1.1 Устройство системы охлаждения двигателя
Система охлаждения предназначена для отвода тепла от механизмов и деталей двигателя, а также для поддержания нормального теплового режима двигателя. На автомобильных двигателях наибольшее распространение получили жидкостные системы с принудительной циркуляцией охлаждающей жидкости.
Такие системы более эффективны в работе и вместе с пусковыми устройствами обеспечивают легкий пуск двигателя при отрицательных температурах окружающего воздуха и создают меньший шум при его работе.
В жидкостной системе охлаждения поверхности блока и головки цилиндров заключены в клетку или охлаждающую рубашку (контур), при наличии пространства между цилиндрами, в котором может циркулировать соответствующая жидкость. В качестве жидкости обычно используется вода или ее этиленгликолевые смеси – антифризы.
Наиболее широкое распространение получили всесезонные жидкости, замерзающие при низкой температуре – Тосол-А40М и Тосол-А65М, в зависимости от климатических условий.
Указанные жидкости голубого цвета без запаха – ядовиты, и поэтому необходимо соблюдать меры предосторожности при обращении с ними во избежание ожогов кожи и разъедания одежды. При попадании даже небольшого количества такой жидкости в организм человека может произойти тяжелое отравление.
Рис. 1 Система охлаждения ВАЗ-2106: 1 – трубка отвода жидкости от радиатора отопителя к жидкостному насосу; 2 – шланг отвода горячей жидкости из головки цилиндров в радиатор отопителя; 3 – перепускной шланг термостата; 4 – выпускной патрубок рубашки охлаждения; 5 – подводящий шланг радиатора; 6 – расширительный бачок; 7 – рубашка охлаждения; 8 – пробка радиатора; 9 – радиатор; 10 – кожух вентилятора; 11 – вентилятор с электроприводом; 12 – резиновая опора радиатора; 13 – шкив привода жидкостного насоса; 14 – отводящий шланг радиатора; 15 – ремень привода насоса; 16 – жидкостный насос; 17 – шланг подачи жидкости в насос; 18 – термостат.
Рис.2. Принципиальная схема системы охлаждения: 1 – радиатор; 14 – поршень; 2 – крышка; 15 – сливной краник; 3 – вентилятор; 16 – нижний бачок радиатора; 4 – термостат; 5 – жидкостный насос; 6 – расширительный бачок; 7 – головка цилиндров; 8 – трубопровод к отопителю; 9 – указатель температуры жидкости; 10 – вентилятор отопителя; 11 – радиатор отопителя; 12 – рубашка охлаждения головки цилиндров; 13 — рубашка охлаждения блока цилиндров.
Система охлаждения состоит (рис.2) из:
— рубашки охлаждения блока и головки блока цилиндров;
— центробежного насоса;
— термостата;
— радиатора с расширительным бачком;
— вентилятора;
соединительных патрубков и шлангов.
Систему охлаждения заполняют жидкостью через расширительный бачок 6 (рис. 2) или горловину радиатора. В крышке радиатора или бачка выполнен паровоздушный клапан, который поддерживает повышенное давление в системе охлаждения при работе двигателя, повышая тем самым температуру Тосола. По мере остывания остановленного двигателя клапан постепенно снижает давление, предотвращая разрыв радиатора и расширительного бачка. Для слива жидкости служат отверстия в нижней части радиатора и блоке цилиндров, закрытые резьбовыми пробками или снабженные краниками 15.
Во время работы двигателя жидкость циркулирует в системе охлаждения двигателя под действием центробежного жидкостного насоса 5 охлаждающей жидкости. Распределением потока жидкости управляет термостат. Пока двигатель не прогрет, жидкость циркулирует по малому кругу — фактически в пределах рубашки охлаждения головки и блока цилиндров. По мере прогрева двигателя клапан термостата открывается, и часть жидкости, а затем и весь ее поток направляется в радиатор (большой круг циркуляции), где охлаждается потоком набегающего воздуха и вентилятором. Крыльчатка вентилятора на некоторых двигателях приводится во вращение ременной передачей от шкива коленчатого вала. Более современная конструкция – электрический вентилятор системы охлаждения, работающий от бортовой электросети автомобиля и управляемый термодатчиком, установленным в бачке радиатора.
Система охлаждения двигателя конструктивно объединена с системой отопления пассажирского салона автомобиля. Нагретая жидкость поступает в радиатор отопителя 8 из рубашки охлаждения головки блока цилиндров по верхнему трубопроводу, а отводится по нижнему трубопроводу к насосу охлаждающей жидкости. Проходя через радиатор отопителя самотеком (при движении автомобиля) или под действием включенного вентилятора 12, холодный наружный воздух нагревается и создает комфортную температуру в салоне автомобиля. Поток жидкости через радиатор отопителя регулируется или перекрывается краном отопителя 9, управляемым с места водителя.
Для создания принудительной циркуляции охлаждающей жидкости в системе охлаждения служит жидкостный насос центробежного типа (рис. 5). Расположен насос в передней части блока цилиндров и приводится в действие клиновидным ремнем от шкива коленчатого вала. Он состоит из корпуса 1, крыльчатки 9 и крышки 6 подшипников, соединенных между собой через прокладку.
В насосах, как правило, применяются специальные двухрядные подшипники, внутренним «кольцом» которых служит сам валик. Однако, для «Жигулей» в запасные части поставлялись и крышки 2102 – 1807020, в которых применялись два обычных подшипника 203, в отличие от «родной» крышки.Рис. 3 Продольный разрез жидкостного насоса ВАЗ – 2106: 1 – корпус; 2 – подшипник; 3 – шкив; 4 – ступица шкива; 5 – стопорный винт подшипника; 6 – крышка; 7 – валик; 8 – сальник; 9 – крыльчатка.
На автомобиле ВАЗ – 2108 крышка превратилась в корпус, который крепится непосредственно к блоку цилиндров – см. рис. 6.
З десь, в отличие от заднеприводных моделей ВАЗ, привод на жидкостный насос идет через зубчатый ремень. Его проскальзывание относительно зубчатых шкивов совершенно недопустимо. При этом, лишаясь самого ремня (срезаются зубцы), одновременно нарушаются фазы газораспределения. Беда не в том, что их потребуется вновь устанавливать, а в том, что «сбой» фаз приводит к «встрече» клапанов с поршнями.
Рис. 4. Насос охлаждающей жидкости ВАЗ – 2108: 1 – крыльчатка; 5 – стопорный винт; 2 – корпус; 6 – наружное кольцо подшипника; 3 – сальник; 7 – зубчатый шкив. 4 – валик;
Пластмассовая крыльчатка 9 (рис. 3) крепится на заднем конце вала 5при помощи ступицы. Пи вращении крыльчатки жидкость из подводящего патрубка поступает к ее центру, затем захватывается лопастями и под действием центробежной силы отбрасывается к стенкам корпуса 1 насоса, а оттуда через полые приливы подается в рубашку охлаждения двигателя.
Герметичность вращающихся деталей, расположенных в корпусе насоса, обеспечивается самоуплотняющимся сальником, установленным в крыльчатке. Он состоит из графитового кольца 4, резиновой манжеты 2 и пружины 3, прижимающей кольцо к торцу корпуса подшипников.
Своими выступами графитовое кольцо входит в пазы крыльчатки и закрепляется обоймой. Для контроля за исправным состоянием сальника в корпусе жидкостного насоса имеется технологическое отверстие. В случае выхода из строя сальника через него будет вытекать охлаждающая жидкость.
Рис. 5 Сальник ВАЗ – 2106: 1 – корпус; 2 – резиновая манжета; 3 – пружина; 4 – графитовое кольцо; Б – контролируемый размер 11мм при запрессовке.
В системе с водяным охлаждением простейшего типа движение автомобиля вперед само по себе достаточно для создания воздушного потока через радиатор. Однако вентиляторы с принудительным приводом обеспечивают больший воздушный поток, в результате чего радиатор меньшего размера может рассеивать требуемое количество тепла. Простейшим способом привода вентилятора является ремень, который приводит генератор и насос охлаждающей жидкости, вентилятор на самом деле просто установлен на удлиненной части оси жидкостного насоса.
Вентилятор необходим только тогда, когда скорость потока воздуха через радиатор недостаточна для поддержания требуемой температуры охлаждающей жидкости. Другими причинами этого могут быть малая скорость движения автомобиля, его подъем в гору и т.д. Энергия, требуемая для привода вентилятора, берется от двигателя, в результате чего двигатель нагружается, и расход топлива увеличивается.
Хотя благодаря приданию оптимальной формы лопастям вентилятора и использованию лопастей из штампованной стали можно добиться определенной экономии энергии, на современных автомобилях еще большая экономия достигается при использовании отключаемой системы привода, которая прекращает работу в том случае, когда работа вентилятора не нужна. Одной из наиболее распространенной системой является – электрическая.
Вентилятор с электрическим приводом.
Вентилятор приводится отдельным электрическим двигателем, который включается только тогда, когда охлаждающая жидкость достигает определенной заданной температуры, например 90°С. Подаваемая к двигателю энергия контролируется или термостатическим выключателем, обычно биметаллического типа, расположенный в области верхнего шланга, или при помощи реле, включаемого сигналом от электронного модуля управления.
Вентилятор имеет четырехлопастную крыльчатку, установленную на валу электродвигателя.
Р ис. 6. Детали радиатора и вентилятора с электроприводом: 1 – радиатор; 2 – пробка радиатора; 3 – вентилятор; 4 – электродвигатель вентилятора; 5 – кожух вентилятора; 6 – датчик включения электродвигателя вентилятора; 7 – сливная пробка радиатора; 8 – нижняя опора радиатора.
Радиатор, являющийся теплообменным узлом, предназначен для передачи тепла от охлаждающей жидкости потоку воздуха. Он крепится к кузову автомобиля с помощью резиновых подушек (опор), что необходимо для уменьшения вибраций и ударных нагрузок, возникающих при движении.
Радиатор состоит из верхнего и нижнего бачков и теплорассеивающей сердцевины, наружная поверхность которой обдувается воздухом, рассеивающим теплоту, полученную жидким теплоносителем (охлаждающей жидкостью) от нагретых деталей двигателя.
Сердцевина радиатора состоит из трех – четырех рядов плоских латунных трубок, между рядами которых размещаются широкие зигзагообразные ленты, имеющие специальные выштамповки, искривляющие воздушный канал и повышающие эффективность отдачи тепла потоку воздуха.
В пробке радиатора размещаются выпускной и впускной клапаны. При избыточном давлении в системе охлаждения открывается выпускной клапан и пар или жидкость по трубопроводу отводится в расширительный бачок. По мере понижения температуры двигателя объем охлаждающей жидкости уменьшается, вследствие чего создается разряжение, под действием которого открывается впускной клапан, и жидкость из расширительного бачка поступает обратно в радиатор, в результате объем жидкости в системе охлаждения поддерживается постоянным при работе двигателя.
Охлаждающую жидкость сливают через сливные краны, расположенные соответственно на нижнем патрубке радиатора и в нижней части блока – картера, при этом пробки радиатора и расширительного бачка должны быть открытыми.
Р ис 7 Радиатор и типы его сердцевины: а – устройство; б, в – соответственно трубчато-пластинчатая и трубчато-ленточная сердцевины; 1 – боковая стойка; 2 – пароотводная трубка; 3 – пробка; 4 – верхний бачок; 5 – резиновая подушка крепления радиатора; 6 – нижний бачок; 7 – теплорассеиваюшая сердцевина.
Термостат.
Для ускорения прогрева холодного двигателя и автоматического поддержания его теплового режима служит термостат. Конструктивно он представляет собой клапан, регулирующий количество циркулирующей жидкости через радиатор.
Термостаты могут быть с твердым или жидкостным наполнителем.
Рабочим органом термостата сильфонного типа является герметичный гибкий металлический гофрированный баллон, частично заполненный жидкостью, температура кипения которой несколько ниже температуры кипения воды. При низкой температуре охлаждающей жидкости давление внутри гофрированного баллона ниже атмосферного снаружи и гофр сжимается, удерживая клапан закрытым и не допуская циркуляцию воды через радиатор.
При температуре вблизи температуры кипения жидкости в гофре внутренне и внешнее давления выравниваются, и гофрированный баллон начинает расширяться, открывая клапан. Это происходит при температуре около 70 –80°С, а при достижении температуры приблизительно 85 – 90°С клапан открывается полностью.
Рис. 10 Термостат с восковым элементом: 1 –мостик; 2 –упорный палец; 3 –клапан; 4 –отверстие; 5 –фланец; 6 –пружина; 7 –капсула; 8 – резиновая втулка
Действие термостата с восковым элементом основано на изменении объема некоторых видов воска вблизи температуры плавления. Рабочий орган представляет собой неподвижный металлический цилиндр или капсулу 7 (рис. 10), заполненную воском, в который погружен упорный палец 2. Гибкая резиновая втулка 8 вокруг пальца служит для уплотнения верхней части капсулы, чтобы избежать утечки воска.
Термостат вместе с фланцем 5 заключен в корпус, таким же образом, как и термостат с гофрированной трубкой, а упорный палец 2 прикреплен к мостику 1, проходящему через фланец. Клапан 3 прикреплен к капсуле 7 и, перекрывая отверстие во фланце, удерживается в закрытом состоянии пружиной 6, когда термостат холодный. Расширяющийся воск, во время его плавления, давит на упорный палец, который открывает клапан.
Срок службы этого термостата составляет около 100.000 км пробега и ограничивается тем, что температура открывания все время растет из-за деформации резиновой втулки. Такой термостат значительно более прочный, чем термостат с гофрированным баллоном, поэтому его внезапный и полный выход из строя маловероятен. Тем не менее, если такая внезапная поломка все же случится, клапан останется закрытым, что приведет к перегреву двигателя, но если в резиновой втулке 8 под упорным пальцем появится утечка, клапан останется заблокированным в открытом состоянии.
Отверстие 4 действует как вентиляционное отверстие, предотвращая захват воздуха под клапаном, когда система заполняется, а установленный свободно качающийся штифт предотвращает забивание отверстия.
Конструкция системы охлаждения двигателя ЗМЗ-40524
Система охлаждения ЗМЗ-40524 — жидкостная, закрытая, с принудительной циркуляцией охлаждающей жидкости
Система охлаждения двигателя состоит из рубашек охлаждения блока цилиндров 6 и головки цилиндров 1, водяного насоса 5 с электромагнитной муфтой, термостата 2, сливной пробки 7, датчика температуры охлаждающей жидкости системы управления 3.
Циркуляция охлаждающей жидкости в системе создается центробежным водяным насосом, приводимым от коленчатого вала.
Насос подает жидкость в рубашку охлаждения 6 блока цилиндров, откуда жидкость поступает в рубашку 1 головки цилиндров и далее в корпус термостата 2.
Термостат 2 автоматически регулирует подачу охлаждающей жидкости в радиатор в зависимости от её температуры.
Через штуцер крышки термостата в расширительный бачок отводится воздух при заполнении системы и возникающий в системе охлаждения пар.
Слив охлаждающей жидкости из двигателя осуществляется через отверстие на левой стороне блока цилиндров, закрытое пробкой 7.
Оптимальный температурный режим охлаждающей жидкости с точки зрения минимума износов и расхода топлива лежит в пределах плюс 80-90°С.
Контроль температурного режима двигателя осуществляется по указателю температуры и сигнализатору перегрева (контрольная лампа), находящихся в составе комбинации приборов автомобиля.
Указатель температуры охлаждающей жидкости управляется сигналом, формируемым блоком управления на основании информации от датчика температуры 3, размещенного в корпусе термостата.
В комбинации приборов автомобиля, с указателя температуры охлаждающей жидкости снимается информация о текущей температуре двигателя, и в случае превышения предельно-допустимого значения 105°C, производится зажигание лампы сигнализатора перегрева охлаждающей жидкости.
Цвет индикации сигнализатора — красный.
Термостат
Термостат — с твердым наполнителем, двухклапанный, с автоматическим дренажным клапаном ТС 107-05, ТР 2-01 или ТА 107-05.
Термостат расположен в алюминиевом корпусе, установленном на выходном отверстии рубашки охлаждения головки цилиндров, и соединен шлангами с водяным насосом, радиатором и расширительным бачком.
Термостат автоматически поддерживает необходимую температуру охлаждающей жидкости в двигателе, отключая и включая циркуляцию жидкости по большому кругу через радиатор.
На холодном двигателе основной клапан 4 термостата закрыт, и вся охлаждающая жидкость циркулирует через открытый перепускной клапан 2 термостата в водяной насос по малому кругу, минуя радиатор.
При прогреве двигателя и подъеме температуры охлаждающей жидкости до плюс 82 ± 2°C основной клапан термостата начинает открываться, а перепускной — закрываться. При этом часть охлаждающей жидкости начинает циркулировать по большому кругу через радиатор охлаждения.
При температуре плюс 97±2 ° C основной клапан открыт полностью на величину не мене 8,5 мм, перепускной клапан при этом закрыт и вся охлаждающая жидкость циркулирует через радиатор по большому кругу.
Во фланце термостата выполнено отверстие с автоматическим дренажным клапаном 3.
Отверстие служит для выхода воздуха при заправке системы охлаждения.
При работе двигателя водяной насос создает давление жидкости, под действием которого шарик клапана поднимается и закрывает отверстие, препятствуя утечке жидкости в радиатор.
Герметичность соединения крышки термостата с корпусом обеспечивается благодаря резиновой прокладке П-образного профиля, установленной на фланец термостата.
Термостат в корпус должен быть установлен таким образом, чтобы выступ на стойке термостата зашел в паз корпуса, что обеспечивает наименьшее сопротивление потоку охлаждающей жидкости.
Запрещается эксплуатация двигателя без термостата, что приведет в летнее время к перегреву двигателя, зимой — к долгому прогреву и работе двигателя на пониженном температурном режиме.
Поддержание термостатом рабочего температурного режима в системе охлаждения оказывает решающее влияние на износ деталей двигателя и экономичность его работы.
Возможные неисправности системы охлаждения и способы их устранения
Причина неисправности — Способ устранения
Двигатель перегревается
Сердцевина радиатора засорена грязью и насекомыми — Промойте снаружи сердцевину радиатора. Продуйте сжатым воздухом
Пониженный уровень охлаждающей жидкости в расширительном бачке — Найдите место утечки охлаждающей жидкости. Устраните течь. Долейте охлаждающую жидкость
Неисправен термостат (клапан завис в закрытом положении) — Замените термостат
Неисправен водяной насос — Проверьте насос, в случае неисправности замените
Повреждение клапана в пробке расширительного бачка (постоянно открыт клапан, из-за чего система находится под атмосферным давлением) — Замените пробку расширительного бачка
Трубки радиатора, шланги и рубашка охлаждения двигателя засорены накипью и илистыми отложениями — Промойте систему охлаждения и заполните свежей охлаждающей жидкостью
Двигатель перегревается, из отопителя поступает холодный воздух
Чрезмерное снижение уровня охлаждающей жидкости из-за утечки или повреждения прокладки головки блока цилиндров, вызывающее образование паровых пробок в водяной рубашке двигателя — Устраните утечку охлаждающей жидкости. Замените поврежденную прокладку головки блока цилиндров
Двигатель долго не прогревается до рабочей температуры, тепловой режим во время движения не стабилен
Неисправен термостат (клапан завис в открытом положении) — Замените термостат
Постоянное снижение уровня охлаждающей жидкости в расширительном бачке
Негерметичен радиатор — Замените радиатор
Негерметичен расширительный бачок — Замените расширительный бачок
Утечки охлаждающей жидкости через негерметичные соединения патрубков и шлангов — Подтяните хомуты крепления шлангов
Повреждено уплотнение водяного насоса — Замените водяной насос
Повреждена уплотнительная прокладка корпуса водяного насоса — Замените уплотнительную прокладку
Недостаточно затянуты болты крепления головки блока цилиндров (во время длительной стоянки на холодном двигателе появляется течь охлаждающей жидкости в стыке между головкой и блоком цилиндров) — Затяните болты крепления головки блока цилиндров необходимым моментом
Конструкция насоса охлаждающей жидкости рассмотрена в статье – Особенности конструкции и замена водяного насоса двигателя ЗМЗ-40524
Система водяного охлаждения двигателя внутреннего сгорания (водяная система рубашки охлаждения) Объяснение
ВведениеВсе двигатели внутреннего сгорания (IC) (четырехтактный и двухтактный ) требуют некоторой формы контроля температуры, чтобы они работали не перегреть а заедать . Некоторые двигатели имеют воздушное охлаждение , а другие — водяное охлаждение .
Как правило, небольшие двигатели (мотоциклы, газонокосилки и т. д.) могут охлаждаться воздухом, тогда как все другие типы двигателей должны охлаждаться водой. Большие двигатели имеют водяное охлаждение по нескольким причинам:
- Воды много, и ее легко достать в большинстве мест.
- Вода может отводить больше тепла, чем воздух, поэтому обладает большей охлаждающей способностью.
- Вода может охлаждаться дистанционно, т.е. в месте, удаленном от двигателя. Это делает конструкцию системы охлаждающей воды более гибкой.
Температура охлаждающей воды приблизительно 80°C (176°F) и давление охлаждающей воды 3 бар ( 44 psi ) являются стандартными для большинства двигателей, работающих под нагрузкой.
Охлаждающая вода иногда упоминается как « вода рубашки охлаждения » из-за «водяной рубашки», окружающей камеру сгорания.
Компоненты системы водяного охлажденияСистема водяного охлаждения двигателя состоит из термостата , гильзы цилиндра , насоса охлаждающей воды и теплообменника (
3 радиатора
4 ). Система водяного охлаждения двигателя
A Насос водяного охлаждения требуется для циркуляции охлаждающей воды по всему двигателю. Насос напрямую соединен с коленчатым валом двигателя , поэтому его частота вращения и выходное давление прямо пропорциональны частоте вращения двигателя. Большинство насосов соединены с двигателем с помощью ремня , шестерни или цепи , но это зависит от размера двигателя; очень большие двигатели используют центробежные насосы , которые приводятся в действие электродвигателями .
Центробежный насос
Термостат регулирует температуру охлаждающей жидкости и, следовательно, температуру двигателя. Термостат может быстро прогреть двигатель, минуя радиатор , или охладить двигатель, распределяя охлаждающую воду по радиатору. Его основная цель – не допустить перегрева двигателя.
Термостат двигателя
Радиатор рассеивает тепло и предотвращает перегрев двигателя. В автомобиле охлаждающей средой является воздух, но в более крупных двигателях в качестве охлаждающей среды часто используется жидкость. судовые двигатели используют морскую воду.
Радиатор двигателя
Гильза цилиндра обеспечивает равномерное распределение охлаждающей воды по гильзе цилиндра . Сгорание происходит внутри гильзы цилиндра ( пространство сгорания ), следовательно, это пространство является самой горячей частью двигателя и должно правильно охлаждаться. Охлаждающая вода поступает в основание рукава и выводится вверху.
Гильза цилиндра
youtube.com/embed/sRHDsEyEQ2M?rel=0″ tabindex=»-1″>
Когда охлаждающая вода (вода рубашки охлаждения) холодная, термостат обходит радиатор, и температура охлаждающей воды постепенно повышается, пока не достигнет оптимальной температуры.
Когда охлаждающая вода слишком горячая, термостат направляет ее к радиатору, где тепло рассеивается, чтобы двигатель не перегревался.
Щелкните здесь, чтобы узнать, как работает термостат.
Защита от замерзания и температурное расширение В систему охлаждающей воды дозируется антифриз для предотвращения замерзания воды при отрицательных температурах ( ). Если охлаждающая вода замерзнет, двигатель, скорее всего, будет серьезно поврежден, поскольку вода расширится и создаст большие механические нагрузки на компоненты двигателя. Блок цилиндров нередко трескается при замерзании охлаждающей воды.
Напорный бак установлен для охлаждающей воды тепловое расширение если в системе охлаждающей воды присутствует слишком много охлаждающей воды. Расширяющаяся жидкость обычно открывает клапан в верхней части радиатора и выходит в удаленное хранилище, т. е. в расширительный бак или расширительный бак и т. д. внутренние компоненты двигателя. Ингибиторы поддерживают чистоту теплообменных поверхностей двигателя и предотвращают образование накипи или ржавчины. Загрязнение поверхностей в системе водяного охлаждения снизит скорость теплопередачи и повысит риск перегрева двигателя из-за отсутствия охлаждения.
Компоненты 3D-модели На этой 3D-модели показаны все основные компоненты, связанные с типичной системой водяного охлаждения двигателя, в том числе:
- Термостат
- Насос охлаждающей воды
- Радиатор (теплообменник)
- Напорный бак (расширительный бак)
- Гильза цилиндра
Дополнительные ресурсы https://www.carparts.com/classroom/coolingsystem.htm
https://www.howacarworks.com/basics/how-an-engine-cooling-system-works
Страница не найдена | Национальный музей авиации и космонавтики
Пожертвовать сейчас
Один музей, две локации
Посетите нас в Вашингтоне, округ Колумбия, и Шантильи, штат Вирджиния, чтобы исследовать сотни самых значительных объектов в мире в истории авиации и космоса. Посещать
Национальный музей авиации и космонавтики в Вашингтоне
Центр Удвар-Хази в Вирджинии
Запланируйте экскурсию
Групповые туры
В музее и онлайн
Откройте для себя наши выставки и участвуйте в программах лично или виртуально.
Как дела
События
Выставки
IMAX
Погрузитесь глубоко в воздух и космос
Просмотрите наши коллекции, истории, исследования и контент по запросу.
Исследовать
Истории
Темы
Коллекции
По запросу, по требованию
Для исследователей
Для учителей и родителей
Подарите своим ученикам Музей авиации и космонавтики, где бы вы ни находились.
Учить
Программы
Учебные ресурсы
Запланируйте экскурсию
Профессиональное развитие педагога
Образовательная ежемесячная тема
Будь искрой
Ваша поддержка поможет финансировать выставки, образовательные программы и усилия по сохранению. Давать
Стать членом
Стена чести
Способы дать
Провести мероприятие О отдел новостей Поддерживать Втягиваться Контакт Будьте в курсе последних историй и событий с нашей рассылкой Национальный музей авиации и космонавтики
6-я улица и проспект Независимости SW
Вашингтон, округ Колумбия 20560
202-633-2214
10:00 — 17:30
Центр Стивена Ф.
6-я улица и проспект Независимости SW
Вашингтон, округ Колумбия 20560
202-633-2214
10:00 — 17:30