиндров. Основная работа клапанов заключается в подаче топлива и кислорода в цилиндры двигателя, где топливо и воздух сжимаются поршнями, прежде чем топливная смесь воспламеняется, приводя в движение внутренние компоненты двигателя, благодаря чему ваша машина двигается. 

 

Вот очень красивая и странно успокаивающая анимация поршней и клапанов двигателя в действии. С помощью этого ролика вы поймете, как работает двигатель внутреннего сгорания:

 

 

Как вы видели, движение клапанов осуществляется с помощью распределительного вала – распредвала (или валов/распредвалов). Распредвал приводится в движение за счет ремня или цепи (или нескольких ремней или цепей). Ремень или цепь соединяется с коленчатым валом (коленвалом) двигателя. Эти ремни или цепи называются ремни/цепи газораспределительного механизма (ГРМ) двигателя, поскольку именно они приводят в движение распредвал. На распредвале есть кулачки, которые, двигаясь, контролируют время открытия и закрытия клапанов двигателя. Это объяснение простыми словами. Конечно, на самом деле все немного сложнее.

 

Смотрите также: Как работает система газораспределения и почему так важно следить за ремнем ГРМ?

 

Таким образом, клапана одновременно двигаются с поршнями двигателя вверх и вниз. Но именно из-за этого принципа работы клапанов и поршней во многих двигателях может случиться драма – клапана могут встретиться с поршнями.

Обычно, когда все работает хорошо, открытие и закрытие клапанов синхронизировано так, что при открытии клапана и поршни никогда не занимают одинаковое пространство в блоке цилиндров.

 

Когда поршень находится в самом вверху блока цилиндра двигателя и не может больше двигаться вверх, то в этом положении клапана закрыты, так как в этот момент происходит сжатие (это положение называют верхняя мертвая точка). 

 

Верхняя мертвая точка — положение поршня в цилиндре, соответствующее максимальному расстоянию между любой точкой поршня и осью вращения коленчатого вала

 

Когда положение поршня находится в верхней мертвой точке, клапан (клапана) при правильной работе двигателя не должен находиться на пути поршня.

 

Смотрите также: По каким принципам работает двигатель Инфинити с изменяемой степенью сжатия, подробная информация

 

А теперь мы поговорим непосредственно об интервенционных движках, где может произойти ужасное: клапана могут встретиться во время работы двигателя с поршнями. Это может случиться при обрыве ремня или цепи ГРМ. Естественно, если подобное произойдет во время работы мотора, то двигатель выйдет из строя. Ведь при повреждении цепи/ремня ГРМ клапана перестают перемещаться, что означает, что некоторые из них застрянут в открытом положении и обязательно встретятся с поршнями. 

 

Если поршень имеет достаточно большой ход в цилиндре, что позволяет ему фактически встретиться с открытым клапаном, то такие двигатели в науке называют интерференционными. Если же поршни не могут добраться до клапанов, то это обычные свободно работающие моторы.

 

 

Итак, если этот поршень попал в клапана, это очень и очень плохие новости для автовладельца. Клапана могут изгибаться, загибаться или ломаться. Также в результате подобного краха поршень может получить некоторый ущерб, в результате чего поршень внутри цилиндра двигателя будет сильно поврежден. Как правило, в этом случае владельца автомобиля ждет адский счет за восстановительный ремонт мотора. 

 

Вот какой звук может появиться, если произойдет худшее:

 

 

В свободно работающих двигателях при обрыве ремня или цепи ГРМ подобного разрушения клапанов и поршней не происходит, поскольку в этом случае мотор просто останавливает свою работу, а клапана и поршни не могут встретиться. В этом случае вам нужно просто заменить ремень или цепь ГРМ на новые. 

 

Читая это, кто-то, наверное, подумал: черт возьми, зачем кому-то нужно было создавать такие двигатели, где клапана могут встретиться с поршнями? Ведь при создании подобных моторов было ясно, что обрыв ремня или цепи ГРМ – вполне распространенное явление в мире. Кто создал такой двигатель и зачем?

 

Например, почти каждый современный двигатель Nissan является двигателем интерференции

 

Ответ: таких инженеров и конструкторов немало. Сегодня многие автомобильные компании выпускают двигатели, где при обрыве ремня ГРМ или цепи ГРМ клапана встречаются с поршнями. И скорее всего, у большинства наших читателей в автомобиле установлен такой мотор. Но главный вопрос: почему сегодня многие автопроизводители создают такие двигатели?

 

Основная причина в том, что все автокомпании хотят выпускать хорошие двигатели. В современном мире понятие «хороший двигатель» включает: мощность, крутящий момент, экономичность, эффективность и т. п. Но для обеспечения таких характеристик моторам необходима высокая степень сжатия.

 

От сжатия зависит, насколько топливо и воздушная смесь будут сжаты в цилиндрах двигателя. Чем больше сжать топливную смесь, тем больше энергии вы получите от 1 литра топлива. Как видите, чем больше степень сжатия, тем больше мощности получается при сгорании топлива, что, в свою очередь, снижает его расход в определенный момент времени. 

 

Большое сжатие также означает, что толкание поршней в цилиндре будет происходить дальше и дальше вверх. Сами понимаете, что это также означает, что верхняя часть поршня в двигателе с большой степенью сжатия достигнет места, где могут появиться открытые клапана. В итоге теоретически при рассинхронизации газораспределительного механизма клапана и поршни могут встретиться в одном месте и повредить друг друга. 

 

Кстати, это также объясняет, почему почти все дизельные двигатели являются интерференционными: по своей природе дизели – очень мощные компрессионные моторы (двигатели с большой степенью сжатия).

 

Преимущества высокой компрессии настолько хороши, что многие разработчики двигателей решают, что лучше производить силовые агрегаты, в которых есть риск встретиться клапанам с поршнями. Но если вы будете строго следовать рекомендациям производителя и своевременно менять цепь или ремень ГРМ (как правило, примерно каждые 100 000 км или около того, как видите, не так часто, как, например, моторное масло с фильтрами), то тогда вам действительно не нужно беспокоиться о возможном выходе двигателя из строя из-за обрыва. Правда, если вы будете приобретать оригинальные ремни и цепи ГРМ.

Но, к сожалению, все равно у многих автолюбителей есть беспокойство по поводу обрыва цепи или ремня ГРМ. Даже если своевременно менять их. Да, тогда в 99,9% случаев вряд ли двигатель выйдет из строя из-за встречи клапанов с поршнями. Но тем не менее вероятность подобного события никто не отменял. А когда у нас есть беспокойство, то нет нужного удовлетворения от владения автомобилем, в отличие от спокойствия автовладельцев, чьи автомобили оснащены обычными двигателями, в которых клапана с поршнями не могут встретиться при обрыве цепи/ремня ГРМ.

 

Хотя в целом это довольно разумный компромисс. Но, как видите, для того чтобы двигатель в 99,9% случаев не вышел из строя, нужно периодически прилагать определенные усилия и нести траты. Но тем не менее на данный момент подобные интерференционные двигатели, наверное, – лучшее решение в автопромышленности, которое помогло разработчикам улучшить экономичность и мощность современных автомобилей, а также снизить уровень выбросов вредных веществ в атмосферу.  

 

Так что если ваша машина оснащена двигателем, в котором при обрыве ремня/цепи ГРМ гнет клапана, то просто своевременно меняйте ремень и цепь. Когда менять, вы можете узнать из руководства к автомашине или в техническом центре. Также советуем для замены ремня/цепи ГРМ обращаться в проверенные автомастерские или в дилерские технические центры. Помните, что лучше переплатить, чем потом получить поврежденные клапана и поршни в двигателе. 

 

В том числе на опасность загиба клапанов о поршни стоит обратить внимание всем покупателям подержанных машин. Дело в том, что предыдущий владелец мог и не менять ремень/цепь вовремя. Поэтому если вы приобрели подержанный автомобиль, то советуем поменять ремень или цепь на новые как можно скорее. Если, конечно, ваша машина оснащена мотором, в котором есть риск повреждения клапанов о поршни.

4-цилиндровый,6-цилиндровый,8-цилиндровый двигатели — какой лучше

Многие автовладельцы даже не задумываются о порядке работы цилиндров двигателя своей машины, ограничиваясь лишь знанием их количества. Для управления транспортным средством такая информация не нужна и большинство водителей не видят смысла в изучении технических деталей.

Оглавление

  1. Сколько цилиндров бывает в двигателе
  2. Клапана, их назначение, работа 4-тактного двигателя
  3. 4-цилиндровый двигатель, самый распространенный
  4. Порядок работы цилиндров и почему именно такой
  5. Вывод

Понимание процесса оказывается полезным для выставления зажигания, замене ремня газораспределительного механизма и других видах работ при самостоятельной наладке или ремонте, когда нет возможности обратиться за помощью в СТО.

Сколько цилиндров бывает в двигателе

На всем протяжении истории машиностроения инженеры и конструкторы преследуют одну цель – получение максимальной отдачи от двигателя. Для ее достижения разрабатывались все более мощные моторы с различным количеством цилиндров – от 1 до 16, принимались и принимаются попытки размещения «лошадиных сил» в как можно меньшем объеме подкапотного пространства.

Двигатели с одним цилиндром устанавливаются в мини-тракторах, маломощных мопедах и мотоциклах. Для более мощной мототехники требуется уже 4-тактный 2-цилиндровый мотор.Современные трехцилиндровые ДВС преимущественно ставятся на малолитражных легковых автомобилях и для повышения мощности оснащаются турбиной.

Важно

4-цилиндровые двигатели уже более ста лет являются самыми востребованными в автомобильной промышленности. Ими оборудуются практически все современные легковые автомобили.

Двигатели пятицилиндровые не столь популярны. Ранее они широко использовались такими гигантами мирового автопрома, как Volkswagen,Volvo,Audi

Шести- и 8 цилиндровые двигатели также популярны. Несмотря на общемировую практику уменьшения числа цилиндров за счет турбирования, такие ДВС постепенно теряют свои позиции. Многие автоконцерны в последние годы отказываются от восьмицилиндровых в пользу 6 цилиндровых двигателей, особенно это заметно по рынку мощных легковых машин.

ДВС с 7 или 9 цилиндрами применяются в авиатехнике. В автопромышленности они не используются, за редким исключением – в тюнингованных моделях. 
10- и 11-цилиндровые в автомобилестроении также большая редкость. Полюбоваться «десяткой» можно на спорткаре Audi R8. 

Двигатель с 12 цилиндрами в автопромышленности использовался более широко. Но из-за ужесточения экологических норм их производство неумолимо сокращается.

Существуют также ДВС с 14, 16, 18, 20, 24, 28, 32 и 64 цилиндрами. Они представляют собой сочетание нескольких двигателей с меньшим количеством цилиндров и в производстве автомобилей практически не применяются.

Клапана, их назначение, работа 4-тактного двигателя

Клапан двигателя одновременно является и деталью, и последним звеном механизма газораспределения. Он представляет собой подпружиненный элемент, в состоянии покоя перекрывающим впускное либо выпускное отверстие. При проворачивании распредвала находящийся на нем кулачок давит на клапан и опускает его, открывая тем самым соответствующее отверстие 

На каждом цилиндре устанавливается не менее двух клапанов. В более дорогих моделях двигателей их ставится четыре. Количество клапанов в большинстве случаев четное, их назначение – открытие различных групп отверстий: одни предназначены для впускных, вторые – для выпускных.

Клапаны впускные открывают проход для поступающей в цилиндр новой порции воздушно-топливной смеси, а в двигателях с непосредственным впрыском топлива – объема воздуха. Процесс этот происходит в момент выполнения поршнем впуска (движение вниз с верхней «мертвой» точки после отведения продуктов горения). 

Клапаны выпускные работают по тому же принципу, но выполняют иную функцию. Они предназначены для удаления выхлопных газов в выпускной коллектор.
Цикл работы 4 цилиндрового двигателя представляет собой последовательность из четырех процессов, называемых «рабочим циклом». Рассмотрим его на примере бензинового четырехтактного ДВС, устанавливаемого в большинстве легковых автомобилей.

1.    Впуск.

В камере сгорания начинается преобразование энергии и первый этап – реакция горения топливовоздушной смеси.

Поршень при этом из верхней мертвой точки перемещается вниз, возникает разрежение и происходит впуск горючего. В это время впускной клапан открыт, выпускной находится в закрытом положении. В инжекторных двигателях подача топлива осуществляется форсункой. 

2.    Сжатие.

После того, как камера сгорания заполнилась смесью паров бензина и воздуха, при вращательных движениях коленвала поршень переходит в нижнюю позицию. Впускной клапан постепенно закрывается, а выпускной – по-прежнему закрыт.

3.    Рабочий ход.

Третий этап рабочего цикла – самый важный. Именно на нем энергия сгорающего топлива переходит в механическую, приводящую в движение коленвал.

Еще в процессе сжатия,когда поршень расположен в верхней точке, происходит воспламенение топливной смеси от искры свечи зажигания. Топливный заряд быстро сгорает, а образовавшиеся газы находятся под максимальным давлением в небольшом пространстве камеры сгорания.

При перемещении поршня вниз газы интенсивно расширяются, высвобождая энергию. На данном этапе коленвалупередается разгонное ускорение. На всех других тактах цикла двигатель только получает энергию от коленвала, не вырабатывая ее.

4.    Выпуск.

Это последний такт рабочего цикла. На нем газы, совершившие полезную работу, выпускаются из цилиндра, высвобождая место для поступления следующей порции топливовоздушной смеси.

На этом этапе газы находятся под давлением, значительно превышающем атмосферное. Коленчатый вал через шатун передвигает поршень к верхней мертвой точке. Выпускной клапан открывается, газы выталкиваются наружу через выхлопную систему.

Рабочий цикл дизельных двигателей несколько отличается от бензиновых. На впуске всасывается лишь воздух, а горючее в камеру сгорания впрыскивается топливным насосом уже после сжатия воздушной массы. Воспламенение дизтоплива происходит при контакте с сжатым воздухом.

4-цилиндровый двигатель, самый распространенный

Как уже упоминалось выше, 4 цилиндровые двигатели являются наиболее распространенными в автомобильной промышленности. По количеству пар клапанов, приходящихся на один цилиндр, они разделяются на две группы.

8-клапанные двигатели устанавливаются в основном на моделях низкой ценовой группы. На каждый цилиндр в них приходится по одному впускному и выпускному клапану – в сумме получается 8 клапанов.

Особенность таких ДВС заключается в использовании одного распределительного вала, управляющего системами впрыска и удаления выхлопных газов. Для приведения его в действие используется цепной либо ременной механизм. Такая система легка в ремонте и текущем обслуживании, а из-за простоты конструкции существенно снижается стоимость автомобиля.

В более дорогих моделях машин на каждый цилиндр двигателя приходится по две пары клапанов впуска и выпуска – итого 16 клапанов. В таких системах задействованы два распределительных вала, для работы которых необходим сложный механизм газораспределения.

Использование двух впускных клапанов обеспечивает подачу большего количества топлива за один такт, из-за чего увеличивается мощность двигателя и его КПД. Также, благодаря наличию двух выпускных клапанов, сокращается расход горючего.

Порядок работы цилиндров и почему именно такой

Существует два типа 4 цилиндровых двигателей:

  • рядные;
  • оппозитные.

Схема коленвалов у них одинакова, но порядок работы цилиндров – разный. Это связано с различиями в конструкциях газораспределительного механизма, системы зажигания, а также зависит от углов между кривошипами коленвала.

В рядном 4 цилиндровом двигателе реализован порядок работы по схеме 1-3-4-2. Она используются в подавляющем большинстве автомобилей – и дизельных, и бензиновых, от Жигулей до Мерседеса. Здесь последовательно работают цилиндры, размещенные на противоположных шейках коленвала. Порядок работы цилиндров 4 цилиндрового оппозитного ДВС организован в другой последовательности: 1-3-2-4 либо 1-4-2-3.

Поршни при этом доходят до верхней мертвой точки и с одной, и с другой стороны одновременно. «Оппозитники» можно заметить практически на всех моделях Субару, за исключением некоторых малолитражек, продающихся на внутреннем рынке.

Вывод

Знание порядка работы цилиндров и последовательности процессов рабочего цикла двигателя вряд ли понадобится большинству автолюбителей. Но в некоторых ситуациях без этих знаний не обойтись.

Как работает двигатель внутреннего сгорания

Поиск запроса «порядок работы 4-цилиндрового двигателя» по информационным материалам и форуму

Как это работает: клапаны

На этом двигателе BMW G450X впускные клапаны больше, чем выпускные, чтобы облегчить поток воздуха/топлива камера сгорания. Они открываются, чтобы впустить смесь воздуха и топлива, закрываются, чтобы герметизировать камеру, когда смесь взрывается, поэтому поршень толкается вниз, затем открывается другой набор, чтобы выпустить выхлопные газы. Большинство современных мотоциклов имеют четыре клапана на цилиндр (два на впуск, два на выпуск), хотя у различных Yamaha их пять (три на впуске), что, если вам когда-либо приходилось покупать для них прокладки, может сделать его довольно дорогим.

 

Это новый KTM 790 Duke. Обратите внимание на гладкую форму от штока до торца — это важно для быстрого входа и выхода газов

 

Что такое клапаны?

Все тарельчатые клапаны мотоциклов имеют форму 4-дюймового гвоздя с большой плоской головкой. В современных велосипедах головка клапана (называемая лицевой стороной) находится в камере сгорания, а вал (называемый штоком) торчит из цилиндра, где он прикреплен к пружине.

 

Как они работают?

В верхней части клапана находится механизм открывания по вашему выбору – в некоторых двигателях для соединения с распределительным валом используется коромысло (конус Ducatis), в других – палец (например, BMW R1200GS), в третьих – ведро (почти каждый японский четырехцилиндровый двигатель). цилиндр), с распределительным валом прямо над ним.

Существуют и другие способы активации клапанов: в некоторых старых двигателях коромысла соединены с толкателем, который приводится в действие кулачками, расположенными ниже коленчатого вала, а в современных Ducati используется десмодромная система (мы займемся этим в другой раз).

Но давайте остановимся на наиболее распространенной конфигурации — двойной верхний распредвал (DOHC), где один из двух распределительных валов управляет двумя впускными клапанами на цилиндр, а другой — двумя выпускными клапанами на цилиндр.

 

Как это работает

Теоретически работа клапана очень проста: кулачок толкает клапаны вниз в цилиндр против пружины, открывая клапан, чтобы газы могли течь, а затем позволяет клапану закрыться под действием силы весна. Давление в камере сгорания довольно аккуратно помогает закрыть клапан.

Проблемы возникают из-за того, что это должно произойти несколько раз. Например, с двигателем велосипеда, вращающимся со скоростью 10 000 об/мин, каждый клапан должен открываться и закрываться 83 раза в секунду, поэтому он должен двигаться быстро. Эта скорость является проблемой, потому что это означает, что клапан имеет много энергии и постоянно ударяется о седло клапана.

С этим ничего не поделаешь — если сделать пружину слабее, чтобы клапан не хлопал так сильно, клапан в конечном итоге потеряет контакт с кулачком и не откроется в нужное время. Если вы уменьшите расстояние, которое должен пройти клапан, чтобы у клапана был меньший разбег для его головки в седле клапана, меньше газа может попасть в камеру сгорания или выйти из нее, что снижает мощность.

Единственное решение — металлургия — сделать более прочные и легкие клапаны, способные выдержать все хлопки и жар камеры сгорания. Отсюда использование титановых клапанов в некоторых двигателях спортивных мотоциклов (например, GSX-R1000 2017 года).

 

 

Вы действительно не хотите заменять все прокладки на BMW K1600!

 

Все дело в времени

Время клапана имеет решающее значение. Изменяя ориентацию кулачков и их профили, конструкторы двигателей могут точно установить, когда открываются впускные и выпускные клапаны, как долго они остаются открытыми и когда закрываются. Это оказывает огромное влияние на то, где пиковый крутящий момент и мощность возникают в диапазоне оборотов.

Например, для мотоцикла Harley V-twin вам нужен крутящий момент на низких оборотах, поэтому вы устанавливаете фазы газораспределения максимально эффективными на низких оборотах. На этих оборотах все движется не слишком быстро, поэтому, например, вы можете открывать впускные клапаны позже и закрывать их раньше, чтобы извлечь как можно больше энергии при взрыве газа. То же самое с выпускными клапанами, поэтому время, когда оба впускных и выпускных клапана открыты (перекрытие), мало.

Проблема в том, что по мере увеличения оборотов не хватает времени, чтобы влить всю необходимую смесь и выпустить весь выхлоп. Итак, с точки зрения гонщика, у двигателя заканчивается затяжка. На высокооборотном четырехцилиндровом двигателе, рассчитанном на максимальную мощность, все наоборот — вы устанавливаете фазы газораспределения для высоких оборотов, когда все движется очень быстро, поэтому впускные и выпускные клапаны должны быть открыты на больший процент цикла хода. чтобы убедиться, что вы получаете много смеси, а затем выпускаете весь выхлоп. Это хорошо, но на низких оборотах это может быть ужасно неэффективно.

Конечно, это система изменения фаз газораспределения… подробнее об этом можно прочитать здесь.

 

 

Что такое клапаны двигателя? Типы, работа, механизм [объяснение]

В этой статье вы узнаете, что такое клапаны двигателя и как они работают в двигателе. Клапанный механизм и охлаждение клапана. Вы можете скачать PDF-файл этой статьи в конце.

Что такое клапаны двигателя?

Клапан — это устройство для закрытия и открытия прохода. Клапаны двигателя — это устройства, которые используются в двигателях внутреннего сгорания для разрешения или остановки потока жидкости или газа из цилиндров или камер сгорания во время работы двигателя.

Они также известны как обратные клапаны, которые используются для впрыска воздуха в транспортных средствах в составе систем контроля выбросов и рециркуляции отработавших газов. Клапаны двигателя обычно используются во всех типах двигателей внутреннего сгорания, таких как бензин, дизель, керосин, природный газ или пропан.

В автомобильных двигателях для каждого цилиндра используются два клапана двигателя: впускной (или впускной) клапан и выпускной клапан. Итак, эта статья поможет вам понять различные типы клапанов двигателя, а также их функции и работу в двигателях внутреннего сгорания.

Впускной клапан

Топливо подается в цилиндр через впускной клапан. В закрытом состоянии клапан плотно закрывает камеру сгорания. Клапаны обычно изготавливаются из аустенитной нержавеющей стали, которая является коррозионностойким и жаростойким материалом. Впускной клапан, подвергающийся меньшему нагреву, обычно изготавливается из хромоникелевой легированной стали.

Выпускной клапан

Выхлопные газы выходят через выпускной клапан. Выпускной клапан обычно изготавливается из кремнийхромовой стали, которая представляет собой сплав кремния и хрома с необычайной термостойкостью.

Клапаны, используемые в автомобильных двигателях, называются тарельчатыми или грибовидными клапанами. Головка клапана имеет точно отшлифованную поверхность с достаточным запасом, чтобы избежать тонкой кромки.

Угловая поверхность шлифуется на головке клапана, образуя угол 45° или 30°, соответствующий углу седла клапана в головке цилиндра. На конце стержня клапана предусмотрены стопорные канавки пружинного фиксатора.

Читайте также: Список деталей двигателя автомобиля: его назначение (с иллюстрациями)

Типы клапанов двигателя

There are 3 different types of engine valves as follows:

  1. Poppet valve
  2. Sleeve valve
  3. Rotary valve
  4. Reed valve

#1 Poppet Valve

It is also known as a mushroom клапана из-за его формы. Он используется для контроля времени и количества газа, поступающего в двигатель. Это наиболее широко используемый клапан в автомобильном двигателе. Тарельчатый клапан получил свое название из-за его движения вверх и вниз.

Состоит из головки и стержня. Торец клапана обычно с углом от 30° до 45° идеально отшлифован, так как он должен совпадать с седлом клапана для идеального уплотнения.

Шток имеет стопорную канавку для фиксатора пружины, а его конец контактирует с кулачком для перемещения клапана вверх и вниз. В выхлопе перепад давления помогает герметизировать клапан. Во впускных клапанах перепад давления помогает их открыть.

Втулочный клапан №2

Втулочный клапан, как следует из названия, представляет собой трубку или втулку, которая устанавливается между поршнем и стенкой цилиндра в цилиндре двигателя внутреннего сгорания, где он вращается/скользит.

https://en.wikipedia.org/wiki/Sleeve_valve

Отверстия на боковых сторонах рукавов выравниваются с впускными и выпускными отверстиями цилиндра на соответствующих этапах цикла двигателя.

Внутренняя поверхность втулки образует внутреннюю гильзу цилиндра, в которой скользит поршень. Гильза находится в непрерывном движении, пропуская и вытесняя газы за счет периодического совпадения выреза отверстия в гильзе с отверстиями, образованными через отливку главного цилиндра.

Преимущества

  1. Эти клапаны просты по конструкции и бесшумны в работе.
  2. Шум возникает из-за отсутствия шумообразующих деталей, таких как кулачки клапанов, коромысла, толкатели клапанов и т. д.
  3. Втулочный клапан имеет меньшую склонность к детонации. Охлаждение очень эффективно, так как клапан находится в контакте с водяными рубашками.

Поворотный клапан №3

Существует множество типов поворотных клапанов. На рисунке показан поворотный клапан дискового типа. Он состоит из вращающегося диска с портом. При вращении он сообщается попеременно с впускным и выпускным коллекторами.

Преимущества

  1. Поворотные затворы просты по конструкции и дешевле.
  2. Подходят для высокоскоростных двигателей.
  3. Эти клапаны менее подвержены нагрузкам и вибрациям.
  4. Поворотные икры выполняют плавную, равномерную и бесшумную работу.

Пластинчатый клапан #4

Изображение: Википедия

Это тип обратного клапана, который открывает и закрывает поток жидкости в одном направлении под разным давлением на каждой стороне. Он состоит из механического стержня, шарнирно закрепленного на одном конце, который закрывает проход и позволяет воздуху или заряду течь только в одном направлении.

Этот клапан расположен так, что давление всасывания открывает впускной клапан и закрывает выпускной клапан. И давление выхлопа закрывает впускной клапан и открывает выпускной клапан. Они обычно устанавливаются в двухтактных двигателях.

Читайте также: Какова функция коленчатого вала? Детали, типы, применение [PDF]

Типы клапанных механизмов двигателя

Клапаны приводятся в действие кулачками, установленными на распределительном валу. Распределительный вал получает движение от коленчатого вала. Когда распределительный вал поворачивается, кулачок приводит в действие клапан.

По расположению клапанов клапанный механизм бывает двух типов:

  1. Клапанный механизм для управления клапаном в блоке цилиндров (прямой тарельчатый клапан).
  2. Клапанный механизм управления клапаном в головке блока цилиндров (верхний тарельчатый клапан).

Зазор толкателя клапана

Небольшой зазор сохраняется между толкателем клапана и штоком клапана в случае прямого тарельчатого клапана и между коромыслом и штоком клапана в случае верхнего тарельчатого клапана клапан. Это известно как зазор толкателя клапана, и иногда зазор клапана. Этот зазор позволяет штоку клапана расширяться при нагреве двигателя.

Если не обеспечен достаточный зазор, клапан не сядет должным образом, когда двигатель перегреется, что приведет к потере мощности и подъему клапана. Лучше иметь больше зазора, чем необходимо, чем слишком мало, несмотря на небольшое увеличение шума клапанного механизма.

Зазор толкателя клапана зависит от следующих факторов:

  1. Длина штока клапана
  2. Материал клапана.
  3. Температура, при которой работает двигатель.

Гидравлический подъемник клапана

Работает очень тихо, так как обеспечивает нулевой зазор толкателя клапана. Он автоматически регулирует свою длину, чтобы компенсировать разницу в клапане. зазор толкателя. Кроме того, он обычно не требует регулировки при нормальном обслуживании.

Корпус состоит из цилиндра и масляного резервуара. Отверстие в корпусе соединено с напорной масляной магистралью от системы смазки двигателя для подачи масла в резервуар. Плунжер помещается внутрь цилиндра так, что его верхний конец касается нижней части толкателя, а его нижний конец поддерживается маслом между ним и нижней частью цилиндра.

Когда клапан закрыт, как в (а) (кулачок на нижней стороне), масло из резервуара открывает шаровой обратный клапан и поднимает плунжер, проходя между ним и дном цилиндра. Это обеспечивает нулевой зазор между узлом толкателя и толкателем, а также между коромыслом и штоком клапана.

Когда кулачок поворачивается, чтобы поднять подъемник, как в (b) (кулачок вверху). Шаровой обратный клапан закрывается, чтобы предотвратить возврат масла в резервуар, и заставляет весь толкатель поднимать толкатель, открывая клапан. Поскольку подъем начинается с нулевого зазора, шум сводится к минимуму.

Как показано в (b), во время операции подъема определенное количество масла может просочиться между плунжером и цилиндром, что приводит к опусканию плунжера для создания зазора, если пружина не подняла его снова, когда давление на поршень освобождается при закрытии клапана двигателя. Это снова открывает шаровой обратный клапан, масло снова поступает под плунжер, и подъемник снова устанавливается на нулевой зазор.

Читайте также: Что такое поршневой палец? Работа, типы, детали, преимущества [PDF]

Эксцентриковое коромысло

Эксцентриковое коромысло автоматически компенсирует разницу в зазоре толкателя клапана. Он состоит из обычного коромысла, модифицированного для удержания эксцентрика с помощью паза и штифта.

Плунжер и пружина управляют поршнем эксцентрика. Плунжер приводится в действие пружиной и давлением масла из отверстия в коромысле.

Когда клапан двигателя закрыт (кулачок на нижней стороне), эксцентрик под действием пружины и плунжера перемещается, чтобы занять любой зазор в клапане, управляющем поездом. Когда кулачок поворачивается, открывая клапан, поршень и пружина поглощают любой удар, вызванный этим движением. Когда кулачок находится вверху, клапан полностью открыт.

Охлаждение клапана

Очевидно, что выпускной клапан работает горячее, чем впускной, потому что выпускной клапан всегда находится в контакте с горячими газами, а впускной клапан несколько охлаждается поступающим свежим зарядом. Выпускной клапан может нагреться докрасна за короткий период работы. Поверхность клапана самая горячая, а шток клапана — самая холодная часть клапана.

Стержень клапана передает тепло направляющей клапана, а поверхность клапана передает тепло седлу клапана, что способствует охлаждению клапана. Для обеспечения адекватного охлаждения головка блока цилиндров должна быть сконструирована таким образом, чтобы обеспечить хорошую циркуляцию воды вокруг критических участков клапана.

Если торец клапана правильно прилегает к седлу клапана и полностью закрывает камеру сгорания, потери компрессии и мощности не будет.

Несмотря на это, правильное седло клапана также обеспечивает полный торцевой контакт с седлом клапана, через которое может происходить больший теплообмен. Неравномерный контакт может привести к тому, что клапан нагреется на несколько сотен градусов выше нормы, что сократит срок службы клапана.

Клапан с натриевым охлаждением

Во многих двигателях большой мощности используются клапаны с натриевым охлаждением. Клапан с натриевым охлаждением имеет полый шток, частично заполненный металлическим натрием. Натрий плавится при 97,5°С.

Таким образом, при рабочих температурах натрий находится в жидком состоянии. Когда двигатель работает, клапан движется вверх и вниз, натрий выбрасывается вверх в более горячую часть клапана.

Он поглощает тепло, которое затем отдается более прохладному стержню, когда снова падает в стержень. Это действие обеспечивает охлаждение головки клапана.

Клапан с натриевым охлаждением работает на 100°C холоднее, чем клапан со сплошным штоком аналогичной конструкции при тех же условиях эксплуатации. Это означает, что клапан с натриевым охлаждением имеет более длительный срок службы. Но его использование требует большей осторожности.

Если полый шток клапана с натриевым охлаждением треснул или сломался, это потенциально опасно. Натрий воспламеняется при контакте с водой. Он вызывает глубокий и серьезный ожог кожи. Пока натрий безопасно находится в штоке клапана, опасности нет.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *