Система питания бензинового двигателя: Система питания бензинового двигателя

Содержание

Система питания бензинового двигателя: характеристики, особенности, описание, предназначение

Система питания силового агрегата участвует непосредственно в образовании воздушно-топливной смеси. Система питания бензинового двигателя включает в себя достаточное количество элементов, которые имеют разные функции и предназначение.

Виды системы питания бензиновых двигателей

Среди всех возможных бензиновых двигателей различают две основополагающие системы питания силового агрегата — инжекторная и карбюраторная. Первой, оснащаются большинство современных транспортных средств. Вторая, считается морально устаревшей, но по сей день используется при эксплуатации старых автомобилей, таких как ВАЗ, Волги, Газоны и т.д.

Отличаются они пусковым механизмом закачки топлива во впускной коллектор и цилиндры. У карбюраторной системы — эту функцию выполняет карбюратор, а вот в инжекторе — электронная система впрыска топлива при помощи форсунок.

Элементы питания и их функции

Конструктивно сложилось так, что существует стандартный набор элементов топливной системы бензинового силового агрегата.

Разницу составляет непосредственно система впрыска топлива в коллектор или цилиндры. Рассмотрим, все элементы инжекторного и карбюраторного моторов.

Топливный бак

Неотъемлемый элемент любого транспортного средства. Именно в нём храниться горючее, которое поступает в камеры сгорания. В зависимости от конструктивных особенностей автомобиля, объём топливного резервуара может быть разный. Изготавливается данный элемент из стали, нержавейки, алюминия или пластика.

Трубопроводы

Топливопроводы служат транспортной системой между топливным баком и системой впрыска. Обычно они изготавливаются из пластика или металла. На старых автомобилях можно встретить их медными. Для соединения с остальными элементами топливной системы могут использоваться переходники, соединители или прочие элементы.

Топливный фильтр

В связи с не особо качественным топливом, для фильтрации используется фильтр горючего. Располагаться этот элемент может в топливном баке, подкапотном пространстве или под автомобилем, вмонтированным в топливопроводы.

Для каждой группы автомобилей используется разный элемент.

Каждый производитель автомобилей использует свои фильтры. Они бывают разные за формою и материалом. Наиболее распространенными считаются волокнистые или хлопчатобумажные. Эти элементы наиболее лучше задерживают сторонние элементы и воду, которые засоряют цилиндры и форсунки.

Некоторые автомобилисты устанавливают два разных фильтра в топливную систему для более эффективной защиты. Замену элемента рекомендуется проводить каждое второе техническое обслуживание.

Бензонасос

Бензонасос — это насос прогоняющий топливо по всей системе. Так, они бывают двух типов — электрический и механический. Многие бывалые автолюбители помнят, что на старых «Жигулях» и «Волгах» устанавливались бензонасосы механического действия с лапкой, которой можно было подкачать недостающее топливо для запуска. Располагался этот элемент на блоке цилиндров, зачастую с левой стороны.

Все современные бензиновые силовые агрегаты оснащаются электрическими бензиновыми насосами. Располагаются элементы, зачастую, непосредственно в топливном баке, но бывает и такое, что данный элемент находится в подкапотном пространстве.

Карбюратор

На старых транспортных средствах устанавливались карбюраторы. Это элемент, который при помощи механических действий подавал топливо в камеры сгорания. Для каждого производителя, они имели разную структуру и строение, но принцип работы оставался не сменным.

Наиболее запомнившимися для отечественного автолюбителя, стали карбюраторы ОЗОН и серии К для Жигулей и Волги.

Форсунки

Форсунки — часть топливной системы инжекторного бензинового силового агрегата, который выполняет функцию дозированной подачи бензина в камеры сгорания. По форме и видам, форсунки бывают разные, это индивидуально для каждого автомобиля.

Располагаются эти элементы на топливной рампе. Обслуживание форсунок стоит проводить регулярно, поскольку если они слишком засоряться, их уже вычистить может, не представится возможным и придётся менять детали полностью.

Вывод

Топливная система бензинового автомобиля имеет простую структуру и конструкцию. Так, топливо, которое храниться в баке, при помощи бензонасоса попадает в цилиндры. При этом, оно проходит очистку в фильтре и распределяется при помощи карбюратора или форсунок.

Тест на знание системы питания бензинового двигателя

Выберите номера всех правильных ответов

1. СИСТЕМА ПИТАНИЯ БЕНЗИНОВОГО ДВИГАТЕЛЯ СЛУЖИТ ДЛЯ:

1) хранения топлива;

2) воспламенения бензина;

3) хранения сжатого воздуха;

4) отвода отработавших газов;

5) приготовления горючей смеси;

6) подачи горючей смеси в цилиндр.

ОНА ВКЛЮЧАЕТ:

7) насос;

8) карбюратор;

9) топливный бак;

10) глушитель шума;

11) свечи зажигания;

12) топливные фильтры;

13) воздушный фильтр;

14) впускной трубопровод;

15) выпускной трубопровод.

2. ФИЛЬТРАЦИЯ БЕНЗИНА ПРОИСХОДИТ В:

1) бензонасосе;

2) карбюраторе;

3)трубопроводе;

4) топливозаборнике;

5) фильтре грубой очистки;

6) фильтре тонкой очистки;

7) фильтре жесткой очистки;

8) фильтре мягкой очистки.

3. ПРИВОД БЕНЗОНАСОСА ОСУЩЕСТВЛЯЕТСЯ ОТ:

1) маховика;

2) коленчатого вала;

3) масляного насоса;

4) жидкостного насоса;

5) распределительного вала;

6) системы электроснабжения.

Установите правильную последовательность

4. РАБОТА СИСТЕМЫ ПИТАНИЯ ДВИГАТЕЛЯ ЗИЛ-131:

1)  бензонасос;

2)  карбюратор;

3)  топливный бак;

4)  фильтр грубой очистки;

5)  фильтр тонкой очистки.

Выберите номера всех правильных ответов

5. СОСТАВ ГОРЮЧЕЙ СМЕСИ ОЦЕНИВАЕТСЯ:

1) мощностью двигателя;

2) коэффициентом наполнения;

3) коэффициентом избытка воздуха;

4) коэффициентом остаточных газов.

6. КОЛИЧЕСТВО ПОДАВАЕМОЙ ИЗ КАРБЮРАТОРА ГОРЮЧЕЙ СМЕСИ ЗАВИСИТ ОТ ПОЛОЖЕНИЯ:

1) воздушной заслонки;

2) дроссельной заслонки;

3) клапана экономайзера;

4) поршня ускорительного насоса;

5) уровня топлива в поплавковой камере.

Дополните

7. КОЭФФИЦИЕНТОМ ИЗБЫТКА ВОЗДУХА НАЗЫВАЕТСЯ ОТНОШЕНИЕ КОЛИЧЕСТВА_____ПОСТУПИВШЕГО В ЦИЛИНДР, К ЕГО НЕОБХОДИМОМУ КОЛИЧЕСТВУ ДЛЯ ПОЛНОГО СГОРАНИЯ ПОСТУПИВШЕГО В ЦИЛИНДР ТОПЛИВА.

Установите соответствие

8. ГОРЮЧАЯ СМЕСЬ КОЭФФИЦИЕНТ ИЗБЫТКА ВОЗДУХА:

1) бедная;                    А. а = 0,4—0,7;

2) богатая;                    В. а = 1,0;

3) обедненная;                    С. а = 1,05…1,15;

4) нормальная;                    D. а = 1,2…1,25;

5) обогащенная.                    Е. а = 0,8…0,95.

9. РЕЖИМЫ РАБОТЫ ДВИГАТЕЛЯ

1) холостой ход;

2) средние нагрузки;

3) пуска холодного двигателя;

4) ускорение и полная мощность.

КОЭФФИЦИЕНТ ИЗБЫТКА ВОЗДУХА:

A. а = 0,3… 0,5;

B. а = 0,6…0,8;

C. а = 1,15…1,5;

D. а = 0,85…0,90.

Выберите номера всех правильных ответов

10. ПОВЫШЕННЫЙ УРОВЕНЬ ТОПЛИВА В ПОПЛАВКОВОЙ КАМЕРЕ КАРБЮРАТОРА ВЫЗОВЕТ:

1) хлопки в глушителе;

2) увеличение мощности;

3) хлопки в карбюраторе;

4) уменьшение мощности;

5) переобеднение горючей смеси;

6) переобогащение горючей смеси.

11. ПОДДЕРЖАНИЕ УРОВНЯ БЕНЗИНА В ПОПЛАВКОВОЙ КАМЕРЕ ОБЕСПЕЧИВАЕТСЯ:

1) положением поплавка;

2) работой экономайзера;

3) работой ускорительного насоса;

4) положением воздушной заслонки;

5) положением дроссельной заслонки.

12. ПЕРЕОБЕДНЕНИЕ ГОРЮЧЕЙ СМЕСИ МОЖЕТ БЫТЬ ВЫЗВАНО:

1) засорением воздушного фильтра;

2)засорением топливного жиклера;

3) засорением воздушного жиклера;

4) низким уровнем топлива в поплавковой камере;

5) высоким уровнем топлива в поплавковой камере;

6) подсасыванием воздуха через неплотности впускной системы.

13. ПОЗИЦИЯ 10 НА РИС. 6.1 ОЗНАЧАЕТ КЛАПАН:

1) воздушный;

2) экономайзера;

3) нагнетательный;

4) поплавковой камеры;

5) обратный ускорительного насоса.

Рис. 6.1. Карбюратор K-88AM

Дополните и выберите номера всех правильных ответов

14. ПОЗИЦИЯ 6 НА РИС. 6.1 ОЗНАЧАЕТ ОН СЛУЖИТ ДЛЯ:

1) ускорения потока воздуха;

2) обогащения состава смеси;

3) увеличения разряжения перед распылителем;

4) поддержания уровня топлива в поплавковой камере.

15. В СИСТЕМУ ХОЛОСТОГО ХОДА ВХОДЯТ ПОЗИЦИИ НА РИС. 6.1:

a) 2;                    е) 8;

b) 3                    f) 13

c) 4                    g) /5;

d) 5;                    h) 27.

16. СИСТЕМА ПУСКА ХОЛОДНОГО ДВИГАТЕЛЯ:

1) обедняет смесь;

2) обогащает смесь;

3) прикрывает воздушную заслонку;

4) открывает воздушную заслонку;

5) закрывает дроссельную заслонку;

6) приоткрывает дроссельную заслонку.

17. НА РИС. 6.2 ПОКАЗАН:

1) экономайзер;

2) ускорительный насос;

3) система холостого хода карбюратора;

4) ограничитель максимальной частоты вращения.

С ПРАВОЙ СТОРОНЫ ПОКАЗАН:

5) топливный насос;

6) топливный фильтр;

7) датчик частоты вращения;

8) исполнительный механизм.

ОН РАСПОЛАГАЕТСЯ:

9) на карбюраторе;

10) на носке коленвала;

11) на носке распредвала.

18. ЭКОНОМАЙЗЕР КАРБЮРАТОРА ГОРЮЧУЮ СМЕСЬ:

1) обогащает;

2) обедняет;

3) распыляет;

4) испаряет.

НА НАГРУЗКАХ:

5) полных;

6) частичных;

7) холостого хода;

8)ускорения.

19. ДВУХКАМЕРНЫЕ КАРБЮРАТОРЫ ИМЕЮТ:

1)два экономайзера;

2) две поплавковые камеры;

3) две смесительные камеры;

4) две дроссельные заслонки;

5) два ускорительных насоса.

20. ПРОИЗВОДИТЕЛЬНОСТЬ БЕНЗОНАСОСА:

1) соответствует потребности двигателя;

2) превышает потребность двигателя в 3—5 раз;

3) превышает потребность двигателя в 2—3 раз;

4) превышает потребность двигателя в 2 раза.

21. НОМЕР ПОЗИЦИИ (РИС. 6.3) КЛАПАНА ЭКОНОМАЙЗЕРА ПРИНУДИТЕЛЬНОГО ХОЛОСТОГО ХОДА:

a) 7;                    d) 18;

b) 3;                    е) 24.

c) 15;

22. ДЕТАЛИ УСКОРИТЕЛЬНОГО НАСОСА НА РИС. 6.3:

1)5 и 6;                    3) 13 и 15;

2) 9 и 10,                    4) 30 и 31.

23. ТИПЫ ВОЗДУШНЫХ ФИЛЬТРОВ:

1) сухой;                    5) двухступенчатый;

2) мокрый;                    6) трехступенчатый.

3) полусухой;

4) одноступенчатый;

24. НАДДУВ ДВИГАТЕЛЯ МОЖЕТ БЫТЬ:

1) механическим;

2) электрическим;

3) турбинным;

4) гидравлическим.

ОН ПРОИЗВОДИТСЯ ДЛЯ:

5) увеличении массы свежего заряда;

6) увеличения объема свежего заряда;

7) увеличения мощности двигателя;

8) охлаждения двигателя.

25. РАБОТА ФОРСУНКИ ИНЖЕКТОРНОГО ДВИГАТЕЛЯ УПРАВЛЯЕТСЯ:

1) топливной рампой;

2) регулятором давления;

3) электронным блоком управления;

4) датчиком массового расхода воздуха;

5) датчиком скорости движения.

26. ЭЛЕКТРОННЫЙ БЛОК УПРАВЛЕНИЯ СИСТЕМЫ ПИТАНИЯ ТИПА MOTRONIC:

1) управляет работой форсунок;

2) управляет работой бензонасоса;

3) управляет работой системы зажигания;

4) контролирует состояние топливного фильтра;

5) анализирует сигналы, полученные с датчиков;

6) информирует водителя об исправности системы;

7) получает сигналы с датчиков состояния двигателя.

27. РАЗМЕЩЕНИЕ ТОПЛИВНОГО НАСОСА СИТСЕМЫ ПИТАНИЯ ТИПА MOTRONIC:

1) на двигателе;

2) в топливном баке;

3) на топливном баке;

4) в топливном фильтре.

ЕГО ПРИВОД:

5) электрический;

6) механический от коленчатого вала;

7) механический от распределительного вала.

28. КАТАЛИТИЧЕСКИЙ НЕЙТРАЛИЗАТОР ОТРАБОТАВШИХ ГАЗОВ:

1) ускоряет процесс выпуска ОГ;

2) изменяет химический состав газов;

3) переводит вредные компоненты газов в безвредные.

ДЕЛАЕТ ЭТО:

4) всегда;

5) только после прогрева до 300 «С;

6) только на холодном двигателе.

Дополните и выберите номера всех правильных ответов

29. ДЕТАЛЬ 5 НА РИС. 6.4 ОЗНАЧАЕТ_ДАВЛЕНИЯ ТОПЛИВА.

ОН ПОДДЕРЖИВАЕТ ДАВЛЕНИЕ В РАМПЕ, МПа:

1)0,13-0,18;                    3) 0,33-0,38;

2) 0,23-0,28;                    4) 0,53-0,58.

Рис. 6.4. Рампа форсунок впрыскового двигателя

30. ПОД ПОЗИЦИЕЙ 2 НА РИС. 6.4 УКАЗАНА ______________

ОНА УПРАВЛЯЕТСЯ:

1) водителем;

2) карбюратором;

3) электронным блоком управления.

           

ОТВЕТЫ

Газовая турбина или газовый двигатель? Сравнение | Производство электроэнергии и тепла

 

Бизнес-модели  и финансовые инициативы  смещаются в сторону возобновляемых источников энергии  на сегодняшнем рынке производства электроэнергии, в то время как текущее отсутствие долгосрочных правил усложняет принятие инвестиционных решений, чем в прошлом.

 

В этих обстоятельствах   правильный выбор перспективной технологии  необходим для обеспечения проекта  долгосрочная прибыльность  и снижение подверженности рискам, связанным с окружающей средой, которые могут привести к безнадежным активам .

 

Чтобы предоставить вам веские аргументы для принятия и объяснения инвестиционных решений, здесь мы сравниваем относительные достоинства газовых турбин (ГТ) и газовых и двухтопливных двигателей , также известных как поршневые двигатели внутреннего сгорания (RICE). Давайте выясним, какая технология имеет наименьший след выбросов , сжигает топливо следующего поколения (более чистое) и лучше всего подходит для ваших конкретных потребностей! Приготовьтесь к довольно сложному ответу, потому что правильный выбор технологии  всегда зависит от ваших конкретных требований и типа применения .

Вариант использования Коари, третий по величине город в штате Амазонка, изолирован от национальной энергосистемы. Вся электроэнергия обеспечивалась дизельными генераторами, пока Siemens Energy не построила газовую и паровую электростанцию ​​всего за 13 месяцев.

Газовый двигатель против газовой турбины Обе технологии обеспечивают множество преимуществ, когда речь идет о преобразовании природного газа в электроэнергию и тепло.

Газ турбины лучше всего подходят для:

  • Высокая эффективность комбинированного цикла
  • Высокотемпературная когенерация или комбинированное производство тепла и электроэнергии (ТЭЦ): пар, горячий воздух
  • Низкий уровень выбросов при сгорании
  • Гибкость газового топлива
  • Минимальные затраты на обслуживание

Газовые двигатели лучше всего подходят для:

  • КПД открытого цикла
  • Низкотемпературная ТЭЦ: горячая вода
  • Частые пуски и остановки
  • Гибкость жидкого топлива

Хотите сократить выбросы и стать углеродно-нейтральным?

Выбросы электростанций на природном газе мощностью 300 МВт по технологиям генерации

Прежде чем предоставить финансирование, многие крупные финансовые учреждения диктуют ограничения выбросов для проектов электростанций. Эти пределы становятся все ниже и ниже, поскольку кризис глобального потепления продолжает привлекать внимание к общественному мнению.

 

Чтобы лучше понять проблему загрязнения, давайте сгруппируем вредные химические вещества по их воздействию:

Глобальное воздействие оказывают все химические вещества, вызывающие глобальное потепление, так называемые парниковые газы. Этому эффекту способствуют два химических вещества из энергетической отрасли: CO₂ и метан (CH₄), основной компонент природного газа. CH₄ имеет потенциал глобального потепления в 84 раза выше, чем CO₂ (в среднем за 20 лет, источник: IPCC AR5 2013), и его проскальзывание должно быть сведено к минимуму.

 

Выбросы электростанций на природном газе мощностью 300 МВт по технологиям производства – парниковые газы (ПГ)

Местное воздействие оказывают такие вещества, как оксиды азота (NOx), окись углерода (CO), твердые частицы (PM2, PM5, PM10…), оксиды серы (SOx), тяжелые металлы и многие другие, вредные для человека и природы.

Правильный выбор технологии сжигания для производства электроэнергии, чтобы свести эти загрязняющие вещества к абсолютному минимуму, и используемое топливо, очень важный фактор выбросов, будут определять содержание и количество выбросов выхлопных газов в течение всего срока службы станции.

 

Выбросы NOx, CO, твердых частиц и многих других газов выбрасываются в значительно меньших количествах газовыми турбинами по сравнению с газовыми двигателями. Причина этого в другом принципе сгорания: если в двигателях внутреннего сгорания, как и в автомобилях, мощность вырабатывают тысячи одиночных взрывов при очень высоких температурах в цилиндрах, то в газовых турбинах процесс сгорания непрерывный при более низкой и более равномерно распределенной температуре. профиль.

Для значительного снижения выбросов CO₂ необходим наивысший уровень чистой эффективности, поскольку более высокая эффективность снижает удельные выбросы CO₂ в граммах на произведенный кВтч. Поэтому очень важно не тратить зря энергию. Для извлечения большого количества энергии из еще горячих выхлопных газов технологии рециркуляции тепла предлагают решения.

Двигатели имеют более высокий КПД открытого цикла, чем газовые турбины, и меньший расход топлива. Их выбросы CO₂ ниже, но общая концентрация загрязняющих веществ в объеме выбрасываемого газа выше. Поскольку их температура выхлопных газов намного ниже, потенциал извлечения из них дополнительной энергии также намного ниже.

 

В то время как чистый КПД ГТ составляет около 30-40%, двигатели показывают явно более высокие значения до 46%. Применяя решения по рециркуляции тепла, чистый КПД газовых турбин увеличивается почти до 60%, а для двигателей — примерно до 50%.

Поскольку новые европейские правила уменьшают текущие допустимые пределы наполовину, двигатели должны будут работать с ограничением NOx около 0,15 г/кВтч.

 

Газовые турбины благодаря своему процессу сгорания имеют преимущество. Как самый чистый традиционный источник энергии, их использование будет незаменимым в энергетическом переходе. У нас есть проверенные технологии для эффективного получения электроэнергии из таких видов топлива, как природный газ и водород. Природный газ является самым чистым из ископаемых видов топлива и производит гораздо меньше выбросов по сравнению, например, с газом. жидкие масла.

 

Для существенного сокращения выбросов CO₂ мы также рекомендуем выбирать электростанцию ​​с комбинированным циклом, поскольку она обеспечивает самый высокий КПД среди всех доступных в настоящее время технологий сжигания ископаемого топлива, а проскальзывание CH₄ незначительно. Если по какой-либо причине это невозможно, по крайней мере следует использовать технологии сокращения выбросов для фильтрации определенных химических веществ, таких как NOx и CO, из выхлопных газов. К сожалению, выбросы CH4 нельзя легко уменьшить.

Рассматриваете ли вы будущие виды топлива в своих инвестициях?

Жидкое и газообразное топливо следует различать по составу, энергоемкости и многим другим свойствам, а также по углеродоемкости. Ископаемые виды топлива состоят в основном из углеводородов. При сгорании этих видов топлива образуется CO₂. Если обезуглероживание является одним из основных драйверов инвестиций, при оценке наилучшей технологии следует учитывать будущие виды топлива.

Классификация топлива: Типичные составы топлива в различных диапазонах Воббе.

 

Будущие виды топлива также можно разделить на углеродно-нейтральные, такие как

е-метан и е-метанол, и безуглеродные, такие как зеленый водород или зеленый аммиак

, в зависимости от производственного процесса. Гибкость в использовании топлива 

будет приобретать все большее значение при переходе на систему обезуглероженной энергии 

.

Использование менее углеродоемких или безуглеродных видов топлива для электромобилей очень многообещающе для достижения углеродной нейтральности при производстве электроэнергии. Из-за 

быстрый всплеск роста прерывистой генерации возобновляемой энергии

аспекты безопасности и доступности энергии

трилеммы становятся все более сложными. Надежная (резервная) электроэнергия

генерации с низким углеродным следом имеет решающее значение для удовлетворения

потребностей потребителей.

 

Газовые турбины являются самым чистым традиционным источником энергии, а их топливная гибкость идеально подходит для поддержки перехода как к централизованным, так и к децентрализованным сетям. По сравнению с газовыми двигателями газовые турбины имеют значительно более низкую концентрацию загрязнителей воздуха (CO₂, NOx, SOx, твердые частицы) в своих выбросах. Двигатели потребляют меньше топлива и выбрасывают меньший объем газа, но производят более высокую концентрацию загрязняющих веществ.

 

Газовые турбины могут работать на самых разных видах топлива с переключением топлива в режиме реального времени для обеспечения надежности энергоснабжения. Эти виды топлива представляют собой не только традиционные ископаемые виды топлива, такие как природный газ, сжиженный нефтяной газ и дизельное топливо, но также и технологические отходящие газы, такие как коксовый газ (COG) и нефтеперерабатывающий газ (RFG), а также низкоуглеродные и нулевые виды топлива, такие как водород, биогаз и возобновляемые источники энергии. природный газ (ГСЧ). Многие из них можно сжечь без значительного снижения производительности, сохраняя при этом минимально возможное воздействие на окружающую среду.

 

Газовые двигатели могут работать на топливе с очень низкой теплотой сгорания (LHV), таком как синтез-газ (4,5 МДж/Нм³). Они также могут сжигать биогаз, свалочный газ и газы с более высокой теплотворной способностью (факельный газ), пропан и сжиженный нефтяной газ с теплотворной способностью около 110 МДж/Нм³, хотя производительность может отличаться от достижимой на природном газе.

 

Каждая инвестиция в производство электроэнергии, каждый приобретенный сегодня газовый двигатель или газовая турбина будут использовать водород в качестве топлива в течение своего срока службы. Клиенты должны быть уверены, что приобретают продукты, готовые к будущему, чтобы избежать возможности остаться с бесхозными активами.

Хотите максимизировать рентабельность завода?

Сравнение эффективности одного крупного агрегата с несколькими меньшими агрегатами.

Эффективность электростанции — это не только основной фактор прибыльности станции, она также напрямую связана с выбросами CO₂ и пропорциональна им. Повышение эффективности завода снижает его потребление топлива, а при меньшем сжигании ископаемого топлива выбросы CO₂ будут снижены.

 

Планируете ли вы больше работать с полной или частичной нагрузкой или с остаточной нагрузкой?


Чтобы найти наилучшую технологию и решение для вашего проекта, необходимо определить ожидаемый рабочий профиль.

Сравнение КПД газовых турбин и газовых двигателей дает неоднозначную картину: для небольших установок простого цикла с меньшей выходной мощностью двигатели обеспечивают наилучший электрический КПД. Например, стандартный электрический КПД газовых двигателей мощностью от 300 до 2000 кВт составляет 40-45%, а общий КПД до 85-92% в низкотемпературных ТЭЦ.

 

Для электростанций большой мощности с более высокой выходной мощностью газовые турбины в комбинированном цикле являются шагом вперед, поскольку они могут достигать наивысшего электрического КПД при более высокой мощности, до 63%. Для установок мощностью менее 100 МВт доступны установки комбинированного цикла с электрическим КПД, близким к 60%, в то время как даже небольшие установки комбинированного цикла мощностью до 20 МВт имеют конкурентоспособную эффективность по сравнению с двигателями открытого цикла. Установки с комбинированным циклом могут повысить коэффициент использования топлива до 90% или выше и добавьте новые источники дохода.

Когда речь идет о прибыльности, решающее значение имеют сокращение времени простоя и максимальная доступность. Газовые двигатели могут обеспечить доступность в среднем более 96%, в то время как промышленные и авиационные газовые турбины могут обеспечить доступность в среднем более 97%.

 

Эксплуатационные расходы также можно свести к минимуму за счет улучшения графика технического обслуживания: 60 000 часов работы до капитального ремонта и еще больше (90 000 часов) с более совершенными двигателями, хотя в течение года более частые простои для планового обслуживания. Газовые турбины требуют меньше ежегодного планового обслуживания, при этом первые значительные вмешательства по техническому обслуживанию обычно происходят между 25 000 и 32 000 часов работы (ОН). Техническое обслуживание газовых турбин, как правило, обходится дешевле в евро/МВтч.

Нужен гибкий резервное питание для остаточного нагрузка или дополнительные потоки доходов?

Короткое время пуска, высокая скорость линейного изменения, хорошая эффективность при частичной нагрузке и низкий уровень выбросов являются ключевыми требованиями для обеспечения резервного питания в периоды низкой выработки солнечной и ветровой энергии

В связи с увеличением проникновения возобновляемых источников энергии в сеть , не только гибкость в выборе топлива важна для будущего успеха эксплуатации надежной электростанции. Предлагая рынку электроэнергии операционную гибкость, вы увеличиваете потоки доходов от продажи электроэнергии и вспомогательных услуг.

 

На классических рынках электроэнергии основное внимание уделялось увеличению выходной мощности производителей. Предоставление увеличенной мощности по запросу стало ключевым бизнесом, который также считался обязательным резервом в рамках сетевых кодексов. Прерывистость возобновляемой энергии и возможность использования максимально возможных скоростей линейного изменения с кратчайшим возможным временем отклика стали ключевым аспектом стабильности частоты, которая может быть достигнута только с вращающимся оборудованием, работающим в режиме онлайн.

 

Чтобы сохранить выбросы как можно более низкими и одновременно с низкими эксплуатационными расходами, низкий, соответствующий требованиям по выбросам диапазон регулирования с высокой эффективностью частичной нагрузки (см. Эффективность) становится все более и более важным. В случае, если генерирующие установки отключены, быстрый и надежный запуск становится необходимым для успешной работы. Эти эксплуатационные свойства во многих странах являются платными услугами, и поэтому можно создать дополнительный поток доходов для повышения прибыльности электростанции.

 

Поскольку существуют разные технологии с разными уникальными свойствами, мы рекомендуем вам выбрать лучшую технологию и решение для вашего рабочего профиля. В качестве примера критериев принятия решения мы более подробно обсудим возможность запуска.

 

Возможность быстрого запуска ценится клиентами, поскольку они могут реализовать дополнительные потоки доходов. На рынках с механизмами мощности, ранжированием по заслугам, для вторичной и третичной частотной характеристики операторы станций могут предлагать мощность за 5 или 15 минут по высоким ценам.

Время запуска газового двигателя и газовой турбины зависит от начальных условий. Для газовых турбин требуется только смазочное масло, температура которого должна быть не менее 20° по Цельсию. Газовые двигатели требуют, чтобы температура головок цилиндров была на уровне 60°C или выше, а смазочное масло имело правильную рабочую температуру. Это достигается за счет нагрева и циркуляции охлаждающей воды, что может занять несколько часов, начиная с температуры окружающей среды. Вот почему газовые двигатели часто обслуживают в условиях быстрого пуска, а энергопотребление в режиме ожидания учитывается в общих эксплуатационных расходах.

Обычно фазы запуска и загрузки из теплого резерва аналогичны для газовых турбин и газовых двигателей, обычно от пяти до 10 минут. Доступны как газовые двигатели с быстрым пуском, так и газовые турбины, способные достигать полной нагрузки в течение одной-двух минут. И двигатели, и турбины могут работать как с частичной, так и с полной нагрузкой, чтобы адаптироваться к конкретным задачам. Обе технологии могут использоваться для приложений аварийного/резервного питания, резервных приложений с пиковыми нагрузками с небольшим количеством часов работы в год (<2000 часов) или работать в течение 8500 часов в год для приложений с базовой нагрузкой.

 

Время запуска электростанции с комбинированным циклом намного больше, чем у электростанции с простым циклом. Современной газовой турбине в электростанции с комбинированным циклом требуется менее 30 минут для выхода на полную мощность для горячего запуска. С помощью байпасной трубы операторы могут сначала быстро запустить газовую турбину, а затем синхронизировать паровую турбину.

Как можно мы безопасно эксплуатируем сеть?

Влияние мгновенной доли прерывистых возобновляемых источников энергии на работу сети.

Безопасная и надежная работа сети требует баланса между выработкой и потреблением электроэнергии в любое время. Источники напряжения короткого замыкания или компенсаторы реактивной мощности необходимы для балансировки синхронно вращающихся масс сети (инерции). Питание от короткого замыкания требуется, чтобы иметь возможность обнаруживать сбои и в случае отключения электроэнергии восстанавливать сеть.

 

Исторически сложилось так, что почти все энергосистемы обеспечивали большую часть ископаемой энергии от угольных и газовых электростанций, а также от атомных и гидроэлектростанций (последние, конечно, не являются ископаемой энергией), и они предлагали высокую потенциал стабилизации из-за их очень больших вращающихся масс и высокой мощности короткого замыкания. Произошло всего несколько событий сетки, которые потребовали вмешательства, например повторной отправки.

 

Современные экологически чистые источники энергии, такие как ветер и солнечная энергия, не обладают свойствами стабилизации сети (динамическая стабилизация частоты), поскольку они подвержены колебаниям. Следовательно, те установки, которые обеспечивают остаточную мощность нагрузки, должны генерировать как можно больше инерции для динамического управления частотой. По мере снижения производства ископаемой энергии в определенный момент балансирующей мощности будет недостаточно, чтобы предотвратить отказ сети.

Для будущих сетей синхронная инерция становится платным товаром. TSO должны будут изменить свои рейтинги диспетчеризации в зависимости от качества, чтобы учесть предельную стоимость энергии (COE) и привести свои станции к диспетчеризации, что обеспечивает высокую стабильность сети и предотвращает риск сбоев и отключений сети.

 

В целом, чем больше размер синхронного электрогенератора, тем меньше необходимо работающего оборудования, чтобы оказать существенное влияние на стабильность сети.

 

Газовые турбины обеспечивают на порядок более высокую инерцию, чем газовые двигатели, поскольку они работают на гораздо более высоких скоростях, а вся силовая передача вносит свой вклад в механическую энергию. Особенно на электростанциях с комбинированным циклом газовые турбины предлагают высокие возможности балансировки сети и имеют самый низкий уровень выбросов среди всего оборудования для производства энергии из ископаемого топлива. Газовые двигатели имеют очень низкую инерцию, в первую очередь из-за легкого коленчатого вала в двигателе и ротора электрогенератора, который вращается с низким числом оборотов в минуту.

 

Для получения дополнительной информации о важности возможностей стабилизации сети прочитайте наш информационный документ.

Чтобы предложить вам рекомендации по технологии, наиболее подходящей для ваших требований, мы изучили наиболее распространенные сценарии и/или решения для конкретных потребностей клиентов.

Парижское соглашение и Конференция по изменению климата COP26 привели к явному ускорению выполнения задач по защите климата приверженными странами. Германия стремится к 2045 году стать климатически нейтральной страной и сократить выбросы парниковых газов на 9%.0003

не менее 65 процентов к 2030 году. Поэтапный отказ от угля должен быть завершен не позднее 2038 года, а государственные инвестиции в проекты по добыче угля, нефти и природного газа в других странах должны быть сокращены не позднее конца 2022 года. Исключения применяются к газовым энергетическим установкам, которые могут работать с экологически чистый водород.

Германия также взяла на себя обязательство сократить к 2030 году выбросы особо опасного для климата парникового газа метана на 30 процентов.

безуглеродное или -нейтральное производство электроэнергии. У нас есть уникальные возможности, основанные на широком портфолио низкоуглеродных и безуглеродных решений, интенсивном ноу-хау в области энергосистем и великолепных возможностях проектирования систем. Как партнер и новатор, мы делаем реальностью энергетический переход «За пределы угля», масштабируя прорывные технологии уже сегодня.

Великобритания столкнулась с особой ситуацией, которая вынуждает Национальную энергосистему сделать особую конфигурацию распределения электроэнергии по стране. Поставщики энергии не могут обеспечивать 100% доступности, и в ближайшем будущем может возникнуть нехватка угольных электростанций.

Правительство Украины недавно объявило амбициозные цели: значительно увеличить долю возобновляемых источников энергии в энергетическом секторе, заменить негибкое угольное производство более чистыми газовыми технологиями и подключить энергосистему к европейской сети ENTSO-E. Оптимальным решением для снижения уровня выбросов углерода и в то же время эффективной поддержки возобновляемых источников энергии является установка газотурбинной технологии. Почему? См. наш информационный документ о высокоэффективных газовых турбинах и решениях для стабилизации сети.

Из-за быстрого роста населения, роста экономической активности и старения угольного флота Южная Африка не может удовлетворить потребности национальной энергосистемы. Этот дисбаланс приводит к текущему кризису сброса нагрузки. Очевидно, что Южная Африка больше не может полагаться на один основной источник энергии.

В настоящее время приоритетом является развитие диверсифицированной энергетической экосистемы в качестве основного требования для обеспечения устойчивого развития страны. Правительство Южной Африки приняло краткосрочную политику и рамки, чтобы помочь им в разрешении кризиса сброса нагрузки. Одна из этих структур включает модернизацию существующей инфраструктуры электроснабжения и интеграцию небольших электростанций, управляемых на местном уровне, в национальную сеть.

Основным экономическим ресурсом в районе Ансоатеги в Венесуэле является добыча нефти и газа. Попутный газ из сырой нефти обеспечивает богатую энергию. Добываются большие объемы нефти, а попутный нефтяной газ (ПНГ) может использоваться в качестве топлива для производства электроэнергии, а не сжигаться в атмосфере (как это было раньше).

Новые доступные виды топлива, новые технологии и амбициозные цели в области возобновляемых источников энергии приносят революционные изменения в коммунальные службы Карибского бассейна. Они открывают путь к более устойчивому, надежному, устойчивому и доступному энергетическому будущему, но также усложняют процесс планирования.

В этих презентациях основное внимание уделяется оптимизированным генерирующим решениям с учетом таких критериев, как размер проекта, доступные виды топлива, гибкость, стабильность, надежность, доступность и выбросы. В частности, они обсуждают, где поршневые двигатели и где газотурбинные технологии могут предложить свои преимущества, и как убедиться, что новые электростанции дополнят историю развития возобновляемых источников энергии в регионе.

преимуществ поршневых двигателей в электроэнергетике

Многие эксперты считают электростанции, построенные с поршневыми двигателями, идеальным дополнением к прерывистым возобновляемым источникам энергии. Реципиентные установки чрезвычайно гибки. Помещения могут быть рассчитаны практически на любой вариант использования; двигатели отличаются высокой надежностью, возможностью быстрого запуска и остановки, могут работать на различных жидких и газообразных топливах; агрегаты очень эффективны (особенно при включении в теплоэлектроцентрали) в широком диапазоне нагрузок; а заводы относительно недороги и могут быть построены быстро с минимальным риском задержки.

Все в энергетике (да и во всем мире) знакомы с поршневыми двигателями. В конце концов, именно они приводят в действие большинство транспортных средств, на которых люди ездят или ездят каждый день. Но поршневые двигатели — это не то, что приходит на ум большинству людей, когда речь идет о производстве электроэнергии. Более типичная электростанция использует турбины для вращения генераторов, приводимых в движение паром или природным газом.

«Часто клиенты имеют давнюю предвзятость к турбинам и считают, что многодвигательной установке потребуется значительно больше обслуживающего персонала», — сказал 9 Юкка Лехтонен, вице-президент по управлению технологиями и продуктами Wärtsilä Energy. 0274 POWER , отметив, что недостаточное знакомство с технологией является препятствием для ее более широкого внедрения. «На самом деле, персонал для эксплуатации и обслуживания реципиентной установки примерно такой же, как и для газотурбинной установки аналогичного размера».

Помимо неправильного представления о рабочей силе, есть и другие вещи, в которых люди ошибаются в отношении рецептурных заводов. Многие люди думают, что поршневые двигатели подвержены высоким выбросам; в конце концов, кто не видел дизельный грузовик, мчащийся по дороге с клубами черного дыма из выхлопной трубы? Однако производители оригинального оборудования (OEM) уделяют этому вопросу пристальное внимание.

«В настоящее время наибольшую озабоченность наших клиентов вызывают выбросы и особенно поиск решений по сокращению выбросов CO 2 , — сказал д-р Тилман Тюткен, глава отдела продаж электростанций MAN Energy Solutions в Европе. «Наши двигатели оснащены новейшим оборудованием для снижения выбросов, которое сводит уровень выбросов к минимуму. Кроме того, они также подготовлены к будущему, когда CO 2 будет нейтральным, поскольку они могут работать на синтетическом топливе, полученном из возобновляемых источников энергии с использованием технологии Power-to-X. Например, двухтопливные и газовые двигатели также смогут работать на углеродно-нейтральном синтетическом природном газе в будущем без дополнительной технической адаптации, что сделает их перспективными инвестициями для клиентов».

Ключ к гибкости

Агенты по недвижимости часто говорят, что три самых важных атрибута недвижимости — это местоположение, местоположение и еще раз местоположение. Сегодня тремя наиболее важными атрибутами электростанции могут быть гибкость, гибкость и гибкость. И реципиентные растения обладают этой чертой.

Лехтонен отметил, что поршневые двигатели обеспечивают гибкую диспетчеризацию. Их можно запускать несколько раз в день без штрафов за обслуживание. Минимальное время безотказной работы двигателей Wärtsilä составляет одну минуту, минимальное время простоя — пять минут, а минимальная стабильная нагрузка — 10 %. Эти функции делают двигатели идеальными для балансировки возобновляемых источников энергии, использования возможностей вспомогательных услуг и оптимизации требований к диспетчеризации в реальном времени.

Поршневые двигатели также отличаются топливной гибкостью (см. врезку «Газовые двигатели предлагают множество преимуществ»). Они могут работать с очень широким спектром жидких и газообразных топлив. Распространены природный газ и мазут, но двигатели также могут быть сконфигурированы для работы на различных видах биотоплива и биогаза, а также на углеродно-нейтральном синтетическом топливе, как отмечалось ранее. Кроме того, некоторые децентрализованные электростанции с двигателями используют сжиженный природный газ (СПГ). Тюткен отметил, что многие обычные двигатели, работающие на жидком топливе, можно легко переоборудовать для работы на двух видах топлива, что дает владельцам гибкость при планировании.

Газовые двигатели предлагают множество преимуществ

Карлос Ланге, генеральный директор и президент компании INNIO, в портфель которой входят бренды газовых двигателей Waukesha и Jenbacher, рассказал POWER , что газовые двигатели обладают рядом преимуществ. Он сказал, что газовые двигатели дополняют возобновляемые источники энергии, балансируя и разделяя производство и потребление энергии. Кроме того, газовые двигатели могут работать не только на природном газе, но и на множестве других газов, включая биогаз, свалочный газ, канализационный газ, синтетические газы и водород. Более того, они позволяют децентрализованно производить электроэнергию и тепло прямо в точке потребления.

Сообщается, что INNIO имеет около 6000 биогазовых двигателей, установленных по всему миру и преобразующих биогаз и биометан в электричество и тепло. Предоставляя индивидуальные энергетические решения, которые повышают электрическую эффективность, более высокую выходную мощность, более длительный срок службы, более низкие выбросы и топливную гибкость для установленного парка электроэнергетической компании, газовые двигатели помогают операторам станции идти в ногу с меняющимися рыночными условиями и удовлетворять новые отраслевые потребности и задачи. срок службы активов.

Удаленный доступ к оборудованию также может быть чрезвычайно полезным. Ланге сказал, что до трех четвертей недавно поставленных газовых двигателей подключены к решению INNIO myPlant для управления производительностью активов (APM), облачной усовершенствованной платформе Интернета вещей (IoT), которая обеспечивает безопасный удаленный мониторинг активов двигателей.

Ланге отметил, что производство электроэнергии становится все более децентрализованным, и сказал, что газовые двигатели лежат в основе этой глобальной трансформации энергетики. Утверждается, что решения INNIO для распределенного питания идеально подходят для создания экологически чистого и безопасного будущего с нейтральным выбросом углерода.

По словам Ланге,

Комбинированные теплоэлектроцентрали (ТЭЦ) могут достигать общего КПД до 95%. Это выгодно как оператору, так и окружающей среде. По его словам, в некоторых случаях инвестиции в ТЭЦ могут окупиться за три-четыре года.

В качестве примера Ланге упомянул завод в Германии. В январе 2020 года Stadtwerke Kiel заменила угольную электростанцию ​​одной из самых современных и гибких в Европе ТЭЦ с газовым двигателем (рис. 1). Было установлено двадцать газовых двигателей Jenbacher J920 FleXtra общей электрической мощностью 190 МВт и тепловой мощностью 192 МВт. И электроэнергия, и тепло от электростанции поступают в электросеть и сеть централизованного теплоснабжения, которыми управляет Stadtwerke Kiel, помогая поддерживать стабильность сети по всей Северной Германии.

1. Stadtwerke Kiel заменила угольную электростанцию ​​на 20 газовых двигателей Jenbacher J920 FleXtra общей электрической мощностью 190 МВт и тепловой мощностью 192 МВт. Предоставлено: Stadtwerke Kiel

По всей Японии газовые двигатели Waukesha обеспечивают высокоэффективную базовую/непрерывную мощность для ТЭЦ, а также быстродействующее аварийное резервное питание, сказал Ланге. Вырабатываемое тепло и электроэнергия в основном используются для горячего водоснабжения. По его словам, эти генераторные установки двойного назначения Waukesha помогают удовлетворить потребности клиентов в балансе между высокой эффективностью и быстрым запуском.

Размер завода по производству рецептуры также является гибким. Объекты могут быть построены буквально с любой мощностью МВт с использованием среднеоборотных двигателей мощностью примерно от 1 МВт до 20 МВт каждый. Это делает станции идеальными для распределенной генерации, требующей мощности менее 50 МВт, и для более крупных станций мощностью в сотни МВт (рис. 2).

2. Реципиентные установки бывают всех размеров. Завод Quisqueya в Доминиканской Республике включает 24 многотопливных двигателя Wärtsilä Flexicycle 50DF общей мощностью 430 МВт. Предоставлено: Wärtsilä

Джим Уильямс-младший, директор NorthWestern Energy по тепловым и ветровым генерациям, сказал, что гибкость также распространяется на возможности «правильного размера» производства электроэнергии в любой момент времени. Для справки: в июне компания NorthWestern Energy подписала соглашение с Caterpillar Inc., согласно которому известный OEM-производитель машин и двигателей поставит комплексное решение для энергоснабжения, включающее шесть газогенераторных установок Cat G20CM34 (рис. 3) для новой электростанции мощностью 58 МВт. будет построен недалеко от Гурона, Южная Дакота.

3. N Компания NorthWestern Energy строит электростанцию ​​мощностью 58 МВт недалеко от Гурона, Южная Дакота, , которая будет включать шесть газогенераторных установок Cat G20CM34. Двигатели заменят турбины внутреннего сгорания, работающие в настоящее время на электростанции Huron. Предоставлено: Caterpillar Inc.

Уильямс объяснил концепцию правильного расчета: «Допустим, нам нужны дополнительные 20 МВт мощности в системе. Если единственным способом удовлетворить эту потребность является большая турбина внутреннего сгорания мощностью от 50 до 60 МВт, нам придется снизить мощность двигателя, что было бы чрезвычайно неэффективно и более дорого для наших клиентов. С другой стороны, имея флот из 9- Генераторные установки мегаватт, такие как те, что мы устанавливаем в Гуроне, мы можем постепенно увеличивать или уменьшать нашу мощность в меньших блоках, что позволяет нам максимально эффективно удовлетворять потребности в электроэнергии».

Эффективность, надежность и отказоустойчивость

Поршневые двигатели не только универсальны, но и очень эффективны. «Современные среднескоростные реципиентные установки с простым циклом имеют чистую теплотворную способность в диапазоне 8 000–8 400 БТЕ/кВтч (HHV [более высокая теплотворная способность], измеренная на стороне высокого напряжения повышающих трансформаторов). Это означает примерно на 10% меньшее потребление топлива на МВтч, чем у самой передовой газовой турбины на основе авиационного двигателя», — сказал Лехтонен.

Tütken также хвастался эффективностью поршневых двигателей в широком диапазоне нагрузок и условий эксплуатации. «Двигатели силовых установок могут достигать КПД более 50% в однотактном режиме», — сказал он. «В рамках когенерационной электростанции вы даже можете получить эффективность системы до 95%».

Кроме того, двигатели менее чувствительны к высоте, температуре окружающей среды и влажности, чем другие технологии. Например, исследования показали, что эффективность газовой турбины снижается примерно на 1% при повышении температуры на каждые 10 градусов выше условий Международной организации по стандартизации или ISO. Это может привести к снижению выходной мощности газовых турбин при некоторых условиях на 5-10%. В то же время поршневые двигатели сохраняют номинальную эффективность и выходную мощность в более широком диапазоне условий окружающей среды.

Чтобы компенсировать снижение производительности, OEM-производители газовых турбин используют различные методы охлаждения входящего воздуха и повышения производительности турбин, включая испарительные охладители и механические охладители. Однако охлаждение приточного воздуха требует дополнительных энергозатрат, а эффективность систем охлаждения сильно зависит от влажности окружающей среды. Для поршневых двигателей не требуется расход воды. Реципиентные установки используют радиаторное охлаждение с замкнутым контуром, и для увеличения выходной мощности никогда не требуется впрыск воды.

Когда дело доходит до надежности, двигатели трудно превзойти. «Коэффициент вынужденного простоя составляет менее 1% на единицу, а это означает, что для многоблочной установки вероятность остановки всех двигателей одновременно из-за простоя бесконечно мала (по сравнению с одновальной установкой). Кроме того, техническое обслуживание может быть поэтапным, чтобы обеспечить максимальную пропускную способность онлайн в любой момент времени», — сказал Лехтонен.

Компания Williams также отметила преимущество многодвигательной установки. «Когда одна высокопроизводительная турбина отключается для технического обслуживания или ремонта, мы теряем все возможности по выработке электроэнергии на этой станции. В качестве альтернативы, управляя парком из нескольких газогенераторных установок, у нас есть дополнительные единицы, которые могут компенсировать слабину, если одна из них отключится», — сказал он.

Возможность запуска двигателя из полностью обесточенного состояния — еще одно преимущество, которое невозможно переоценить. Многие владельцы заводов выбрали поршневые двигатели из-за устойчивости, которую обеспечивает это преимущество в суровых погодных условиях или других стихийных бедствиях (см. врезку «Преимущества островного режима»).

Преимущества островного режима

Генераторная станция Humboldt Bay компании Pacific Gas and Electric (PG&E’s) в Эврике, штат Калифорния, объект, введенный в эксплуатацию в 2010 году с 10 двигателями Wärtsilä 18V50DF, в июне завершил реконфигурацию, которая позволит отделить части округа Гумбольдт от более крупной сети и обеспечить исключительное электроснабжение. от станции, когда источники передачи, которые импортируют, экспортируют и стабилизируют электроэнергию в близлежащие районы, подвергаются воздействию. В PG&E заявили, что с помощью завода теперь возможно «островить» 20 городов, включая Эврику, Аркату, Мак-Кинливиль и Фортуну, а также некоторые племенные общины.

«Это важная веха не только для округа Гумбольдт, где клиенты получат непосредственную выгоду, но и для всех клиентов в нашей зоне обслуживания, которые выиграют, поскольку мы ищем инновационные решения для снижения воздействия отключений электроэнергии в целях общественной безопасности [PSPS] «Энди Веси, генеральный директор коммунальной компании PG&E, заявил в заявлении о завершении проекта.

PSPS — это одна из мер, принятых некоторыми калифорнийскими коммунальными службами для снижения риска лесных пожаров в периоды высоких температур, сильной засухи и сильных ветров. В определенных ситуациях компании будут отключать электроэнергию в отдельных районах, чтобы снизить риск отказа оборудования и возникновения лесного пожара. Жертвы лесных пожаров подали иски против PG&E на миллиарды долларов, что вынудило компанию объявить о банкротстве 29 января., 2019. Компания вышла из главы 11 1 июля 2020 года и предприняла ряд шагов, чтобы избежать проблем в будущем.

«Наши жители и предприятия испытывали трудности во время аварийных отключений, даже когда в округе Гумбольдт не было угрозы лесных пожаров», — говорится в заявлении первого окружного инспектора округа Гумбольдт Рекса Бона. «Руководство PG&E ответило на наши призывы убедиться, что в следующий раз они сделали все возможное, чтобы уменьшить воздействие».

В зависимости от ситуации, до 67 000 потребителей, которые могли потерять электроэнергию, когда районы за пределами округа Гумбольдт столкнулись с экстремальными погодными условиями, теперь могут оставаться под напряжением за счет изоляции с помощью реципиентной установки. В PG&E заявили, что размер зоны, находящейся под напряжением, можно масштабировать в зависимости от масштабов потенциального события PSPS и других условий, которые могут повлиять на сеть в данный момент.

Надежный выбор для электростанций

Реципиентные установки часто имеют стандартизированную модульную конструкцию, которая сводит к минимуму время строительства, что делает их возведение намного быстрее, чем газовую турбину с комбинированным циклом или паро/котельную установку. Типичные сроки выполнения варьируются от года до 18 месяцев для проектов «под ключ». Ввод в эксплуатацию обычно занимает от одного до двух месяцев в зависимости от размера установки.

«Как и в случае с каждой новой электростанцией, которую мы планируем построить, мы провели исчерпывающую оценку текущей и ожидаемой потребности в электроэнергии на территории, обслуживаемой электростанцией Huron. Мы также провели опрос, чтобы оценить все доступные технологии и выбрать сочетание, которое лучше всего соответствует нашим потребностям», — сказал Уильямс 9.0274 POWER , отметив, что поршневые двигатели были самым дешевым средством удовлетворения требований портфеля NorthWestern Energy к достаточности ресурсов.

«В данном конкретном случае технология поршневого двигателя станет лучшим решением. Это дает нам быстрый ввод в эксплуатацию, надежность и энергетические блоки нужного размера, которые нам нужны для экономически эффективного покрытия периодического дефицита для наших клиентов. Это также дает нам некоторую страховку для удовлетворения пиковых нагрузок на электроэнергию в условиях современного динамичного рынка электроэнергии.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *