Система vvt i принцип работы: Статьи — Информация — AUTOSPACE.BY

Содержание

Статьи — Информация — AUTOSPACE.BY

Технология VVT-i

VVT-i (Variable Valve Timing with intelligence) — система газораспределения с изменяемыми фазами от Toyota. Является разновидностью технологии VVT и CVVT. Включает в себя, по мере развития, технологии VVT-i, VVTL-i,Dual VVT-i, VVT-iE и Valvematic.

Технология VVT-i была впервые выпущена на рынок в 1996 году и заменила собой первое поколение VVT (1991 год, двигатель 4A-GE).

В зависимости от условия работы двигателя, система VVT-i плавно изменять фазы газораспределения. Это достигается путем поворота распределительного вала впускных клапанов относительно вала выпускных в диапазоне 20-30° (по углу поворота коленвала). В результате изменяется момент начала открытия впускных клапанов и величина времени «перекрытия» (то есть времени, когда выпускной клапан еще не закрыт, а впускной — уже открыт).

Основным элементом устройства является муфта VVT-i интегрированная в шкив, который выполняет роль корпуса муфты.

Ротор муфты находится внутри и непосредственно соединен с распределительным валом.

Изначально фазы впускных клапанов установлены таким образом, чтобы добиться максимального крутящего момента при низкой частоте вращения коленвала. После того, как обороты значительно увеличиваются в корпусе муфты сделано несколько полостей, к которым по каналам подводится моторное масло из системы смазки.

Возросшее давление масла открывает клапан VVT-i, заполняя ту или иную полость, обеспечивает поворот ротора относительно корпуса и, соответственно, смещение распределительного вала на определенный угол.

Кулачки имеют определенную форму и при повороте коленчатого вала открывают впускные клапана немного раньше, а закрывают позже, что благоприятно сказывается на увеличении мощности и крутящего момента на высоких оборотах.

Технология VTEC

VTEC (Variable valve Timing and lift Electronic Control) — система динамического изменения фаз газораспределения, фирменная разработка компании Honda.

Вначале система VTEC была успешно реализована в двигателях, применяемых в спортивных автомобилях, а затем, после признания и успеха данная система использована на двигателях гражданских автомобилей.

Особенность системы VTEC заключается в том, что возможно конструировать компактные, но очень мощные (в соотношении объем/л.с.) двигатели без применения дополнительных устройств (турбин, компрессоров), при этом технология производства подобных двигателей остается недорогой, а автомобиль с установленной на нем системой VTEC не испытывает проблем, характерных для турбированных автомобилей.

Принцип работы VTEC, в классическом виде по сравнению с другими системами газораспределения, конструктивно выглядит просто, — на распредвале между основными кулачками разместили один дополнительный кулачок большего профиля. Получается, что на каждый цилиндр приходится по одному дополнительному кулачку.

За наполнение топливной смесью камеры сгорания на низких и средних оборотах работы двигателя, отвечают два внешних кулачка, а центральный задействуется на высоких оборотах. Обратите внимание, что непосредственно на клапана воздействуют не кулачки распредвала, а через так называемые коромысла/рокеры, которых тоже три. Внешние кулачки воздействуют на рокеры, обеспечивающие открытие клапанов независимо друг от друга, а центральная пара кулачек-рокер, хотя и работает, но работает, что называется вхолостую. Клапаны имеют минимальную высоту подъема, фазы ГРМ характеризуются малой продолжительностью.

Как только двигатель достигает определенного количества оборотов, т.е. переходит в режим высоких оборотов, система VTEC активируется. Под давлением масла происходит смещение синхронизирующего штифта внутри рокеров таким образом, что все три рокера как бы становятся одной целой конструкцией, и после этого усилие на впускные клапаны передается от большого кулачка распредвала. Таким образом, увеличивается ход клапанов и фазы газораспределения.

При снижении количества оборотов система возвращается в исходную позицию.

Недостатками такой системы являются ступенчатый переход с одного режима на другой и конструктивная сложность реализации процесса блокировки.

Разновидности VTEC

На сегодняшний день существует несколько разновидностей системы VTEC. Первая категория рассчитана на увеличение мощности. Второй, VTEC-E, ставились совсем иные задачи — экономия топлива, о чем и говорит приставка «E» — econom. Итак, разновидности:

  • DOHC VTEC 1989-2001 гг, cамый мощный в семействе VTEC до 2001 года
  • SOHC VTEC 1991-2001 гг, средняя, более простая конструкция по сравнению с DOHC VTEC, но и менее мощная
  • SOHC VTEC-E 1991-2001 гг, самый экономичный VTEC
  • 3-stage VTEC-E 1995-2001 гг, совместил SOHC VTEC и VTEC-E, в отличие от них различает низкие, средние и высокие обороты
  • DOHC і-VTEC c 2001 года
  • SOHC і-VTEC c 2006 года
  • 3-stage i-VTEC (только на «гибридах») c 2006 года

Особенность данного двигателя заключается в том, что в городском цикле у автомобиля с системой VTEC-E, расход топлива составляет около 6,5-7 литров бензина на 100 км пути. Это поистине выдающийся результат, учитывая то, что такие двигатели Honda развивают мощность 115 «лошадиных сил». Но автомобили с таким двигателем лишены драйверских ощущений.

Такой результат достигается за счет того, что при небольших оборотах двигатель работает на обедненной топливовоздушной смеси, которая поступает в его цилиндры только через один впускной клапан. Это происходит по причине того, что на втором клапане, кулачек управляющий открытием и закрытием клапана, имеет профиль кольца и поэтому реально работает только один клапан.

За счёт несимметричности потока поступающей горючей смеси (один клапан закрыт, а второй открыт) возникают завихрения, происходит лучше и равномернее заполнение камеры сгорания, что позволяет двигателю работать на довольно бедной смеси. При увеличении оборотов (2500 оборотов и выше) срабатывает система VTEC, синхронизирующий шток под давлением масла перемещается, и рокер первичного клапана входит в зацепление с рокером вторичного клапана и оба клапана работают синхронно.

i-VTEC

Очередной разработкой компании Honda газораспределительного механизма с изменяемыми фазами VTEC является система, получившая обозначение i-VTEC (где буква «i» означает «Intellegence» — «интеллектуальный»).

«Интеллектуальность» же данной системы заключалась в следующем — управление изменением фаз осуществляется компьютером, при помощи функции поворота распредвала, регулируя угол опережения. Система i-VTEC позволила двигателям Honda получить больший крутящий момент на низких оборотах, что было постоянной проблемой для двигателей компании, — при высокой мощности они отличались малым крутящим моментом, получаемым на высоких оборотах.

Версия i-VTEC если не устранила, но существенно подкорректировала этот недостаток. Система i-VTEC начала устанавливаться на мощные моторы серии К и некоторых серии R, например, в автомобилях серии Type R, или Acura RSX. Другая версия, напротив, получила «экономичное» направление, и стала устанавливаться в гражданской серии двигателей (например на автомобилях CR-V, Accord, Element, Odyssey, и других).

Принцип работы SOHC i-VTEC

Компания Honda реализовала работу SOHC i-VTEC на простых принципах, которые заключаются, в том, что когда мы управляем автомобилем, то мы придерживаемся в основном двух различных стилей вождения.

Первый стиль вождения мы принимаем за спокойную езду без резких ускорений, с пустым багажником и без пассажиров. В таком режиме обороты двигателя, как правило, не превышают порог в 2,5 – 3,5 тысяч оборотов в минуту, а усилия на педаль газа минимальны. Такие условия являются наиболее благоприятными для экономии топлива.

В классическом виде воздействуя на педаль газа, мы открываем или закрываем дроссельную заслонку и регулируем подачу количества воздуха. В зависимости от количества попадающего воздуха, электронная система управления двигателем в нужной пропорции подает топливо для образования топливно-воздушной смеси. Чем сильнее нажимаем на педаль газа, тем больше открывается дроссельная заслонка (увеличивается поперечное сечение впускного канала).

В это же время дроссельная заслонка являлась препятствием для прохождения воздуха.

Дроссельная заслонка — элемент впускной системы, которая регулирует подачу воздуха в двигатель.

По идее, такое поведение дроссельной заслонки должно способствовать экономии топлива — поступает меньше воздуха и соответственно компьютер уменьшает дозу подаваемого топлива. Однако это не совсем так. В такой ситуации дроссельная заслонка выступает в качестве силы сопротивления, препятствуя прохождению воздуха, когда этого требует рабочий процесс. Получается поршень, опускаясь в цилиндре вниз нижней мертвой точки, должен всасывать топливно-воздушную смесь, затрачивая на это собственную энергию. Энергию, которая в конечном итоге должна была полностью передаться на колеса. Этот побочный эффект прозвали «насосными потерями».

Попытаемся взглянуть на это с практической точки зрения на примере системы SOHC i-VTEC. Ведь именно устранение насосных потерь – преимущество нового i-VTEC на двигателях с одним распредвалом.

Все, что надо было сделать – это на низких оборотах двигателя дроссельную заслонку оставить открытой, а регулировку подачи топливно-воздушной смеси доверить системе i-VTEC. На деле, разумеется, не все так просто.

Следует учитывать следующий момент, что в период, когда дроссельная заслонка полностью открыта, во впускную систему поступает чрезмерно много воздуха и соответственно в цилиндры много топливно-воздушной смеси.

В стандартных двигателях на фазе впуска впускные клапаны открыты, поршень движется вниз к нижней мертвой точке (НМТ). Как только поршень достигает нижней мертвой точки, впускные клапаны синхронно закрываются, а поршень, начиная фазу сжатия, поднимается к верхней мертвой точке (ВМТ).

Но смесь не сгорает, как вы, наверное, подумали. Фишка системы состоит в том, что один из двух впускных клапанов в цилиндре после фазы впуска закрывается значительно позже второго.

Двигатель с SOHC i-VTEC работает несколько иначе. На фазе впуска – поршень движется к НМТ, впускные клапаны открыты. На фазе сжатия поршень начинает движение вверх к ВМТ. По условию работы i-VTEC в режиме экономии один из впускных клапанов остается открытым и под давлением движущегося вверх поршня, лишняя топливно-воздушная смесь, которая попала в цилиндр благодаря полностью открытой дроссельной заслонке, беспрепятственно возвращается во впускной коллектор.

Механизм SOHC i-VTEC

Механизм системы SOHC i-VTEC аналогичен механизму VTEC предыдущих поколений. Все двигатели с системой SOHC i-VTEC имеют два впускных клапана и два выпускных на каждый цилиндр, т.е 16 клапанов на 4 цилиндра. На каждую пару клапанов приходится 3 кулачка – два обычных крайних и один центральный большего профиля VTEC. Кулачки распредвала традиционно воздействуют на клапаны не непосредственно, а через рокеры, которых тоже три на два клапана.

При отключенной системе i-VTEC внешние кулачки обеспечивают открытие клапанов и каждый рокер работает независимо друг от друга, а центральный кулачок, хотя и вращается вместе с остальными, но работает вхолостую.

Как только двигатель переходит в режим работы, которую система Drive by Wire определяет как благоприятную для работы системы — посредством давления масла система смещает шток внутри рокеров таким образом, что два из трех рокеров работают, как единая конструкция. И с этого момента, рокер впускного клапана, который синхронизирован штоком с рокером кулачка системы VTEC, открывает клапан на величину и продолжительность в соответствии с профилем кулачка системы VTEC. Практически, как обычная система газораспределения с изменяемыми фазами VTEC, с той лишь разницей, что работают системы при разных условиях и в разных фазах.

Drive by Wire (DRW) или «управление по проводам» — электронная цифровая система управления автомобилем.

В обычной системе VTEC два внешних кулачка отвечают за работу двигателя на низких оборотах, а центральный кулачок системы VTEC, подключается на высоких оборотах, таким образом, обеспечивая большее высоту и период открытия, чтобы в цилиндры поступило как можно больше топливно-воздушной смеси. В «умном» SOHC i-VTEC все работает наоборот — рабочая зона системы находится в диапазоне от 1000 до 3500 оборотов в минуту. На «верхах» же мотор вступает в стандартный режим работы.

Однако, диапазон оборотов не единственный фактор по которому система Drive by Wire определяет момент включения и выключения системы. Иначе новый i-VTEC мало чем отличался бы от предшественников.

Новый SOHC i-VTEC в паре с «Drive by Wire» дополнительно определяет нагрузку на двигатель и в зависимости от ее величины принимает решение включать VTEC или нет.

Именно символ «i» в названии системы указывает на работу этих двух систем. Получается, что система VTEC работает при определенных оборотах двигателя и определенной величине нагрузки на двигатель. Поэтому «Drive by Wire», которая и определяет оптимальные условия, является наиважнейшей составляющей системы в целом.

Общий рабочий диапазон SOHC i-VTEC демонстрирует график. Красная зона на графике и есть благоприятная среда для работы системы.

Система VVT и электромагнитный клапан :: AFTERMARKET.IN.UA magazine

Теоретический рабочий цикл четырехтактного двигателя включает в себя такт впуска, такт сжатия, рабочий ход и такт выпуска. Для простоты теоретический цикл для всех автомобильных двигателей считается одинаковым. Но в реальности все намного сложнее.

Чтобы каждый цилиндр был заполнен газом и опорожнен максимально эффективно в каждый конкретный момент времени — при разных скоростях и с разными нагрузками, — момент открытия и закрытия клапанов должен несколько отличаться от угла положения коленвала согласно теоретического цикла. Именно для этого используются системы VVT (Variable Valve Timing) —регулирования фаз газораспределения и электромагнитные клапаны системы VVT. Читайте дальше, чтобы узнать о функциях и геометрии этих важных деталей.

Задержка и инерция

Как описано во введении, время открытия и закрытия клапана должно немного отличаться от теоретического цикла, чтобы оптимизировать процесс впуска газов в цилиндр и их выпуска из него. На величину корректировки влияют задержка и инерция.

Задержка. Клапаны не открываются мгновенно. Для полного открывания может потребоваться поворот коленчатого вала на угол 20 до 30°. При отсутствии корректирующих мер это может привести к задержкам впускного и выпускного циклов:

если при впуске поршень начинает опускаться, а впускной клапан еще не открыт из-за вышеуказанной задержки, в цилиндре создается вакуум. Это затрудняет начало хода поршня вниз и, следовательно, снижает производительность двигателя;

в свою очередь, если поршень начинает движение вверх при выпуске, а клапан не открыт из-за задержки, давление в цилиндре создает сопротивление подъему поршня, и это также снижает производительность двигателя.

Инерция. Кроме того, когда клапан открывается, газы немного запаздывают перед началом движения. Это также приводит к небольшой задержке в начале процесса (наполнение или опорожнение цилиндра).

Стандартное открытие клапана без системы VVT

Ниже приведен пример схемы открытия клапана для автомобиля с фиксированной геометрией без системы регулирования фаз газораспределения (система VVT), где ВМТ обозначает верхнюю мертвую точку, а НМТ — нижнюю.

Фото 1
Стандартная схема открытия клапана без системы VVT

Открытие впускного клапана (синий цвет) 
Чтобы избежать задержки при впуске газов, впускной клапан открывается немного раньше ВМТ.

Закрытие впускного клапана (синий цвет)
Впускной клапан закрывается позже прохождения поршнем НМТ. При этом благодаря инерции газов оптимизируется процесс заполнения цилиндров.

Открытие выпускного клапана (оранжевый цвет) 
В конце хода поршня вниз, хотя давление внутри цилиндра снижалось по мере того как газы выталкивали поршень вниз, чтобы не было сопротивления при ходе поршня вверх, выпускной клапан открывается до достижения НМТ.

Закрытие выпускного клапана (оранжевый цвет) 
Для полного удаления отработанных газов и чистоты оставшегося в цилиндре воздуха закрытие выпускного клапана происходит немного позже.

Как показано на рисунке, в схеме присутствует перекрытие (зеленый цвет): короткое время, в течение которого впускной и выпускной клапаны открыты одновременно.

Система VVT, или система регулирования фаз газораспределения

Принцип работы системы VVT

Поскольку скорость вращения автомобильного двигателя непостоянна, идеально если диаграмму фаз газораспределения можно изменять в соответствии с изменением скорости вращения. Другими словами: при изменении частоты вращения коленчатого вала двигателя для оптимального опорожнения и наполнения цилиндров углы закрытия и открытия клапанов должны регулироваться.

Система VVT изменяет углы с помощью механизма регулирования фаз газораспределения (фазовращателя), расположенного на головке распредвала. Эта система приводится в действие подачей масла, регулируемой блоком управления двигателем с помощью электромагнитных клапанов.

Основные преимущества этой системы:
•    снижение расхода топлива;
•    увеличение крутящего момента и мощности;
•    уменьшение количества выбросов.

В основном для бензиновых двигателей

Система VVT внедрялась азиатскими и европейскими автопроизводителями в конце 1980-х и начале 1990-х годов. В середине 2000-х эта система стала более популярной и начала использоваться всеми основными автопроизводителями.

В настоящее время система обычно устанавливается в бензиновых двигателях (хотя и не во всех случаях), но может устанавливаться и в некоторых дизельных двигателях.

Автопроизводители могут использовать разные формальные названия системы, кроме того, могут существовать незначительные различия, но принцип работы остается неизменным:

Honda: VTEC
Toyota: VVT-i
BMW: VANOS
Ford: Ti-VCT
Kia-Hyundai: CVVT
Porsche: VARIO CAM
VAG: TGV

Электромагнитный клапан (соленоид) и другие компоненты системы VVT

Основные компоненты системы регулирования фаз газораспределения:

Фото 2
Основные компоненты системы VVT

ЭБУ
Датчики оборотов
Фазорегулятор
Распредвалы
Электромагнитные клапаны
Маслопровод

Подробнее о фазорегуляторе

Фазорегулятор изменяет угол открытия клапанов. Он состоит из следующих частей:

Фото 3
Компоненты фазорегулятора

Внутренний ротор: эта деталь соединена с распредвалом.
Наружный корпус: эта деталь соединена с зубчатым шкивом ГРМ двигателя.
Камеры: масло подается с одной или с другой стороны лопастей внутреннего ротора. Это приводит к повороту внутреннего ротора относительно внешнего корпуса, в результате чего угол открытия клапанов смещается вперед или назад.

В современных автомобилях для регулируемой подачи масла в камеры с разных сторон лопастей используются электромагнитные клапаны. Как показано далее, электромагнитный клапан открывает подачу масла через маслопроводы в камеры в соответствии с сигналом широтно-импульсной модуляции (ШИМ), который он получает от блока управления.

Подробнее об электромагнитном клапане

Электромагнитный клапан состоит из следующих частей:

Фото 4
Компоненты электромагнитного клапана

Линия подачи масла
Возврат масла
Маслопроводы к распредвалу
Поршень
Катушка электромагнита
Электрический разъем

Положения электромагнитного клапана

Обычно система VVT устанавливается на распредвал впускных клапанов, но в некоторых автомобилях используется также система для распредвала выпускных клапанов. Например, высокопроизводительные двигатели оборудуются более сложными системами для регулирования хода клапанов. Поэтому электромагнитные клапаны могут использоваться в нескольких точках.

1. электромагнитный клапан в положении запаздывания

Электромагнитный клапан может быть в положении запаздывания:

Фото 5
Электромагнитный клапан находится в положении запаздывания

Когда двигатель работает на холостом ходу, электромагнитный клапан перемещает внутренний поршень. Открывается подача масла с одной стороны камер, а с другой стороны масло возвращается в поддон. В результате клапаны открываются с небольшим запаздыванием относительно теоретического цикла.

Более позднее открывание впускного клапана предотвращает попадание отработанных газов во впускной коллектор на холостом ходу. Кроме того, экономится топливо: двигатель работает без перебоев при более низких оборотах холостого хода.

2. электромагнитный клапан в положении опережения
Электромагнитный клапан может находиться в положении опережения:

Фото 6
Электромагнитный клапан в положении опережения

При высокой частоте вращения двигателя электромагнитный клапан перемещается в противоположное положение. Направление подачи масла изменяется на противоположное, и распредвал вращается с максимальным опережением.

Когда двигатель работает на высоких оборотах, для заполнения цилиндра необходимо гораздо меньше времени. Таким образом, клапан открывается раньше, и газ начинает поступать в цилиндр до того, как поршень достигнет ВМТ. При открытии с опережением закрытие также происходит с опережением. Но при высокой частоте вращения двигателя благодаря инерции газов, циркулирующих с высокой скоростью, цилиндр заполняется в достаточном объеме, и обеспечивается оптимальная производительность.

3. электромагнитный клапан в положении удержания

Кроме того, электромагнитный клапан может находиться в положении удержания:

Фото 7
Электромагнитный клапан в положении удержания

На распредвалах установлены датчики Холла. Эти датчики передают блоку управления точное положение распредвалов относительно коленвала. Таким образом блок управления может определять необходимое положение электромагнитного клапана в любой момент времени. Оно рассчитывается путем сравнения входных сигналов (частоты вращения коленвала двигателя, положения дроссельной заслонки и т. д.) с картами памяти блока управления. Когда достигается необходимое опережение, электромагнитный клапан устанавливается в положение удержания. При этом клапан блокирует подачу масла в обе стороны и удерживает распредвал под определенным углом относительно его зубчатого шкива.

Когда двигатель работает на средних оборотах, а также в других, особых ситуациях, для оптимальной работы двигателя блок управления может устанавливать «среднее опережение распредвала». При среднем положении уменьшается содержание оксидов азота. Эффект сравним с эффектом от использования системы рециркуляции отработавших газов, которая обычно устанавливается в дизельных двигателях. Эта система возвращает некоторое количество отработавших газов обратно во впускной коллектор. При их повторном попадании в камеру сгорания температура снижается, и образуется меньше выбросов оксидов азота.

Отказы системы VVT

Проблемы с давлением масла

Наиболее распространенный отказ гидравлической системы — это низкое или нулевое давление масла. Такой отказ часто происходит из-за ненадлежащего обслуживания масляной системы и циркуляции мусора и осадка. Когда загрязнения оседают в предварительном фильтре маслопровода электромагнитного клапана, они ограничивают подачу масла. Это приводит к замедлению работы системы или ее сбою. Кроме того, частицы могут пройти через фильтр и заклинить электромагнитный клапан в одном из положений.

Если масло имеет неправильную вязкость или работа системы смазки нарушена в другой точке, проблема с низким давлением может усугубиться.

Отказы электрооборудования

Кроме того, возможен электрический отказ электромагнитного клапана. Клапан может перестать работать по причине выхода из строя катушки. Однако, чтобы избежать замены исправной детали, всегда рекомендуется проверять провода, идущие к клапану.

Блок управления двигателем использует датчики положения распредвала и коленвала для оценки работы системы. В случае аномальных показателей он генерирует код неисправности и включает диагностическую лампу двигателя.

Теория и принципы изменения фаз газораспределения

Перейти к содержимому Искать:

Реклама

Social Connect
Ресурсы
Наш бренд

Контент для профессионалов и любителей двигателей

Подписаться

Ноябрьские хитрости и советы для магазина!

ДЛИННЫЙ УДЛИНИТЕЛЬ МЕТЧИКА

Нарезание резьбы на дне глубоких отверстий в блоках цилиндров можно выполнить с помощью шкивного метчика. Метчики для шкивов выполнены с удлиненным хвостовиком. Однако, если у вас нет шкивного метчика, вы можете сделать удлинитель метчика. Вот как: Отрежьте резьбовой конец длинного болта и просверлите отверстие в конце стержня болта глубиной 1/2 дюйма. Чтобы определить размер отверстия, измерьте расстояние между гранями (AF) квадратного хвостовика метчика.

Читать статью полностью

Shop Solutions Октябрь 2022 г.

При обработке на фрезерном станке с ЧПУ необходимо продуть охлаждающую жидкость и снять стружку с деталей для проверки. Я попробовал вентилятор, установленный на держателе инструмента, но он не смог удалить всю стружку и охлаждающую жидкость из более глубоких областей.

By Shop Solutions – The Power of Knowledge

Моторное масло для мощных импортных двигателей

Сделать правильный выбор масла не всегда так просто, как может показаться. Несколько вязкостей, классов и выбор между обычными и синтетическими делают его немного более сложным.

Эрик Гарбе

Другие сообщения
Разработка двигателя Honda 2,3 л для шоссейных гонок

Один из наиболее важных аспектов двигателестроения не имеет никакого отношения к двигателю. Вы должны понимать клиента и то, чего он пытается достичь.

Автор Люк Уилсон

Влияние подшипников двигателя на производительность

В настоящее время подшипник (в параметрах производительности) должен быть как твердым, так и мягким. Сохранение геометрии имеет первостепенное значение, но она также должна быть податливой и способной приспосабливаться к нагрузкам и изгибам.

Эван Лаукс

Импорт и системы смазки с сухим картером

По мере того, как производительность импортных автомобилей на трассе и вне ее продолжала расти, их заводские системы с мокрым картером просто не могли справиться с производительностью и развитием систем сухого картера для популярного импорта пользовался повышенным спросом. Но почему сухой картер?

Автор: Эрик Гарб

Бессмертная тайна двигателя Nissan RB26

Несмотря на все преимущества и глобальный интерес, платформа RB продемонстрировала невероятный рост поддержки послепродажного обслуживания и производительности оригинальных комплектующих. Nissan создал одну из величайших икон, когда-либо появлявшихся на гоночной арене!

Митчелл Уилсон

Принцип работы и структура системы VVT

  • Домашняя страница
  • Центр знаний
  • Принцип работы и структура системы VVT

В данном документе в качестве примера используется система VVT с гидравлическим приводом, используемая в большинстве серийных моделей китайского автомобильного рынка:

Схема системы VVT

Система VVT на приведенном выше рисунке в основном состоит из кулачкового фазовращателя и масляного регулирующего клапана (сокращенно OCV). Кулачковый фазовращатель — это привод системы, а OCV — контроллер системы. Система управления двигателем (также обычно называемая ECU) просматривает карту MAP на основе сигналов, передаваемых датчиком открытия дроссельной заслонки, датчиком температуры воды в двигателе, датчиком скорости вращения, расходомером воздуха и т. д., и рассчитывает требуемый угол фаз газораспределения при различных режимах работы двигателя. Угол времени, то есть положение цели. В то же время EMS рассчитывает фактическое положение распределительного вала на основе сигналов обратной связи от датчика положения коленчатого вала и датчика положения распредвала. EMS сравнивает целевое положение с фактическим положением и отправляет сигнал срабатывания на OCV в соответствии со стратегией управления EMS для изменения положения золотника в регулирующем клапане, тем самым изменяя направление потока масла и скорость потока в масляном канале, как а такие сигналы, как опережение, запаздывание и константа, подаются обратно в полость фазовращателя VVT под действием гидравлического давления для реализации относительного вращения между внутренним статором и внешним ротором фазовращателя для регулировки угла синхронизации распределительного вала, тем самым величина впускного (выпускного) воздуха регулируется, и достигается время открытия и закрытия клапана.

Связанные новости

  • Простой метод эксплуатации для удлинения подшипника выключения сцепления

    7 мая 2019 г. После многократной практики, усовершенствования и обобщения опыта мы, наконец, разработали относительно простой метод операции впрыска масла. Конкретный процесс продления срока службы выжимн…смотреть
  • Что означает модель подшипника выключения сцепления?

    May 7, 2019Подшипник выключения сцепления является относительно важной частью автомобиля. Если техническое обслуживание некачественное, это приведет к экономическим потерям, и потребуется много труда, чтобы разобрать его один раз. Поэтому под…вид
  • Как справиться с царапинами на ступице колеса, чтобы избежать повреждений в снежный день

    15 мая 2019 г. Снежной зимой очень холодно, но люди все еще ищут ее. Вы можете наслаждаться красивыми пейзажами. Было приятно и весело. Но это хлопотно для людей, которым приходится выходить на улицу, особенно для тех, кто.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *