Реферат на тему сцепление автомобиля: Произошла ошибка

Содержание

Реферат по учебной практике ПМ 02 Техническое обслуживание и ремонт систем, узлов, приборов автомобилей Тема: Технология ремонта деталей сцепления ВАЗ 2110

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

АРХАНГЕЛЬСКОЙ ОБЛАСТИ

государственное автономное профессиональное образовательное учреждение Архангельской области

«Северодвинский техникум социальной инфраструктуры»

 (ГАПОУ АО «СТСИ»)

Реферат

по учебной практике ПМ 02 Техническое обслуживание и ремонт систем, узлов,  приборов автомобилей

Тема: Технология ремонта деталей сцепления ВАЗ 2110

Выполнил;  Ковальчук Вадим Васильевич, обучающийся гр.  229-230

Профессия СПО 23.01.08 «Слесарь по ремонту строительных машин»

Мастер производственного обучения: Кармакулов Игорь Вениаминович

Северодвинск 2016

Сцепление предназначено:

— для кратковременного отключения двигателя от ведущих колес

— для плавной передачи крутящего момента к ведущим мостам.

Верными признаками выхода из строя или предстоящей неисправности сцепления являются следующие признаки:

  • Пробуксовка сцепления, это когда водитель при движении автомобиля резко жмет на педаль газа, движок набирает обороты, а машина слабо или вообще не разгоняется.
  • Беспричинное увеличение расстояния хода педали, и ослабление усилия прилагаемого для этого.
  • Запах фрикционных накладок диска сцепления.
  • Затрудненное переключение всех передач.
  • Заметные рывки когда вы начинаете трогаться с места.

Такие признаки являются основными, которые извещают опытного водителя о предстоящем выходе из строя, но бывают и форс-мажорные обстоятельства, которые приводят к поломкам, требующим ремонта.

При любой непредвиденной поломке необходимо знать, что поломалось, и как устранить проблему.

Причина неисправности

Способ устранения

Неполное выключение сцепления
(сцепление «ведет»)

Недостаточный полный ход педали сцепления

Отрегулируйте привод сцепления

Коробление ведомого диска (торцовое биение более 0,5 мм)

Выправьте или замените диск

Заедание ступицы ведомого диска на шлицах первичного вала

Очистите шлицы, промойте уайт-спиритом. При износе шлицев замените первичный вал или ведомый диск

Перекос или коробление нажимного диска

Замените кожух сцепления в сборе с нажимным диском и пружиной

Ослабление заклепок или поломка фрикционных накладок ведомого диска

Замените накладки, проверьте торцовое биение диска

Нарушение работоспособности троса привода сцепления

Замените трос

Неполное включение сцепления
(сцепление «буксует»)

Повышенный износ или пригорание фрикционных накладок ведомого диска

Замените фрикционные накладки или ведомый диск в сборе

Замасливание фрикционных накладок ведомого диска, поверхностей маховика и нажимного диска

Тщательно промойте уайт-спиритом замасленные поверхности, замените изношенные или поврежденные сальники коробки передач и двигателя. Проверьте отсутствие течи масла через болты крепления маховика; при наличии течи установите болты на герметик, как указано в главе «Сборка двигателя»

Повреждение или заедание привода сцепления

Устраните причины, вызывающие заедание. Замените поврежденные детали

Рывки при работе сцепления

Замасливание фрикционных накладок ведомого диска, поверхностей маховика и нажимного диска

Тщательно промойте уайт-спиритом замасленные поверхности, замените изношенные или поврежденные сальники коробки передач и двигателя. Проверьте отсутствие течи масла через болты крепления маховика; при наличии течи установите болты на герметик, как указано в главе «Сборка двигателя»

Заедание в приводе сцепления

Устраните причины, вызывающие заедание. Замените поврежденные детали

Повреждение поверхности или коробление нажимного диска

Замените кожух сцепления в сборе с нажимным диском

Повышенный шум при включении сцепления

Поломка демпферных пружин ведомого диска

Замените ведомый диск в сборе

Повышенный шум при выключении сцепления

Износ, повреждение, утечка смазки из подшипника выключения сцепления

Замените подшипник

Самостоятельная замена сцепления ВАЗ 2110

Шаг 1. Перед тем как провести замену деталей сцепления вам необходимо автомобиль поставить на подъёмник, эстакаду или смотровую яму. Без них можно обойтись, но это значительно будет труднее.

Шаг 2. В самом начале отсоедините аккумуляторную батарею от бортовой сети. Затем нужно демонтировать корпус воздушного фильтра, что бы свободно добраться до болтов соединяющих коробку с двигателем, также сверху нужно открутить болты стартера и болт крепления кронштейна модуля зажигания.

Шаг 3. Незабываем отсоединить трос сцепления он крепится двумя гайками к кронштейну на коробке передач и отворачиваем трос спидометра. Фишку на датчик скорости необходимо тоже вытащить.

Шаг 4. Снимаем переднее колесо со стороны водителя, после чего необходимо демонтировать защиту двигателя, если она у вас есть. Откручиваем растяжку от кронштейна крепления (краба), два болта шаровой опоры и рычаг передней подвески и все вместе снимаем.

Шаг 5. На самой коробке передач разъединить разъём заднего хода, который находятся непосредственно на ней. Справа находится треугольная пластина прикрепления к корпусу реактивной тяги, проходящая от кулисы переключения передач.

Предварительно пометить точное расположение тяги кулисы в гнезде для облегчения последующей сборки, метку сделать можно ножовочным полотном по металлу. После необходимо отпустить весь крепеж коробки.

Шаг 6. Далее поддомкрачиваем двигатель и подвешиваем его с помощью подсобных механизмов. Сдвигаем КПП, предварительно открутив подушку.

Переместив КПП в сторону, подставляем под нее специальную подставку. КПП будет находится в подвешенном состоянии и висеть на приводах.

Шаг 7. После этого откручиваем корзину сцепления, вытаскиваем диск, демонтируем выжимной подшипник. Далее проводится замена диска сцепления, замена корзины сцепления и замена выжимного подшипника, все эти детали меняются вместе.

При смене всех деталей вы получите более надежный ремонт с большим ресурсом эксплуатации. Но если сменить только что то одно, то надёжность всей системы, ни кто не сможет гарантировать.

При сборке необходимо предусмотреть некоторые нюансы.

Например, при центровании диска ведомого обычно применяют специализированную оправку или первичный вал, это делается для того чтобы потом без проблем воткнуть коробку передач. То есть что бы шлицы первичного вала КПП свободно вошли в шлицы диска сцепления.

После монтажа сцепления и затяжки всех креплений оправку или первичный вал можно будет легко вынуть. Трос сцепления прикрепляем к вилке сцепления и предварительно ослабляем, необходимую регулировку производим, только после полной сборки.

Не забываем присоединить управляющие рычаги и тяги непосредственно на коробке. Дальнейшая сборка должна производиться по обратному алгоритму, не забывая затягивать крепеж с необходимым усилием.

Так же не забываем присоединить корпус воздушного фильтра и подключаем аккумуляторную батарею.  Производим регулировку троса сцепления с необходимыми зазорами и свободным ходом педали сцепления. Замена сцепления произведена, удачной вам дороги.

Тема 2. СЦЕПЛЕНИЕ АВТОМОБИЛЯ — КиберПедия

Навигация:

Главная Случайная страница Обратная связь ТОП Интересно знать Избранные

Топ:

Определение места расположения распределительного центра: Фирма реализует продукцию на рынках сбыта и имеет постоянных поставщиков в разных регионах. Увеличение объема продаж…

Характеристика АТП и сварочно-жестяницкого участка: Транспорт в настоящее время является одной из важнейших отраслей народного хозяйства…

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов…

Интересное:

Влияние предпринимательской среды на эффективное функционирование предприятия: Предпринимательская среда – это совокупность внешних и внутренних факторов, оказывающих влияние на функционирование фирмы…

Берегоукрепление оползневых склонов: На прибрежных склонах основной причиной развития оползневых процессов является подмыв водами рек естественных склонов…

Финансовый рынок и его значение в управлении денежными потоками на современном этапе: любому предприятию для расширения производства и увеличения прибыли нужны…

Дисциплины:

Автоматизация Антропология Археология Архитектура Аудит Биология Бухгалтерия Военная наука Генетика География Геология Демография Журналистика Зоология Иностранные языки Информатика Искусство История Кинематография Компьютеризация Кораблестроение Кулинария Культура Лексикология Лингвистика Литература Логика Маркетинг Математика Машиностроение Медицина Менеджмент Металлургия Метрология Механика Музыкология Науковедение Образование Охрана Труда Педагогика Политология Правоотношение Предпринимательство Приборостроение Программирование Производство Промышленность Психология Радиосвязь Религия Риторика Социология Спорт Стандартизация Статистика Строительство Теология Технологии Торговля Транспорт Фармакология Физика Физиология Философия Финансы Химия Хозяйство Черчение Экология Экономика Электроника Энергетика Юриспруденция

Стр 1 из 3Следующая ⇒

Тема 2. СЦЕПЛЕНИЕ АВТОМОБИЛЯ

Назначение и классификация сцеплений автомобилей

Сцеплением называется механизм трансмиссии, передающий крутящий момент от двигателя к коробке передач за счет силы трения. Также оно позволяет кратковременно отсоединить двигатель от трансмиссии и вновь их плавно соединить.

Сцепление предназначено для кратковременного разобщения коленчатого вала двигателя от трансмиссии и последующего их плавного соединения, необходимого при трогании автомобиля с места и после переключения передач во время движения. Сцепления также предохраняют детали двигателя и трансмиссию от динамических нагрузок и демпфируют крутильные колебания.

Сцепление различают по следующим признакам: по виду трения, числу ведомых дисков, типу и расположению нажимных пружин, способу управления сцеплением, режиму включения.

 

По виду трениясцепление бывают сухие и работающее в масле (мокрые).

По числу ведомых дисков— одно -, двух — и многодисковые.

По типу и расположению нажимных пружин— с расположением пружин по периферии нажимного диска и с центральной диафрагменной пружинной.

По способу управления— с механическим, гидравлическим или электрическим управлением; с устройством, облегчающим усилие управления (сервоустройством), или без него.

По режиму включения— постоянно замкнутые и непостоянно замкнутые.

В сухих сцеплениях вращающий момент от двигателя передается трансмиссии за счет сухого трения, возникающего между ведущими и ведомыми дисками. В сцеплениях, работающих в масле, энергия передается также силами трения при прижатии ведущих и ведомых элементов, смачиваемых маслом.

В электромагнитных сцеплениях энергия передается действием электромагнитных сил, создаваемых между ведущими и ведомыми элементами сцепления.

В электромагнитных порошковых сцеплениях пространство между ведущими и ведомыми дисками заполнено жидкой или сухой ферромагнитной смесью (мелкий железный порошок). На одном из дисков установлена обмотка возбуждения, в которую при включении сцепления подается ток. Железный порошок намагничивается, вязкость его сильно возрастает, и вращающий момент передается с ведущего вала на ведомый.

Однодисковые сцепления применяют на легковых и грузовых автомобилях, когда передаваемый вращающий момент не выше 0,7 … 0,8кНм. Двухдисковые сцепления используют при передаче большого вращающего момента и ограниченных габаритных размерах картера сцепления.

В постоянно — замкнутых сцеплениях ведущие и ведомые элементы соединены постоянно независимо от воздействия на педаль управления сцеплением. Непостоянно замкнутые сцепления могут быть выключены на продолжительное время.

На отечественных автомобилях применяют в основном фрикционные одно — или двухдисковые постоянно замкнутые сцепления сухого трения. Они состоят из ведущих и ведомых элементов и механизма управления.

Ведущие деталисцеплений — маховик и нажимные диски.

Ведомые детали— ведомый диск и вал сцепления.

Механизм управлениясоздан для включения и выключения сцепления. Механический привод состоит из педали, находящейся в кабине водителя, тяг или троса, рычагов и выжимного подшипника, воздействующего на отжимные рычаги. В гидравлическом приводе усилие от педали передается выжимному подшипнику посредством давления жидкости. Гидравлический привод позволяет дистанционно управлять сцеплением, обеспечивает плавность включения сцепления. Пневматический привод используют обычно на грузовых машинах, оборудованных пневмокомпрессорами, и там, где усилие выключения достаточно высоко.

Функции сцепления

Муфта сцепления устанавливается между двигателем и коробкой передач и является одним из наиболее нагруженных элементов трансмиссии.

Она выполняет следующие основные функции:

§ Плавное разъединение и соединение двигателя и коробки передач

§ Передача крутящего момента без проскальзывания (без потерь)

§ Компенсация вибраций и нагрузок от неравномерности работы двигателя

§ Снижение нагрузок на элементы двигателя и трансмиссии

Элементы муфты сцепления

Рисунок 1 — Конструкция муфты сцепления

Стандартная муфта сцепления, применяющаяся на большинстве автомобилей с механической коробкой передач, включает следующие основные элементы:

§ Маховик двигателя — ведущий диск

§ Ведомый диск сцепления

§ Корзина сцепления — нажимной диск

§ Выжимной подшипник сцепления

§ Муфта выключения сцепления

§ Вилка сцепления

§ Привод сцепления

На ведомый диск сцепления с обеих сторон установлены фрикционные накладки. Его функция — передача крутящего момента за счет силы трения. Встроенный в корпус диска пружинный демпфер крутильных колебаний смягчает соединение с маховиком и гасит вибрации и нагрузки от неравномерности работы двигателя.

Рисунок 2 — Схема расположения диска сцепления, корзины и выжимного подшипника с муфтой выключения

 

Нажимной диск и диафрагменная пружина, воздействующие на ведомый диск сцепления, в сборе представляют собой единый узел, получивший название «корзина сцепления». Ведомый диск сцепления расположен между корзиной и маховиком и соединен с первичным валом коробки передач с помощью шлицев, по которым он может перемещаться.

Диафрагменная пружина корзины может быть либо нажимного, либо вытяжного принципа действия. Отличие – в направлении приложения усилия от привода сцепления: к маховику или от маховика. Особенность конструкции пружины вытяжного действия позволяет использовать корзину, толщина которой значительно меньше. Это делает узел максимально компактным.

Принцип работы

Рисунок 3 — Схема работы диафрагменной пружины

 

Принцип работы сцепления основан на жестком соединении ведомого диска сцепления и маховика двигателя за счет возникающей силы трения от усилия, которое создает диафрагменная пружина. Сцепление имеет два режима: «включено» и «выключено». Основное время работы ведомый диск прижат к маховику. Крутящий момент от маховика передаётся ведомому диску, а от него через шлицевое соединение на первичный вал коробки передач.

Для выключения муфты водитель нажимает на педаль, которая соединена с вилкой механическим или гидравлическим приводом. Вилка перемещает выжимной подшипник, который, нажимая на концы лепестков диафрагменной пружины, прекращает её давление на нажимной диск, а он, в свою очередь, освобождает ведомый. В этот момент двигатель разъединен с трансмиссией.

После включения нужной передачи в коробке передач водитель отпускает педаль сцепления, вилка перестаёт воздействовать на выжимной подшипник, а тот на пружину.

Нажимной диск прижимает ведомый к маховику. Двигатель соединен с трансмиссией.

Виды сцепления

Сухое сцепление

Принцип действия сцепления данного типа основан на силе трения, возникающей при взаимодействии сухих поверхностей: ведущего, ведомого и нажимного дисков. Это обеспечивает жесткую связь двигателя и коробки передач. Сухое однодисковое сцепление – самый распространенный вид, использующийся на основной массе автомобилей с механической КПП.

Мокрое сцепление

Рисунок 4- Двойное сцепление мокрого типа

Данный вид сцепления предполагает работу трущихся поверхностей в масляной ванне. По сравнению с сухой, такая схема обеспечивает более плавное соприкосновения дисков; узел эффективнее охлаждается за счет циркуляции жидкости и может передавать больший момент на трансмиссию.

Мокрая схема обычно применяется на современных роботизированных КПП с двойным сцеплением. Особенность работы такого сцепления заключается в том, что на четные и нечетные передачи КПП подается крутящий момент от отдельных ведомых дисков. Привод сцепления — гидравлический, управляемый электроникой. Переключение скоростей происходит при постоянной передаче крутящего момента на трансмиссию без разрыва потока мощности. Данная конструкция является более дорогой и сложной в производстве.

Ресурс сцепления

Ресурс сцепления главным образом зависит от условий эксплуатации автомобиля, а также от стиля езды водителя. В среднем, срок службы сцепления может доходить до 100-150 тысяч километров пробега. В результате естественного износа, возникающего в момент соприкосновения дисков, фрикционные поверхности изнашиваются и требуют замены. Основная причина – проскальзывание дисков.

Двухдисковое сцепление обладает большим ресурсом за счет увеличенного числа рабочих поверхностей. Выжимной подшипник сцепления задействуется при каждом разрыве соединения двигателя и коробки передач. Со временем в подшипнике вырабатывается и теряет свойства вся смазка, в следствие чего он перегревается и выходит из строя.

Режим блокировки

Рисунок 10 — Устройство гидротрансформатора с блокировкой

 

Для того, чтобы справиться с основными недостатками гидротраснформатора (низкий КПД и плохая динамика автомобиля), был разработан механизм блокировки. Принцип его работы схож с классическим сцеплением. Механизм состоит из блокировочной плиты, которая связана с турбинным колесом (а следовательно, с первичным валом КПП) через пружины демпфера крутильных колебаний. Плита на своей поверхности имеет фрикционную накладку. По команде блока управления трансмиссией, плита прижимается накладкой к внутренней поверхности корпуса гидротрансформатора при помощи давления жидкости. Крутящий момент начинает передаваться напрямую от двигателя к коробке передач без участия жидкости. Таким образом достигается снижение потерь и более высокий КПД. Блокировка может быть включена на любой передаче.

Режим проскальзывания

Блокировка гидротрансформатора может также быть неполной и работать в так называемом «режиме проскальзывания». Блокировочная плита не полностью прижимается к рабочей поверхности, тем самым обеспечивается частичное проскальзывание фрикционной накладки. Крутящий момент предается одновременно через блокировочную плиту и циркулирующую жидкость. Благодаря применению данного режима у автомобиля значительно повышаются динамические качества, но при этом сохраняется плавность движения. Электроника обеспечивает включение муфты блокировки как можно раньше при разгоне, а выключение – максимально позже при понижении скорости.

Однако режим регулируемого проскальзывания имеет существенный недостаток, связанный с истиранием поверхностей фрикционов, которые к тому же подвергаются сильнейшим температурным воздействиям. Продукты износа попадают в масло, ухудшая его рабочие свойства. Режим проскальзывания позволяет сделать гидротрансформатор максимально эффективным, но при этом существенно сокращает срок его службы.

 

Тема 2. СЦЕПЛЕНИЕ АВТОМОБИЛЯ

123Следующая ⇒

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций…

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни. ..

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой…

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим…



Реферат вариатор принцип действия классификация — Сцепление автомобиля

Представим себе автомобиль, у которого двигатель соединен на прямую с коробкой передач. Завели автомобиль и… поехали? Не тут то было! Автомобиль начнет рывками трогаться с места, переключить передачу станет невозможным, а при остановке придется полностью заглушить двигатель. После такой езды коробка передач прослужит примерно три дня, а может и меньше. Двигатель внутреннего сгорания от перегрузок сократит свой ресурс в несколько раз. Ну как перспектива? Избежать всех этих мрачных последствий поможет сцепление.

Главное назначение сцепления состоит в плавном присоединении маховика двигателя к первичному валу коробки передач во время движения с места и во время переключения коробки передач. Если уж совсем просто, сцепление — это выключатель крутящего момента. Очень важный момент — при резком торможении на включённой скорости, сцепление убережет трансмиссию от механической перегрузки и, как следствие, от дорогостоящего ремонта.

Рассмотрим виды сцепления. По количеству ведомых дисков сцепления делятся на однодисковые и многодисковые. Наиболее распространено однодисковое сцепление. Из-за того в какой среде работает сцепление, оно бывает сухим и «влажным». Сухие сцепления самые популярные у автопроизводителей, если сцепление работает в масляной ванне, оно считается «влажным». По приводу в действие механизма сцепления существуют механические, гидравлические, электрические и комбинированные варианты. Более подробно привод рассмотрим ниже. Конструктивно сцепление различается по способу нажатия на прижимной диск, существует два вида: круговое расположение пружин и сцепления с центральной диафрагмой.

Схема сцепления автомобиля: 1 — картер сцепления; 2 — подшипник выключения сцепления; 3 — втулка опорная вала вилки выключения сцепления; 4 — вилка выключения сцепления; 5 — нажимная пружина; 6 — ведомый диск; 7 — маховик; 8 — нажимной диск; 9 — кожух сцепления; 10 — первичный вал коробки передач; 11 — трос; 12 — педаль сцепления; 13 — муфта подшипника выключения сцепления; 14 — пластина соединяющая кожух сцепления с нажимным диском; 15 — пружина демпфера; 16 — ступица ведомого диска.

В состав узла (сцепления) входят: нажимной диск, диск сцепления (ведомый), выжимной подшипник, вилка привода выжимного подшипника, система привода и педаль выключения сцепления.

Схема сцепления: 1 — маховик; 2 — ведомый диск сцепления; 3 — корзина сцепления; 4 —выжимной подшипник с муфтой.

  1. Нажимной диск, в народе именуемый «корзиной», представляет собой основание выпуклой круглой формы. В основание встроены выжимные пружины, которые соединены с прижимной площадкой, так же круглой формы. Площадка имеет диаметр соизмеримый с диаметром маховика и отшлифована с одной стороны. Нажимные пружины сводятся к центру «корзины», где на них, во время выжима, воздействует выжимной подшипник. Нажимной диск жестко соединен с маховиком. В зазор между прижимной площадкой и маховиком вставляется, ведомый диск сцепления.
  2. Диск сцепления (ведомый) имеет округлую форму и конструктивно состоит из лучевого основания, фрикционных накладок, шлицевой муфты, для присоединения первичного вала коробки передач. Так же в состав входят пружины — успокоители, или демпферные пружины, которые расположены по кругу шлицевой муфты. Предназначены для сглаживания вибраций во время включения сцепления.
  3. Фрикционные накладки изготавливаются из углеродного композитного материала, существуют накладки из кевларовых нитей, керамики и т.д. Накладки крепятся к основанию при помощи заклепок, так же как и шлицевая муфта, которая расположена внутри накладок.
  4. Выжимной подшипник представляет собой подшипник, у которого одна сторона выполнена в виде нажимной площадки круглой формы соизмеримой с диаметром расположенных в центре «корзины» выжимных пружин. Выжимной подшипник располагается на выступающем из коробки передач первичном вале. Правда, крепится подшипник не на сам вал, а на защитный кожух вала. Подшипник в действие приводит «коромысло» или вилку привода, которая нажимает на оправку подшипника, имеющую специальные выступы. В некоторых случаях вилка и подшипник фиксируются стопорными пружинами. Выжимной подшипник может быть нажимного действия, или оттягивающего. Оттягивающий принцип работы подшипника применяется во многих моделях автомобилей Peugeot.
  5. Система привода в действие сцепления, как говорилось выше, может быть механическая, гидравлическая, электрическая или комбинированная.
    1. Механическая система привода предполагает передачу усилия нажатия на педаль сцепления на выжимную вилку тросом. Подвижный трос находится внутри кожуха. Кожух фиксируется перед педалью выжима сцепления и перед выжимной вилкой.
    2. Гидравлическая система привода состоит из главного гидравлического цилиндра и рабочего цилиндра, соединённых между собой трубкой высокого давления. При нажатии на педаль, в действие приводится шток главного цилиндра, на конце которого установлен поршень с масло-бензо-стойкой манжетой. Поршень в свою очередь нажимает на рабочую жидкость, обычно тормозную, и создает давление, которое передается по трубке к рабочему цилиндру. Рабочий цилиндр, так же имеет рабочий шток, соединенный с поршеньком. Под давлением поршенек приводится в действие и толкает шток. Шток нажимает на выжимную вилку. Рабочая жидкость находится в специальном бачке и самотеком подается в главный цилиндр.
    3. Электрическая система привода сцепления включает в себя электромотор, который включается при нажатии на педаль сцепления. К электромотору присоединен трос. Далее выжим происходит как в механическом варианте.
  6. Педаль сцепления находится в салоне автомобиля, всегда является крайней слева. В автомобилях с АКПП педали сцепления нет. Но сам механизм сцепления присутствует, о нем будет рассказано ниже.

Как работает сцепление? Самое распространенное на данное время это сухое однодисковое, постоянно включенное сцепление. Принцип работы сцепления автомобиля сводится к плотному сжатию между собой рабочих поверхностей маховика, накладок диска сцепления и прижимной поверхности «корзины».

В рабочем положении, под действием выжимных пружин прижимной диск «корзины» плотно прилегает к диску сцепления и прижимает его к маховику. В шлицевую муфту заходит первичный вал, соответственно и крутящий момент передается на него от диска сцепления.

При нажатии на педаль водителем в действие вступает система привода, выжимной подшипник нажимает на выжимные пружины и рабочая поверхность «корзины» отходит от диска сцепления. Диск высвобождается, и первичный вал коробки передач прекращает вращение, хотя двигатель продолжает работать.

В двух дисковых вариантах применяются два диска сцепления и «корзина», которая имеет две рабочие поверхности. Между рабочими поверхностями ведущего диска расположена система регулировки синхронного нажатия и ограничительные втулки. Весь процесс отсоединения маховика от первичного вала происходит, как и в однодисковом варианте.

В автоматических коробках передач применяется в основном многодисковое влажное сцепление, хотя существуют АКПП с сухим сцеплением. Только вот выжим происходит не нажатием на педаль (педали просто нет), а специальным сервоприводом, в народе именуемым актуатором. Кстати, переключение передач происходит так же при помощи этих механизмов. Различаются несколько видов актуаторов: электрический, представляющий собой шаговый двигатель и гидравлический выполненный в виде гидроцилиндра. Управление сервоприводами осуществляется при помощи электронного блока управления (для электрических сервоприводов) и гидравлическим распределителем (для гидро актуаторов).

В роботизированных коробках передач применяются два сцепления, которые работают попеременно. При выжиме первого сцепления для автоматического переключения, например первой передачи, второе ожидает команды для выжима для переключения следующей передачи.

Рассмотрим два варианта выжима сцепления электрическим и гидравлическим актуатором.

  1. В блок управления АКПП поступают данные о скорости вращения двигателя и при достижении нужного значения, подается управляющий сигнал на сервопривод. Двигатель приходит в движение и при помощи передаточного механизма разъединяет двигатель от коробки. Дальше происходит небольшая пауза, автоматика определяет, повышаются ли обороты, и стоит ли включать повышенную передачу. Вот этот «провал» так сильно не нравится автолюбителям. Роботизированные коробки лишены этого недостатка.
  2. При увеличении оборотов двигателя, масляный насос в АКПП нагнетает масло в распределитель и, по достижении определенного значения давления, распределитель по маслопроводящим каналам предает давление на актуатор. Последний приводит в движение механизм нажатия сцепления. После переключения передачи, давление сбрасывается, и двигатель присоединяется к коробке.

Есть еще один вид сцепления применяется в вариаторе. Классический вариатор это шкив, у которого от центробежной силы начинают «сходиться» «щеки». Между ними располагается клиновидный ремень, который натягивается во время сжатия «щек». После сжатия ремень начинает вращать ведомый шкив. Вариатор применяется еще не так часто. Многие автолюбители называют его ещё «сырым» и недоработанным.

Ремонт сцепления — Техническое Обслуживание и Ремонт Автомобилей

 

В сцеплении могут быть следующие основ­ные неисправности: пробуксовка дисков, не­полное выключение и неплавное включение сцепления.

Пробуксовка дисков возникает при ослаб­лении или поломке нажимных пружин, износе или короблении поверхностей трения маховика и нажимного диска,, замасливании фрикцион­ных накладок ведомого диска. Неисправные нажимные пружины и замасленные фрикцион­ные накладки заменяют на новые. Поверхности трения маховика и нажимного диска обраба­тывают шлифованием.

Неполное выключение сцепления появля­ется в результате увеличенного свободного хо­да педали (при механическом приводе) или уменьшении хода поршня рабочего цилиндра (при гидравлическом приводе), а также вслед­ствие деформации ведомого диска. Свободный ход педали устанавливают при регулировании, а дефектный ведомый диск заменяют на новый.

Неплавное включение сцепления обуслов­ливается износом накладок ведомого диска, затрудненным перемещением ступицы ведомого диска, неодновременным нажатием подшип­ника выключения, заеданием педали сцепле­ния на оси. Затрудненное перемещение ступи­цы ведомого диска на шлицах первичного вала коробки передач возникает из-за наличия за­боин или заусенцев на шлицах. Последние зачищают и смазывают тонким слоем графи­товой смазки. Неодновременность нажатия подшипника выключения сцепления на рычаги выключения устраняют регулировкой. При за­едании педали сцепления зачищают торцы вту­лок от забоин и заусенцев и смазывают их.

При ремонте изношенные подшипники вы­ключения сцепления заменяют на новые. Ведомый и нажимном диски, а также нажимные пружины в зависимости от состояния подвер­гают ремонту или замене. Для выполнения ремонтных работ сцепление разбирают, приме­няя приспособления, одно из которых пред­ставлено на рис. 102.

Картер сцепления и блок цилиндров при ремонте обезличивают. Их маркируют, чтобы предотвратить разукомплектование и обеспе­чить соосность коленчатого вала двигателя и ведущего вала коробки передач. Если эти дета­ли обезличены, то после сборки центрирующее отверстие картера сцепления растачивают в приспособлении.

Основными дефектами картеров сцеплений являются: трещины, сколы, срыв или износ резьбы, износы отверстий и опорных плоско­стей лап крепления к раме. Трещины на карте­ре сцепления заваривают. Сколы, захватываю­щие отверстие, наплавляют или приваривают отколотую часть детали. При срыве резьбы до двух ниток ее восстанавливают прогонкой мет­чиком. Если резьба имеет срыв более двух ни­ток или изношена, то ее восстанавливают пу­тем нарезания резьбы увеличенного ремонтно­го размера, постановкой ввертыша или заваркой с последующим нарезанием резьбы номинального размера.

Изношенные более допустимого размера от­верстия под направляющий штифт крепления стартера, крепления двигателя к раме восста­навливают постановкой дополнительной дета­ли — втулки. После запрессовки отверстие вту­лок обрабатывают под номинальный размер.

Изношенные опорные плоскости лап креп­ления картера сцепления к раме обрабатывают на фрезерном станке до устранения следов износа. При износе более величины, допусти­мой по техническим условиям, осуществляют приварку шайб. Перед приваркой поверхность лапы фрезеруют, а отверстия зенкуют для установки шайб. Затем шайбы приваривают к картеру сцепления сплошным швом электро­дуговой сваркой. Завершают обработку зен­ковкой торцов лап заподлицо с основным ме­таллом.

Ремонт дисков сцепления.

Ос­новными дефектами нажимного и ведомого дисков являются: трещины на поверхности на­жимного диска или фрикционных накладок ве­домого диска, износ фрикционных накладок, коробление или погнутость диска, ослабление заклепок крепления накладок или ступицы, износ и задиры рабочих поверхностей нажим­ного и среднего дисков. Диски и фрикционные накладки с трещинами бракуют. Изношенные фрикционные накладки заменяют новыми. Для этого удаляют старые заклепки. Правят ведо­мый диск, предварительно зачистив забоины и заусенцы на ступице. Коробление устанавлива­ют на поверочной плите при помощи щупа. Щуп толщиной 0,3 мм не должен проходить между торцовой поверхностью диска и плитой. Приклепывание фрикционных накладок произ­водят под прессом, применяя штамп. Вместо заклепок для соединения фрикционных накла­док с диском применяют также клей.

Коробление плоскости касания нажимного диска с ведомым диском не более 0,15 мм или погнутость ведомого диска больше допустимых по техническим условиям величин устраняют правдой. Нажимной диск правят на прессе, устанавливая на кольцо, расположенное на столе пресса, плоскостью касания к ведомому диску вниз. Правку ведомого диска осуществляют на плите или в приспособлении (рис. 103) при помощи специальной оправки. На­кладки бракуют, если ослаблены заклепки крепления их к ведомым дискам. При ослаб­лении более четырех заклепок крепле­ния ступицы ведомого диска производят замену заклепок. Для этого изношенные отверстия в ступице и диске рассверлива­ют под увеличенный ремонтный размер или сверлят новые отверстия между имеющимися. Отремонтированный ведомый диск в сборе с накладками должен быть отбалансирован. До­пустимый Дисбаланс 25 гс/см. Износ и задиры рабочей поверхности нажимного и среднего дисков устраняют обработкой на шлифоваль­ном или токарном станках. При этом мини­мальная толщина  диска должна быть не ме­нее допустимой по техническим условиям.

Поделитесь этой страницей с друзьями!

404 Cтраница не найдена

Размер:

AAA

Изображения Вкл. Выкл.

Обычная версия сайта

К сожалению запрашиваемая страница не найдена.

Но вы можете воспользоваться поиском или картой сайта ниже

  • Университет
    • История университета
    • Анонсы
    • Объявления
    • Медиа
      • Представителям СМИ
      • Газета «Технолог»
      • О нас пишут
    • Ректорат
    • Структура
      • Филиал
      • Политехнический колледж
      • Медицинский институт
        • Лечебный факультет
        • Педиатрический факультет
        • Фармацевтический факультет
        • Стоматологический факультет
        • Факультет послевузовского профессионального образования
      • Факультеты
      • Кафедры
    • Ученый совет
    • Дополнительное профессиональное образование
    • Бережливый вуз – МГТУ
      • Новости
      • Объявления
      • Лист проблем
      • Лист предложений (Кайдзен)
      • Реализуемые проекты
      • Архив проектов
      • Фабрика процессов
      • Рабочая группа «Бережливый вуз-МГТУ»
    • Вакансии
    • Профсоюз
    • Противодействие терроризму и экстремизму
    • Противодействие коррупции
    • WorldSkills в МГТУ
    • Научная библиотека МГТУ
    • Реквизиты и контакты
    • Документы, регламентирующие образовательную деятельность
  • Абитуриентам
    • Подача документов онлайн
    • Абитуриенту 2022
    • Экран приёма 2022
    • Иностранным абитуриентам
      • Международная деятельность
      • Общие сведения
      • Кафедры
      • Новости
      • Центр Международного образования
      • Академическая мобильность и международное сотрудничество
        • Академическая мобильность и фонды
        • Индивидуальная мобильность студентов и аспирантов
        • Как стать участником программ академической мобильности
    • Дни открытых дверей в МГТУ
    • Подготовительные курсы
      • Подготовительное отделение
      • Курсы для выпускников СПО
      • Курсы подготовки к сдаче ОГЭ и ЕГЭ
      • Онлайн-курсы для подготовки к экзаменам
      • Подготовка школьников к участию в олимпиадах
    • Малая технологическая академия
      • Профильный класс
      • Индивидуальный проект
      • Кружковое движение юных технологов
      • Олимпиады, конкурсы, фестивали
    • Архив
    • Веб-консультации для абитуриентов
    • Олимпиады для школьников
      • Отборочный этап
      • Заключительный этап
      • Итоги олимпиад
    • Профориентационная работа
    • Стоимость обучения
  • Студентам
    • Студенческая жизнь
      • Стипендии
      • Организация НИРС в МГТУ
      • Студенческое научное общество
      • Студенческие научные мероприятия
      • Конкурсы
      • Команда Enactus МГТУ
      • Академическая мобильность и международное сотрудничество
    • Образовательные программы
    • Подготовка кадров высшей квалификации
      • Аспирантура
      • Ординатура
    • Расписание занятий
    • Расписание звонков
    • Онлайн-сервисы
    • Социальная поддержка студентов
    • Общежития
    • Трудоустройство обучающихся и выпускников
      • Информация о Центре
        • Цели и задачи центра
        • Контактная информация
        • Положение о центре
      • Договоры о сотрудничестве с организациями, предприятиями
      • Партнеры
      • Работодателям
        • Размещение вакансий
        • Ярмарки Вакансий
      • Студентам и выпускникам
        • Вакансии
        • Стажировки
        • Карьерные мероприятия
      • Карьерные сайты
        • hh. ru
        • Работа в России
        • Факультетус
      • Карьерные возможности для лиц с инвалидностью и ОВЗ
      • Трудоустройство иностранных студентов
    • Обеспеченность ПО
    • Инклюзивное образование
      • Условия обучения лиц с ограниченными возможностями
      • Доступная среда
    • Ассоциация выпускников МГТУ
    • Перевод из другого вуза
    • Вакантные места для перевода
  • Наука и инновации
    • Научная инфраструктура
      • Проректор по научной работе и инновационному развитию
      • Научно-технический совет
      • Управление научной деятельностью
      • Управление аспирантуры и докторантуры
      • Точка кипения МГТУ
        • О Точке кипения МГТУ
        • Руководитель и сотрудники
        • Документы
        • Контакты
      • Центр коллективного пользования
      • Центр народной дипломатии и межкультурных коммуникаций
      • Студенческое научное общество
    • Новости
    • Научные издания
      • Научный журнал «Новые технологии»
      • Научный журнал «Вестник МГТУ»
      • Научный журнал «Актуальные вопросы науки и образования»
    • Публикационная активность
    • Конкурсы, гранты
    • Научные направления и результаты научно-исследовательской деятельности
      • Основные научные направления университета
      • Отчет о научно-исследовательской деятельности в университете
      • Результативность научных исследований и разработок МГТУ
      • Финансируемые научно-исследовательские работы
      • Объекты интеллектуальной собственности МГТУ
      • Результативность научной деятельности организаций, подведомственных Минобрнауки России (Анкеты по референтным группам)
    • Студенческое научное общество
    • Инновационная инфраструктура
      • Федеральная инновационная площадка
      • Проблемные научно-исследовательские лаборатории
        • Научно-исследовательская лаборатория «Совершенствование системы управления региональной экономикой»
        • Научно-исследовательская лаборатория проблем развития региональной экономики
        • Научно-исследовательская лаборатория организации и технологии защиты информации
        • Научно-исследовательская лаборатория функциональной диагностики (НИЛФД) лечебного факультета медицинского института ФГБОУ ВПО «МГТУ»
        • Научно-исследовательская лаборатория «Инновационных проектов и нанотехнологий»
      • Научно-техническая и опытно-экспериментальная база
      • Центр коллективного пользования
    • Конференции
      • Международная научно-практическая конференция «Актуальные вопросы науки и образования»
      • VI Международная научно-практическая онлайн-конференция
  • Международная деятельность
    • Иностранным студентам
    • Международные партнеры
    • Академические обмены, иностранные преподаватели
      • Академическая мобильность и фонды
      • Индивидуальная мобильность студентов и аспирантов
      • Как стать участником программ академической мобильности
      • Объявления
    • Факультет международного образования
  • Сведения об образовательной организации

Трансмиссия автомобилей — прочее, прочее

Реферат

Тема: «Трансмиссия автомобилей»

Выполнил

студент 2-ого курса

Кадов Н. С.

Содержание

Введение

1. Назначение и типы

2. Механические ступенчатые трансмиссии

3. Механическая бесступенчатая трансмиссия

4. Гидрообъемная трансмиссия

5. Электрическая трансмиссия

6. Гидромеханическая трансмиссия

7. Трансмиссии автопоездов

Список использованной литературы

Введение

Трансмиссией называется силовая передача, осуществляющая связь двигателя с ведущими колесами автомобиля.

Трансмиссия служит для передачи от двигателя к ведущим колесам мощности и крутящего момента, необходимых для движения автомобиля.

1. Назначение и типы

Крутящий момент Мк(рис. 1), подведенный от двигателя к ведущим колесам, стремится сдвинуть их относительно поверхности дороги в сторону, противоположную движению автомобиля. Вследствие этого из-за противодействия дороги на ведущих колесах возникает тяговая сила РТ, которая направлена в сторону движения и является движущей силой автомобиля. Тяговая сила РТ вызывает возникновение на ведущем мосту толкающей силы РХ которая от моста через подвеску передается на кузов и приводит в движение автомобиль.

В зависимости от того, какие колеса автомобиля являются ведущими (передние, задние или те и другие), мощность и крутящий момент могут подводиться только к передним, задним или передним и задним колесам одновременно. В этом случае автомобиль является соответственно переднеприводным, заднеприводным и полноприводным.

Переднеприводные и заднеприводные автомобили имеют ограниченную проходимость и предназначены для эксплуатации на дорогах с твердым покрытием, на сухих грунтовых дорогах. Такие автомобили имеют колесную формулу, т.е. соотношение между общим числом колес и числом ведущих колес, с обозначением 4 х 2. В этой формуле первая цифра представляет собой общее число колес автомобиля, а вторая — число ведущих колес. Если ведущие колеса двухскатные (грузовые автомобили, автобусы) и, следовательно, общее их число равно шести, то колесная формула этих автомобилей имеет также обозначение 4×2.

Рис. 1. Движущие силы автомобиля

Полноприводные двухосные автомобили и трехосные автомобили с двумя задними ведущими мостами обладают повышенной проходимостью. Они способны двигаться по плохим дорогами и вне дорог. Их колесные формулы имеют соответственно обозначения 4 х 4 и 6 х 4.

Полноприводные трехосные и четырехосные автомобили имеют высокую проходимость. Они могут преодолевать рвы, ямы и подобные препятствия. Их колесные формулы обозначаются соответственно 6 х 6 и 8 х 8.

Колесная формула характеризует не только проходимость автомобиля, но и тип его трансмиссии.

На автомобилях применяются трансмиссии различных типов (рис. 2).

Наибольшее распространение на автомобилях получили механические ступенчатые трансмиссии и гидромеханические трансмиссии. Другие типы трансмиссий на автомобилях имеют ограниченное применение.

Рис. 2. Типы трансмиссий автомобилей

Конструкция трансмиссии зависит от типа автомобиля, его назначения и взаимного расположения двигателя и ведущих колес. Характер изменения передаваемого крутящего момента в разных типах трансмиссий различен (рис. 3).

Рис. 3. Графики изменения крутящего момента в трансмиссиях:

а — ступенчатой; 6 — бесступенчатой, в — гидромеханической; I— IV — ступени скоростей; Мк — крутящий момент; vскорость автомобиля

Трансмиссия и ее техническое состояние оказывают значительное влияние на эксплуатационные свойства автомобиля. Так, при ухудшении технического состояния механизмов трансмиссии и нарушении регулировок в сцеплении, главной передаче и дифференциале повышается сопротивление движению автомобиля и ухудшаются тягово-скоростные свойства, проходимость, топливная экономичность и экологичность автомобиля.

2. Механические ступенчатые трансмиссии

В механических ступенчатых трансмиссиях передаваемый от двигателя к ведущим колесам крутящий момент изменяется ступенчато в соответствии с передаточным числом трансмиссии (см. рис. 3, а), которое равно произведению передаточных чисел шестеренных (зубчатых) механизмов трансмиссии. Передаточным числом шестеренного механизма называется отношение числа зубьев ведомой шестерни к числу зубьев ведущей шестерни.

На автомобиле с колесной формулой 4×2, передним расположением двигателя и задними ведущими колесами (рис. 4, а) в трансмиссию входят сцепление 2, коробка передач 3, карданная передача 4, главная передача 6, дифференциал 7 и полуоси 8. Крутящий момент от двигателя 1 через сцепление 2 передается к коробке передач 3, где изменяется в соответствии с включенной передачей. От коробки передач крутящий момент через карданную передачу 4 подводится к главной передаче 6 ведущего моста 5, в которой увеличивается, и далее через дифференциал 7 и полуоси 8 — к задним ведущим колесам.

Для легковых автомобилей такое взаимное расположение двигателя и механизмов трансмиссии обеспечивает равномерное распределение нагрузки между передними и задними колесами и возможность размещения сидений между ними в зоне меньших колебаний кузова. Недостатком является необходимость применения сравнительно длинной карданной передачи с промежуточной опорой.

Рис.4. Схемы механических трансмиссий автомобилей с различными колесными формулами:

а –в — 4×2; г — 4×4; д — 6×4; е — 6×6; ж — 8×8; 1 — двигатель; 2 —сцепление; 3 — коробка передач; 4 — карданная передача; 5 — ведущий мост; 6 —главная передача; 7 — дифференциал; 8 — полуоси; 9 – карданный шарнир;10 — раздаточная коробка; 11 — межосевой дифференциал

Механические трансмиссии легковых автомобилей с колесной формулой 4×2 могут иметь и другое расположение двигателя, сцепления и коробки передач у ведущего моста — задние ведущие колеса и двигатель 1 сзади (рис. 4, б) или передние ведущие колеса и двигатель спереди (рис. 4, в). Такие трансмиссии не имеют карданной передачи между коробкой передач и ведущим мостом и включают в себя сцепление 2, коробку передач 3, главную передачу, дифференциал и привод ведущих колес, который осуществляется не полуосями, а карданными передачами. При этом в приводе к ведущим управляемым колесам применяются карданные шарниры 9 равных угловых скоростей.

Эти трансмиссии просты по конструкции, компактны, имеют небольшую массу и экономичны.

Заднее расположение двигателя и трансмиссии (см. рис. 4, б) обеспечивает лучшие обзорность и размещение сидений в кузове между мостами автомобиля, лучшую изоляцию салона от шума двигателя и отработавших газов. Однако ухудшаются управляемость, Устойчивость автомобиля и безопасность водителя и переднего пассажира при наездах и столкновениях.

Переднее расположение двигателя и трансмиссии (см. рис. 4, в) улучшает управляемость и устойчивость автомобиля, но при движении на скользких подъемах дороги возможно пробуксовывание ведущих колес вследствие уменьшения на них нагрузки.

Механическая трансмиссия автомобиля с колесной формулой 4 х 4 с передним расположением двигателя / (рис. 4, г) кроме сцепления 2, коробки передач 3, карданной передачи 4 и заднего ведущего моста 5 дополнительно включает в себя передний ведущий управляемый мост и раздаточную коробку 10, соединенную с этим мостом и коробкой передач 3 карданными передачами. Крутящий момент от раздаточной коробки подводится к переднему и заднему ведущим мостам. В раздаточной коробке имеется устройство для включения привода переднего ведущего моста или межосевой дифференциал, распределяющий крутящий момент между ведущими мостами автомобиля.

Передний ведущий мост имеет главную передачу, дифференциал и привод колес в виде карданных передач с шарнирами 9 равных угловых скоростей, обеспечивающих подведение крутящего момента к передним ведущим управляемым колесам.

У автомобилей с колесной формулой 6×4 (рис. 4, д) крутящий момент к среднему (промежуточному) и заднему ведущим мостам может подводиться одним общим валом. В этом случае главная передача среднего моста имеет проходной ведущий вал.

У автомобиля с колесной формулой 6×6 (рис. 4, е) крутящий момент к среднему и заднему ведущим мостам может подводиться и раздельно — двумя валами. В раздаточной коробке этих автомобилей имеется специальное устройство для включения привода переднего моста или межосевой дифференциал 11, распределяющий крутящий момент между ведущими мостами.

Автомобили с колесной формулой 8×8 обычно имеют потележечное расположение ведущих мостов, при котором сближены ведущие мосты — первый со вторым и третий с четвертым. При этом первые два моста являются и управляемыми.

При установке двух двигателей 1 (рис. 4, ж) трансмиссия таких автомобилей имеет два сцепления 2, две коробки передач 3 и две раздаточные коробки 10 с межосевыми дифференциалами 11. При этом автомобиль может двигаться при одном работающем двигателе.

По сравнению с другими типами трансмиссий механические трансмиссии проще по конструкции, имеют меньшую массу, более экономичны, надежнее в работе и имеют высокий КПД, равный 0,8… 0,95. Недостатком их является разрыв потока мощности при переключении передач, что снижает тягово-скоростные свойства и ухудшает проходимость автомобиля. Кроме того, правильность выбора передачи и момента переключения передач зависит от квалификации водителя, а частые переключения передач в условиях города приводят к сильной утомляемости водителя. Механические трансмиссии также не обеспечивают полного использования мощности двигателя и простоты управления автомобилем.

3. Механическая бесступенчатая трансмиссия

Это фрикционная трансмиссия, в которой для плавной передачи крутящего момента от двигателя к ведущим колесам используется сила трения.

На рис. 5 приведена схема клиноременной передачи, которая представляет собой фрикционную бесступенчатую передачу.

Крутящий момент от двигателя через сцепление передается конической шестерне 14 реверс-редуктора. Эта шестерня находится в зацеплении с шестернями 13 и 10, соединяемыми с валом 12 муфтой 11, перемещающейся на шлицах вала.

На концах вала 12 установлены ведущие шкивы 9 передачи, от которых крутящий момент через зубчатые ремни 8 трапецеидального сечения передается на ведомые шкивы 7 и далее через колесные редукторы 5 на ведущие колеса автомобиля.

Передаточное число клиновой передачи, равное отношению рабочих радиусов R2:R1шкивов, зависит от положения ремня 8. Оно регулируется пружиной 6, соответственно сдвигающей половины ведомого шкива 7, и пружиной 3, раздвигающей половины ведущего шкива 9, в зависимости от частоты вращения коленчатого вала двигателя и вакуума в полости 2, соединенной трубопроводом / с впускным коллектором двигателя.

При трогании автомобиля с места пружины 3 и 6 обеспечивают наибольшее передаточное число, и в этом случае половины ведомого шкива сдвинуты, а ведущего — раздвинуты.

Рис. 5. Схема клиноременной передачи:

1 — трубопровод; 2 — полость; 3, 6 — пружины; 4 — груз; 5 — редуктор; 7, 9 – шкивы; 8 — ремень; 10, 13, 14 — шестерни; 11 — муфта; 12 — вал; R1R2радиусы шкивов

При разгоне автомобиля действующие силы от грузов 4 центробежного регулятора и вакуума в полости 2 преодолевают силу пружин 3 и 6, сдвигают половины ведущего шкива 9 и раздвигают половины ведомого шкива 7. Таким образом, осуществляется бесступенчатое изменение передаточного числа и, следовательно, крутящего момента.

Эта передача выполняет также функции межколесного дифференциала. Передача применяется на некоторых моделях легковых автомобилей.

Механические бесступенчатые передачи не получили широкого распространения и имеют ограниченное применение на автомобилях из-за недостаточной надежности их работы.

4. Гидрообъемная трансмиссия

Этот вид трансмиссии представляет собой бесступенчатую передачу автомобиля.

В гидрообъемной трансмиссии (верхняя половина рис. 6) двигатель 1 внутреннего сгорания приводит в действие гидронасос 2, соединенный трубопроводами с гидромоторами 3, валы которых связаны с ведущими колесами автомобиля. При работе двигателя гидродинамический напор жидкости, создаваемый гидронасосом в гидромоторах ведущих колес, преобразуется в механическую работу. Ведущие колеса с гидромоторами, установленными в них, называются гидромотор-колесами.

Рабочее давление в системе в зависимости от конструкции гидроагрегатов — 10. ..50 МПа.

На рис. 7 представлена простейшая схема устройства и работы гидрообъемной передачи, в которой используется гидростатический напор жидкости. При вращении коленчатого вала двигателя через кривошип 2 и шатун 3 производится перемещение поршня 4 гидронасоса. Жидкость из гидронасоса через трубопровод 9 подается в цилиндр гидродвигателя, поршень 8 которого перемещает через шатун 7 кривошип 5 и приводит во вращение ведущее колесо 6.

Рис. 6. Схема гидрообъемной (верхняя половила схемы) и электрической (нижняя половина) трансмиссии:

1 — двигатель; 2 — гидронасос; 3 — гидромотор; 4 — электродвигатель; 5 — генератор

Преимуществом гидрообъемной трансмиссии является бесступенчатое автоматическое изменение ее передаточного числа и передаваемого крутящего момента, что обеспечивает плавное трогание автомобиля с места, облегчает и упрощает управление автомобилем и снижает утомляемость водителя и, следовательно, повышает безопасность движения. Она также повышает проходимость автомобиля в результате непрерывного потока мощности и плавного изменения крутящего момента.

В действительности гидрообъемные передачи, применяемые на автомобилях, гораздо сложнее, чем представленная на рис. 7. Так, они включают роторные гидронасосы плунжерного типа, колесные гидродвигатели, магистрали высокого и низкого давления, редукционные клапаны, охладитель, дренажную и подпитывающую системы (резервуар, фильтр, охладитель, насос, редукционный и предохранительный клапаны).

Рис. 7. Схема гидрообъемной передачи:

1 — двигатель; 2, 5 — кривошипы; 3, 7 — шатуны; 4, 8 — поршни; 6 —колесо; 9 — трубопровод

По сравнению с механической гидрообъемная трансмиссия имеет большие габаритные размеры и массу, меньшие КПД, долговечность и более высокую стоимость. Она сложна в изготовлении и требует надежных уплотнений.

5. Электрическая трансмиссия

Это бесступенчатая передача, в которой крутящий момент измеряется плавно, без участия водителя, в зависимости от сопротивления дороги и частоты вращения коленчатого вала двигателя.

В электрической трансмиссии (см. нижнюю половину рис. 6) двигатель 1 внутреннего сгорания приводит в действие генератор 5. Ток от генератора поступает к электродвигателям 4 ведущих колес автомобиля.

Ведущее колесо (рис. 8) с установленным внутри электродвигателем 1 называется электромотор-колесом. Крутящий момент от электродвигателя к колесу передается через колесный редуктор 2. При применении быстроходных электродвигателей в ведущих колесах используются понижающие зубчатые передачи.

Преимуществом электрических трансмиссий является бесступенчатое автоматическое изменение ее передаточного числа. Это обеспечивает плавное трогание автомобиля с места, упрощает и облегчает управление автомобилем и снижает утомляемость водителя, в результате повышается безопасность движения. Кроме того, повышается проходимость автомобиля вследствие непрерывного потока мощности и плавного изменения крутящего момента. Повышается также долговечность двигателя из-за уменьшения динамических нагрузок и отсутствия жесткой связи между двигателем и ведущими колесами. Однако у электрических трансмиссий КПД не превышает 0,75, что ухудшает тягово-скоростные свойства автомобиля. Кроме того, расход топлива по сравнению с механическими трансмиссиями повышается на 10…20 %. Электрические трансмиссии также имеют большую массу и высокую стоимость.

Рис. 8. Электромотор-колесо:

1 — электродвигатель; 2 — редуктор

6. Гидромеханическая трансмиссия

Это комбинированная трансмиссия, которая состоит из механизмов механической и гидравлической трансмиссий. В гидромеханической трансмиссии передаточное число и крутящий момент изменяются ступенчато и плавно (см. рис. 3, в).

В гидромеханическую трансмиссию (рис. 9) входят гидромеханическая коробка передач 2, включающая гидротрансформатор и механическую коробку передач, карданная передача 3, главная передача 4, дифференциал 5 и полуоси 6.

Гидротрансформатор устанавливают вместо сцепления, и в нем передача крутящего момента от двигателя 1 к трансмиссии происходит за счет гидродинамического (скоростного) напора жидкости. Гидротрансформатор плавно автоматически изменяет крутящий момент в зависимости от нагрузки. При этом крутящий момент от гидротрансформатора передается к механической коробке передач, в которой передачи включаются с помощью фрикционных механизмов. Применение гидротрансформатора обеспечивает плавное трогание автомобиля с места, уменьшает число переключений передач, что снижает утомляемость водителя, улучшает проходимость автомобиля, почти в два раза повышается долговечность двигателя и механизмов трансмиссии вследствие уменьшения в трансмиссии динамических нагрузок и крутильных колебаний. Снижается также вероятность остановки двигателя при резком увеличении нагрузки.

Рис. 9. Схема гидромеханической трансмиссии:

1 — двигатель; 2 — гидромеханическая коробка передач; 3 — карданная передача; 4 — главная передача; 5 — дифференциал; 6 — полуоси

Недостатком гидромеханической трансмиссии являются более низкий КПД, что ухудшает тягово-скоростные свойства и топливную экономичность автомобиля, более сложная конструкция и большая масса, а также высокая стоимость в производстве, которая составляет около 10 % стоимости автомобиля.

Электромеханическая трансмиссия. Это комбинированная трансмиссия, которая состоит из элементов механической и электрической трансмиссий.

На рис. 10 показана схема электромеханической трансмиссии автобуса большой вместимости. Двигатель 4 внутреннего сгорания расположен в задней части автобуса и приводит в действие генератор 5. Ток, вырабатываемый генератором, подводится к электродвигателю 1. Крутящий момент от электродвигателя через карданную передачу 2 подводится к ведущему мосту 3 и далее через главную передачу, дифференциал и полуоси к ведущим колесам автобуса. Сцепление и коробка передач в трансмиссии отсутствуют, так как при возрастании сопротивления дороги уменьшается частота вращения электродвигателя и автоматически увеличивается крутящий момент, подводимый к ведущим колесам автобуса.

Режим работы двигателя в различных дорожных условиях зависит только от подачи топлива, которая осуществляется педалью. Отсутствие педали сцепления и рычагов переключения коробки передач существенно облегчает работу водителя автобуса, который в условиях города работает с частыми остановками. Кроме того, электромеханическая трансмиссия повышает проходимость и безопасность движения. Недостатками электромеханической трансмиссии по сравнению с механической являются меньший КПД, не превышающий 0,85, что ухудшает тягово-скоростные свойства и топливную экономичность (расход топлива увеличивается на 15. .. 20 %), а также большие габаритные размеры и масса.

Рис. 10. Схема электромеханической трансмиссии:

1 – электродвигатель; 2 — карданная передача; 3 — ведущий мост; 4 — двигатель; 5 — генератор

7. Трансмиссии автопоездов

Автопоезда, состоящие из автомобиля-тягача и прицепов или полуприцепов, могут иметь различного типа трансмиссии в зависимости от назначения автопоезда. Так, на автопоездах, предназначенных для работы по дорогам с твердым покрытием, трансмиссию имеет только автомобиль-тягач. На автопоездах, рассчитанных на работу в условиях бездорожья, для повышения их проходимости прицепы и полуприцепы обычно оборудуются ведущими мостами. Мощность и крутящий момент к этим мостам могут подводиться от двигателя автомобиля-тягача через механическую, гидравлическую или электрическую передачи.

Для привода дополнительного оборудования автопоезда (лебедки, насоса подъема грузового кузова и др. ) в трансмиссии имеется коробка отбора мощности, которая присоединяется к коробке передач.

Список использованной литературы

1. Сарбаев В.И. Техническое обслуживание и ремонт автомобилей. − Ростов н/Д: «Феникс», 2004.

2. Вахламов В.К. Техника автомобильного транспорта. − М.: «Академия», 2004.

3. Барашков И.В. Бригадная организация технического обслуживания и ремонта автомобилей. – М.: Транспорт, 1988г.

Муфты — Курсовая работа

Аналогичные документы