Радиус вращения: радиус вращения | Перевод радиус вращения?

Глава 7. Вращательное движение. Кинематика и динамика

Как правило, в любом варианте задания ЕГЭ по физике представлены несколько задач на вращательное движение. Приведем основные определения и законы, необходимые для решения такого рода задач. Угловой скоростью тела, совершающего вращательное движение, называется отношение угла поворота к тому времени , за которое этот поворот произошел

(7.1)

В этом определении угол должен измеряться в радианах, поэтому размерность угловой скорости рад/с (или 1/с поскольку радиан — безразмерная величина). В принципе, определение (7.1) позволяет найти как среднюю (для больших интервалов времени ), так и мгновенную (при ) угловую скорость. Однако в школьном курсе физики рассматривается только движение с постоянной угловой скоростью, для которого определение (7.1) дает один и тот же результат для любых интервалов времени . Применяя определение (7. 1) к полному обороту тела (угол поворота — радиан), получим связь угловой скорости и периода вращения

(7.2)

Угловую скорость можно ввести не только для точечного тела, но и для протяженного тела. Действительно, при вращении неточечного тела вокруг любой оси все его точки поворачиваются за одинаковое время на одинаковый угол. Поэтому можно говорить об угловой скорости всего тела.

Из формулы (7.2) легко получить связь угловой и обычной скорости вращающегося точечного тела (в этом контексте последнюю всегда называют линейной скоростью). Умножая правую и левую часть формулы (7.2) на радиус окружности и учитывая, что – это длина пути, пройденного за период, получим

(7.3)

Конечно, для неточечного вращающегося тела нельзя ввести понятие линейной скорости, поскольку у разных точек этого тела линейные скорости будут разными.

Очевидно, при вращательном движении тело всегда имеет ускорение. Действительно, согласно определению (2.1) ускорение тела равно нулю, если не меняется вектор скорости этого тела (т.е. как величина скорости, так и ее направление). При вращательном движении направление скорости обязательно меняется. Можно доказать, что при вращательном движении точечного тела с постоянной по величине линейной скоростью вектор его ускорения в любой момент направлен от тела к центру траектории тела, а его величина равна

(7.4)

Ускорение (7.3) принято называть центростремительным. Если использовать связь линейной и угловой скорости тела при вращательном движении (7.3), то формулу для центростремительного ускорения можно записать и в таких формах

(7.5)

Согласно второму закону Ньютона ускорения сообщаются телам силами. Поэтому если тело совершает движение по окружности радиуса с постоянной по величине скоростью (и соответственно угловой скоростью ), на него должна действовать сила, направленная к центру окружности и равная по величине

(7.6)

Силу (7.6) принято называть центростремительной. Отметим, что термин «центростремительная» связан не с природой этой силы, а с тем, как она действует: в разных ситуациях центростремительной силой может быть и сила тяжести, и сила трения, и сила реакции, и другие силы или их комбинации.

Перечисленных законов и определений достаточно для решения любых задач ЕГЭ на вращательное движение. Рассмотрим их применение к решению задач, приведенных в первой части.

Если период вращения тела задан, то его угловая скорость может быть однозначно определена независимо от размеров тела или радиуса орбиты для точечного тела. В частности, секундная стрелка любых часов поворачивается на угол за одну минуту (конечно, при условии, что они идут «правильно»). Поэтому угловая скорость секундных стрелок любых часов равна рад/мин (задача 7.1.1 – ответ 2).

Для нахождения линейной скорости конца секундной стрелки часов (задача 7.1.2) используем связь угловой и линейной скоростей (7.5). Имеем

(правильный ответ – 2).

Применяя определение угловой скорости к колесу (задача 7.1.3), получаем

(правильный ответ 1).

Из формулы (7.2) имеем

(задача 7.1.4 – правильный ответ 4).

Используя известное расстояние от первой точки до оси вращения и ее центростремительное ускорение (задача 7.1.5), из формулы (7.5) находим квадрат угловой скорости диска

А теперь по формуле (7. 5) для второй точки получаем

(ответ 2).

Поскольку скорость автомобиля в задаче 7.1.6 не меняется в процессе движения для сравнения центростремительных ускорений автомобиля в разных точках траектории следует использовать формулу (7.4), из которой находим, что ускорение тем больше, чем меньше радиус траектории (правильный ответ – 3).

Ускорение мальчика из задачи 7.1.7

будет равно нулю, если его скорость относительно земли будет равна нулю. Поэтому при движении мальчика против движения карусели, его скорость относительно карусели равна скорости карусели относительно земли . Если мальчик пойдет в другую сторону с той же скоростью относительно карусели, его скорость относительно земли будет равна . Поэтому центростремительное ускорение мальчика будет равно

(ответ 4).

Тело, находящееся на поверхности вращающегося диска и вращающееся вместе с ним (задача 7. 1.8), участвует в следующих взаимодействиях. Во-первых, тело притягивается к земле (сила тяжести), и на него действует поверхность диска (сила нормальной реакции и трения), причем сила трения в каждый момент времени направлена к оси вращения (см. рисунок). Действительно, в отсутствии силы трения тело либо будет оставаться на месте, а диск под ним будет вращаться, либо (если тело имеет скорость) слетит с поверхности диска. Именно сила трения «заставляет» тело вращаться вместе с диском. Поэтому сила трения служит в данной задаче цен-тростремительной силой. Остальные перечисления, данные в условии: «на тело действуют силы тяжести, трения, реакции опоры, центростремительная (или центробежная)» являются неправильными, поскольку в них смешиваются характеристики сил разных типов – первые три касаются природы взаимодействий, вторые – результат действия. Поэтому правильный ответ на вопрос задачи –

1. Кроме того, отметим, что центробежная сила возникает только в неинерциальных системах отсчета и в школьном курсе физики не рассматривается (поэтому лучше этим понятием вообще не пользоваться).

Поскольку тело в задаче 7.1.9 вращается с постоянной по величине скоростью по окружности, то его ускорение направлено к центру окружности, и, следовательно, согласно второму закону Ньютона, туда же направлена и результирующая сила, действующая на тело (ответ

2).

Применяя к данному в задаче 7.1.10 телу второй закон Ньютона и учитывая, что его ускорение равно м/с2, получим для равнодействующей =2 Н (ответ 2).

Используя формулу для центростремительного ускорения , находим отношение ускорений материальных точек из задачи 7.2.1

(ответ 1).

Для сравнения центростремительных ускорений материальных точек в задаче 7.2.2 удобно использовать формулу , поскольку в этой задаче одинаковы угловые скорости точек. Получаем

(ответ 3).

Для сравнения центростремительных ускорений тел в задаче 7.

2.3 выразим ускорение через радиус окружности и период. Используя формулу (7.2) для периода и (7.5) для центростремительного ускорения, получим

(7.5)

Поэтому

(ответ 1).

Используя связь угловой и линейной скорости, находим скорости концов часовой и минутной стрелки (задача 7.2.4)

где и – угловые скорости часовой и минутной стрелки соответственно (в рад/час), и – длины часовой и минутной стрелок. Учитывая, что , получаем

(ответ 2).

Телу, вращающемуся вместе с диском на его горизонтальной поверхности (

задача 7.2.5), центростремительное ускорение сообщается силой трения

Поэтому при увеличении угловой скорости вращения диска возрастает и сила трения между телом и диском. При некоторой угловой скорости сила трения достигнет максимально возможного для нее значения . Если еще увеличить угловую скорость диска, сила трения уже не сможет удержать тело на диске: тело начнет скользить по поверхности и слетит с поверхности диска. Поэтому значения угловой скорости, при которой тело может вращаться вместе с диском, находится из неравенства

(ответ 4).

В задаче 7.2.6 центростремительной силой является сила натяжения нити. Поэтому из второго закона Ньютона с учетом формулы (7.5) для центростремительного ускорения имеем

(ответ 3).

В задаче 7.2.7 нужно использовать второй закон Ньютона для каждого тела. Силы, действующие на тела, показаны на рисунке. Проекция второго закона Ньютона для дальнего тела на координатную ось, направленную к центру диска, дает

(1)

На ближнее тело действуют силы натяжения и двух нитей (см. рисунок). Поэтому для него из второго закона Ньютона имеем

Подставляя в эту формулу силу из формулы (1), находим (ответ 2).

В задаче 7.2.8 необходимо использовать то обстоятельство, что угловая скорость всех точек стержня одинакова. Обозначая расстояния от оси вращения до концов стержня как и , имеем

где = 1 м/с и = 2 м/с – линейные скорости концов стержня, м – его длина. Решая эту систему уравнений, найдем расстояния и , а затем и угловую скорость стержня . В результате получим

(ответ 3).

Среднее ускорение тела за некоторый интервал времени (не обязательно малый) определяется по формуле (2.1):

где и – скорости тела в конце и начале интервала времени . За половину периода вектор скорости поворачивается на 180°, поэтому величина разности равна . Поэтому среднее ускорение тела за половину периода равно

(задача 7.2.9 – ответ 1).

Очевидно, при зубчатой передаче совпадают линейные скорости точек на ободе шестерней. Действительно, если бы эти скорости были разными, между поверхностями шестерней было бы проскальзывание, которому препятствуют зубцы шестерней (задача 7.2.10 – ответ 2).

Центрифугирование: как определить ускорение (число g) в зависимости от скорости вращения и диаметра ротора

Центрифугирование – способ разделения неоднородных, дисперсных жидких систем на фракции по плотности под действием центробежных сил. Центрифугирование осуществляют в центрифугах, принцип работы которых основан на создании центробежной силы, увеличивающей скорость разделения компонентов смеси по сравнению со скоростью их разделения только под влиянием силы тяжести. Разделение веществ с помощью центрифугирования основано на разном поведении частиц в центробежном поле. В центробежном поле частицы, имеющие разную плотность, форму или размеры, осаждаются с разной скоростью.

Скорость осаждения, или седиментации, зависит от центробежного ускорения (g), прямо пропорционального угловой скорости ротора (w, рад/с) и расстоянию между частицей и осью вращения (r, см): g = v2x r. Поскольку один оборот ротора составляет радиан, то угловую скорость можно записать так: v = p x n/60, где n – скорость в оборотах в минуту, π — константа, выражающая отношение длины окружности к длине её диаметра. Угловая скорость – характеристика скорости вращения тела, измеряется обычно в радианах в секунду, полный оборот (360°) составляет радиан.

Центробежное ускорение тогда будет равно: g =p2x r x n2/900.

Центробежное ускорение обычно выражается в единицах g (ускорение свободного падения, равное 980 м/с2) и называется относительным центробежным ускорением (ОЦУ), т.е. ОЦУ=g/980 или ОЦУ = 1,11 x 10-5 x r x n2 .

Относительное ускорение центрифуги (rcf) задается, как кратное от ускорения свободного падения (g). Оно является безразмерной величиной и служит для сравнения производительности разделения и осаждения. Относительное ускорение центрифуги (rcf) зависит от частоты вращения и радиуса центрифугирования.

Существует номограмма, выражающая зависимость относительного ускорения центрифуги (rcf) от скорости вращения ротора (n) и радиуса (r) – среднего радиуса вращения столбика жидкости в центрифужной пробирке (т. е. расстояния от оси вращения до середины столбика жидкости). Радиус измеряется (см) от оси вращения ротора до середины столбика жидкости в пробирке, когда держатель находится в положении центрифугирования.

Номограмма для определения относительного ускорения центрифуги (rcf) в зависимости от скорости вращения и диаметра ротора

r – радиус ротора, см

n – скорость вращения ротора, оборотов в минуту

rcf (relative centrifuge force) – относительное ускорение центрифуги

Радиус центрифугирования rmax– это расстояние от оси вращения ротора до дна гнезда ротора.

Для определения ускорения с помощью линейки совмещаем значения радиуса и числа оборотов на и на шкале rcf определяем его величину.

Пример: на шкале А отмечаем значение rрадиуса для ротора – 7,2 см, на шкале С отмечаем значение скорости ротора –14,000 об/мин, соединяем эти две точки. Точка пересечения образованного отрезка со шкалой В показывает значение ускорения для данного ротора. В данном случае ускорение равно 15’000.

Ось вращения / Радиус вращения / Тело вращения: Примеры —


Расчетные определения >

Ось вращения (также называемая осью вращения ) — это линия, вокруг которой вращается объект. В исчислении и физике эта линия обычно является воображаемой. Радиус вращения — это длина от оси вращения до внешнего края вращаемого объекта.

Пример оси вращения

Простой пример: одна ось или шарнир, допускающий вращение, но не перемещение (движение). На следующем изображении показана двумерная фигура (половина колокола), вращающаяся вокруг одной вертикальной оси вращения. Если фигура перемещается на 360 градусов, результатом является трехмерный колокол:

Конечный объект (в данном случае колокол) называется объектом вращения .


Радиус вращения Пример

Радиус вращения представляет собой отрезок, проходящий от оси вращения до интересующей точки на внешнем крае.

Если вы используете дисковый метод, радиус вращения перпендикулярен (под прямым углом) к оси вращения.

Реальные примеры оси вращения

1. Авиация

В авиация «ось вращения» относится к одной из трех осей, вокруг которых самолет совершает тангаж, крен или рыскание.
Три оси вращения самолета.

Три оси (показаны на изображении выше синими стрелками):

  • Боковая (шаг) , управляемый лифтом,
  • Продольный (крен) , управляемый элеронами.
  • Вертикаль (рыскание) , управляемая рулем направления.

2. Ось вращения Земли

Земля наклонена под углом 23,5° по отношению к Солнцу. Ось вращения влияет на смену времен года;

  • При наклоне к Солнцу в северном полушарии лето, а в южном — зима.
  • Когда наклон от Солнца, в северном полушарии зима, а в южном полушарии лето.

Наклон Земли очень похож на волчок; Он колеблется, когда вращается вокруг Солнца, создавая эффект колебания .

Нахождение объема тела вращения

Метод диска или метод шайбы используются для нахождения объема тел вращения в исчислении. Метод диска используется для сплошных объектов, а метод шайбы представляет собой модифицированный метод диска для объектов с отверстиями. Точнее:


  • Используйте дисковый метод , если:
    1. Ось вращения также является границей (краем) двухмерного объекта, который вы вращаете, и
    2. Сечения (тонкие срезы полученного твердого тела) берутся перпендикулярно оси вращения.
  • Используйте шайбу , метод , если:
    1. Ось вращения не является границей двумерного объекта, и
    2. Сечения берутся перпендикулярно оси вращения.

Ссылки

Смитсоновский национальный музей авиации и космонавтики. Как летают вещи. Получено 10 октября 2019 г. с: https://howthingsfly.si.edu/flight-dynamics/roll-pitch-and-yaw
Stewart, J. (2009). Исчисление: концепции и контексты. Получено 8 октября 2019 г. по адресу:

УКАЗЫВАЙТЕ ЭТО КАК:
Стефани Глен . «Ось вращения / Радиус вращения / Тело вращения: примеры» Из StatisticsHowTo.com : Элементарная статистика для всех нас! https://www.statisticshowto.com/axis-of-rotation/

————————————————— ————————-

Нужна помощь с домашним заданием или контрольным вопросом? С Chegg Study вы можете получить пошаговые ответы на свои вопросы от эксперта в данной области. Ваши первые 30 минут с репетитором Chegg бесплатны!

Комментарии? Нужно опубликовать исправление? Пожалуйста, Свяжитесь с нами .


Угол поворота и угловая скорость

Цели обучения

К концу этого раздела вы сможете:

  • Определять длину дуги, угол поворота, радиус кривизны и угловую скорость.
  • Рассчитайте угловую скорость вращения колеса автомобиля.

В кинематике мы изучали движение по прямой и ввели такие понятия, как перемещение, скорость и ускорение. Двумерная кинематика имеет дело с движением в двух измерениях. Движение снаряда — это частный случай двумерной кинематики, в котором объект проецируется в воздух, подвергаясь действию силы гравитации, и приземляется на расстоянии. В этой главе мы рассмотрим ситуации, когда объект не приземляется, а движется по кривой. Начнем изучение равномерного кругового движения с определения двух угловых величин, необходимых для описания вращательного движения.

Угол поворота

Когда объекты вращаются вокруг некоторой оси — например, когда CD (компакт-диск) на рис. 1 вращается вокруг своего центра, — каждая точка объекта движется по дуге окружности. Рассмотрим линию от центра компакт-диска к его краю. Каждая яма , используемая для записи звука вдоль этой линии, перемещается под одним и тем же углом за одно и то же время. Угол поворота представляет собой величину поворота и аналогичен линейному расстоянию. Определим угол поворота Δ θ как отношение длины дуги к радиусу кривизны: [латекс]\displaystyle\Delta\theta=\frac{\Delta{s}}{r}\\[/latex]

Рисунок 1. Все точки на компакт-диске движутся по дугам окружности. Ямы вдоль линии от центра к краю все перемещаются на один и тот же угол Δθ за время Δt .

Рис. 2. Радиус окружности повернут на угол Δθ . Длина дуги Δs описана на окружности.

длина дуги   Δs  – это расстояние, пройденное по круговой траектории, как показано на рисунке 2. Обратите внимание, что r  – это  радиус кривизны  круглой траектории.

Мы знаем, что для одного полного оборота длина дуги равна длине окружности радиусом r . Длина окружности равна 2π r . Таким образом, для одного полного оборота угол поворота равен

[латекс]\displaystyle\Delta\theta=\frac{2\pi{r}}{r}=2\pi\\[/latex].

Этот результат является основой для определения единиц, используемых для измерения углов поворота, Δ θ до радиан  (рад), определенных таким образом, что 2π рад = 1 оборот.

Сравнение некоторых полезных углов, выраженных как в градусах, так и в радианах, показано в таблице 1.

Таблица 1. Сравнение угловых единиц
Градусы Измерение в радианах
30º [латекс]\displaystyle\frac{\pi}{6}\\[/латекс]
60º [латекс]\displaystyle\frac{\pi}{3}\\[/латекс]
90º [латекс]\displaystyle\frac{\pi}{2}\\[/латекс]
120º [латекс]\displaystyle\frac{2\pi}{3}\\[/латекс]
135º [латекс]\displaystyle\frac{3\pi}{4}\\[/латекс]
180º

Рис. 3. Точки 1 и 2 поворачиваются на один и тот же угол (Δθ), но точка 2 перемещается по большей дуге (Δs), поскольку находится на большем расстоянии от центра вращения (r). 9{\circ}\\[/латекс].

Угловая скорость

Как быстро вращается объект? Мы определяем угловую скорость ω как скорость изменения угла. В символах это [латекс]\omega=\frac{\Delta\theta}{\Delta{t}}\\[/latex], где угловой поворот Δ θ происходит за время Δ t . Чем больше угол поворота за данный промежуток времени, тем больше угловая скорость. Единицами угловой скорости являются радианы в секунду (рад/с).

Угловая скорость ω аналогична линейной скорости v . Чтобы получить точное соотношение между угловой и линейной скоростью, мы снова рассмотрим ямку на вращающемся компакт-диске. Эта яма движется по дуге длиной Δ с за время Δ t , поэтому она имеет линейную скорость [latex]v=\frac{\Delta{s}}{\Delta{t}}\\[/ латекс].

Из [латекс]\Delta\theta=\frac{\Delta{s}}{r}\\[/latex] мы видим, что Δ s = r Δ θ . Подставляя это в выражение для v дает [латекс]v=\frac{r\Delta\theta}{\Delta{t}}=r\omega\\[/latex].

Мы запишем это отношение двумя разными способами и получим два разных понимания:

[latex]v=r\omega\text{ или }\omega\frac{v}{r}\\[/latex].

Первое соотношение в [latex]v=r\omega\text{ или }\omega\frac{v}{r}\\[/latex] утверждает, что линейная скорость v пропорциональна расстоянию от центр вращения, таким образом, он является наибольшим для точки на ободе (наибольшая r ), как и следовало ожидать. Мы также можем назвать эту линейную скорость v точки на ободе тангенциальной скоростью . Второе соотношение в [latex]v=r\omega\text{ или }\omega\frac{v}{r}\\[/latex] можно проиллюстрировать, рассмотрев шину движущегося автомобиля. Обратите внимание, что скорость точки на ободе шины равна скорости автомобиля v . См. рис. 4. Таким образом, чем быстрее движется автомобиль, тем быстрее вращается шина — большие против означают большие 9.0008 ω , потому что v = . Точно так же шина большего радиуса, вращающаяся с той же угловой скоростью ( ω ), будет производить большую линейную скорость ( v ) для автомобиля.

Рис. 4. Автомобиль, движущийся со скоростью v вправо, имеет шину, вращающуюся с угловой скоростью ω. Скорость протектора шины относительно оси равна v , такая же, как если бы автомобиль были подняты. Таким образом, автомобиль движется вперед с линейной скоростью v = r ω, где r — радиус шины. Большая угловая скорость шины означает большую скорость автомобиля.

Пример 1. Как быстро вращается автомобильная шина?

Рассчитайте угловую скорость автомобильной шины радиусом 0,300 м, когда автомобиль движется со скоростью 15,0 м/с (около 54 км/ч). См. рис. 4.

Стратегия

Поскольку линейная скорость обода шины равна скорости автомобиля, мы имеем v = 15,0 м/с. Радиус шины равен 9.0008 r = 0,300 м. Зная v и r , мы можем использовать второе соотношение в [latex]v=r\omega\text{ или }\omega\frac{v}{r}\\[/latex] для вычисления угловой скорости .

Решение

Для расчета угловой скорости мы будем использовать следующую зависимость: [латекс]\омега\фрак{в}{г}\\[/латекс].

Подстановка известных,

[латекс]\omega=\frac{15,0 \text{ м/с}}{0,300\text{ м}}=50,0\text{ рад/с}\\[/latex].

Обсуждение

Когда мы исключаем единицы измерения в приведенном выше расчете, мы получаем 50,0/с. Но угловая скорость должна иметь единицы рад/с. Поскольку радианы на самом деле безразмерны (радианы определяются как отношение расстояния), мы можем просто вставить их в ответ для угловой скорости. Также обратите внимание, что если бы землеройная машина с колесами гораздо большего размера, скажем, радиусом 1,20 м, двигалась с той же скоростью 15,0 м/с, его колеса вращались бы медленнее. У них будет угловая скорость [латекс]\omega=\frac{15,0\text{ м/с}}{1,20\text{ м}}=12,5\text{ рад/с}\\[/latex].

Оба ω и v имеют направления (следовательно, они являются угловой и линейной скоростями соответственно). Угловая скорость имеет только два направления относительно оси вращения — либо по часовой стрелке, либо против часовой стрелки. Линейная скорость касается траектории, как показано на рис. 5.

Самостоятельный эксперимент

Привяжите объект к концу веревки и раскачивайте его по горизонтальному кругу над головой (покачивая запястьем). Поддерживайте постоянную скорость при раскачивании объекта и измеряйте угловую скорость движения. Какова примерная скорость объекта? Определите точку рядом с вашей рукой и выполните соответствующие измерения, чтобы рассчитать линейную скорость в этой точке. Определите другие круговые движения и измерьте их угловые скорости.

Рисунок 5. Поскольку объект движется по кругу, здесь муха на краю старой виниловой пластинки, ее мгновенная скорость всегда касается окружности. Направление угловой скорости в этом случае – по часовой стрелке.

Исследования PhET: Революция божьей коровки

Присоединяйтесь к божьей коровке в исследовании вращательного движения. Вращайте карусель, чтобы изменить ее угол, или выберите постоянную угловую скорость или угловое ускорение. Узнайте, как круговое движение связано с ошибкой x y положение, скорость и ускорение с использованием векторов или графиков.

Нажмите, чтобы скачать. Запуск с использованием Java.

Резюме раздела

  • Равномерное круговое движение — это движение по окружности с постоянной скоростью. Угол поворота [латекс]\Delta\theta\\[/latex] определяется как отношение длины дуги к радиусу кривизны: [latex]\Delta\theta=\frac{\Delta{s}}{r }\\[/latex], где длина дуги Δ с — это расстояние, пройденное по круговой траектории, а 9{\circ}\\[/латекс].
  • Угловая скорость ω — это скорость изменения угла, [латекс]\omega=\frac{\Delta\theta}{\Delta{t}}\\[/latex], где вращение [латекс]\Delta\ theta\\[/latex] происходит во времени [latex]\Delta{t}\\[/latex]. Единицами угловой скорости являются радианы в секунду (рад/с). Линейная скорость v и угловая скорость ω связаны соотношением [latex]v=\mathrm{r\omega}\text{ или }\omega =\frac{v}{r}\text{. }[/latex]

Концептуальные вопросы

  1. Существует аналогия между вращательными и линейными физическими величинами. Какие вращательные величины аналогичны расстоянию и скорости?

Задачи и упражнения

  1. Полуприцепы имеют одометр на одной ступице колеса прицепа. Ступица утяжелена, чтобы не вращаться, но содержит шестерни для подсчета количества оборотов колеса — затем она рассчитывает пройденное расстояние. Если колесо имеет диаметр 1,15 м и совершает 200 000 оборотов, сколько километров должен показывать одометр?
  2. Микроволновые печи вращаются со скоростью около 6 об/мин. Что это в оборотах в секунду? Какова угловая скорость в радианах в секунду?
  3. Автомобиль с шинами радиусом 0,260 м проезжает 80 000 км, прежде чем они изнашиваются. Сколько оборотов делают шины, если не принимать во внимание заднее движение и изменение радиуса из-за износа?
  4. а) Каков период вращения Земли в секундах? б) Какова угловая скорость Земли? (c) Учитывая, что Земля имеет радиус [латекс]6,4\times{10}^6\text{ м}\\[/латекс] на экваторе, какова линейная скорость на поверхности Земли?
  5. Бейсбольный питчер выносит руку вперед во время подачи, вращая предплечье вокруг локтя. Если скорость мяча в руке питчера 35,0 м/с, а мяч находится на расстоянии 0,300 м от локтевого сустава, какова угловая скорость предплечья?
  6. В лакроссе мяч выбрасывается из сетки на конце клюшки путем вращения клюшки и предплечья вокруг локтя. Если угловая скорость мяча относительно локтевого сустава равна 30,0 рад/с, а мяч находится на расстоянии 1,30 м от локтевого сустава, какова скорость мяча?
  7. Грузовик с шинами радиусом 0,420 м движется со скоростью 32,0 м/с. Какова угловая скорость вращающихся шин в радианах в секунду? Что это в об/мин?
  8. Интегрированные концепции. При ударе по футбольному мячу бьющий игрок вращает ногой вокруг тазобедренного сустава. (a) Если скорость носка ботинка игрока составляет 35,0 м/с, а тазобедренный сустав находится на расстоянии 1,05 м от носка ботинка, какова угловая скорость носка ботинка? (b) Башмак находится в контакте с изначально неподвижным футбольным мячом массой 0,500 кг в течение 20,0 мс. Какая средняя сила действует на футбольный мяч, чтобы придать ему скорость 20,0 м/с? в) Найдите максимальную дальность полета мяча, пренебрегая сопротивлением воздуха.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *