Регулятор зарядки аккумулятора своими руками: Зарядное устройство для автомобильных аккумуляторов своими руками

Содержание

Зарядное устройство для автомобильных аккумуляторов своими руками

 Кислотные аккумуляторы «не любят длительного пребывания без работы». Глубокий саморазряд бывает губителен для них. Процесс происходит в этом случае простой, но не очень приятный. Сульфатация, разрастание на электродах сернокислого свинца, приводит к образованию устойчивых отложений. В итоге, аккумулятор теряет свою емкость и способность к зарядке. Об этом мы более подробно рассказли в статье «Как заряжать аккумулятор автомобиля».
 Если автомобиль ставится на долгосрочную стоянку, то возникает проблема: что делать с аккумулятором. Его либо отдают кому-нибудь в работу, либо продают, что одинаково неудобно. В этом случае очень пригодится зарядное устройство для автомобильного аккумулятора.

Зарядное устройство для автомобильного аккумулятора из блока питания от компьютера своими руками

Переделка блока питания предельно проста и займёт у вас минимум времени.

Ниже приведена пошаговая инструкция изготовления зарядного устройства:

1.

Отпаять все провода, идущие с выходов других источников (-5. В, -12 В, +5 В), кроме общего (GND) и +12 В.

2. Остаться у вас должны только жёлтые и чёрные.

3. Параллельно этим проводам подключить конденсатор 1000 мкФ х 25 В.

4. Отверстие в корпусе, через которое выходили наружу провода питания, использовались для установки клавишного выключателя (-220 В) с подсветкой (предварительно напильником придать отверстию нужную форму).

5. Последовательно жёлтому проводу поставить амперметр, ампер на 10-15.

6. Последовательно (желт.-чёр.) — поставить вольтметр на 15-20 В.

Кроме амперметра последовательно желтому проводу ещё следует поставить регулятор тока. Им может быть реостат, тиристорный регулятор, транзисторный или какой-нибудь другой. Схему регулятора приводить не буду, так как в интернете и в литературе их полно. В крайнем случае, поищите на Яндекс.

Вот и всё ! Зарядка для вашего аккумулятора готова. Желтый провод к «ПЛЮСУ», чёрный к «МИНУСУ».

Ток зарядки задаете сами, в зависимости от типа и ёмкости вашего аккумулятора. Более подробно о типах аккумуляторов принципах их работы и процедуре зарядки можно посмотреть в разделе Аккумуляторная батарея кислотно, гелиевая (аккумулятор) обслуживание, характеристики, выбор.

Схема зарядного устройства для зарядки автомобильного аккумулятора (1 вариант)

Во-первых, приводим схему, а далее приведем ее описание и описание ее работы.

Со вторичной обмотки трансформатора Т1, ток в которой ограничен включением последовательно с первичной обмоткой балластного конденсатора (С1 или С1+С2), ток подается на диодно-тиристорный мост, нагрузкой которого является аккумуляторная батарея (GB1). В качестве регулирующего элемента применен автомобильный регулятор напряжения генератора (РНГ) на 14 В любого типа, предназначенный для генераторов с заземленной щеткой. Мною опробованы регулятор типа 121.3702 и интегральный -Я112А. При использовании «интегралки» выводы «Б» и «В» соединяются вместе и с «+» GB1.

Вывод «Ш» соединяется с цепью управляющих электродов тиристоров. Таким образом, на аккумуляторной батарее поддерживается напряжение 14В при зарядном токе, определяемом емкостью конденсатора С2, которая ориентировочно рассчитывается по формуле:

где Iз — зарядный ток (А), U2 — напряжение вторичной обмотки при «нормальном»включении трансформатора (В), U1 — напряжение сети.

Трансформатор — любой, мощностью 150…250 ВА, с напряжением на вторичной обмотке 20…36 В. Диоды моста — любые на номинальный ток не менее 10 А. Тиристоры — КУ202 В, Г и т.д.

S1 служит для переключения режимов зарядки и хранения. Ток зарядки выбирается равным 0,1 от численного значения емкости аккумулятора, а ток хранения — 1…1.5А.

Если есть возможность, то периодически, примерно один раз в две недели, желательно производить разряд аккумуляторной батареи током 2Iз с контролем температуры электролита.

Настройки устройство практически не требует. Возможно, придется уточнить емкость конденсатора, контролируя ток амперметром. При этом необходимо замкнуть накоротко выводы 15 и 67 (Б, В и Ш).

Схема зарядного устройства для зарядки автомобильного аккумулятора (2 вариант)

 

Для открытия файла в лучшем разрешении скачайте на его к себе на компьютер.
 При подключении к зарядному устройству автомобильного аккумулятора, напряжение на клеммах которого меньше 16,5 В, на выводе 2 микросхемы А1.1 устанавливается напряжение достаточное для открывания транзистора VT1, транзистор открывается и реле P1 срабатывает, подключая контактами К1.1 к электросети через блок конденсаторов первичную обмотку трансформатора и начинается зарядка аккумулятора. Как только напряжение заряда достигнет 16,5 В, напряжение на выходе А1.1 уменьшится до величины, недостаточной для поддержания транзистора VT1 в открытом состоянии. Реле отключится и контакты К1.1 подключат трансформатор через конденсатор дежурного режима С4, при котором ток заряда будет равен 0,5 А. В таком состоянии схема зарядного устройства будет находиться, пока напряжение на аккумуляторе не уменьшится до 12,54 В.

Как только напряжение установится равным 12,54 В, опять включится реле и зарядка пойдет заданным током. Предусмотрена возможность, в случае необходимости, переключателем S2 отключить систему автоматического регулирования.

Гаражная схема — зарядки аккумулятора » Автосхемы, схемы для авто, своими руками

Сейчас во всех новых автомобилях, да и не только в них нет выключателя массы. Поэтому аккумулятор при длительной стоянке автомобиля 1-2 недели, практически полностью разрядится. Вот что-бы этого не происходило и служит данная статья и схема, которая подзаряжает аккумулятор малым током, примерно около 0.3 А. Приехал в гараж, вставил штекер в прикуриватель и всё, можешь не волноваться за свой аккумулятор с ним все будет в порядке.

Данная схема выпрямителя, поддерживает заряд акккумулятора, равным напряжению работы генератора и подзаряжает аккумулятор при стоянке малым током.

При сборке данной схемы, прошу обратить внимание, что данное устройство в большинстве случаев будет работать без присмотра, поэтому позаботьтесь о безопасности. Я имею ввиду поставьте обязательно предохранители, обязательно со стороны 220 вольт и в самом штекере прикуривателя, как говорится бережено бог бережет. Данным устройством пользуюсь уже год, очень доволен, а сейчас с наступлением зимы, ой как будет не хватать нашему аккумулятору заряда. Поэтому я даже ( при минусовой температуре ) приехав в гараж обязательно включаю устройство на ночь, стартер утром крутит уверенней.


Выпрямитель, конечно лучше всего монтировать металлическом ящечке или можно в электрощитке, где у вас расположены все электрические прибамбасы. Лучше запитать устройство от отдельного выключателя, минуя главный выключатель гаража. Детали в схеме самые простые и распространенные, их можно найти в отслуживших телевизорах или магнитофонах. Единственное трансформатор требует немногой переделки.

Он берется от любого радиоприемника, телевизора или магнитофона. Удаляются с него все обмотки, оставляем только первичную на 220 вольт. А вот вторичную намотаем сами, проводом не менее 0. 5 мм. на напряжение 18 вольт. Транзистор и тиристор устанавливаем на общем радиаторе без всяких изолирующих прокладок. Конденсатор берем на напряжение не менее 400 вольт.

Самую первую настройку можно выполнить без приборов — при подключенном выпрямителе и
работающем двигателе автомобиля установить движок подстроечного резистора в положение на

границе резкого уменьшения яркости свечения индикатора.

Описание контроллера заряда АКБ, детальное руководство по изготовлению

Аккумулятор вместе с генератором являются устройствами, обеспечивающими автомобиль электропитанием. От степени зарядки батареи зависит успешный старт машины и работа приборов, входящих в электрическую сеть при выключенном двигателе. Поэтому важно следить за ее зарядкой. Для контроля зарядки предназначен контроллер заряда автомобильной АКБ. В статье описывается принцип действия устройства, дается инструкция по изготовлению своими руками.

Если не контролировать зарядку, то недозаряд аккумулятора грозит тем, что в один прекрасный момент может не завестись двигатель, особенно в зимний период. Проверить напряжение на клеммах устройства можно с помощью мультиметра. Если говорит контрольная лампа заряда аккумуляторной батареи на приборной панели, это говорит о том, что у батареи низкая зарядка. Но горение лампочки малоинформативно.

Содержание

[ Раскрыть]

[ Скрыть]

Встроенный контроллер

Благодаря техническому прогрессу повышается комфорт обслуживания и поездки на машине. Многие современные автомобили оснащены бортовыми компьютерами. Одна из его функций – показывать напряжение АКБ. Но такая роскошь доступна не всем водителям. На старых моделях порой установлен аналоговый вольтметр, но по его показаниям трудно судить о состоянии зарядки. Поэтому стали производить специальные индикаторы заряда аккумуляторных батарей. Они выпускаются как встроенными в аккумулятор, так и в виде отдельных устройств, которые подключаются к бортовому компьютеру.

Встроенными индикаторами обычно оснащаются необслуживаемые аккумуляторные батареи. Они представляют собой поплавковые индикаторы, которые часто называют гидрометрами. По их цвету можно определить степень заряженности АКБ и уровень электролита. Для контроля состояния аккумулятора достаточно индикации одной ячейки. Перед тем, как воспользоваться индикатором, следует слегка постучать по нему. Это необходимо для того, чтобы вышли пузырьки воздуха, которые могут помешать вести наблюдения. Таким образом, можно будет четко видеть цвет индикатора.

При анализе следует учесть то, что когда батарея начинает заряжаться, то плотность электролита увеличивается ближе к электродам. Над электродами повышение плотности происходит за счет диффузии. Индикатор находится над электродами, соответственно будет реагировать на плотность в этой части батареи. Это может стать причиной неточных результатов.

Даже при полной зарядке индикатор может оставаться черного цвета. Объясняется такая ситуация тем, что не успели перемешаться слои электролита большей плотности со слоями меньшей плотности. Процесс диффузии может длиться несколько дней.

Точную зарядку можно определить с помощью тестера.

Конструкция

Схема встроенного индикатора выглядит следующим образом:

Конструкция аккумуляторного гидрометра

 Принцип действия

У большинства гидрометров одинаковый принцип действия, он основывается на трех положениях индикатора. Когда заряжается батарея, увеличивается плотность электролита. Благодаря этому зеленый шарик, выполняющий роль поплавка, всплывает по трубке и появляется в глазке индикатора. Обычно поплавок виден, если заряженность батареи превышает 65 %.

Виден зеленый поплавок

Если поплавок тонет в электролите, это означает, что плотность не отвечает норме и АКБ недостаточно заряжена. При этом глазок индикатора будет черного цвета. Такая ситуация говорит о том, что необходима подзарядка.

Глазок черного цвета

Существуют модели, в которых кроме зеленого шарика есть красный, поднимающийся по трубке при низкой плотности. В этом случае в глазке будет виден красный шарик.

Последним вариантом является низкий уровень электролита. В этом случае в глазок индикатора будет видна поверхность электролита. Это значит, что необходимо долить электролит или дистиллированную воду. Правда, в случае с необслуживаемым устройством, сделать это сложно.

Видна поверхность жидкости

Заводские контроллеры

Существуют промышленные устройства для контроля уровня зарядки АКБ. Рассмотрим некоторые из них.

Контроллер уровня зарядки DC-12 В представляет собой конструктор. Он подойдет тем, кто имеет знания по электротехнике. Устройство позволяет контролировать заряженность батареи и выполнять функцию реле-регулятора. Продается в виде набора деталей и собирается самостоятельно. Диапазон напряжений составляет от 2,5 до 18 В. Потребляемый ток – 20 мА. Размеры печатной платы: 43х20 мм (автор видео — DeXter Show).

Панель с индикатором от TMC пригодится автолюбителям, которые установили в свой автомобиль второй аккумулятор. Устройство состоит из алюминиевой панели, вольтметра и тумблера. С помощью тумблера осуществляется переключение между батареями.

Можно приобрести устройства контроля уровня заряда аккумулятора от фирмы Faria Euro Black Style, но у них очень высокая стоимость.

Инструкция по изготовлению

Если есть желание, знания по электронике и время, можно изготовить контроллер зарядки аккумулятора своими руками. Конструктивно устройство будет состоять из электронного блока, на корпусе которого будут расположены три диода красного, зеленого и синего цвета. Цвета диодов можно выбрать любые, главное, правильно оценивать полученные результаты.

Назначение данного устройства – контролировать работу автомобильного аккумулятора с напряжение электросети от 6 до 14 В. Этот прибор схож с тем, что продается в магазине. Речь идет о наборе DC-12 В, о котором упоминалось выше. Принцип действия обоих устройств одинаков.

Для изготовления контроллера понадобятся следующие детали:

  • для размещения компонент печатная плата;
  • транзисторы: ВС547 и ВС557;
  • резисторы: сопротивлением 1 кОм – 2, 220 Ом – 3, 2,2 кОм – 1;
  • диоды (стабилизаторы) на 9,1 и 10 В;
  • набор светодиодов RGB (красный, зеленый, синий).

Перед сборкой следует проверить, чтобы контакты соответствовали цвету светодиодов. Проверку можно выполнить с помощью тестера.  Это можно сделать с помощью тестера. Монтируя компоненты, желательно светодиоды вывести на проводах длиной 5-20 см, а не припаивать их к плате. Такую конструкцию легче расположить на приборной панели автомобиля.

Сборка устройства осуществляется по следующей схеме:

Простейшая схема контроллера

При сборке следует размещать комплектующие на печатной плате как можно более компактно, чтобы он не занимали много места. После подключения к бортовой электросети контроллер будет показывать текущий уровень зарядки аккумулятора.

При этом он будет лишь сигнализировать об определенном уровне, не показывая конкретных значений:

  • если загорается светодиод красного цвета, это означает, что напряжение находится в пределах от 6 до 10 В — это критичный уровень;
  • если горит синий светодиод, то заряд составляет 11-13 В – это оптимальное значение, которое соответствует нормальной работе аккумуляторной батареи;
  • если аккумулятор полностью заряженный, загорается светодиод зеленого цвета.

Собранную панель рекомендуется устанавливать и подключать к бортовой сети на обратной стороне панели приборов, а на лицевую сторону вывести светодиоды на проводах. Если выполнять все работы аккуратно, то это не отразится на внешнем виде приборной доски.

Установка контроллера позволяет контролировать заряженность аккумуляторной батареи, что дает возможность вовремя подзаряжать АКБ и не даст попасть в ситуацию, когда не заводится двигатель из-за разряженной батареи.

 Загрузка …

Видео «Индикатор разряда аккумулятора»

В этом видео демонстрируется, как собрать простое устройство для проверки заряженности батареи (автор ролика — Паяльник TV).

▶▷▶▷ схема зарядного устройства на реле регулятора напряжения

▶▷▶▷ схема зарядного устройства на реле регулятора напряжения
ИнтерфейсРусский/Английский
Тип лицензияFree
Кол-во просмотров257
Кол-во загрузок132 раз
Обновление:28-03-2019

схема зарядного устройства на реле регулятора напряжения — Yahoo Search Results Yahoo Web Search Sign in Mail Go to Mail» data-nosubject=»[No Subject]» data-timestamp=’short’ Help Account Info Yahoo Home Settings Home News Mail Finance Tumblr Weather Sports Messenger Settings Want more to discover? Make Yahoo Your Home Page See breaking news more every time you open your browser Add it now No Thanks Yahoo Search query Web Images Video News Local Answers Shopping Recipes Sports Finance Dictionary More Anytime Past day Past week Past month Anytime Get beautiful photos on every new browser window Download Самодельный регулятор напряжения — MotoRegulatorcom motoregulatorcom/samodelni-regulator-naprajeniya Cached Добрый день , подскажите как должна работать последняя схема с регулировкой, на мотоцикле собрал два реле по этой схеме но , стабильной работы добиться не получается , управление сделал на Схема регулятора напряжения для зарядного устройства vudanчелябинск112рф/page/shema-regulyatora Cached Схема регулятора напряжения для зарядного устройства Тиристорный регулятор мощности Всё о вертолетах 2 Устройство вертолёта форум радиолюбителей Схема Зарядного Устройства На Реле Регулятора Напряжения — Image Results More Схема Зарядного Устройства На Реле Регулятора Напряжения images Схема зарядного устройства для автомобильного аккумулятора obinstrumenteru/elektronika/sxema-zaryadnogo-ustrojstva Cached Схема импульсного зарядного устройства для автомобильного аккумулятора Все недостатки перечисленных выше решений, можно поменять на один – сложность сборки Схема импульсного зарядного устройства для автомобильного volt-indexru/muzhik-v-dome/avtozaryadka-svoimi Cached Схема самодельного импульсного зарядного устройства с регулятором тока и напряжения для автомобильного аккумулятора своими руками Регулятор напряжения генератора: схема, проверка :: SYLru wwwsylru/article/187731/new_regulyator Cached В таком случае необходима замена регулятора напряжения генератора на новый Как снять регулятор Если неисправность только лишь в регуляторе напряжения , то работ по его замене немного Реле регулятора напряжения генератора — как проверить, схема elquantaru › Генераторы Реле регулятора напряжения генератора напряжения на выходе генератора зарядного Зарядные устройства » Автосхемы, схемы для авто, своими руками avtosxemacom/zaryadnye-ustroystva Cached Главная Автоэлектрика Видео Схема На Регулятора напряжения 593702-01 — доработка Тиристорный регулятор напряжения на одном тиристоре — YouTube wwwyoutubecom /watch?v=729aN9kefv4 Cached Печатную плату похожего регулятора можно найти по ссылке внизу: напряжения Самая простая схема с РЕЛЕ Автомобильное зарядное устройство – схема и конструкция для ydomainfo/avtomobil/avtomobil-zaryadnoe Cached Схема защиты от переполюсовки зарядного устройства при неправильном подключении аккумулятора к выводам выполнена на реле Р3 Регулятор напряжения и тока для зарядного устройства wwwpinterestcom /pin/606860118515404625 Cached Схема зарядного устройства Li-ion от 5В USB без стабилизации тока Promotional Results For You Free Download | Mozilla Firefox ® Web Browser wwwmozillaorg Download Firefox — the faster, smarter, easier way to browse the web and all of Yahoo 1 2 3 4 5 Next 17,700 results Settings Help Suggestions Privacy (Updated) Terms (Updated) Advertise About ads About this page Powered by Bing™

  • В современных автомобилях применяются синхронные трёхфазные электрические машины переменного тока ,
  • а в выпрямителе применяют трёхфазный выпрямитель по схеме Ларионова. Ограничитель тока (сокращённо ОТ) — электромагнитное реле, не позволяющее току генератора превышать расчётную величину. Проверь по
  • Т) — электромагнитное реле, не позволяющее току генератора превышать расчётную величину. Проверь по схеме,100%рабочая. А на верхних двух схемах минус на общую металлическую пластинку quot;шоколадкиquot; правильно? Как проверить интегральный регулятор напряжения Я112Б или Я 112Б1. Наверное проще вовремя обслужить генератор, АКБ и разъёмы-клеммы + поставить КАЧЕСТВЕННЫЙ реле-регулятор(РР)! Тогда чем отличается генератор от зарядного устройства? Схема будет таковой: Система работы: при подключении аккумулятора верной полярностью, реле включается за счет оставшегося в аккумуляторе заряда. Берем простое автомобильное реле на 12В и два диода 1N4007. Это приводит к отпусканию реле, контакты которого вновь размыкаются, и весь процесс повторяется. Уставка Вибрационный регулятор зависит от натяжения пружины реле, размера зазора магнитной системы или от электрического сопротивления в цепи катушки. Приводятся схемы устройств для зарядки и восстановления аккумуляторов, а также описываются новые, созданные по технологии quot;dryfitquot;, герметичные аккумуляторы, не требующие ухода в течении 5…8 лет эксплуатации. Схема защищена от короткого замыкания выхода. Схемы и описания трансиверов, усилителей, антенн и другой радиолюбительской аппаратуры, бытовой радиоаппаратуры. Справочники. Файловый архив. Библиотека литературы. Советы начинающим. 3. Схема автоматического зарядного устройства. Схема блока БПРУ-66/220 аналогична, но в ней применена трехфазная мостовая схема выпрямления. Ко вторичной обмотке ТТ может быть подключено последовательно несколько приборов и реле. …оборудования и получению подтверждения их выполнения, а также самостоятельные действия по отключению и заземлению оборудования в соответствии с мероприятиями по подготовке рабочего места, определенными нарядом (распоряжением) с учётом фактической схемы… Схема включения династартера в цепь.Ротор дннастартера (рис. 1) представляет собой массивную (весом около четырех килограммов) деталь, имеющую колоколообразную форму.

а в выпрямителе применяют трёхфазный выпрямитель по схеме Ларионова. Ограничитель тока (сокращённо ОТ) — электромагнитное реле

контакты которого вновь размыкаются

  • подскажите как должна работать последняя схема с регулировкой
  • схема elquantaru › Генераторы Реле регулятора напряжения генератора напряжения на выходе генератора зарядного Зарядные устройства » Автосхемы
  • своими руками avtosxemacom/zaryadnye-ustroystva Cached Главная Автоэлектрика Видео Схема На Регулятора напряжения 593702-01 — доработка Тиристорный регулятор напряжения на одном тиристоре — YouTube wwwyoutubecom /watch?v=729aN9kefv4 Cached Печатную плату похожего регулятора можно найти по ссылке внизу: напряжения Самая простая схема с РЕЛЕ Автомобильное зарядное устройство – схема и конструкция для ydomainfo/avtomobil/avtomobil-zaryadnoe Cached Схема защиты от переполюсовки зарядного устройства при неправильном подключении аккумулятора к выводам выполнена на реле Р3 Регулятор напряжения и тока для зарядного устройства wwwpinterestcom /pin/606860118515404625 Cached Схема зарядного устройства Li-ion от 5В USB без стабилизации тока Promotional Results For You Free Download | Mozilla Firefox ® Web Browser wwwmozillaorg Download Firefox — the faster

схема зарядного устройства на реле регулятора напряжения — Поиск в Google Специальные ссылки Перейти к основному контенту Справка по использованию специальных возможностей Оставить отзыв о специальных возможностях Нажмите здесь , если переадресация не будет выполнена в течение нескольких секунд Войти Удалить Пожаловаться на неприемлемые подсказки Режимы поиска Все Картинки Видео Новости Карты Ещё Покупки Книги Авиабилеты Финансы Настройки Настройки поиска Языки (Languages) Включить Безопасный поиск Расширенный поиск Ваши данные в Поиске История Поиск в справке Инструменты Результатов: примерно 634 000 (0,45 сек) Looking for results in English? Change to English Оставить русский Изменить язык Результаты поиска Картинки по запросу схема зарядного устройства на реле регулятора напряжения Другие картинки по запросу «схема зарядного устройства на реле регулятора напряжения» Жалоба отправлена Пожаловаться на картинки Благодарим за замечания Пожаловаться на другую картинку Пожаловаться на содержание картинки Отмена Пожаловаться Видео 14:04 Самодельное зарядное устройство автомат для АВТО на базе Алё Гараж с Геннадием В YouTube — 7 дек 2017 г 10:11 ПРОСТОЙ #СПОСОБ ПЕРЕДЕЛКИ ПРОСТОГО ЗАРЯДНОГО В Evseenko Technology YouTube — 17 дек 2015 г 17:30 Как #сделать ПРОСТОЕ АВТОМАТИЧЕСКОЕ #ЗАРЯДНОЕ! Evseenko Technology YouTube — 1 янв 2016 г Все результаты Зарядное устройство из реле регулятора ваз Схема зарядного Сохраненная копия ВАЗ-2110: регулятор напряжения : принцип работы, устройство, схема и замена Зарядное устройство из реле регулятора ваз Схема зарядного устройства для автомобильного аккумулятора obinstrumenteru › Сохраненная копия 19 февр 2017 г — Простая схема зарядного устройства на 12В схема Регулятор силы тока заряда Индикатор уровня тока и (или) напряжения заряда батареи достигает настроенного уровня, реле К2 отключает нагрузку Зарядное устройство на регуляторе напряжения radiolubru/page/zarjadnoe-ustrojstvo-na-reguljatore-naprjazhenija Сохраненная копия Похожие 5 июн 2013 г — Зарядное устройство на автомобильном регуляторе напряжения генератора Реле-регулятор зарядки АКБ на базе автомобильного реле-регулятора › Тематические форумы › Подвесные лодочные моторы Сохраненная копия 20 июл 2015 г — 25 сообщений — ‎8 авторов Во вложении- схема реле — регулятора напряжения для лодочного мотора и фото автомобильного регулятора напряжения Годится Регулятор напряжения и тока для зарядного устройства — Pinterest Сохраненная копия 22 февр 2019 г- Регулятор напряжения и тока для зарядного устройства 67060840 Принципиальная Схема , Electronics Projects Подробнее Зарядное устройство для автомобильных аккумуляторов Сохраненная копия 2 июл 2007 г — Мною опробованы регулятор типа 1213702 и интегральный — Я112А где Iз — зарядный ток (А), U2 — напряжение вторичной обмотки при простенькую схему на транзисторе и реле от перезарядки, реле будет Зарядные устройства для АКБ — Заметки для мастера kopilkasovetovucozru/index/zarjadnye_ustrojstva_dlja_akb/0-85 Сохраненная копия Похожие На рисунке 2, показана схема автоматического зарядного уст-ва, которое позволяет это приводит к включению реле , аккумулятор начинает заряжаться Зарядное устройство с автомобильным регулятором напряжения Тиристорное импульсное зарядное устройство 10А на КУ202 | Все rustasteru/thyristor-impulse-charger-10a-ku202html Сохраненная копия Похожие 24 авг 2014 г — Схема тиристорного зарядного устройства на КУ202 Ну на 15-25А и обратное напряжение не ниже 50В Как было сказано ранее схема является тиристорным фазоимпульсным регулятором мощности с схему защиты от переполюсовки на реле или схему на компараторе, которая Как сделать простое 12V зарядное устройство автоматическим на Сохраненная копия Автоматический модуль для зарядного устройства 12 вольт (АМЗУ) устройство в автоматическое, обеспечивающее зарядный ток 5А и предельное зарядное напряжение В качестве примера используются реле регулятор «АСТРО» а можно схему нарисовать подключения реле вашу на фото Схема зарядки акб Зарядка аккумулятора схема и принцип действия Сохраненная копия А поскольку на нём завязано реле , то оно будет обесточенным Надёжная схема зарядного устройства автомобильного аккумулятора вполне можно взять обычный регулятор напряжения для генератора автомобиля (РНГ) на Реле напряжения схема своими руками Электронный регулятор Сохраненная копия Свет · Разное ГлавнаяРазное Реле напряжения схема своими руками Бистабильное реле — это устройство , которое предназначено для управления контактами Эквивалентная схема для режима заряда показана на рис4 Форум РадиоКот • Просмотр темы — Зарядное устройство для АКБ › Список форумов › Устройства › Умные мысли Сохраненная копия 30 дек 2008 г — 20 сообщений — ‎5 авторов Мысль пришла мне в голову: а чтобы реле -регулятор не Просто видел в интернете схему зарядного устройства с РР, но там был интегральный что такое Электромеханический регулятор напряжения и какие 1 Полезные схемы для автолюбителей libqrzru/book/export/html/4791 Сохраненная копия Похожие Значение зарядного тока устанавливается регулятором R2 по амперметру Реле К1 применено типа РПУ-0 с рабочим напряжением обмотки 24 В или на Эта обмотка используется для питания схемы зарядного устройства Зарядное устройство для автомобильного аккумулятора 12В cxemnet › Электроника для авто Сохраненная копия Похожие 14 дек 2012 г — Схема простого зарядного устройства для автомобильного PP, Реле регулятор напряжения , Я112 14В, 1, Поиск в Utsource, В блокнот Нужна схема зарядного устройства для зарядки 12V АКБ — Страница 2 forumvegalabru › Схемотехника › Источники питания Сохраненная копия Похожие 12 июн 2008 г — Нужна схема зарядного устройства для зарядки 12V АКБ напряжения — реле — регулятор отключает ток возбуждения в цепи якоря,заряд Зарядное устройство для автомобильных аккумуляторов своими › Автоликбез Сохраненная копия Схема зарядного устройства для зарядки автомобильного аккумулятора (1 вариант) элемента применен автомобильный регулятор напряжения генератора Реле отключится и контакты К11 подключат трансформатор через Зарядное устройство — просто и дешево! — бортжурнал Лада Сохраненная копия Похожие Решил написать свой способ как собрать зарядное устройство для 4 диода, рассчитанные на нужный ток, на радиорынке и собрать их по схеме : ток на трансформаторе посредством готового регулятора напряжения ( диммер) Пусть это делают генератор и реле -регулятор без посторонней помощи Зарядное устройство часть 2 | Путешествуем — на УАЗ Патриот ligenru/zaryadnoe-ustrojstvo-chast-2/ Сохраненная копия Зависимость напряжения в конце заряда от температуры аккумулятора Для экспериментов штатный реле — регулятор гены подпирался двумя диодами с Штатный регулятор остался внутри и для перехода к прежней схеме Автомобильное зарядное устройство – схема и конструкция для Сохраненная копия него устанавливают реле — регулятор , который ограничивает напряжение в Схем зарядных устройств автомобильных аккумуляторов в Интернете Реле регулятора напряжения генератора — как проверить, схема и › Генераторы Сохраненная копия Главная Генераторы Реле регулятора напряжения генератора щупы, лампочка на 12 V и набор соединительных проводов, зарядное устройство Зарядные устройства — Автоклуб ВАЗ 2106 vaz-2106ru/forum/indexphp?showtopic=8290st=40 Сохраненная копия Похожие 2 февр 2010 г — 20 сообщений — ‎10 авторов Схема нарисованная выше идет под электронное,оно РР- это реле регулятор, РН — регулятор напряжения — на авто оба они Не всегда есть возможность находиться возле зарядного устройства и все время зарядное устройство для автомобильного аккумулятора схема из wwwklimatyzacjaradompl//zariadnoe-ustroistvo-dlia-avtomobilnogo-akkumuliator Сохраненная копия 25 дек 2018 г — зарядное устройство для автомобильного аккумулятора схема из регулятора Схема Из Регулятора Напряжения images Зарядное устройство 12в реле К2 и реле — регулятора Простое зарядное устройство Регулятор тока зарядного устройства — Схема-авто — поделки схема-авторф › Главная › Зарядные устройства Сохраненная копия Похожие 7 авг 2014 г — Это своего рода регулятор , который позволяет уменьшить или увеличить ток заряда аккумулятора, при этом напряжение зарядки Реле Регулятора Напряжения Генератора, Где Находится, Схема › Устройство двигателя Сохраненная копия Рейтинг: 5 — ‎3 голоса Реле регулятора напряжения генератора: устройство и принцип работы Поэтому называют регулятор напряжения еще и реле зарядки , а на панель Электрическая схема зарядного устройства elektronika-mukru › Схемы устройств Сохраненная копия Похожие Электрическая схема зарядного устройства литиевых аккумуляторов, применяемых в LM317D2T и импульсном регуляторе напряжения LM2576S -adj Реле K1 необходимо для защиты устройства от изменения полярности Зарядное устройство из БП компьютера — Авто портал Познавай iru-cisru/zarjadnoe-ustrojstvo-iz-bp-kompjutera/ Сохраненная копия 18 нояб 2014 г — Схема модуля регулятора напряжения Рис2 Схема модуля регулятора тока Зарядное устройство из компьютерного блока питания Регуляторы напряжения Автомобильная электроника Схемы vicgainsdotru/avel/RN101htm Сохраненная копия Похожие От работы регулятора напряжения ( реле -регулятора) зависит состояние зажигания, состояние и нормальная работа приборов и устройств автомобиля напряжения 14/28 В Второй уровень 28 В используется для зарядки Схема зарядки ВАЗ 2106, — Автоэлектрика avtolektronru › Схемы Сохраненная копия Похожие 7 авг 2014 г — рассмотрена схема зарядки ВАЗ 2106 принцип работы схемы зарядки ВАЗ Реле регулятор напряжения обеспечивает поддержание напряжения, и выходу из строя регулятора и других электронных устройств Реле-регулятор с термокомпенсацией — RadioRadar wwwradioradarnet/radiofan//relay_controller_temperature_compensationhtml Сохраненная копия Похожие 26 апр 2013 г — Как известно, напряжение свинцового аккумулятора зависит от его Предлагаемое устройство заменяет штатный реле — регулятор штатного реле — регулятора (см схему электрооборудования автомобиля ВАЗ-2109) Очень заинтересовал этот регулятор , так как есть проблема зарядки Реле регулятор напряжения: стабильность напряжения бортовой wwwautooptru/articles/products/38241779/ Сохраненная копия Реле — регулятор напряжения ( регулятор напряжения ) — компонент от АКБ для ее заряда ;; Отдельные типы регуляторов — изменение напряжения частота переключения схемы и возможность внедрения устройства в общую схема зарядного устройства для авто своими — Steung Siem Reap steungsiemreapcom//skhema-zariadnogo-ustroistva-dlia-avto-svoimi-rukami-s-regu Сохраненная копия 27 дек 2018 г — схема зарядного устройства для авто своими руками с реле — регулятор , который ограничивает напряжение в бортовой Схем Расположение и проверка реле зарядки ВАЗ 2107 — ProVaz07ru › Электрооборудование Сохраненная копия Перейти к разделу Назначение реле регулятора ВАЗ 2107 инжектор и карбюратор — Если напряжение превышает 16 Вольт, Такие устройства еще называются Реле зарядки на таких до 14,6 Вольт Схема регулировки Зарядное устройство для аккумулятора автомобиля: как сделать vopros-remontru/elektrika/zaryadnoe-ustrojstvo-dlya-akkumulyatora-avtomobilya/ Сохраненная копия Сделать зарядное устройство для автомобильного аккумулятора своими руками Реле – переменного тока на напряжение срабатывания 24 В и ток через Простая схема защиты аккумулятора автомобиля от перезаряда, Включаем ЗУ без нагрузки;; Регулятором напряжения выставляем 5 В на Термокомпенсированный регулятор напряжения Схема, описание wwwdiagramcomua/list/power/power1080shtml Сохраненная копия От ранее опубликованных регуляторов напряжения , содержащих в качестве термодатчика обмотку сопротивлением 12 кОм малогабаритного реле , например, статья Ремонт и доработка зарядных устройств Сонар УЗ 205 Система зарядки — Msvmasterlv wwwmsvmasterlv › › S-class › W220 › Схемы электрооборудования Сохраненная копия Похожие Рейтинг: 4,5 — ‎4 голоса 25 февр 2019 г — Система зарядки Аккумулятора Mercedes S-Class W220 Электрическая S- Class W220 | Электрические Схемы Реле и предохранители Mercedes S- Class W220 Напряжение генератора падает, регулятор отпирается и снова Положительную клемму зарядного устройства соединить с Схема зарядки ВАЗ 2106 поможет выявить неисправности avtovxru/elektrooborudovanie/shema-zaryadki-vaz-2106-179/ Сохраненная копия Похожие Подробная схема зарядки аккумулятора ВАЗ 2106 Далее реле — регулятор напряжения поддерживает его величину в пределах от 13,5 до 14,3 Однако применение таких устройств требует дополнительных мер безопасности Регуляторы заряда аккумуляторов от солнечных батарей radiostoragenet/1313-regulyatory-zaryada-akkumulyatorov-ot-solnechnyh-batarejhtml Сохраненная копия Рейтинг: 4 — ‎1 голос Схемы контроллеров ( регуляторов ) заряда аккумуляторных батарей от Этим напряжением задается уровень срабатывания устройства Реле управляется через транзистор Q1 выходным напряжением компаратора Реле-регулятор напряжения генератора: проверка, признаки voditelautoru › Устройство автомобиля › Электрооборудование Сохраненная копия Похожие 4 дек 2016 г — Как проверить реле — регулятор напряжения генератора Простейшая проверка устройства проводится тестером в режиме Схема также подключается к блоку питания или зарядному устройству через лампочку, 3 метода проверки регулятора напряжения генератора — Etlibru Сохраненная копия 11 мар 2019 г — Узнайте как быстро и просто проверить реле -регулятор по какой схеме , каким способом и как проверять регулятор напряжения генератора Для этого используются зарядное устройство или блок питания с Три зарядных устройства для автомобильных аккумуляторов istochnikpitaniaru/indexfiles/171htm Сохраненная копия Похожие Схемы зарядных устройств для автомобильных аккумуляторов довольно простейших схем зарядных устройств построено по принципу регулятора напряжения с По окончании зарядки реле К1 отключается и схема полностью Как проверить реле регулятор генератора — KrutiMotorru krutimotorru/proverka-rele-regulyatora-generatora/ Сохраненная копия Похожие В случае обнаружения проблем с зарядкой аккумуляторной батареи от генератора необходимо проверить реле регулятор Данное устройство Как проверить реле-регулятор напряжения генератора автомобиля Сохраненная копия Как проверить реле — регулятор напряжения генератора автомобиля В современных автомобилях чаще всего используют устройства , совмещенные со В возрастных машинах, где схема заряда аккумулятора аналогична, Схема » Автосхемы, схемы для авто, своими руками avtosxemacom/shema/ Сохраненная копия Похожие Электро схемы для автолюбителей, сделать самому Регулятора напряжения 593702-01 — доработка USB- зарядка на микросхеме МС33063А Предлагаемое устройство предназначено для подключения в качестве дополнительного Малогабаритное реле ДХО на PIC12F683 для автомобилей Ford Самодельное зарядное устройство для автомобильного generatorexpertsru › Электрогенераторы Сохраненная копия Похожие Выбирается подходящая схема прибора для зарядки аккумулятора (в данном случае пластинку, с закрепленными на ней конденсаторами, реле , и другими деталями На корпус крепят регулятор напряжения и выводы для клемм Проверка реле регулятора генератора — Авто-Мото24ру avto-moto24ru/699-proverka-rele-regulyatora-generatorahtml Сохраненная копия Рейтинг: 5 — ‎1 голос 17 июл 2017 г — Для проверки реле регулятора существует несколько простых всего зарядное устройство для АКБ), измеритель напряжения и простую лампу номиналом в 12 вольт Схема проверки реле — регулятора лампочкой Реле регулятор ВАЗ 2106: схема подключения, выдаваемое › Классические модели ВАЗ › Генератор Сохраненная копия Рейтинг: 2,5 — ‎6 голосов Самостоятельно проверяем реле — регулятор напряжения на ВАЗ 2106 3 834 применяется устройство , называемое реле — регулятором напряжения Ремонт реле регулятора генератора — Diodnik diodnikcom › Архив › Авто Сохраненная копия Похожие 23 сент 2015 г — Ремонт реле регулятора генератора ВАЗ своими руками Изучаем схему и проверяем компоненты сами Напряжение 13,05В Зарядное устройство из блока Delta dps-400sb-b (Chieftec GPS-450AA-101A) Контроллер для ветрогенератора: балластный регулятор заряда Сохраненная копия Рейтинг: 5 — ‎1 голос Перейти к разделу Усложнённый вариант схемы контроллера — Схема намного сложнее, так как в ней Принцип действия устройства состоит в через реле поступает на микросхему При понижении напряжения триггер Вместе с схема зарядного устройства на реле регулятора напряжения часто ищут зарядное устройство на автомобильном регуляторе напряжения зарядное устройство с регулировкой тока и напряжения своими руками регулятор тока для зарядного устройства до 10 ампер схемы автоматических зарядных устройств простое автоматическое зарядное устройство регулируемое зарядное устройство своими руками зарядное устройство на тиристорах зарядное устройство для автомобильного аккумулятора своими руками Навигация по страницам 1 2 3 4 5 6 Следующая Ссылки в нижнем колонтитуле Россия — Подробнее… Справка Отправить отзыв Конфиденциальность Условия Аккаунт Поиск Карты YouTube Play Новости Почта Контакты Диск Календарь Google+ Переводчик Фото Покупки Ещё Документы Blogger Hangouts Google Keep Jamboard Подборки Другие сервисы Google

В современных автомобилях применяются синхронные трёхфазные электрические машины переменного тока , а в выпрямителе применяют трёхфазный выпрямитель по схеме Ларионова. Ограничитель тока (сокращённо ОТ) — электромагнитное реле, не позволяющее току генератора превышать расчётную величину. Проверь по схеме,100%рабочая. А на верхних двух схемах минус на общую металлическую пластинку quot;шоколадкиquot; правильно? Как проверить интегральный регулятор напряжения Я112Б или Я 112Б1. Наверное проще вовремя обслужить генератор, АКБ и разъёмы-клеммы + поставить КАЧЕСТВЕННЫЙ реле-регулятор(РР)! Тогда чем отличается генератор от зарядного устройства? Схема будет таковой: Система работы: при подключении аккумулятора верной полярностью, реле включается за счет оставшегося в аккумуляторе заряда. Берем простое автомобильное реле на 12В и два диода 1N4007. Это приводит к отпусканию реле, контакты которого вновь размыкаются, и весь процесс повторяется. Уставка Вибрационный регулятор зависит от натяжения пружины реле, размера зазора магнитной системы или от электрического сопротивления в цепи катушки. Приводятся схемы устройств для зарядки и восстановления аккумуляторов, а также описываются новые, созданные по технологии quot;dryfitquot;, герметичные аккумуляторы, не требующие ухода в течении 5. ..8 лет эксплуатации. Схема защищена от короткого замыкания выхода. Схемы и описания трансиверов, усилителей, антенн и другой радиолюбительской аппаратуры, бытовой радиоаппаратуры. Справочники. Файловый архив. Библиотека литературы. Советы начинающим. 3. Схема автоматического зарядного устройства. Схема блока БПРУ-66/220 аналогична, но в ней применена трехфазная мостовая схема выпрямления. Ко вторичной обмотке ТТ может быть подключено последовательно несколько приборов и реле. …оборудования и получению подтверждения их выполнения, а также самостоятельные действия по отключению и заземлению оборудования в соответствии с мероприятиями по подготовке рабочего места, определенными нарядом (распоряжением) с учётом фактической схемы… Схема включения династартера в цепь.Ротор дннастартера (рис. 1) представляет собой массивную (весом около четырех килограммов) деталь, имеющую колоколообразную форму.

Как сделать зарядное устройство для автомобильного аккумулятора своими руками?

Основные компоненты из которых состоит зарядное устройство:

Трансформатор — преобразует напряжение питания сети 220 Вольт в необходимо для нас 12 Вольт либо в некоторых устройствах до 14,4 Вольта (последнее соответствует напряжению питания электросети автомобиля при работающем генераторе)

Диодный мост — это четыре соединенных между собой диода которые преобразуют переменное электричество в постоянное.

Блок управления зарядом — один из самых важных элементов, который управляет токами заряда. Позволяет зарядить аккумулятор полностью и при этом не перезарядить его (не позволяет закипеть электролиту внутри аккумулятора)

Регуляторы, разъемы, индикаторы и др органы управления.

Провода и клеммы для подключения к аккумулятору.

Итак рассмотрим один из самых дешевых образцов зарядного устройства — рыночная стоимость около 40 долларов.

Стандартное дешевое заводское зарядное устройства для автомобильных аккумуляторов

Технические характеристики зарядного устройства:

Заряжает аккумуляторы от 10 до 75 ампер часов.
Есть возможность заряжать 6v или 12v аккумуляторы для автомобиля, мотоцикла, скутера, мопеда и т.д.
(На передней панели мы визуально можем найти специальные переключатель между напряжениями 6 или 12 Вольт аккумулятора).
Ток подаваемый на аккумулятор в конце заряда уменьшается автоматически.
(На передней панели мы так же можем увидеть амперметр, для индикации тока заряда)

Внутреннее устройство, элементы заводского зарядного устройства для автомобильных аккумуляторов

Рассмотрев зарядное устройство изнутри мы можем найти такие основные элементы
— трансформатор
— диодный мост
— предохранитель
— переключатель выходного напряжение
— провода на клеммы подключаемые к аккумулятора.

В нашем варианте блок управления зарядом отсутствует.

В принципе эта схема тоже имеет право на жизнь и работает она следующим образом.

Принцип работы зарядного устройства:

Трансформатор рассчитан на определенный ток заряда — скажем не более 7,5 Ампер.
При подключении разряженного аккумулятора максимально допустимой емкости 75 Ампер, трансформатор отдает максимально допустимые ток в 7,5 Ампера что является 1/10 емкости аккумулятора.

По мере зарядки аккумулятора напряжение на его клеммах увеличивается и ток заряда уменьшается (именно поэтому благодаря законам физики ток подаваемый на аккумулятор в конце зарядки будет уменьшаться).

К сожалению такое зарядное устройство вряд ли закончит когда то процесс зарядки, и если аккумулятор у вас неисправен и не набирает нужной емкости — ток заряда не будет уменьшаться.

В современном мире все чаще люди склоняются к покупке не обслуживаемого аккумулятора. В случае если с ним что то случается и он не заряжается — он подлежит замене.

Зарядное устройство без блока управления никак не поможет вам восстановить свойства аккумулятора, но опять таки в наше время этим редко кто занимается. Более сложные устройства умеют создавать режим импульсной зарядки, когда после каждого импульса зарядки следует импульс зарядки. Это позволяет возобновить свойства аккумулятор.

Часто в более продвинутых зарядных устройствах так же есть функция разрядки, так как аккумулятор должен всегда находится в режиме полной зарядки и разрядки — это позволяет сохранить его емкость.

Если вы пользуетесь не обслуживаемым аккумуляторам и вам попросту надо срочно зарядить аккумулятор после долгого простоя автомобиля или после холодной ночи — вы можете сделать такое зарядное устройство самостоятельно.

Схема простейшего зарядного устройства для автомобильного аккумулятора

1. Трансформатор.
Первое что вам нужно  — это трансформатор с выходным напряжением 12 Вольт — 14 Вольт с толстой вторичной обмоткой, которая сможет обеспечить ток равный  1/10 емкости вашего аккумулятора.

Не стоит использовать трансформатор для калькулятора или плеера они очень маломощны. Возможно вам удастся найти более мощный трансформатор скажем от старого телевизора (типа ТС-180-2). Если ваш трансформатор не выдаете нужного напряжение,  вы можете намотать нужную вторичку самостоятельно — толстым медным проводом несколько витков до достижения нужного напряжения.

Помните, когда вы работаете с трансформатором, что он подключен к сети 220 Вольт — будьте очень осторожны (это опасно для жизни)!

Если у вас получилось найти или изготовить такой трансформатор, далее вам необходимо будет купить диодный мостик.

2. Диодный мостик

Диодный мостик заводского изготовления. Рассчитан на большие токи зарядного устройства

Это довольно распространенный товар — все что вам нужно знать это только лишь ток на который он должен быть рассчитан. В нашем случае это все так же 7,5 Ампера.
Если диодный мостик найти не удалось вы можете найти 4 диода все по тому же показателю и собрать диодный мостик из них.

Далее на выходе диодного мостика вам нужно поставить автомобильный предохранитель все на тот же рассчитанный ток 7,5 Ампер. В случае если вы случайно замкнете клеммы или перепутаете их местами на аккумуляторе, у вас сгорит предохранитель, а не  трансформатор.

3. Амперметр
Для полноты картины, вы можете так же установить амперметр последовательно с предохранителем, что бы отслеживать какой ток течет от вашего зарядного устройства. В тоже время вы сможете понять в каком состоянии находится аккумулятор на данный момент.

4. Провода и клеммы.
Далее следуют провода и клеммы которые можно будет подключать на аккумулятор. Тут вы имеете полную свободу действий. Провода лучше всего взять медные толщиной не менее 1 мм. Клеммы можно взять либо обычные автомобильные, либо крокодилы как на заводском варианте.

Рекомендуем вам так же поставить выключатель который будет включать и выключать трансформатор, так как вытягивать и вставлять вилку из розетки намного не удобнее.

Так же перед трансформатором стоит поставить предохранитель, скажем на 220 Вольт 0,5 Ампер, что бы вдвойне обезопасить ваш трансформатор с двух сторон, по входному и выходному току.

Таким образом вы получите прибор, который по нескольким мелким параметрам будет даже лучше и надежнее заводского аналога.

Если у вас есть желания сделать прибор еще функциональнее, вы можете поискать в интернете блоки управления заряда.
Основные приимущества блока управления заряда аккумулятора:
— регулирует ток заряда — уменьшает его до минимальных величин до полного заряда аккумуляторной батареи
— выключет блок зарядки при достижении полного заряда аккумулятора
— разряжает аккумулятор полностью для полного чистого цикла зарядки
— заряжает аккумулятор импульсными токами, чередую заряд и разряд для восстановления емкости.

В условиях нынешнего суматошного мира, не обслуживаемых аккумуляторов с запасом срока службы в пять лет — вы вряд ли будете заниматься восстановление аккумуляторов.

В любом случае успехов вам в ваших начинаниях !

Схема зарядного устройства для автомобильного аккумулятора своими руками

При нормальных условиях эксплуатации, электрическая система автомобиля самодостаточна. Речь идет об энергоснабжении – связка из генератора, регулятора напряжения, и аккумуляторной батареи, работает синхронно и обеспечивает бесперебойное питание всех систем.

Это в теории. На практике, владельцы автомобилей вносят поправки в эту стройную систему. Или же оборудование отказывается работать в соответствии с установленными параметрами.

Например:

  1. Эксплуатация аккумуляторной батареи, которая исчерпала свой ресурс. Элемент питания «не держит» заряд
  2. Нерегулярные поездки. Длительный простой автомобиля (особенно в период «зимней спячки») приводит к саморазряду АКБ
  3. Автомобиль используется в режиме коротких поездок, с частым глушением и запуском мотора. АКБ просто не успевает подзарядиться
  4. Подключение дополнительного оборудования увеличивает нагрузку на АКБ. Зачастую приводит к повышенному току саморазряда при выключенном двигателе
  5. Экстремально низкая температура ускоряет саморазряд
  6. Неисправная топливная система приводит к повышенной нагрузке: автомобиль заводится не сразу, приходится долго крутить стартер
  7. Неисправный генератор или регулятор напряжения не позволяет нормально заряжать аккумулятор. К этой проблеме относятся изношенные силовые провода и плохой контакт в цепи заряда
  8. И наконец, вы забыли выключить головной свет, габариты или музыку в автомобиле. Для полного разряда аккумулятора за одну ночь в гараже, иногда достаточно неплотно закрыть дверь. Освещение салона потребляет достаточно много энергии.

Любая из перечисленных причин приводит к неприятной ситуации: вам надо ехать, а батарея не в силах провернуть стартер. Проблема решается внешней подпиткой аккумулятора: то есть, зарядным устройством.

Во вкладке четыре проверенных и надежных схем зарядных устройств для автомобиля от простой до самой сложной. Выбирай любую и она будет работать.

Простая схема зарядного устройства на 12В.

Зарядное устройство с регулировкой тока зарядки.

Регулировка от 0 до 10А осуществляется изменением задержки открывания тринистора.

Схема зарядного устройства для аккумулятора с самоотключением после зарядки.

Для заряда аккумуляторов емкостью 45 ампер.

Схема умного зарядного устройства, которое предупредит о не правильном подключении.

 

Его совершенно несложно собрать своими руками. Пример зарядного устройства сделанного из бесперебойника.

Любая схема автомобильного зарядного устройства состоит из следующих компонентов:

  • Блок питания.
  • Стабилизатор тока.
  • Регулятор силы тока заряда. Может быть ручным или автоматическим.
  • Индикатор уровня тока и (или) напряжения заряда.
  • Опционально – контроль заряда с автоматическим отключением.

Любой зарядник, от самого простого, до интеллектуального автомата – состоит из перечисленных элементов или их комбинации.

Схема простого зарядного устройства для автомобильного аккумулятора

Формула нормального заряда простая, как 5 копеек – базовая емкость батареи, деленная на 10. Напряжение заряда должно быть немногим более 14 вольт (речь идет о стандартной стартерной батарее 12 вольт).

Простая принципиальная электрическая схема зарядного устройства для автомобиля состоит из трех компонентов: блок питания, регулятор, индикатор.

Классика — резисторный зарядник


Блок питания изготавливается из двух обмоточного «транса» и диодной сборки. Выходное напряжение подбирается вторичной обмоткой. Выпрямитель – диодный мост, стабилизатор в этой схеме не применяется.
Ток заряда регулируется реостатом.

Важно! Никакие переменные резисторы, даже на керамическом сердечнике, не выдержат такой нагрузки.

Проволочный реостат необходим для противостояния главной проблеме такой схемы – избыточная мощность выделяется в виде тепла. Причем происходит это очень интенсивно.

Разумеется, КПД такого прибора стремится к нулю, а ресурс его компонентов очень низкий (особенно реостата). Тем не менее, схема существует, и она вполне работоспособна. Для аварийной зарядки, если под рукой нет готового оборудования, собрать ее можно буквально «на коленке». Есть и ограничения – ток более 5 ампер является предельным для подобной схемы. Стало быть, заряжать можно АКБ емкостью не более 45 Ач.

Зарядное устройство своими руками, подробности, схемы — видео

Гасящий конденсатор

Принцип работы изображен на схеме.

Благодаря реактивному сопротивлению конденсатора, включенного в цепь первичной обмотки, можно регулировать зарядный ток. Реализация состоит из тех же трех компонентов – блок питания, регулятор, индикатор (при необходимости). Схему можно настроить под заряд одного типа АКБ, и тогда индикатор будет не нужен.

Если добавить еще один элемент – автоматический контроль заряда, а также собрать коммутатор из целой батареи конденсаторов – получится профессиональный зарядник, остающийся простым в изготовлении.

Схема контроля заряда и автоматического отключения, в комментариях не нуждается. Технология отработана, один из вариантов вы видите на общей схеме. Порог срабатывания устанавливается переменным резистором R4. Когда собственное напряжение на клеммах аккумуляторной батареи достигает настроенного уровня, реле К2 отключает нагрузку. В качестве индикатора выступает амперметр, который перестает показывать ток заряда.

Изюминка зарядного устройства – конденсаторная батарея. Особенность схем с гасящим конденсатором – добавляя или уменьшая емкость (просто подключая или убирая дополнительные элементы) вы можете регулировать выходной ток. Подобрав 4 конденсатора для токов 1А, 2А, 4А и 8А, и коммутируя их обычными выключателями в различных комбинациях, вы можете регулировать ток заряда от 1 до 15 А с шагом в 1 А.

При этом никакого паразитного нагрева (кроме естественного, выделяющегося на диодах моста), коэффициент полезного действия зарядника высокий.

Схема самодельного зарядного устройства для аккумулятора на тринисторе

Если вы не боитесь держать в руках паяльник, можно собрать автомобильный аксессуар с плавной регулировкой тока заряда, но без недостатков, присущих резисторной классике.

В качестве регулятора применяется не рассеиватель тепла в виде мощного реостата, а электронный ключ на тиристоре. Вся силовая нагрузка проходит через этот полупроводник. Данная схема рассчитана на ток до 10 А, то есть позволяет без перегрузок заряжать АКБ до 90 Ач.

Регулируя резистором R5 степень открытия перехода на транзисторе VT1, вы обеспечиваете плавное и очень точное управление тринистором VS1.

Схема надежная, легко собирается и настраивается. Но есть одно условие, которое мешает занести подобный зарядник в перечень удачных конструкций. Мощность трансформатора должна обеспечивать троекратный запас по току заряда.

То есть, для верхнего предела в 10 А, трансформатор должен выдерживать длительную нагрузку 450-500 Вт. Практически реализованная схема будет громоздкой и тяжелой. Впрочем, если зарядное устройство стационарно устанавливается в помещении – это не проблема.

Схема импульсного зарядного устройства для автомобильного аккумулятора

Все недостатки перечисленных выше решений, можно поменять на один – сложность сборки. Такова сущность импульсных зарядников. Эти схемы имеют завидную мощность, мало греются, располагают высоким КПД. К тому же, компактные размеры и малый вес, позволяют просто возить их с собой в бардачке автомобиля.

Схемотехника понятна любому радиолюбителю, имеющему понятие, что такое ШИМ генератор. Он собран на популярном (и совершенно недефицитном) контроллере IR2153. В данной схеме реализован классический полу мостовой инвертор.

При имеющихся конденсаторах выходная мощность составляет 200 Вт. Это немало, но нагрузку можно увеличить вдвое, заменив конденсаторы на емкости по 470 мкФ. Тогда можно будет заряжать аккумуляторы емкостью до 200 Ач.

Собранная плата получилась компактной, умещается в коробочку 150*40*50 мм. Принудительного охлаждения не требуется, но вентиляционные отверстия надо предусмотреть. Если вы увеличиваете мощность до 400 Вт, силовые ключи VT1 и VT2 следует установить на радиаторы. Их надо вынести за пределы корпуса.

В качестве донора может выступить блок питания от системника ПК.

Важно! При использовании блока питания АТ или АТХ, возникает желание переделать готовую схему в зарядное устройство. Для реализации такой затеи необходима заводская схема блока питания.

Поэтому просто воспользуемся элементной базой. Отлично подойдет трансформатор, дроссель и диодная сборка (Шоттки) в качестве выпрямителя. Все остальное: транзисторы, конденсаторы и прочая мелочь – обычно в наличии у радиолюбителя по всяким коробочкам-ящичкам. Так что зарядник получается условно бесплатным.

На видео показано и рассказано как собрать самостоятельно собрать импульсное зарядное устройство для авто.

Стоимость же заводского импульсника на 300-500 Вт – не менее 50 долларов (в эквиваленте).

Вывод:

Собирайте и пользуйтесь. Хотя разумнее поддерживать вашу аккумуляторную батарею «в тонусе».

About sposport

View all posts by sposport

Контроллер для ветрогенератора своими руками

Сама схема работает так.Генератор ветряка подключается к контроллеру. От контроллера идут провода к аккумулятору. Туда же подключается и нагрузка. Если напряжение на аккумуляторе падает ниже 11.9 В, контроллер подключает генератор к аккумулятору, и последний начинает заряжаться. Если напряжение аккумулятора достигает 14 В, контроллер подключает к нему дополнительную нагрузку.

Оба пороговых напряжения, 11.9 В и 14 В, можно изменять подстроечными резисторами. Интересуясь в Интернете, какими же должны быть эти пороги для свинцовых аккумуляторов, я обнаружил некоторые расхождения у различных авторов. Для своей схемы я взял усредненные значения.

При напряжении аккумулятора между 11.9 В и 14 В, контроллер может переключать систему между зарядом и отдачей тока в нагрузку. Пара кнопок позволяет мне делать эти переключения в любое время, независимо от контроллера. Очень удобно при наладке устройства.

Желтый светодиод зажигается во время зарядки аккумулятора. Когда аккумулятор заряжен, и избыточная мощность отводится в дополнительную нагрузку, загорается зеленый светодиод. Таким образом, я имею минимальную обратную связь, позволяющую понять, что происходит в системе. Кроме того, с помощью мультиметра я могу измерять напряжения в любых точках. Все это не очень удобно.

Как только у меня дойдут руки до того, чтобы упаковать конструкцию в подходящий корпус, я непременно добавлю вольтметр и амперметр, возможно, от автомобильного приборного щитка.

Я использовал свою собранную на листе фанеры схему, что бы с помощью внешнего источника питания имитировать различные режимы заряда и разряда аккумулятора, и настроить контроллер. Устанавливая напряжение 11.9 В, а затем 14 В, я выставил подстроечными резисторами требуемые пороги. Сделать это следовало до отъезда, так как заниматься настройкой в поле никакой возможности у меня не было бы.

Доработка.Исследовав подробнее правила заряда свинцовых аккумуляторов, верхний порог я установил равным 14.8 В. Кроме того, от брата мне достались герметичные свинцовые аккумуляторы, которыми я и заменил обычные, использовавшиеся первоначально.

Важно ! —Я понял, что в первую очередь, надо подключать к контроллеру аккумулятор, и только потом ветрогенератор или солнечную батарею. Если генератор подключить первым, волны напряжения не будут сглаживаться аккумулятором, контроллер будет работать неправильно, реле хаотически переключаться, а броски напряжения, в конце концов, приведут к выходу из строя микросхем. Короче, всегда подключайте аккумуляторную батарею первой, а ветрогенератор вслед за ней. И наоборот, разбирая систему, убедитесь в первую очередь, что генератор отключен. Батарею отключайте последней.

Наконец, представлю вам принципиальную схему. Она лишь немного отличается от прототипа, ссылку на который я приводил выше. Как я говорил раньше, некоторые детали я заменил на те, которые уже были у меня, чтобы не тратиться на покупку новых. Советую вам поступать также. Совершенно не обязательно повторять схему один в один.

Перевод текстов на рисунке,Замечание: C3c и IC3d не используются.Заземлите их входы,а выходы оставьте свободными. Входы подключения ветряных турбин и солнечных батарей Battery Bank+ «+» аккумуляторной батареи Dummy Load+ «+» дополнительной нагрузки.

Battery Bank- «-» аккумуляторной батареи Dummy Load- «-» дополнительной нагрузки IC1 LM7808 +8V Voltage Regulator, IC1 LM7808 стабилизатор напряжения +8 В,IC2 LM1458 Dual operational amplifier IC2 LM1458

сдвоенный операционный усилитель,IC3 4001 Quad 2-input NOR Gate,IC3 CD4001 4 логических элемента «2И-НЕ»,Q1 IRF540 MOSFET,Q1 IRF540 MOSFET,D1-3 Blocking diodes rated for the maximum current each source could produce,D1…D3 блокировочные диоды, рассчитанные на максимальный ток подключаемых источников D4 1N4007,D4 1N4007. LED1 Yellow LED . LED1 желтый светодиод, LED2 Green LED, LED2 зеленый светодиод. F1 Fuse rated at total expected current all sources combined will produce. F1 предохранитель, рассчитанный на максимальный суммарный ток всех подключаемых источников. F2 1 Amp Fuse for controller electronics. F2 предохранитель 1 А в шине питания электроники контроллера. RLY1 40 Amp SPDT automotive relay . RLY1 автомобильное реле на коммутируемый ток 40 А . PB1-2 Momentary contact NO pushbuttons. PB1-2 кнопки без фиксации.

All resistors are % Watt 10%. Все резисторы ? Вт 10%. Test Point A should read 7.4V. Контрольная точка A. Напряжение в точке 7.4 В. Test Point B should read 5.95V. Контрольная точка B. Напряжение в точке 5.95 В

Наконец, проект завершен. До моего отъезда осталась всего неделя. Пролетела она быстро. Я разобрал турбину и тщательно упаковал все детали и инструменты, необходимые, чтобы собрать турбину после поездки через всю страну. Погрузив все в машину, я во второй раз поехал на свой участок в Аризоне, на этот раз с надеждой, что хоть какое-то электричество у меня там будет.

Build a Solar Charge Controller — DIY

Фотогальваника, процесс производства электричества из солнечного света, становится все популярнее среди энтузиастов альтернативной энергетики. . . и по уважительным причинам. В эксплуатации фотоэлектрические панели абсолютно не загрязняют окружающую среду (чего, конечно, нельзя сказать об их производстве) и требуют очень небольшого ухода. Более того, солнечные элементы неуклонно падают в цене и теперь во многих ситуациях могут конкурировать с другими энергетическими альтернативами.

Однако, как и в случае со многими из этих независимых систем выработки электроэнергии, фотоэлектрическая установка требует некоторых средств хранения энергии.. . и самым популярным носителем сейчас является свинцово-кислотная батарея. В течение дня, когда много солнечного света, электричество, вырабатываемое фотоэлектрической панелью, вызывает химические изменения в элементах батареи. Затем ночью — и в другие непроизводительные часы — этот химический процесс можно обратить вспять, чтобы извлечь накопленную энергию из батареи.

Но зарядка свинцово-кислотного аккумулятора — непростая задача. Эти чувствительные электрические инструменты требуют особого ухода: между фотоэлектрическим генератором и аккумуляторной батареей должна быть гармоничная взаимосвязь, если система должна работать эффективно и обеспечивать долгие годы службы, на которую она способна.

Солнечный свет, как и ветер, не является постоянной силой. К счастью, это намного предсказуемее, чем ветер! Несмотря на сезонные изменения и погоду, мы получаем около шести часов продуктивного солнечного света каждый день. Из этих часов период с 10:00 до 14:00 предлагает пиковое солнечное излучение и большую часть доступной для фотоэлектрических систем энергии.

Поскольку зарядка происходит не более четверти дня, мы должны залить в ячейки как можно больше энергии в течение этого периода.С другой стороны, мы также должны соблюдать требования к батарее, чтобы гарантировать, что она будет полностью заряжена и не будет повреждена.

Разряженный свинцово-кислотный аккумулятор легко выдерживает очень тяжелую начальную зарядку. . . но только сначала . По мере того, как аккумулятор проходит цикл заполнения и изменяется его химический состав, он приобретает совершенно другой набор зарядных характеристик. Когда от 70 до 80 процентов общей емкости размещено в элементах, нагнетаемое электричество начнет разлагать воду внутри батареи. . . разбивая его на элементарные компоненты водорода и кислорода.

Вы могли заметить этот эффект, не осознавая, что на самом деле происходит. Ситуацию часто называют «кипением», неправильное название, которое относится к просачиванию поднимающихся пузырьков газа. Процесс более правильно называть газообразованием . . . и если позволить продолжить, это может необратимо повредить клетки. Чтобы этого не произошло, ток обычно снижается сразу после начала выделения газа.При более низкой скорости (часто называемой зарядкой непрерывным потоком ) аккумулятор можно без опасности поднять до 100% емкости.

Контроллер

Очевидно, что если мы хотим согласовать наш цикл фотоэлектрического питания с схемой зарядки аккумулятора, нам придется довести элементы до точки выделения газа в течение четырехчасового периода с 10:00 до 14:00. Затем, в течение оставшейся части дня, можно подзарядить аккумулятор, чтобы поднять его до уровня выше 80 процентов.А простой контроллер может решить, когда уменьшить ток.

К счастью, батарея сама подает электрический сигнал при достижении точки выделения газа. Существует четко определенная взаимосвязь между состоянием заряда ячеек и их напряжением, как показано на рис. Для 12-вольтовой батареи выделение газа начинается с 12,6 вольт. . . и эта батарея будет полностью заряжена при напряжении 13,2 вольт. [ПРИМЕЧАНИЕ РЕДАКТОРА: для более подробного анализа батарей и их характеристик, см. Руководство матери по аккумуляторным батареям.]

Таким образом, контроллер содержит электронный компаратор, который контролирует напряжение батареи и, в свою очередь, управляет реле. Когда напряжение низкое, компаратор оставляет реле в его нормально замкнутом положении, позволяя полностью передать фотоэлектрический выход на батарею. . . но как только он достигает порога 12,6 вольт, реле размыкается и шунтирует заряд через токоограничивающий резистор. Это производит постоянный заряд, который достаточно низкий, чтобы работать бесконечно, не повреждая аккумулятор.

Чтобы предотвратить разряд аккумулятора через фотоэлектрическую панель в ночное время, в положительный вывод включен диод в последовательную цепь. Этот односторонний клапан также не позволяет контроллеру потреблять энергию от батареи. . . так что все потребности схемы исходят от фотоэлектрического генератора.

Строительство

Создание собственного контроллера заряда солнечной батареи — это относительно простой электронный проект, основанный на печатной плате. В статье «Создайте свои собственные печатные схемы» я обсуждал легкую подготовку этих удобных цепей.Но при желании можно заказать готовый из Даноцинтов.

После того, как вы подготовили или приобрели печатную плату, просто вставьте компоненты в соответствующие отверстия, как показано на рисунке, и припаяйте их на месте, используя маломощный утюг. Убедитесь, что интегральная схема и полупроводники обращены в правильном направлении. Их легко обратить вспять, и это приведет к их быстрой гибели.

Чтобы помочь вам следить за ходом процесса зарядки, в контроллер встроен монитор. Индикаторные лампы LED 1 и 2 показывают, соответственно, когда цепь находится на полном токе и на слабой струйке. (Эта функция не является существенной для работы контроллера, но может быть полезной. Однако, если вы решите устранить ее — удалив резисторы R6 и 7 и лампы LED 1 и 2 — устройство все равно будет выполнять свою работу.)


Готовая печатная плата должна быть помещена в какой-либо водонепроницаемый корпус. Номер детали Radio Shack 270-224 отлично справляется со своей задачей.

Использование контроллера заряда солнечной батареи

Для установки регулятора заряда в фотоэлектрическую систему необходимо выполнить всего четыре подключения.Глядя на рисунок 4 в галерее изображений, вы можете увидеть, что отрицательный вывод является общим для всех компонентов, связывая отрицательные стороны от фотоэлектрической матрицы и от батареи. Две другие точки пайки подключаются к положительным выводам системы. Один подключается к положительному выводу на генераторе, а другой — со стороны резистора схемы — подключается к положительному выводу батареи.

После установки контроллера необходимо настроить датчик напряжения так, чтобы он включал реле в нужное время.Самый простой способ сделать это — начать с несколько разряженной батареи и повернуть VR1 до упора по часовой стрелке, чтобы контакты реле замкнулись и полный ток шел на свинцово-кислотные элементы. По мере зарядки аккумулятора контролируйте напряжение на его выводах с помощью вольтметра. Когда уровень достигнет 12,6 В, поверните VR1 против часовой стрелки до размыкания реле. Это переводит систему на постоянную подзарядку.

Или, если у вас нет под рукой вольтметра, вы можете просто наблюдать за элементами, когда они заряжаются.Когда вы заметите пузырение ячеек, отрегулируйте VR1 до тех пор, пока это реле не откроется. Однако этот процесс немного сложен, потому что небольшое количество пузырьков произойдет до того, как будет достигнута фактическая точка газообразования. Будьте осторожны, чтобы не спутать это естественное выделение газов с энергичным, непрерывным «кипением», которое вы действительно ищете.

К сожалению, напряжение зарядки аккумулятора зависит от его температуры. Чем холоднее клетки, тем выше напряжение, необходимое для химических изменений.В идеале контроллер подстраивается под это автоматически, но — для того, чтобы этот проект был относительно простым — в нашем устройстве нет встроенного датчика температуры. Следовательно, вам иногда придется настраивать точку активации контроллера вручную, чтобы компенсировать температура. . . в соответствии с таблицей в галерее изображений.

Однако этот параметр не очень важен, поскольку свинцово-кислотные элементы могут допускать определенную погрешность. Пока вы держите батарею в тепле и в укрытии (как вам и следовало бы), небольшие изменения температуры не потребуют регулировки.

Контроллер, который я описал здесь, легко справится с полной мощностью в пять ампер и может выполнять работу коммерческих устройств стоимостью 100 долларов и более! Как ни удивительно, вы можете построить его самостоятельно за несколько расслабляющих вечерних часов менее чем за 20 долларов. Установив устройство на место, вы можете быть уверены, что аккумулятор вашего фотоэлектрического генератора получает ток, необходимый для эффективной зарядки.

Почему не автоматическое регулирование?

Контроллеры заряда

для свинцово-кислотных аккумуляторов существуют примерно столько же, сколько и сами аккумуляторы.Например, многие люди наверняка знакомы с регуляторами напряжения, используемыми в электрических системах автомобилей. На самом деле, вы можете даже задаться вопросом, зачем вам нужно создавать специальный контроллер для ваших фотоэлектрических панелей. . . когда автомобильный регулятор на замену можно легко найти за несколько долларов.

Ответ заключается в том, что фотоэлектрические панели и автомобильные генераторы или генераторы — это совершенно разные вещи. . . и, соответственно, контроллеры, соответствующие этим двум типам систем, работают по очень разным принципам.Регулятор напряжения в вашем автомобиле управляет скоростью зарядки аккумулятора, контролируя напряжение (а не ток). Это достигается путем изменения тока, протекающего в обмотках возбуждения генератора. Затем ток поля создает магнитное поле в генераторе, и выходное напряжение устройства прямо пропорционально силе этого поля: чем сильнее магнитный поток, тем выше напряжение.

Когда зарядное напряжение начинает подниматься выше предела, установленного аккумулятором, регулятор снижает ток в обмотке возбуждения.Это снижает мощность устройства, а батарея и скорость заряда остаются неизменными.

С другой стороны, фотоэлементы

не имеют обмотки возбуждения, которая могла бы изменять зарядный ток. Следовательно, автомобильный регулятор будет бесполезен с фотоэлектрической панелью. Кроме того, в большинстве ветряных генераторов используется установка, очень похожая на автомобильный регулятор напряжения, поэтому описанный здесь фотоэлектрический контроллер должен использоваться исключительно с солнечными электрическими панелями. Это подходящий инструмент для правильной работы!

Список материалов

Деталь

RL1 (реле 12 В)

IC1 (LM339)

R1, R2 (33 кОм)

R3, R5, R6, R7 (470 Ом)

R4 (2. 2 МОм)

R8 (1 кОм)

RS (5 Ом, два 10 Ом параллельно)

VR1 (50 кОм)

D1 (1N5400)

D2 (стабилитрон 6,2 В)

LED 1, LED 2 (лампа)

Q1 (MPS222A)


Первоначально опубликовано: март / апрель 1984 г.

Как работают контроллеры заряда | DIY солнечные и возобновляемые источники энергии

Контроллер заряда является неотъемлемой частью почти всех энергосистем, заряжающих батареи, независимо от того, являются ли они источниками энергии солнечные панели, ветряные, гидроэнергетические, топливные или коммунальные сети.Его цель состоит в том, чтобы ваши батареи глубокого цикла были правильно запитаны и безопасны в течение длительного времени.

Основные функции контроллера довольно просты. Контроллеры заряда блокируют обратный ток и предотвращают перезарядку аккумулятора. Некоторые контроллеры также предотвращают чрезмерную разрядку батареи, защищают от электрической перегрузки и / или отображают состояние батареи и поток энергии. Давайте рассмотрим каждую функцию по отдельности.

Блокировка обратного тока

Солнечные батареи работают, прокачивая ток через батарею в одном направлении.Ночью панели могут пропускать небольшой ток в обратном направлении, вызывая небольшую разрядку аккумулятора. (Наш термин «батарея» обозначает либо отдельную батарею, либо группу батарей.) Потенциальная потеря незначительна, но ее легко предотвратить. Некоторые типы ветряных и гидрогенераторов также потребляют обратный ток при остановке (большинство из них не работают, за исключением аварийных состояний).

В большинстве контроллеров зарядный ток проходит через полупроводник (транзистор), который действует как вентиль для управления током.Его называют «полупроводником», потому что он пропускает ток только в одном направлении. Он предотвращает обратный ток без каких-либо дополнительных усилий и затрат.

В некоторых старых контроллерах электромагнитная катушка размыкает и замыкает механический переключатель (называемый реле — вы можете слышать, как оно включается и выключается). Реле отключается ночью, чтобы заблокировать обратный ток. Эти контроллеры иногда называют контроллерами шунтирования вызовов.

Если вы используете солнечную батарею только для непрерывной зарядки аккумулятора (очень маленький массив по сравнению с размером батареи), то вам может не понадобиться контроллер заряда.Это редкое приложение. Примером может служить крошечный модуль обслуживания, который предотвращает разряд аккумулятора в припаркованном автомобиле, но не выдерживает значительных нагрузок. В этом случае вы можете установить простой диод, чтобы заблокировать обратный ток. Диод, используемый для этой цели, называется «блокирующим диодом».

Предотвращение перезарядки

Когда аккумулятор полностью заряжен, он больше не может накапливать поступающую энергию. Если энергия продолжает подаваться с полной скоростью, напряжение батареи становится слишком высоким.Вода разделяется на водород и кислород и быстро пузырится. (Похоже, он кипит, поэтому мы иногда его так называем, хотя на самом деле он не горячий. ) Имеется чрезмерная потеря воды и вероятность того, что газы могут воспламениться и вызвать небольшой взрыв. Батарея также быстро разряжается и может перегреться. Избыточное напряжение также может вызвать перегрузку ваших нагрузок (освещение, бытовые приборы и т. Д.) Или привести к отключению инвертора.

Предотвращение перезарядки — это просто вопрос уменьшения потока энергии к батарее, когда батарея достигает определенного напряжения.Когда напряжение падает из-за более низкой интенсивности солнечного света или увеличения потребления электроэнергии, контроллер снова разрешает максимально возможный заряд. Это называется «регулировкой напряжения».

Это самая важная функция всех контроллеров заряда. Контроллер «смотрит» на напряжение и в ответ регулирует заряд аккумулятора. Некоторые контроллеры регулируют поток энергии к батарее, полностью или полностью отключая ток. Это называется «управление включением / выключением». Другие снижают ток постепенно.Это называется «широтно-импульсной модуляцией» (ШИМ). Оба метода хорошо работают при правильной настройке для вашего типа батареи.

Контроллеры заряда

PWM поддерживают постоянное напряжение. Если ШИМ-контроллер имеет двухступенчатое регулирование, он сначала будет поддерживать напряжение на безопасном максимуме, чтобы аккумулятор полностью зарядился. Затем он снизит напряжение, чтобы поддерживать «завершающий» или «непрерывный» заряд. Двухступенчатое регулирование важно для системы, которая может испытывать много дней или недель избытка энергии (или небольшого использования энергии).Он поддерживает полный заряд, но сводит к минимуму потерю воды и стресс.

Напряжения, при которых контроллер изменяет скорость заряда, называются уставками. При определении идеальных уставок существует некоторый компромисс между быстрой зарядкой до захода солнца и небольшой перезарядкой аккумулятора.

Определение уставок зависит от предполагаемых моделей использования, типа батареи и, в некоторой степени, от опыта и философии разработчика или оператора системы. Некоторые контроллеры имеют регулируемые уставки, а другие нет.

Контрольные уставки в зависимости от температуры

Идеальные уставки напряжения для контроля заряда зависят от температуры аккумулятора. Некоторые контроллеры имеют функцию, называемую «температурной компенсацией». Когда контроллер обнаруживает низкую температуру батареи, он повышает заданные значения. В противном случае, когда аккумулятор холодный, он слишком быстро снизит заряд. Если ваши батареи подвергаются колебаниям температуры более чем примерно на 30 ° F (17 ° C), компенсация необходима.

Некоторые контроллеры имеют встроенный датчик температуры. Такой контроллер должен быть установлен в месте, где температура близка к температуре батарей. У лучших контроллеров есть выносной датчик температуры на небольшом кабеле. Зонд должен быть подключен непосредственно к батарее, чтобы сообщать о своей температуре контроллеру.

Альтернативой автоматической температурной компенсации является ручная регулировка заданных значений (если возможно) в соответствии с сезоном. Может быть, достаточно делать это только два раза в год, весной и осенью.

Контрольные уставки

в зависимости от типа батареи

Идеальные уставки для контроля заряда зависят от конструкции аккумулятора. В подавляющем большинстве систем возобновляемой энергии используются свинцово-кислотные батареи глубокого цикла либо затопленного, либо герметичного типа. Залитые батареи залиты жидкостью. Это стандартные экономичные батареи глубокого разряда.

Герметичные батареи используют пропитанные прокладки между пластинами. Их также называют «регулируемыми клапанами» или «абсорбирующим стекломатом» или просто «необслуживаемыми».«Их нужно регулировать до немного более низкого напряжения, чем залитые батареи, иначе они высохнут и выйдут из строя. В некоторых контроллерах есть средства выбора типа батареи. Никогда не используйте контроллер, не предназначенный для аккумулятора вашего типа.

Типичные уставки для свинцово-кислотных аккумуляторов 12 В при 25 ° C (77 ° F)

(Типичные, представлены здесь только для примера)

Верхний предел (залитый аккумулятор): 14,4 В
Верхний предел (герметичный аккумулятор): 14,0 В
Возобновление полной зарядки: 13. 0 В

Выключатель низкого напряжения: 10,8 В
Повторное подключение: 12,5 В

Температурная компенсация для батареи 12 В:

-0,03 В на ° C отклонение от стандарта 25 ° C

Выключатель низкого напряжения (LVD)

Батареи глубокого цикла, используемые в системах возобновляемых источников энергии, рассчитаны на разряд примерно на 80 процентов. Если они разряжаются на 100 процентов, они сразу же повреждаются. Представьте себе кастрюлю с водой, кипящую на кухонной плите. В момент высыхания кастрюля перегревается.Если подождать, пока прекратится пропаривание, уже слишком поздно!

Точно так же, если вы подождете, пока ваши огни не станут тусклыми, возможно, некоторое повреждение батареи уже произошло. Каждый раз, когда это происходит, емкость и срок службы батареи будут немного уменьшаться. Если аккумулятор находится в таком чрезмерно разряженном состоянии в течение нескольких дней или недель, он может быстро выйти из строя.

Единственный способ предотвратить чрезмерный разряд, когда все остальное не работает, — это отключить нагрузки (приборы, освещение и т. Д.).), а затем повторно подключить их только после восстановления напряжения из-за значительной зарядки. Когда приближается переразряд, аккумулятор на 12 В падает ниже 11 вольт (аккумулятор на 24 В падает ниже 22 вольт).

Цепь отключения при низком напряжении отключает нагрузку при достижении этой уставки. Он будет повторно подключать нагрузки только тогда, когда напряжение батареи существенно восстановится из-за накопления некоторого заряда. Типичная точка сброса LVD составляет 13 вольт (26 вольт в системе 24 В).

Все современные инверторы имеют встроенный LVD, даже дешевые карманные.Инвертор выключится, чтобы защитить себя и ваши нагрузки, а также вашу батарею. Обычно инвертор подключается непосредственно к батареям, а не через контроллер заряда, потому что его потребляемый ток может быть очень высоким, и потому что он не требует внешнего LVD.

Если у вас есть нагрузки постоянного тока, у вас должен быть LVD. Некоторые контроллеры заряда имеют один встроенный. Вы также можете приобрести отдельное устройство LVD. В некоторых системах LVD есть «переключатель милосердия», позволяющий потреблять минимальное количество энергии, по крайней мере, достаточно долго, чтобы найти свечи и спички! Холодильники постоянного тока имеют встроенный LVD.

Если вы покупаете контроллер заряда со встроенным LVD, убедитесь, что его емкость достаточна для обработки ваших нагрузок постоянного тока. Например, предположим, что вам нужен контроллер заряда для работы с током заряда менее 10 ампер, но у вас есть нагнетательный насос постоянного тока, который потребляет 20 ампер (на короткие периоды) плюс 6-амперная световая нагрузка постоянного тока. Подойдет контроллер заряда с LVD на 30 ампер. Не покупайте контроллер заряда на 10 ампер с нагрузочной способностью только 10 или 15 ампер!

Защита от перегрузки

Цепь перегружается, когда ток в ней превышает допустимый.Это может привести к перегреву и даже к возгоранию. Перегрузка может быть вызвана неисправностью (коротким замыканием) в проводке или неисправным прибором (например, замерзшим водяным насосом). Некоторые контроллеры заряда имеют встроенную защиту от перегрузки, обычно с кнопкой сброса.

Может быть полезна встроенная защита от перегрузки, но для большинства систем требуется дополнительная защита в виде предохранителей или автоматических выключателей. Если у вас есть цепь с размером провода, для которого безопасная допустимая нагрузка (допустимая нагрузка) меньше, чем предел перегрузки контроллера, вы должны защитить эту цепь с помощью предохранителя или прерывателя с подходящим более низким номинальным током.В любом случае соблюдайте требования производителя и Национальный электротехнический кодекс в отношении любых требований к внешним предохранителям или автоматическим выключателям.

Дисплеи и измерения

Контроллеры заряда

включают в себя множество возможных дисплеев, от одного красного светового индикатора до цифровых дисплеев напряжения и тока. Эти показатели важны и полезны. Представьте, что вы едете по стране без приборной панели в машине! Система отображения может отображать поток энергии в систему и из нее, приблизительное состояние заряда аккумулятора и время достижения различных пределов.

Если вам нужен полный и точный мониторинг, потратите около 200 долларов на отдельное цифровое устройство, которое включает в себя ампер-час. Он действует как электронный бухгалтер, отслеживая количество энергии, доступной в вашей батарее. Если у вас есть отдельный системный монитор, то наличие цифровых дисплеев в самом контроллере заряда не имеет значения. Даже самая дешевая система должна включать в себя вольтметр в качестве минимального индикатора функционирования и состояния системы.

Иметь все с помощью панели питания

Если вы устанавливаете систему для питания современного дома, вам потребуются защитные отключения и межсоединения для работы с большим током.Электрооборудование может быть громоздким, дорогим и трудоемким в установке. Чтобы вещи были экономичными и компактными, приобретите уже собранный силовой щит. Он может включать в себя контроллер заряда с LVD, инвертор и цифровой мониторинг в качестве опции. Это позволяет электрику легко подключать основные компоненты системы и выполнять требования безопасности Национального электротехнического кодекса или местных властей.

Контроллеры заряда для ветра и воды

Контроллер заряда для ветроэлектрической или гидроэлектрической системы зарядки должен защищать аккумуляторы от перезаряда, как и фотоэлектрический контроллер.Тем не менее, нагрузка на генератор должна постоянно поддерживаться, чтобы предотвратить превышение частоты вращения турбины. Вместо того, чтобы отключать генератор от батареи (как и большинство фотоэлектрических контроллеров), он направляет избыточную энергию на специальную нагрузку, которая поглощает большую часть энергии от генератора. Эта нагрузка обычно представляет собой нагревательный элемент, который «сжигает» избыточную энергию в виде тепла. Если вы можете использовать тепло с пользой, прекрасно!

Это работает?

Как узнать, что контроллер неисправен? Следите за вольтметром, когда батареи полностью заряжаются.Достигает ли напряжение (но не превышает ли оно) соответствующих уставок для вашего типа батареи? Используйте свои уши и глаза — батареи сильно пузыряются? На верхних частях аккумуляторных батарей скопилось много влаги? Это признаки возможного завышения цен. Получаете ли вы ожидаемую от аккумуляторной батареи емкость, которую ожидаете? В противном случае может быть проблема с вашим контроллером, и он может повредить ваши батареи.

Заключение

Контроль заряда аккумуляторов настолько важен, что большинство производителей высококачественных аккумуляторов (с гарантией на пять лет и более) устанавливают требования по регулированию напряжения, отключению при низком напряжении и температурной компенсации.Когда эти ограничения не соблюдаются, обычно батареи выходят из строя менее чем через четверть своего обычного ожидаемого срока службы, независимо от их качества или стоимости.

Хороший контроллер заряда стоит недорого по отношению к общей стоимости энергосистемы. И это не так уж и загадочно. Я надеюсь, что эта статья дала вам базовую информацию, необходимую для правильного выбора элементов управления для вашей энергосистемы.

Основы управления солнечным зарядом

| Северная Аризона Wind & Sun

Купите наш выбор контроллеров заряда от солнечных батарей здесь .

Что такое контроллер заряда от солнечных батарей?

Контроллер заряда или регулятор заряда — это, по сути, регулятор напряжения и / или тока, предназначенный для предотвращения перезарядки аккумуляторов. Он регулирует напряжение и ток, идущие от солнечных панелей к батарее. Большинство панелей «12 вольт» выдают от 16 до 20 вольт, поэтому, если нет регулирования, батареи будут повреждены из-за перезарядки. Большинству аккумуляторов для полной зарядки требуется от 14 до 14,5 вольт.

Всегда ли нужен контроллер заряда?

Не всегда, но обычно.Как правило, нет необходимости в контроллере заряда с небольшими частями обслуживания или панелях постоянного заряда, таких как панели от 1 до 5 Вт. Приблизительное правило состоит в том, что если панель выдает около 2 Вт или меньше на каждые 50 ампер-часов батареи, то она вам не нужна.

Например, стандартный залитый аккумулятор для гольф-кара составляет около 210 ампер-часов. Таким образом, чтобы поддерживать последовательную пару из них (12 В) только для обслуживания или хранения, вам понадобится панель мощностью около 4,2 Вт. Популярные 5-ваттные панели достаточно близки и не нуждаются в контроллере.Если вы обслуживаете батареи AGM глубокого разряда, такие как Concorde Sun Xtender, вы можете использовать панель меньшего размера на 2–2 Вт.

Почему панели на 12 вольт — это 17 вольт?

Тогда возникает очевидный вопрос — «почему панели не созданы только для вывода 12 вольт». Причина в том, что если вы это сделаете, панели будут обеспечивать питание только в прохладном месте, в идеальных условиях и на ярком солнце. В большинстве случаев это не то, на что можно рассчитывать. Панели должны обеспечивать дополнительное напряжение, чтобы, когда солнце находится низко в небе, или у вас сильная дымка, облачность или высокие температуры *, вы все равно получаете некоторую мощность от панели.Полностью заряженная «12-вольтовая» батарея составляет около 12,7 вольт в состоянии покоя (примерно от 13,6 до 14,4 в режиме зарядки), поэтому панель должна выдержать, по крайней мере, столько же в наихудших условиях.

* Вопреки интуиции, солнечные батареи лучше всего работают при более низких температурах. Грубо говоря, панель мощностью 100 Вт при комнатной температуре будет панелью на 83 Вт при температуре 110 градусов.

Подробная информация о контроллерах заряда MPPT.

Контроллер заряда регулирует напряжение на выходе панели от 16 до 20 вольт до уровня, необходимого для батареи в данный момент.Это напряжение будет варьироваться от 10,5 до 14,6, в зависимости от уровня заряда батареи, типа батареи, режима работы контроллера и температуры. (см. полную информацию о напряжениях аккумуляторов в нашем разделе о аккумуляторах).

Использование панелей высокого напряжения (стяжки) с батареями

Почти все фотоэлектрические панели мощностью более 140 Вт НЕ являются стандартными 12-вольтовыми панелями и не могут (или, по крайней мере, не должны) использоваться со стандартными контроллерами заряда. Напряжения на решетчатых панелях сильно различаются, обычно от 21 до 60 вольт или около того.Некоторые из них представляют собой стандартные панели на 24 В, но большинство — нет.

Что происходит при использовании стандартного контроллера

Standard (то есть все, кроме типов MPPT), часто будет работать с панелями высокого напряжения, если не превышено максимальное входное напряжение контроллера заряда. Однако вы потеряете много энергии — от 20 до 60% от номинальной мощности вашей панели. Элементы управления зарядкой принимают выход панелей и подают ток на батарею до тех пор, пока она не будет полностью заряжена, обычно около 13.От 6 до 14,4 вольт. Панель может выдавать только определенное количество ампер, поэтому, хотя напряжение снижается, скажем, с 33 вольт до 13,6 вольт, сила тока с панели не может превышать номинальный ток — так что с панелью на 175 ватт, рассчитанной на 23 в / 7,6 вольт. ампер, вы получите только 7,6 ампер при 12 вольт или около того в батарею. Закон Ома гласит, что ватт — это вольт x ампер, поэтому ваша 175-ваттная панель потребляет только около 90 ватт в батарее.

Использование контроллера MPPT с панелями высокого напряжения

Единственный способ получить полную мощность от солнечных панелей с высоковольтной сеткой — это использовать контроллер MPPT.См. Ссылку выше для получения подробной информации о контроле заряда MPPT. Поскольку большинство элементов управления MPPT могут потреблять до 150 В постоянного тока (некоторые могут быть выше, до 600 В постоянного тока) на стороне входа солнечной панели, вы часто можете последовательно соединить две или более панели высокого напряжения, чтобы уменьшить потери в проводе или использовать провод меньшего размера. . Например, с упомянутой выше 175-ваттной панелью 2 из них последовательно дадут вам 46 вольт при 7,6 ампер на контроллер MPPT, но контроллер преобразует это примерно до 29 ампер при 12 вольт.

Типы контроллеров зарядного устройства
Элементы управления зарядкой

бывают всех форм, размеров, функций и цен. Они варьируются от небольшого блока управления на 4,5 А (Sunguard) до программируемых контроллеров MPPT от 60 до 80 А с компьютерным интерфейсом. Часто, если требуются токи более 60 ампер, два или более блока от 40 до 80 ампер подключаются параллельно. Наиболее распространенные элементы управления, используемые для всех систем на батарейках, находятся в диапазоне от 4 до 60 ампер, но некоторые из новых элементов управления MPPT, такие как Outback Power FlexMax, достигают 80 ампер.

Элементы управления зарядкой бывают 3 основных типов (с некоторым перекрытием):

Простые одно- или двухступенчатые устройства управления , которые используют реле или шунтирующие транзисторы для управления напряжением в один или два этапа. По сути, они просто замыкают или отключают солнечную панель при достижении определенного напряжения. С практической точки зрения это динозавры, но некоторые из них все еще встречаются в старых системах, а некоторые из супердешевых продаются в Интернете. Их единственная реальная претензия на славу — их надежность — у них так мало компонентов, что сломать нечего.

3-ступенчатый и / или ШИМ , такие как Morningstar, Xantrex, Blue Sky, Steca и многие другие. Сейчас это в значительной степени отраслевой стандарт, но иногда вы все еще будете видеть некоторые из старых типов шунтов / реле, например, в очень дешевых системах, предлагаемых дискаунтерами и массовыми маркетологами.

Отслеживание точки максимальной мощности (MPPT), например, производства Midnite Solar, Xantrex, Outback Power, Morningstar и других. Это лучшие контроллеры с соответствующими ценами, но с эффективностью в диапазоне от 94% до 98% они могут сэкономить значительные деньги на более крупных системах, поскольку они обеспечивают на 10–30% больше энергии для батареи.Для получения дополнительной информации см. Нашу статью о MPPT.

Большинство контроллеров поставляются с каким-либо индикатором: простым светодиодом, серией светодиодов или цифровыми индикаторами. Многие новые модели, такие как Outback Power, Midnite Classic, Morningstar MPPT и другие, теперь имеют встроенные компьютерные интерфейсы для мониторинга и управления. В самых простых обычно есть всего пара маленьких светодиодных ламп, которые показывают, что у вас есть питание и что вы получаете какой-то заряд. Большинство тех, у кого есть измерители, будут показывать как напряжение, так и ток, исходящий от панелей, и напряжение батареи.Некоторые также показывают, сколько тока снимается с клемм НАГРУЗКИ.

Все контроллеры заряда, которые мы имеем в наличии, относятся к трехступенчатым ШИМ-модулям и модулям MPPT. (на самом деле «4-этап» — это своего рода рекламный ажиотаж — раньше его называли эквалайзером, но кто-то решил, что 4-й этап лучше, чем 3-й). А сейчас мы даже видим такую, которая рекламируется как «5-ступенчатая» ….

Что такое выравнивание?

Equalization делает то, что следует из названия, — пытается уравновесить — или сделать все ячейки в батарее или блоке батарей точно равным зарядом.По сути, это период перезаряда, обычно в диапазоне от 15 до 15,5 вольт. Если у вас некоторые ячейки в цепочке ниже, чем другие, они все будут загружены на полную мощность. В залитых батареях он также выполняет важную функцию перемешивания жидкости в батареях, вызывая пузырьки газа. Конечно, в трейлере или лодке это обычно не имеет для вас большого значения, если вы не стояли на стоянке в течение нескольких месяцев, поскольку обычное движение приведет к тому же результату. Кроме того, в системах с небольшими панелями или крупногабаритными аккумуляторными системами может не хватить тока, чтобы действительно сильно пузыриться.Во многих автономных системах аккумуляторы также могут быть уравновешены с помощью генератора + зарядного устройства.

Что такое ШИМ?

Довольно много регуляторов заряда имеют режим «ШИМ». ШИМ расшифровывается как широтно-импульсная модуляция. ШИМ часто используется как один из методов подзарядки. Вместо постоянного выходного сигнала контроллера он посылает на батарею серию коротких зарядных импульсов — очень быстрое переключение «вкл / выкл». Контроллер постоянно проверяет состояние батареи, чтобы определить, насколько быстро посылать импульсы и какой длины (ширины) они будут.В полностью заряженном аккумуляторе без нагрузки он может просто «тикать» каждые несколько секунд и посылать на аккумулятор короткий импульс. В разряженной батарее импульсы будут очень длинными и почти непрерывными, или контроллер может перейти в режим «полного включения». Контроллер проверяет уровень заряда аккумулятора между импульсами и каждый раз настраивается сам.

Обратной стороной ШИМ является то, что он также может создавать помехи в радиоприемниках и телевизорах из-за генерируемых им резких импульсов. Если у вас проблемы с шумом от вашего контроллера, см. Эту страницу.

Что такое выход «нагрузка» или «отключение по низкому напряжению»?

Некоторые контроллеры также имеют выход «LOAD» или LVD, который можно использовать для небольших нагрузок, таких как небольшие приборы и освещение. Преимущество заключается в том, что клеммы нагрузки имеют низковольтный разъединитель, поэтому он отключит все, что подключено к клеммам нагрузки, и не позволит разрядить аккумулятор слишком сильно. Выход НАГРУЗКА часто используется для небольших некритических нагрузок, таких как освещение. Некоторые из них, такие как Schneider Electric C12, также могут использоваться в качестве контроллера освещения, чтобы включать свет в темноте, но контроллер освещения Morningstar SLC обычно является лучшим выбором для этого. Не используйте выход LOAD для работы любых инверторов, кроме очень маленьких. Инверторы могут иметь очень высокие импульсные токи и могут привести к выходу контроллера из строя.

Большинству систем функция LVD не нужна — она ​​может управлять только небольшими нагрузками. В зависимости от номинала контроллера это может быть от 6 до 60 ампер. Вы не можете запустить любой инвертор, кроме самого маленького, с выхода НАГРУЗКА. На некоторых контроллерах, таких как серия Morningstar SS, выход нагрузки может использоваться для управления сверхмощным реле для управления нагрузкой, запуска генератора и т. Д.Выход LOAD или LVD чаще всего используется в RV и удаленных системах, таких как камеры, мониторы и сайты сотовых телефонов, где нагрузка невелика и сайт не обслуживается.

Какие терминалы «Sense» на моем контроллере?

Некоторые контроллеры заряда имеют пару «сенсорных» терминалов. Сенсорные клеммы пропускают очень низкий ток, самое большее около 1/10 миллиампера, поэтому нет падения напряжения. Что он делает, так это «смотрит» на напряжение батареи и сравнивает его с тем, что выдает контроллер.Если есть падение напряжения между контроллером заряда и аккумулятором, он немного поднимет выходной сигнал контроллера для компенсации.

Они используются только тогда, когда у вас есть длинный провод между контроллером и аккумулятором. Эти провода не пропускают ток и могут быть довольно маленькими — от №20 до №16 AWG. Мы предпочитаем использовать №16, потому что его нелегко разрезать или случайно раздавить. Они подключаются к клеммам SENSE на контроллере и к тем же клеммам, что и два провода зарядки на конце аккумулятора.

Что такое «Монитор системы батареи»?

Системные мониторы аккумуляторных батарей, такие как Bogart Engineering TriMetric 2025A, не являются контроллерами. Вместо этого они контролируют вашу систему батарей и дают вам довольно хорошее представление о состоянии вашей батареи, а также о том, что вы используете и генерируете. Они отслеживают общее количество ампер-часов в батареях и разрядах, состояние заряда батареи и другую информацию. Они могут быть очень полезны для средних и крупных систем для точного отслеживания того, что ваша система делает с различными источниками зарядки.Они несколько излишни для небольших систем, но являются своего рода забавной игрушкой, если вы хотите увидеть, что делает каждый усилитель :-). Новая модель TriMetric PentaMetric также имеет компьютерный интерфейс и многие другие функции.

Чтобы получить полный список всех наших контроллеров заряда, узнать цены или сделать заказ в Интернете, посетите нашу страницу Контроллеры заряда в нашем интернет-магазине. Информацию о мониторах батарей, измерителях и шунтах см. На нашей странице «Измерители и мониторы».

Может ли солнечная панель перезарядить аккумулятор? Зарядка аккумулятора 12 В — Веб-сайт от солнечных батарей

Автомобильный аккумулятор на 12 В может быть перезаряжен солнечной панелью

Существует множество разновидностей аккумуляторов для самых разных применений, от питания фонарика до мощных автомобильных аккумуляторов на 12 В.

Независимо от того, какой аккумулятор рассматривается, двумя наиболее важными факторами являются напряжение на выходе панели и напряжение аккумулятора, к которому вы подключаетесь.

Как правило, солнечная панель может перезарядить аккумулятор. Скорость заряда зависит от напряжения солнечной панели, выходного тока и напряжения батареи. Избыточная зарядка устраняется за счет использования солнечного контроллера заряда.

Можно ли перезарядить автомобильный аккумулятор на 12 В с помощью солнечной батареи?

Для объяснения возьмем очень распространенный автомобильный аккумулятор с номинальным напряжением 12 В. Что это значит?

Электрические цепи рассчитаны на определенное напряжение, которое называется « номинальное ». Фактическое рабочее напряжение может быть больше или меньше, в зависимости от заряда аккумулятора и характеристик нагрузки.

Как уберечь солнечную батарею от перезарядки батареи

Свинцово-кислотный аккумулятор (наиболее часто используемый в автомобилях) имеет полностью заряженное напряжение холостого хода около 12.От 73 В до 12,8 В . Это напряжение постепенно падает по мере того, как из батареи снимается больший ток.

Уровень напряжения может фактически использоваться для определения уровня разряда свинцово-кислотных аккумуляторов, если они оставлены без активности в течение двух часов.

Исключается перезаряд автомобильного аккумулятора при использовании контроллера заряда

Логично, что любое напряжение, превышающее вольты батареи в любой момент времени, вызовет протекание тока в батарею и ее зарядку.

Во время этого процесса напряжение зарядки регулируется, чтобы обеспечить эффективную и безопасную зарядку, и в этом суть вопроса — прямое подключение солнечных панелей обычно не регулируется.

Таблица разряда напряжения холостого хода 12-вольтной свинцово-кислотной аккумуляторной батареи

Процентный сбор Вольт Процентный сбор Вольт
100% 12,73 50% 12,10
90% 12,62 40% 11,96
80% 12.50 30% 11,81
70% 12,37 20% 11,66
60% 12,24 10% 11,51
Таблица 12-вольтовых свинцово-кислотных аккумуляторов

Свинцово-кислотный цикл зарядки 12 В и напряжения

Во всех зарядных устройствах для аккумуляторов используется какой-либо метод контроля напряжения для защиты от повреждений. К таким повреждениям относятся изгибы внутренних пластин и перегрев.

Свинцово-кислотный блок аккумуляторов на 12 В может быть первоначально заряжен примерно при 14,4 В, при значительном разряде — .

Когда аккумулятор полностью заряжен, заряд обнаруживает это и понижает напряжение заряда до 13,6 вольт.

Это называется «плавающий заряд» и гарантирует, что аккумулятор остается в идеальном состоянии, готовом к использованию.

Солнечная панель какого размера для зарядки аккумулятора 12 В?

Панели солнечных батарей имеют определенную номинальную мощность в зависимости от их физических размеров, но важной характеристикой для зарядки аккумулятора является напряжение.

Для большинства панелей напряжение холостого хода составляет около 22 вольт , плюс-минус вольт в любом случае. Имейте в виду, что не напряжение зависит от интенсивности света, а в основном доступный ток, генерируемый панелью.

Такая солнечная панель, подключенная к батарее при ярком солнечном свете, будет заряжать батарею и продолжать заряжать ее сверх нормального рекомендованного напряжения. Это определенно повредит батарею изнутри. Важно использовать подходящее солнечное зарядное устройство.

Для чего нужен контроллер заряда от солнечных батарей?

В предыдущих разделах мы узнали о важности регулирования напряжения батареи во время зарядки, и это работа солнечного контроллера заряда (SCC).

Эта электронная схема определяет существующее напряжение батареи и регулирует выходное напряжение солнечной панели до безопасного уровня. В то же время он максимизирует ток, который выдает панель, так что время зарядки максимально короткое.

Когда напряжение батареи приближается к 14,1 вольт, контроллер снижает выходную мощность в соответствии с требованиями. Это называется плавающий заряд и поддерживает полный заряд для поддержания работоспособности аккумулятора.

Подключение солнечных панелей к батареям

Прежде чем мы рассмотрим два основных типа обычно используемых солнечных зарядных устройств, стоит объяснить, как подключить к ним ваши панели и аккумулятор.

Солнечные зарядные устройства

имеют схемы обнаружения, которые инструктируют компоненты, как изменять напряжение и ток, поступающие в аккумулятор.

Важно отметить, что солнечные зарядные устройства не имеют встроенного источника питания — они определяют напряжение аккумулятора и затем используют его для управления своими цепями. Вот почему аккумулятор всегда следует подключать в первую очередь.

При подключении солнечное зарядное устройство будет отображать напряжение аккумулятора, которое является некоторым показателем его состояния заряда (см. Таблицу выше).

Большинство зарядных устройств имеют жидкостный цифровой дисплей для индикации таких параметров, как напряжение и зарядный ток.Наконец, панель можно подключить к входным клеммам зарядного устройства.

ПРИМЕЧАНИЕ: Если панели подключены до батареи, будет видно, что отображаемое напряжение колеблется.

Это не рекомендуется производителями, которые заявляют, что контроллер может быть поврежден таким образом. Контроллерам заряда солнечной батареи необходимо, чтобы напряжение батареи было подключено должным образом.

Разница между MPPT и PWM — что лучше для зарядки аккумулятора?

Хотя все согласны с тем, что разница между контроллерами заряда PWM и MPPT незначительна для небольших приложений, таких как зарядка только одной батареи, батареи большего размера и батареи, соединенные вместе, могут заряжаться значительно быстрее с MPPT.

Почему контроллер заряда MPPT лучше?

Контроллеры

PWM менее эффективны, чем MPPT, которые могут обеспечить от 25% до 40%, больше зарядного тока. Совершенно другой способ подачи зарядного напряжения.

Контроллер MPPT регулирует внутреннее сопротивление так, чтобы точка максимальной мощности солнечной панели оптимизировала выходной ток на батарее.

Напряжение контроллера ШИМ снижается до уровня чуть выше напряжения батареи, которое определяет зарядный ток.Чтобы получить максимальный ток от солнечной панели, сопротивление нагрузки должно равняться характеристическому сопротивлению солнечной панели. Контроллер MPPT изменяет сопротивление нагрузки так, чтобы потреблялся максимальный ток.

Серия

или параллельное соединение — солнечные панели и батареи

Хотя обычно мы рассматриваем 12-вольтовые батареи как стандарт, особенно для бензиновых автомобилей, это не единственная конфигурация. Батареи можно подключать последовательно или параллельно.

Параллельное подключение аккумуляторов для зарядки от солнечной батареи 12 В

В некоторых приложениях, например, в судостроении или индустрии отдыха на колесах, может потребоваться больше мощности для всего. Что касается свинцово-кислотных аккумуляторов, то все, что превышает 100 Ач (ампер-часов), довольно тяжело.

Часто бывает целесообразно соединить две батареи параллельно, как показано выше.

Напряжение остается прежним и составляет 12 вольт, но доступный ток и общая емкость в ампер-часах удваиваются при использовании идентичных батарей.Просто выполните обычные подключения к любой положительной и отрицательной клемме.

Последовательные соединения батареи удваивают напряжение

Довольно часто бывает, что морское оборудование рассчитано на 24 вольт. Например, электрические двигатели для троллинга, используемые для рыбалки, обычно рассчитаны на 12 вольт до тяги 40 фунтов, а затем на 24 или 36 вольт выше этого.

Последовательное соединение двух 12-вольтных батарей даст выходное напряжение 24 вольта, при этом текущая емкость останется прежней.

Подключение солнечных панелей для зарядки — последовательное или параллельное?

Нормальное выходное напряжение холостого хода от так называемой 12-вольтовой солнечной панели составляет около 22 вольт при ярком солнечном свете.

В некоторых случаях с некоторыми типами контроллеров заряда солнечных батарей более эффективно соединить два последовательно для небольших установок, таких как моторизованные солнечные байдарки или небольшие лодки.

Две панели, соединенные таким образом, будут производить удвоенное напряжение, но максимальный выходной ток останется прежним.

Панели солнечных батарей соединены последовательно и параллельно

Хорошая новость заключается в том, что большинство контроллеров заряда солнечных батарей определяют напряжение батареи и напряжение панели, соответственно регулируя характеристики зарядки. Паспортная табличка заряда обычно содержит подробную информацию о максимальных напряжениях и токах для данной конкретной модели.

Видео, объясняющее, как именно не заряжать аккумулятор с помощью солнечной батареи

Может ли солнечная панель перезарядить батарею? Резюме

Солнечная панель без подключенного регулятора заряда почти наверняка повредит вашу батарею.Единственное предостережение — если панель настолько мала, что может обеспечивать только постоянный ток и поддерживать плавающий заряд.

Какой мощности солнечная панель для зарядки аккумулятора 12в?

Можно напрямую подключить большую панель к батарее, если у вас также есть подключенная нагрузка, которая находится в регулярном или постоянном использовании. Таким образом, аккумулятор никогда не перезарядится.

Если нагрузка не подключена, то напряжение батареи необходимо контролировать вручную и отключать батарею, когда напряжение достигает примерно 14 вольт.

Интернет-история

Может ли солнечная панель перезарядить 12-вольтную батарею?
Интернет-истории

идеально подходят для мобильных устройств и для сканирования конкретной информации, когда у вас мало времени — вам просто нужно мясо!

DIY Solar Shack Web Stories Gallery Страница

Вопросы о солнечных батареях и зарядке аккумуляторов

Солнечная панель какого размера для батареи 12 вольт?

Маленькая солнечная панель на 5 Вт будет поддерживать аккумулятор на 12 В на оптимальном уровне.После полной зарядки будет течь небольшой ток, чтобы компенсировать естественную утечку. Панели большего размера не следует использовать без регулятора заряда солнечной батареи.

Могу ли я оставлять солнечное зарядное устройство постоянно включенным?

Как правило, капельное зарядное устройство на солнечных батареях можно оставлять подключенным к аккумулятору на неопределенный срок. Ток заряда постоянного зарядного устройства регулируется напряжением аккумулятора и будет ограничен почти до нуля по мере полной зарядки аккумулятора. Солнечные зарядные устройства с защитой от перезарядки обеспечивают полную защиту.

Солнечная панель какого размера для зарядки аккумулятора 12 В?

Любая солнечная панель с напряжением более 13,6 вольт заряжает аккумулятор на 12 вольт. Напряжение холостого хода средней солнечной панели «12 вольт» составляет около 21 вольт, поэтому следует соблюдать осторожность, чтобы не перезарядить аккумулятор. Всегда следует использовать солнечное зарядное устройство.

Солнечная энергия в вашем штате

Джим Брюс — бывший установщик систем солнечной энергии, а теперь блоггер обо всем, что касается солнечных батарей, сделанных своими руками.Он имеет ученую степень в области электротехники и образования.

Контроллер заряда от солнечной батареи

не заряжает аккумулятор? Руководство по лучшим исправлениям

Экспертные пошаговые инструкции по поиску и устранению неисправностей и устранению неисправности контроллера заряда от солнечной батареи, который не заряжает аккумулятор должным образом.

Контроллер заряда от солнечных батарей не заряжает аккумулятор?

Если солнечная батарея подключена к солнечной системе, но не заряжается должным образом , неисправность может быть вызвана проблемой с аккумулятором, неправильной проводкой системы или проблемой с настройками контроллера заряда солнечной батареи.(Примечание: панели, контроллер заряда и аккумулятор должны быть настроены правильно.) Чтобы диагностировать проблему, выполните следующие действия:

  1. Используйте мультиметр для измерения всей системы, от солнечной батареи и контроллера солнечного заряда до солнечной панели, сначала отключите солнечную панель и измерьте напряжение, пока есть солнечный свет, будет солнечная энергия. Если напряжение не может быть измерено, это может быть проблема с солнечной панелью или выпрямительным диодом. Также необходимо замерить напряжение аккумулятора.Если фактическое напряжение аккумулятора меньше 20% от номинального напряжения. Это когда для зарядки аккумулятора требуется дополнительное зарядное устройство.
  2. Измерьте выходное напряжение на клеммах контроллера заряда солнечной батареи, проверьте, находится ли выходное напряжение в надлежащем диапазоне. Если выходная мощность не достигает заданного значения, вероятно, проблема в контроллере солнечной батареи, попробуйте заменить регулятор заряда.
  3. следующий — проверить солнечные батареи, измерить напряжение батареи, убедиться, что напряжение батареи не слишком высокое и не слишком низкое.слишком высокий или слишком низкий оба влияют на зарядку.

Контроллер заряда от солнечной батареи не заряжает контрольный список факторов заряда батареи

В целом, вам необходимо учитывать 4 фактора.

  • Факторы контроллера заряда солнечной батареи
  • факторы панели солнечных батарей
  • Факторы солнечной батареи
  • факторы окружающей среды, такие как погода

Давайте разберемся с каждым из сценариев по очереди.

Факторы контроллера заряда панели солнечных батарей

Контроллер заряда панели солнечных батарей переходит в режим защиты от зарядки, чтобы остановить зарядку

1. Напряжение точки защиты от прямого заряда : Прямая зарядка также называется быстрой зарядкой. Это быстрый процесс зарядки. Обычно батарея заряжается большим током и относительно высоким напряжением, когда напряжение батареи низкое. Однако есть контрольная точка, также называемая точкой защиты. Дело в значении в приведенной выше таблице. Если во время зарядки напряжение на клеммах аккумулятора выше, чем эти значения защиты, прямую зарядку следует прекратить. Напряжение точки защиты от прямого заряда также является напряжением «точки защиты от перезаряда».Во время зарядки напряжение на клеммах аккумулятора не может быть выше этой точки защиты, в противном случае это приведет к перезарядке и повреждению аккумулятора. ‍

2. Напряжение контрольной точки равного заряда : После завершения прямого заряда аккумулятор будет статически настроен контроллером заряда на определенный период времени, так что его напряжение будет падать естественным образом. Когда он упадет до значения «восстанавливающееся напряжение», он перейдет в состояние равного заряда. Зачем проектировать равную плату? Это связано с тем, что после быстрой зарядки могут быть некоторые батареи, которые «повернуты назад» (напряжение на клеммах относительно низкое) по отношению к батарее.Чтобы оттянуть эти отдельные молекулы назад и сделать все напряжения на клеммах батареи одинаковыми, необходимо согласовать высокое напряжение с умеренным током, чтобы перезарядить батарею на короткое время, поэтому это называется выравнивающей зарядкой, также называемой сбалансированной зарядкой. Время зарядки не должно быть слишком большим, обычно от нескольких минут до десяти минут. Давняя настройка не годится. В небольшой системе с двухэлементной батареей нет особого смысла использовать одинаковый заряд. Поэтому контроллер уличного освещения обычно не имеет одинаковой зарядки, только две ступени.

3. Напряжение контрольной точки плавающего заряда : Обычно после того, как равный заряд завершен, напряжение на его клеммах естественным образом падает. Когда оно падает до точки «поддерживающее напряжение», он переходит в состояние плавающего заряда, когда напряжение аккумулятора низкое, он немного заряжается. и батарея продолжит подниматься. Высокая, такая конструкция очень хороша для аккумулятора, потому что внутренняя температура аккумулятора имеет большое влияние на заряд и разряд. Фактически, метод ШИМ в основном предназначен для стабилизации напряжения на клеммах аккумулятора, а ток заряда аккумулятора снижается за счет регулировки ширины импульса.Это очень научная система управления зарядкой. В частности, в конце зарядки, когда остаточная емкость (SOC) батареи> 80%, необходимо уменьшить зарядный ток, чтобы предотвратить чрезмерное выделение газов (кислород, водород и кислый газ) из-за перезарядки.

4. Напряжение защиты от перегрузки : Это легко понять. Разряд аккумулятора не может быть ниже номинального. производители аккумуляторов также имеют свои собственные параметры защиты (корпоративный или линейный стандарт), по соображениям безопасности напряжение точки защиты от переразряда аккумулятора 12 В искусственно добавлено плюс 0.3 В в качестве коррекции нулевого дрейфа схемы температурной компенсации или управления, так что напряжение точки защиты от чрезмерного разряда батареи 12 В составляет: 11,10 В, тогда напряжение точки защиты от чрезмерной разрядки системы 24 В составляет 22,20 В. В настоящее время многие производители контроллеров заряда и разряда используют стандарт 22,2 В (система 24 В).

Как ШИМ-контроллер солнечной энергии, так и контроллер заряда солнечной батареи MPPT имеют вышеуказанную функцию защиты. Контроллер MPPT рекомендуется, когда у вас есть долгосрочная потребность в солнечной энергии.здесь мы составили подробное руководство по MPPT и PWM.

Факторы солнечных панелей

1. Солнечные панели не выводят мощность. Убедитесь, что солнечная панель подключена правильно, и убедитесь, что положительный и отрицательный полюса не переключаются в обратном направлении. 2. Проверьте солнечную панель, чтобы убедиться, что панели не закрываются тенями и не покрываются пятнами, чтобы гарантировать сбор солнечной энергии. 3. Проверьте правильность технических характеристик солнечной панели. соответствует ли напряжение холостого хода требованиям контроллера.4. Убедитесь, что мощность солнечной панели превышает номинальное значение солнечного контроллера или нет. Если мощность слишком высока, это может привести к перегоранию солнечного контроллера. 5. Если аккумулятор полностью заряжен, контроллер автоматически настроится и перейдет в фазу плавающего заряда, и на этой фазе зарядный ток станет очень небольшим.

Общие неисправности солнечных батарей

1. Горячие точки

При работе солнечной панели часть панели закрывается затенением или покрытием.Температура закрытой части намного выше, чем открытой части, и через долгое время появятся явные горячие точки. Повреждение горячей точки : когда эффект горячей точки достигает определенного уровня, он плавит паяное соединение модуля, разрушает линию сетки и повреждает весь солнечный модуль. По статистике, эффект горячей точки значительно снижает выработку солнечных электростанций и сокращает срок их службы на 10%.

2. Улитка

Панели отображаются в виде черного или белого линейного узора, который выглядит как след улитки.Такой вид фотоэлектрического круга называется «следы улитки». Причина «улитки»: панели трескаются, вода просачивается внутрь, а солнечный свет вызывает химические реакции.

3. Проблема с растрескиванием

Проблема заключается в небольшой трещине в элементе, которая ускоряет снижение мощности элемента и влияет на срок его службы. В то же время проблема растрескивания чипа ячейки продолжает расти под механической нагрузкой, что может привести к отказу разомкнутой цепи, а также может привести к эффекту горячей точки.Проблема скрытых трещин: обычно вызывается внешними силами, видимыми невооруженным глазом при достижении обломков, и оказывает большое влияние на выходную мощность электростанции. Скрытую трещину трудно обнаружить невооруженным глазом, и она оказывает определенное влияние на выходную мощность компонента.

Факторы батареи

Аккумулятор полностью заряжен, но скоро разрядится.

1. Проверьте, является ли конструкция батареи разумной. Если емкость слишком мала, время работы и питания будет коротким.2. Батарея стареет, срок службы батареи обычно составляет 2-3 года, емкость батареи значительно снижается, по истечении этого периода батарею необходимо регулярно заменять. 3. Не произошло ли короткого замыкания аккумулятора в процессе установки. Короткое замыкание приведет к повреждению аккумулятора, и его емкость снизится. 4. Мощность нагрузки превышает расчетную.

Защита от низкого напряжения аккумулятора

Когда батарея разряжена и бездействует в течение длительного времени, трудно заряжать батарею напрямую от солнечной системы. Теперь вам нужно проверить напряжение каждой батареи, найти батарею с самым низким напряжением и заполнить ее зарядное устройство с большим током.Настоятельно рекомендуется добавить к аккумуляторным блокам стабилизатор заряда, чтобы защитить и обеспечить длительную работу аккумулятора.

Неисправная батарея

Если батарея в батарейном блоке повреждена, вся батарея не будет успешно заряжена. Используйте метод замены, чтобы найти неисправный и заменить его на хороший аккумулятор.

Погодные факторы

Погодные факторы, если в течение длительного времени нет солнечного света, приведут к меньшему улавливанию солнечной энергии, а выходное напряжение может быть слишком низким для зарядки аккумулятора.

Контроллер заряда от солнечных батарей не заряжает батарею Обработка:

1. Обрыв цепи или определенное повреждение устройства, способ лечения: заменить или отремонтировать устройство

2. Солнце недостаточно сильное, способ лечения: переместитесь в место, где легче собирать солнечный свет.

3. Рассогласование напряжений, метод обработки: увеличить усилитель, добавить несколько фотоэлектрических панелей в серии

Заключение

Контроллер заряда от солнечных батарей

не заряжает аккумулятор — это очень распространенная проблема, с которой сталкиваются многие люди, и ее легко решить.Просто следуйте приведенным выше инструкциям, шаг за шагом, чтобы устранить неполадки, а затем замените его, чтобы восстановить жизнеспособность солнечной системы. или обратитесь за помощью к эксперту zhcsolar, перейдите по ссылке «Контакты» Где купить лучший качественный контроллер заряда от солнечной батареи MPPT? ZHCSolar предлагает лучший качественный и надежный контроллер заряда солнечной батареи MPPT, получите бесплатную доставку сейчас. Статьи по теме

Лучшее руководство по контроллеру заряда от солнечной батареи MPPT 2020 года

Полное руководство по контроллеру заряда от солнечных батарей в 2020 году

Окончательное руководство по выравниванию солнечной батареи (2020)

Часто задаваемые вопросы:

Будет ли солнечная панель заряжать разряженный аккумулятор?

Нет, контроллер заряда от солнечной батареи автоматически определяет напряжение батареи, и если батарея разряжена, процесс зарядки не работает, мы рекомендуем использовать индивидуальную зарядку батареи, чтобы исправить и восстановить разряженную батарею, прежде чем повторно подключать ее к солнечной системе.

Как прочитать код ошибки контроллера заряда солнечной батареи?

Код ошибки солнечного контроллера заряда

указывает, обнаружил ли контроллер заряда конкретную проблему, следуя руководству пользователя для решения проблемы.

Выход нагрузки на контроллере заряда солнечной батареи не работает?

1. Убедитесь, что рабочее напряжение нагрузки соответствует выходному напряжению контроллера.
2. Короткое замыкание или перегрузка нагрузки.
3. Отключен ли выход нагрузки контроллера вручную?
4.Слишком низкое или слишком высокое напряжение аккумуляторной батареи, что может вызвать защиту контроллера от нагрузки

.

как сбросить контроллер заряда солнечной батареи

Сброс

означает восстановление контроллера до заводских настроек по умолчанию, включая системное напряжение, выходное напряжение и другие параметры, следуя инструкциям, чтобы восстановить заводские настройки.

как устранить неполадки контроллера заряда

Если у контроллера заряда солнечной батареи есть проблемы с зарядкой батареи, причина, вероятно, связана с проблемой батареи, неправильным подключением системы или проблемой с настройками контроллера заряда солнечной батареи.

солнечный контроллер заряда не включается

Контроллер не включается грубо, потому что система неправильно сконфигурирована или подключена в неправильном порядке, отключите всю солнечную систему и заново подключите ее. Если система неправильно сконфигурирована, вам необходимо сбросить системные параметры в соответствии с заводским руководством.

Как я могу проверить, что мой контроллер заряда солнечной батареи работает?

Самый простой способ проверить, работает ли солнечный контроллер, — это использовать мультиметр для проверки выходного напряжения.и посмотрите на ЖК-дисплей контроллера и светодиодный индикатор, если выходное напряжение отсутствует или очень низкое, это означает, что контроллер не работает должным образом.

Контроллер заряда от солнечной батареи не показывает ток

Контроллер солнечной панели не отображает ток, скорее всего, из-за ошибки конфигурации системы, сброса регулятора напряжения солнечной панели или повторного подключения всей системы.

Контроллер заряда от солнечных батарей, выход без нагрузки

отсутствие выходного сигнала с клеммы нагрузки контроллера похоже на ошибку настройки параметра, или клемма неисправна.Если солнечный контроллер работает нормально, используйте мультиметр для проверки выходного напряжения порта нагрузки, перезагрузите систему и перепрограммируйте контроллер.

Схема зарядного устройства для солнечной батареи

с использованием регулятора напряжения LM317

В предыдущем посте мы видели принципиальную схему зарядного устройства для батареи 9 В с использованием LM311 и SCR . .

Солнечная концепция для нас не новость. Поскольку невозобновляемые источники энергии сокращаются, использование солнечной энергии увеличивается.Эта солнечная энергия используется не только на Земле, но и на космических станциях, где нет электроэнергии.

Вот простая схема для зарядки свинцово-кислотных аккумуляторов на 12 В, 1,3 Ач от солнечной панели. Это солнечное зарядное устройство имеет регулировку тока и напряжения, а также устройство отключения при перенапряжении. Эта схема также может использоваться для зарядки любой батареи при постоянном напряжении, поскольку выходное напряжение регулируется.

Характеристики цепи зарядки

  • Мощность солнечной панели — 5 Вт / 17 В
  • Выходное напряжение — переменное (5–14 В).
  • Максимальный выходной ток — 0,29 Ампера.
  • Падение напряжения — 2 — 2,75 В.
  • Регулировка напряжения: +/- 100 мВ

Принцип цепи зарядного устройства солнечной батареи:

Зарядное устройство солнечной батареи работает по принципу, согласно которому цепь управления зарядом вырабатывает постоянное напряжение. Зарядный ток проходит на регулятор напряжения LM317 через диод D1. Выходное напряжение и ток регулируются регулировочным штифтом регулятора напряжения LM317.Аккумулятор заряжается тем же током.

Схема зарядного устройства для солнечной батареи: Схема зарядного устройства для солнечной батареи

C Компоненты схемы

  • Солнечная панель — 17 В
  • Регулятор напряжения LM317
  • Аккумулятор постоянного тока
  • Конденсатор
  • Диод — 1 — 0,1 мкФ
  • Диод Шоттки — 3A, 50 В
  • Резисторы — 220, 680 Ом
  • Pot — 2K
  • Соединительные провода

LM317 Datasheet

Как вы знаете концепцию батареи Схема зарядного устройства работает?

Схема зарядного устройства солнечной батареи

Схема должна иметь регулируемый регулятор напряжения, поэтому выбран регулятор переменного напряжения LM317.Здесь LM317 может выдавать максимальное напряжение от 1,25 до 37 вольт и максимальный ток 1,5 ампер.

Регулируемый регулятор напряжения

имеет типичное падение напряжения от 2 до 2,5 В. Таким образом, солнечная панель выбрана так, чтобы она имела большее напряжение, чем нагрузка. Здесь я выбираю солнечную панель 17 В / 5 Вт.

Используемый здесь свинцово-кислотный аккумулятор имеет характеристики 12 В / 1,3 Ач. Чтобы зарядить эту батарею, необходимо следующее.

Диод Шоттки используется для защиты LM317 и панели от обратного напряжения, генерируемого аккумулятором, когда он не заряжается.Здесь можно использовать любой диод на 3 А.

Для зарядки аккумулятора 12 В
Выходное напряжение
  • Установите выходное напряжение на 14,5 В (это напряжение указано на аккумуляторе как циклическое использование.)
Зарядный ток
  • Зарядный ток = мощность солнечной панели / солнечная панель Напряжение = 5/17 = 0,29 А.
  • Здесь LM317 может обеспечивать ток до 1,5 А. Поэтому рекомендуется использовать панели с высокой мощностью, если для вашего приложения требуется больший ток (но здесь моя батарея требует начального тока менее 0.39Ампер. Этот начальный ток также указан на батарее).
  • Если аккумулятор требует начального тока более 1,5 А, не рекомендуется использовать LM317.
Время зарядки
  • Время зарядки = 1,3 Ач / 0,29 А = 4,44 часа.
Рассеиваемая мощность
  • Здесь солнечная панель имеет 5 Вт
  • Мощность, поступающая в батарею = 14,5 * 0,29 = 4 Вт
  • Таким образом, 1 Вт мощности идет на регулятор.

Перед зарядкой аккумулятора необходимо учесть все вышеперечисленные параметры.

Для приложения 6 В

Установите выходное напряжение 7,5-8 В, как указано на батарее.

рассчитайте зарядный ток, рассеиваемую мощность, как показано выше.

Рассеиваемая мощность

В этом проекте мощность ограничена из-за теплового сопротивления регулятора напряжения LM317 и радиатора. Чтобы поддерживать температуру ниже 125 градусов Цельсия, мощность должна быть ограничена до 10 Вт.Регулятор напряжения LM317 имеет внутреннюю схему ограничения температуры, так что если он становится слишком горячим, он автоматически отключается.

Во время зарядки аккумулятора радиатор нагревается. По завершении зарядки при максимальном напряжении радиатор нагревается. Это тепло связано с избыточной мощностью, которая не требуется в процессе зарядки аккумулятора.

Ограничение тока:

Поскольку солнечная панель обеспечивает постоянный ток, она действует как ограничитель тока. Следовательно, схема не требует ограничения тока.

Защита солнечного зарядного устройства:

В этой цепи конденсатор C1 защищает от статического разряда. Диод D1 защищает от обратной полярности. А регулятор напряжения IC обеспечивает регулировку напряжения и тока.

Характеристики солнечного зарядного устройства:

  • Мощность солнечной панели: 20 Вт (12 В) или 10 Вт (6 В)
  • Диапазон Vout: от 5 до 14 В
  • Максимальная рассеиваемая мощность: 10 Вт (включая рассеиваемую мощность диода Шоттки)
  • Типичное значение выпадающее значение: от 2 до 2.75 В (зависит от тока нагрузки)
  • Максимальный ток: 1,5 А (внутренний ограничен 2,2 А)
  • Регулировка напряжения: +/- 100 мВ
Как работать с этой схемой зарядного устройства солнечной батареи?
  1. Подключите согласно принципиальной схеме.
  2. Поместите солнечную панель на солнечный свет.
  3. Теперь установите выходное напряжение, регулируя потенциометр RV1
  4. Проверьте напряжение батареи с помощью цифрового мультиметра.
Преимущества схемы зарядного устройства для солнечной батареи:
  • Регулируемое выходное напряжение
  • Схема проста и недорога.
  • В схеме используются общедоступные компоненты.
  • Нулевой разряд аккумулятора при отсутствии солнечного света на солнечной панели.
Схема зарядного устройства солнечной батареи:
Ограничения этой схемы:
  1. В этом проекте ток ограничен до 1,5 А.
  2. Цепь требует большого падения напряжения.

Солнечные батареи — один из инструментов, обеспечивающих эффективное функционирование устройства. Поскольку количество невозобновляемых источников энергии сокращается, возникает необходимость в увеличении использования солнечной энергии.Солнечные батареи играют решающую роль в том, чтобы это произошло в кратчайшие сроки.

Но дело в том, что когда вы получаете солнечные батареи, вам нужно иметь электронное устройство, поддерживающее солнечные батареи. Мое лучшее предложение — приобрести Solar Lights Kits , которые можно прикрепить к домашним садам, дорожкам и стенам.

Они продаются по очень доступным ценам и делают внешний вид более красивым и романтичным, особенно в ночное время. Вы можете провести время со своими близкими при ярком белом свете.

Все, что вам нужно знать о солнечных зарядных устройствах

Дождь или солнце, мы получаем огромное количество звонков о солнечной энергии каждый день. Мы постараемся ответить на наиболее часто задаваемые вопросы, чтобы сэкономить вам время на телефонном звонке.

Прежде чем мы начнем, вы должны знать, что солнечная энергия не является панацеей для замены израсходованной энергии. Например, некоторые люди пытаются перезарядить батареи для троллингового мотора, лодки, дома на колесах, электросамоката, хижины в глуши и т. Д., и они хотят, чтобы это было сделано в очень короткие сроки, обычно всего за несколько дней. Предположим, вы берете разряженную батарею на 100 ампер-часов и заряжаете ее 30-ваттной солнечной панелью в идеальных летних условиях освещения. Через неделю аккумулятор будет почти полностью заряжен. Используя этот пример, вы можете увидеть, что для зарядки аккумулятора на 100 ампер-часов за несколько дней потребуется не менее 100 Вт солнечной энергии.

Также имейте в виду, что для получения максимальной номинальной мощности солнечной панели требуется прямой солнечный свет на поверхности панели.Такие условия, как пасмурное небо, тени, неправильный угол установки, экваториальное направление или короткие зимние дни, снизят фактическую мощность солнечной панели ниже номинальных значений.

НОМИНАЛЬНОЕ НАПРЯЖЕНИЕ

Большинство солнечных зарядных устройств рассчитаны на 12 В постоянного тока, но у нас есть ограниченная доступность для 24-вольтовых панелей. Обычно, когда требуется 24 В или выше, солнечные панели могут быть подключены последовательно, или мы можем по специальному заказу солнечные панели, которые предназначены для подачи большего напряжения постоянного тока, такого как 24 В, 36 В, 48 В и т. Д.

КОНТРОЛЛЕРЫ

Каждый раз, когда вы используете панель с номинальной выходной мощностью более 5 Вт, мы рекомендуем использовать контроллер заряда от солнечной батареи. На самом деле, контроллер заряда является хорошей идеей для большинства приложений, поскольку он может обеспечить несколько преимуществ, таких как предотвращение перезарядки, улучшение качества заряда и предотвращение разряда батареи в условиях низкой или полной освещенности. Некоторые солнечные панели сделаны с предварительно установленными блокирующими диодами, которые предотвращают разрядку батареи в условиях низкой освещенности или отсутствия света.В большинстве случаев, когда установлена ​​солнечная панель мощностью 6 Вт или больше, настоятельно рекомендуется использовать контроллер зарядного устройства. В двух словах, контроллер заряда солнечной батареи действует как переключатель включения и выключения, позволяя пропускать энергию, когда она нужна батарее, и отключает ее, когда батарея полностью заряжена. При выборе контроллера следует помнить о том, что они обычно рассчитываются в амперах, а фотоэлектрические панели — в ваттах. Это означает, что контроллер заряда от солнечной батареи, такой как Morning Star SS6L, 6-амперный контроллер, будет работать почти со всеми панелями, которые мы продаем, мощностью до 70 Вт.

НОМИНАЛЬНАЯ МОЩНОСТЬ, ВАТТ И АМПЕР

Производители солнечных панелей оценивают мощность солнечной энергии в ваттах. Как показывает практика, мощность в 15 Вт обеспечивает около 3600 кулонов (1 Ач) в час под прямыми солнечными лучами. Например, панель Pulse Tech SP-5 может выдавать 0,33 Ач в час прямого солнечного света. Это очень популярная панель для обслуживания одиночных и сдвоенных батарей в режиме ожидания и хранения.

КАК ПОКАЗАТЬ РАЗМЕР СОЛНЕЧНОЙ ПАНЕЛИ

Первое, что нужно помнить о солнечной энергии, это то, что все дело в числах.Требуемая мощность и мощность, которую может выдать панель. Прежде чем вы даже сможете приступить к покупке панели, вам нужно знать, сколько ампер-часов или ватт вам нужно будет выработать за установленный период времени. Эта цифра может измеряться часами или днями. Поскольку в сутках 24 часа, мы предлагаем вам использовать это в качестве базовых показателей. Во-первых, определите общее потребление электроэнергии за этот период времени. Затем подсчитайте количество прямого солнечного света, которое солнечная панель получит за этот период времени, и получите общее количество необходимых ватт-часов.Вы всегда должны проявлять осторожность и переоценивать свои потребности в энергии. Обычно мы видим в среднем 4 часа пригодного для использования солнечного света зимой и 6 часов пригодного для использования солнечного света летом. Конечно, из этих средних значений есть исключения, но осторожность создает более надежную солнечную систему. Эти средние значения также помогают компенсировать такие переменные, как тень, облака, угол наклона панели и т. Д. После того, как вы хорошо разберетесь с потребляемой мощностью, я предлагаю вам обратиться к нашему солнечному калькулятору.

УСЛОВИЯ ВЫХОДА

Параметры солнечных панелей рассчитываются при ярком прямом солнечном свете. Такие условия, как непрямой солнечный свет, пасмурная погода и полутень, снизят производительность. Мы всегда рекомендуем увеличивать размер вашей солнечной батареи, так как эти условия возникают часто. Также помните, что продолжительность светового дня летом по сравнению с зимой может иметь значение.

Одна из самых больших ошибок, которые часто наблюдаются, — это когда солнечная батарея проектируется летом с использованием летнего светового дня, но затем она используется и зимой.Первая жалоба часто связана с тем, что батареи больше не выдерживают нагрузки. Это постепенный процесс, который начинается, когда вы теряете световой день и начинаете выводить аккумуляторную батарею за пределы глубины разряда 50%. Когда это происходит, аккумуляторы начинают сульфатироваться гораздо быстрее и перестают держаться под нагрузкой. Как вы понимаете, это дорогостоящая ошибка! Решение обычно включает в себя больше панелей и новые батареи с более высоким запасом ампер / час. Поэтому мы советуем нашим клиентам быть консервативными при учете дневного времени.Кроме того, если вы планируете использовать солнечную батарею круглый год, вам необходимо учитывать дневное потребление солнечной энергии зимой.

УПРАВЛЕНИЕ УСТРОЙСТВОМ НЕПОСРЕДСТВЕННО ОТ ЗАРЯДНОГО УСТРОЙСТВА НА СОЛНЕЧНОЙ ПАНЕЛИ

У нас есть несколько складных / переносных солнечных панелей для пеших прогулок, которые поставляются с адаптером для прикуривателя. Этот адаптер позволяет питать аксессуары 12 В, которые обычно используют штекер 12 В постоянного тока. Для прямого подключения к панели устройство не должно быть чувствительным к колебаниям напряжения — в противном случае они могут отключиться.Чтобы решить эту проблему, лучше всего использовать небольшую батарею в качестве емкости для хранения энергии, которая будет обеспечивать постоянный источник стабильной и надежной энергии. Для этого мы рекомендуем использовать контроллер заряда от солнечной батареи, Y-образный соединитель с аккумулятором на одной ножке и розетку для сигарет на другой ножке.

СОЛНЕЧНЫЕ ПАНЕЛИ ПОГОДОЗАЩИТЫ

Почти все солнечные панели предназначены для установки на открытом воздухе, так как именно здесь они будут подвергаться лучшему прямому воздействию солнечного света.Помните, что любое меньшее значение приведет к тому, что панель будет производить меньше своей полной номинальной мощности.

ОБЯЗАТЕЛЬНО ОБСЛУЖИВАТЬ СОЛНЕЧНЫЕ ПАНЕЛИ

Все, что необходимо — это периодический осмотр с целью удаления грязи, мусора и проверки электрических соединений. Очистка панели от снега и мусора позволит добиться лучших результатов.

СКОЛЬКО ДЛИННЫЕ СОЛНЕЧНЫЕ ПАНЕЛИ ПРОДОЛЖАЮТСЯ

Производительность солнечной панели может быть разной, но в большинстве случаев ожидаемый срок службы гарантированной выходной мощности составляет от 3 до 25 лет.Этот гарантированный рейтинг продолжительности жизни обычно составляет 80% от опубликованного рейтинга солнечной панели. Конечно, это будет варьироваться от производителя к производителю, и, как всегда, вы обычно получаете то, за что платите. Не упустите эти дешевые панели, сделанные в пакистанском китайском нам-истане.

ИСПОЛЬЗОВАНИЕ ИНВЕРТОРА

Многие люди используют инвертор постоянного тока в переменный, чтобы преобразовать 12 В постоянного тока в 110 В переменного тока. Поскольку они изменяют мощность с одной формы на другую, инверторы — это монстры, поглощающие энергию, и их следует по возможности избегать.Если у вас есть выбор между 12-вольтовым устройством с питанием от постоянного тока или 110-вольтным устройством переменного тока, выберите устройство с 12-вольтовым постоянным током. На рынке есть устройства постоянного тока, которые либо понижают, либо повышают мощность постоянного тока, и они также потребляют значительно больше энергии.

FORMULA Преобразование постоянного тока в переменный через инвертор

Формулы и примеры для систем постоянного тока 12 и 24 В

Это «практическое правило» предназначено в качестве общего руководства для оценки силы постоянного тока, необходимой для работы инвертора постоянного тока в переменный. Поскольку расчеты дают приблизительные значения, при проектировании и указании компонентов системы, таких как провод, размер и длина, следует учитывать соответствующий коэффициент безопасности.По сути, это означает «увеличить размер вашей системы».

Системы постоянного тока 12 В

Формула: 12-вольтовым инверторам требуется примерно десять входных сигналов постоянного тока по 10 А на каждые 100 Вт выходной мощности, используемые для работы с нагрузкой переменного тока.

Пример: Сколько ампер постоянного тока потребуется 12-вольтовому инвертору для работы трех кварцевых ламп мощностью 500 Вт или электрического нагревателя на 1500 Вт?

Ответ:

  • 1) Общая мощность = 1500
  • 2) 1500 Вт / 100 (по формуле) = 15
  • 3) 15 X 10 ампер (из формулы) = 150 ампер.

Это постоянный ток, который инвертор будет использовать для работы нагрузки 1500 Вт. Примечание: Если эти 150 ампер потребляются от батареи в течение одного часа, будет использовано 150 ампер-часов энергии батареи.

Для поддержки 150 ампер-часов заряда батареи необходимо использовать ее 300 ампер для максимального срока службы и производительности.

Системы постоянного тока 24 В

Формула: 24-вольтовые инверторы требуют приблизительно 5 ампер постоянного тока на входе на каждые 100 ватт выходной мощности, используемой для работы с нагрузкой переменного тока.

Пример: Сколько ампер постоянного тока потребуется инвертору на 24 В для работы трех кварцевых фонарей на 500 Вт или электрического нагревателя на 1500 Вт?

Ответ:

  • 1) Общая мощность = 1500
  • 2) 1500 Вт / 100 (по формуле) = 15
  • 3) 15 X 5 ампер (из формулы) = 75 ампер.

Это постоянный ток, который инвертор будет использовать для работы нагрузки 1500 Вт.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *