Система зажигания двигателя – устройство, регулировка + видео » АвтоНоватор
Система зажигания двигателя обеспечивает с помощью искры своевременное воспламенение смеси, из горючего и воздуха, которая попадает в камеру сгорания. Однако это необходимо для бензиновых авто, с дизельными машинами все иначе. В них воздух и топливо попадают в цилиндры отдельно, причем воздух сильно сжимается и соответственно нагревается (температура может достичь 700 С), таким образом, происходит самовоспламенение. Значение этой системы для обоих видов моторов вкратце понятно, но также немногословно описать ее установку будет непросто, поэтому посвятим ей нашу статью.
Система зажигания двигателя – отличие «дизеля» от бензинового мотора
Из-за указанных различий в самом процессе воспламенения бензинового и дизельного топлива в двигателе, можно отметить разницу и в строении зажигания. Очевидно хотя бы то, что такой системы, как в бензиновом авто, состоящей из прерывателя-распределителя, коммутатора или же датчиков импульсов, в дизельной машине нет. Однако зимой иногда с трудом удается завести дизельный движок, из-за того, что воздух слишком холодный, поэтому устанавливают специальную систему предварительного подогрева, чтобы увеличивать температуру воздуха в камере сгорания.
Можно сказать, что установка зажигания на дизельном двигателе – это не что иное, как выбор угла опережения впрыска горючего. А достигается это регулированием положения поршня, в момент впрыскивания «дизеля» в цилиндр. Это очень важно, так как при неправильном выборе угла впрыскивание будет несвоевременным, и, как следствие, топливо не будет сгорать до конца. А это негативно отразится на слаженной работе цилиндров.
Допустив незначительную ошибку, всего-то в один градус, можно спровоцировать выход из строя всего силового агрегата, из-за чего потребуется капитальный ремонт.
Система зажигания дизельного двигателя – устройство и принцип регулировки
Подытоживая, можно сказать, что система зажигания дизельного двигателя включает насос высокого давления (ТНВД), посредством которого и происходит ввод горючего в камеру сгорания. Современные автомобилисты находят в таком устройстве системы эффективность и экономичность расхода топлива, поэтому дизельные моторы становятся более популярными. Именно из-за увеличивающегося числа пользователей мы решили приоткрыть секреты обслуживания описанной системы зажигания.
Если в автомобиле стоит дизельный силовой агрегат с механической топливной аппаратурой, то регулировать угол опережения впрыска можно посредством поворота насоса вокруг своей оси. Еще можно поворачивать зубчатый шкив относительно ступицы. Если же ТНВД и зубчатый шкив жёстко закреплены, тогда регулировка происходит только за счет углового сдвига зубчатого шкива распределительного вала. Но это все лирика, пора перейти к действиям.
Регулировка зажигания дизельного двигателя – инструкция для решительных
Регулировка зажигания дизельного двигателя может производиться и самостоятельно. Для начала следует поднять крышку капота и зафиксировать ее на опорной стойке. Сверху слева на задней части двигателя необходимо найти маховик (массивное колесо), на корпусе кожуха которого расположено механическое устройство. Шток этого устройства требуется сначала приподнять и развернуть на 90 градусов, затем опустить в прорезь, которая находится на корпусе.
Теперь снимите грязезащитный щиток, для этого на кожухе маховика ключом 17 мм нужно открутить два болта (проще подобраться к этому месту из-под машины). В отверстие маховика через прорезь кожуха следует вставить металлический стержень и поворачивать коленвал двигателя. Направить его нужно слева направо, пока его ход не будет застопорен штоком фиксатора сверху.
Теперь самое время посмотреть на вал привода насоса для горючего, он расположен сверху от развала блока цилиндров (ось, от которой ряды цилиндров расходятся). Если установочная шкала приводной муфты (фланца, который служит для передачи вращений от приводного вала) ТВНД повернута вверх, то в этом случае риску на фланце топливного насоса следует совместить с нулевой меткой привода и затянуть два крепежных болта. Если установочная шкала приводной муфты не повернута вверх, тогда потребуется приподнять стопор, а коленвал двигателя повернуть на один оборот, и следом все вышеперечисленные действия необходимо повторить в том же порядке.
Как только болты приводной муфты затянули, нужно поднять вверх стопор маховика, повернуть на 90 градусов и опустить в паз. На кожухе маховика снизу можно вернуть на свое место грязезащитный щиток (крепится болтами). Теперь капот автомобиля пора закрыть, работа закончена. Остается завести автомобиль и проверить четкость срабатывания системы.
carnovato.ru
Система зажигания инжекторного и дизельного двигателя автомобиля: виды (контактная и другие)
Эффективная работа автомобильного двигателя достигается только за счет нормальной работоспособности основных систем и узлов. Одной из таковых является система зажигания. Какие функции она выполняет, какие существуют виды СЗ, из каких механизмов и элементов она состоит? Ответы на эти и многие другие вопросы вы можете найти ниже.
Содержание
[ Раскрыть]
[ Скрыть]
Характеристика системы зажигания двигателя
Автомобильные бензиновые инжекторные и дизельные моторы не могут работать при неисправностях в работе системы зажигания. Если хотя бы один составляющий элемент СЗ по каким-то причинам выходит из строя, это приведет к некорректной работе мотора в целом. Для начала рассмотрим основные характеристики СЗ, начнем с предназначения.
Предназначение и функции
Предназначение СЗ заключается в подаче высоковольтного разряда (искры) на свечи в определенный так работы двигателя автомобиля. В частности, речь идет о бензиновых силовых агрегатах. Что касается дизельных моторов, то в данном случае под зажигание подразумевают момент впрыска горючего и такт сжатия.
Виды
Если с назначением все понятно, то перейдем к видам:
- Контактные СЗ, в данном случае процесс управления за процедурой накопления и распределения высоковольтного разряда по цилиндрам производится с помощью распределительного механизма. Более совершенствованные контактные СЗ стали транзисторными, в них в первичной цепи катушки используется специальный транзисторный коммутатор.
- Бесконтактные СЗ. В таких системах управление зарядом осуществления с помощью транзисторного коммутатора, который взаимодействует с бесконтактным датчиком Холла. Многоискровое коммутаторное устройство используется в качестве прерывателя, а процесс распределения энергии производится с помощью механического распределительного узла.
- Электронные СЗ. В таких системах применяются специальные управляющие модули, которые осуществляют накопление и дальнейшее распределение разряда одно- или двухконтурной СЗ.
Конструкция
Теперь перейдем к вопросу конструкции СЗ:
- Основным элементом считается источник питания, используется батарейное устройство (АКБ), а также генераторный узел. Первый применяется для запуска мотора, а второй – для питания оборудования во время езды.
- Выключатель, то есть замок, в который водитель вставляет ключ. Этот механизм используется для подачи напряжения на электросеть авто, а также на втягивающее реле стартерного узла.
- Катушка или модуль зажигания. Этот элемент используется непосредственно для накопления, а также дальнейшего преобразования электрической энергии в высоковольтный разряд. Накопители могут быть емкостными или индуктивными.
- Не менее важный элемент – это свечи. Эти элементы представляют собой устройства, оснащенные электродами, их количество может варьироваться в зависимости от типа свечей и их производителя. На центральной части конструкции расположен специальный проводниковый элемент.
- Механизм распределения. Его предназначение заключается в подачи высоковольтного заряда на определенный цилиндр в определенное время, то есть в самый оптимальный момент. Такие механизмы состоят из распределительных устройств (трамблеров), коммутаторов и управляющих модулей, но их состав может быть разным в зависимости от типа СЗ.
- Высоковольтные провода. По сути, это одножильный кабель, оснащенный надежной изоляцией. Проводник, расположенный внутри изоляции, может быть выполнен в виде спирали, это позволят предотвратить образование помех в радиодиапазоне.
Принцип работы и порядок зажигания
Как работает СЗ:
- На первом этапе происходит накопление электрической энергии, а также дальнейшая подача заряда нужного уровня.
- Далее, осуществляется преобразование накопленной энергии в высоковольтный разряд.
- На следующем этапе осуществляется распределение заряда по цилиндрам. Здесь же следует упомянуть о порядке. Порядок зажигания – это процесс подачи заряда на определенные цилиндры, данный параметр определяется производителем для каждого конкретного автомобиля. К примеру, в отечественных ВАЗ 2109 порядок такой – сначала заряд подается на первый цилиндр, затем на третий, четвертый, а потом на второй.
В Газелях порядок немного другой – сначала в работу вступает первый цилиндр, затем второй, потом четвертый и третий. Если вам нужно точно узнать о порядке работы цилиндров, уточните эту информацию в сервисной книжке. - Далее, с помощью свечей в цилиндрах образовывается искра.
- На завершающем этапе осуществляется возгорание топливовоздушной смеси, что приводит к запуску силового агрегата (автор видео – Михаил Нестеров).
Следует отметить, что на каждом из этапов важно, чтобы все компоненты системы работали слаженно, только это позволит добиться наиболее эффективной работы.
Характерные неисправности зажигания двигателя
Поскольку по своей конструкции СЗ – это достаточно сложная система, выход из строя одного из ее компонентов может привести к невозможности запуска мотора.
Если двигатель не запускается, причины могут быть следующими:
- Окислились контакты на прерывателе, возможно, между ними отсутствует зазор. В данном случае люфт следует отрегулировать, а сами контакты качественно очистить.
- Произошло замыкание на массу конденсаторного элемента или проводки контактов. Замыкание необходимо устранить для ликвидации неисправности, а конденсаторный компонент – поменять на работоспособный. Также причина может заключаться в его пробое.
- Произошел обрыв в электроцепи высоковольтного напряжения катушки, на ней могла появиться трещина. В данном случае катушка подлежит замене.
- В некоторых случаях причина кроется в неправильной установке момента, тогда его следует проверить и при необходимости – отрегулировать.
- Еще одна проблема – не включается замок, она актуальна для авто с замком, в машинах, где запуск мотора осуществляется путем нажатия на кнопку, такой проблемы не бывает. Необходимо полностью снять и разобрать механизм, зачистить его, а если нужно – поменять контактную группу (автор видео – канал Мир Матизов).
Если силовой агрегат функционирует неустойчиво на небольших и средних оборотах, причины могут быть такими:
- На крышке трамблера появилась трещина, загрязнился роторный механизм. Устройство необходимо протереть, а если трещина серьезная – то крышка подлежит замене.
- Заедает уголек крышки или этот компонент износился. Если есть возможность, то заедание следует устранить, а уголек можно поменять.
- Перегорело сопротивление, неисправность решается путем замены.
- Еще одна причина – пробой изоляции высоковольтных проводов. Неисправность нельзя решить путем дополнительного изолирования провода изолентой, это не тот случай. Нужно точно убедиться в том, что пробой имеет место, если есть необходимость, провод следует поменять.
- На свечах по каким-то причинам уменьшился или увеличился зазор, также сами свечи могли замаслиться. Если проблема в зазоре, то его следует отрегулировать. В том случае, если электроды перегорели, то свечи подлежат замене. Проблема замасливания решается путем очистки свечей, но также следует определить причину, по которым это произошло.
- Произошло подгорание распределительной пластины роторного механизма. В данном случае пластина подлежит очистке.
Фотогалерея «Неисправности СЗ»
Может быть такое, что мотор не позволяет развивать полную мощность, при этом нет приемистости двигателя, в некоторых случаях проблема может сопровождаться стуком поршневых колец.
Причины:
- На прерывательном механизме ослабла пружина подвижного контакта, можно попытаться произвести регулировку ее натяжения либо просто поменять.
- Выставлено позднее или ранее зажигание, необходимо его отрегулировать.
- Произошли перебои в образовании искры между электродами. Такая проблема, как правило, требует полной замены вышедшей из строя свечи.
- Если причина неисправности заключается в износе подшипниковых элементов прерывателя распределителя, то эти детали также полежат замене, поскольку отремонтировать их не получится.
- Проблема может быть обусловлена износом втулки подвижного контакта на прерывательном механизме. Необходимо произвести диагностику, а если есть необходимость, полностью поменять стойку с контактами.
Видео «Самостоятельно чистим свечи»
Как в домашних условиях произвести очистку свечей зажигания – подробная инструкция с описанием основных нюансов приведена в ролике ниже (автор видео – Oleg Ars).
avtozam.com
Система зажигания автомобиля
Основным назначением системы зажигания автомобиля является подача искрового разряда на свечи зажигания в определённый такт работы бензинового двигателя. Для дизельных двигателей под зажиганием понимают момент впрыска топлива в такт сжатия. В некоторых моделях автомобилей система зажигания, а именно ее импульсы, подаются на блок управления погружным топливным насосом.
Систему зажигания, по мере своего развития, можно разделить на три типа. Контактная система зажигания, импульсы у которой создаются во время работы контактов на разрыв. Бесконтактная система зажигания, управляющие импульсы создаются электронным транзисторным управляющим устройством – коммутатором, (хотя правильно его назвать генератором импульсов). Микропроцессорная система зажигания — это электронное устройство, которое управляет моментом зажигания, а также другими системами автомобиля. Для двухтактных двигателей, без внешнего источника питания используются системы зажигания типа магнето. Основана на принципе создания ЭДС при вращении постоянного магнита в катушке зажигания по заднему фронту импульса.
Устройство системы зажигания
Схема системы зажигания: 1 — замок зажигания; 2 — катушка зажигания; 3 — распределитель, 4 — свечи зажигания; 5 — прерыватель, 6 — масса.
Все вышеперечисленные виды систем зажигания похожи между собой, отличаются только методом создания управляющего импульса. Так в систему зажигания входят:
- Источник питания для системы зажигания, это аккумуляторная батарея (в момент запуска двигателя), и генератор (во время работы двигателя).
- Выключатель зажигания – это механическое или электрическое контактное устройство подачи напряжения на систему зажигания, или по-другому – замок зажигания. Как правило, выполняет две функции: подачи напряжения на бортовую сеть и систему зажигания, подачи напряжения на втягивающее реле стартера автомобиля.
- Накопитель энергии – узел предназначенный для накопления, преобразования энергии достаточной для возникновения электрического разряда между электродами свечи зажигания. Условно накопители энергии можно разделить на индуктивный и емкостный.
- Простейший индуктивный накопитель – это катушка зажигания, которая представляет собой автотрансформатор, первичная обмотка у него подключается к плюсовому полюсу и через устройство разрыва к минусовому. Во время работы устройства разрыва, например кулачков зажигания, в первичной обмотке возникает напряжение самоиндукции. Во вторичной обмотке образуется повышенное напряжение, достаточное для пробоя воздушного зазора свечи.
- Емкостный накопитель представляет собой емкость, которая заряжается повышенным напряжением и в нужный момент отдает свою энергию на свечу зажигания
- Свечи зажигания, представляют собой устройство с двумя электродами находящимися друг от друга на расстоянии 0,15-0,25 мм. Это фарфоровый изолятор, насаженный на металлическую резьбу. В центре находится центральный проводник, который служит электродом, вторым электродом является резьба.
- Система распределения зажигания предназначена для подачи в нужный момент энергии от накопителя к свечам зажигания. В состав системы входят распределитель, и(или) коммутатор, блок управления системой зажигания.
- Распределитель зажигания (трамблёр) – устройство распределения высокого напряжения по проводам, ведущим к свечам цилиндров. Обычно в распределителе собран и кулачковый механизм. Распределение зажигания может быть механическим и статическим. Механический распределитель представляет собой вал, который приводится в действие от двигателя и при помощи «бегунка» распределяет напряжение по высоковольтным проводам. Статическое распределение зажигания подразумевает под собой отсутствие вращающихся деталей. При таком варианте катушка зажигания присоединятся непосредственно к свече, а управление происходит от блока управления зажиганием. Если, например, двигатель автомобиля имеет четыре цилиндра, то и катушек будет четыре. Высоковольтные провода в данной системе отсутствуют.
- Коммутатор – электронное устройство для генерации импульсов управления катушкой зажигания, включается в цепь питания первичной обмотки катушки и по сигналу от блока управления разрывает питание, в результате чего возникает напряжение самоиндукции.
- Блок управления системой зажигания – микропроцессорное устройство, которое определяет момент подачи импульса в катушку зажигания, в зависимости от данных датчиков положения коленвала, лямбда-зондов, температурных датчиков и датчика положения распредвала.
- Высоковольтный провод — это одножильный провод с повышенной изоляцией. Внутренний проводник может иметь форму спирали, для исключения помех в радиодиапазоне.
Принцип работы системы зажигания
Рассмотрим принцип действия классической системы зажигания. При вращении вала привода трамблёра в действие приводятся кулачки, которые «разрывают» подаваемые на первичную обмотку автотрансформатора (бобину) 12 вольт. При пропадании напряжения на трансформаторе, в обмотке появляется ЭДС самоиндукции, соответственно на вторичной обмотке возникает напряжение порядка 30000 вольт. Высокое напряжение подается в распределитель зажигания (бегунок), который вращаясь попеременно подает напряжение на свечи в зависимости от такта работы двигателя внутреннего сгорания. Высокого напряжения достаточно для пробоя искровым разрядом воздушного зазора между электродами свечи зажигания.
Опережение зажигания нужно для более полного сгорания топливной смеси. Из-за того, что топливо сгорает не сразу, поджечь его необходимо немного раньше, до прихода в ВМТ. Момент подачи искры должен быть точно отрегулирован, потому что в ином случае (раннее или позднее зажигание) двигатель потеряет свою мощность, возможна повышенная детонация.
РЕКОМЕНДУЕМ ТАКЖЕ ПРОЧИТАТЬ:
|
autoustroistvo.ru
Система зажигания инжекторного двигателя
Система зажигания служит для воспламенения топлива, что и позволяет ему превращаться в силу, приводящую автомобиль в движение. Искра зажигания должна появиться в правильный момент, быть достаточно длинной, сильной и долговременной. А от работы всей системы зависит мощность мотора, расход топлива и даже содержание вредоносных веществ в выхлопных газах.
Воспламенение топлива
При сжатии в цилиндре топливовоздушной смеси в камере сгорания образуется давление в 20-40 бар, а температура возрастает до 400-600°C. И хотя цифры впечатляют, но, оставаясь в покое, топливо при таких условиях не воспламенится. Для этого необходима искра.
Искра образуется между боковыми и центральным электродами свечи зажигания. Расстояние между ними определяет мощность искры, а она прямо влияет на то, произойдет ли возгорание. При маломощном разряде, топливовоздушная смесь может не воспламениться.
Для того чтобы в свече возникла искра, необходима энергия. В системе зажигания есть катушка, функция которой и заключается в аккумулировании энергии, а затем передаче на свечу ее часть. Напряжение, создаваемое катушкой зажигания, многократно превышает силу разряда, возникающего в свече. Она способна накопить 60-120 мДж энергии и обеспечить напряжение в 25-40 кВ.
Чтобы воспламенение топлива произошло, необходимо сочетание нескольких факторов. Искра должна обладать действительно большой силой заряда. А какой именно, зависит от типа смеси. Так, для стехиометрической это 0,2 мДж, а для «бедной» или «богатой» — 3 мДж. В момент разряда возле свечи должно быть не слишком много и не слишком мало топлива и примешиваемых к нему газов, их количество должно быть оптимальным. Именно эта часть смеси и распространит горение на все остальное топливо.
Необходимые условия
Для качественного сгорания топлива необходимо соблюдение таких условий:
• искра должна сохраняться достаточно долгий промежуток времени;
• топливовоздушная смесь должна быть однородной и распыленной равномерно;
• стехиометрический состав должен быть уравновешен.
Длина самой искры так же немаловажна для процесса горения топлива. Чем она больше, тем лучше. Увеличить ее можно, увеличивая зазор между электродами свечи зажигания. Чтобы выставить это расстояние правильно, необходимо опираться на техническую документацию двигателя.
Угол опережения зажигания (УОЗ)
Момент зажигания — это важный фактор. От воспламенения топливной смеси до ее полного сгорания проходит примерно три миллисекунды. Именно поэтому зажигание должно произойти в определенный момент, так, чтобы смесь полностью сгорела до перехода поршнем верхней мертвой точки (ВМТ). Своевременное зажигание и диктует качественные свойства двигателя: экономию топлива, мощность мотора, вредность паров сгорания.
Важно понимать, что при увеличении интенсивности вращения коленвала, скорость движения поршня возрастает, но скорость горения топлива остается прежней. Так возникает ситуация, приводящая к падению давления: когда поршень находится далеко от верхней мертвой точки, объем пространства для горения смеси больше, что и снижает давление. А это, в свою очередь, снижает мощность двигателя.
Если же интенсивность вращения коленвала остается неизменной, но увеличивается нагрузка на мотор, важно, чтобы зажигание происходило позже. Ведь объем топлива в цилиндры при таком режиме поступает больший, а вот количество остаточных газов, смешиваемых с ним, уменьшается. Это ведет к уменьшению времени, необходимого для полного сгорания смеси. Поэтому и искра должна возникать позже.
Для правильной работы системы разряд должен возникать тогда, когда давление, вне зависимости от режима работы двигателя, оптимально. Поэтому воспламенение смеси до того, как поршень окажется в верхней мертвой точке, необходимо, но момент этот не одинаков.
Определяющей здесь является позиция коленчатого вала по отношению к ВТМ: момент зажигания обозначается в градусах до мертвой точки. Этот угол и называется углом опережения зажигания.
Если момент зажигания приближается к ВМТ — он называется поздним, УОЗ становится меньше. Если отдаляется — ранним, УОЗ становится больше. Чем интенсивнее движение коленвала, тем больше должен быть угол опережения зажигания.
Инжекторные системы хороши тем, что сами определяют УОЗ в зависимости от трех основных факторов: режима работы, скорости вращения коленчатого вала и нагрузки на мотор. Анализируя эти показатели, система управления двигателем высчитывает оптимальный УОЗ.
Детонация
Детонация двигателя — это настолько же нехорошо, как и звучит. Этим термином обозначаются непредсказуемый взрыв, который случается в двигателе в случайный момент времени. Опасен он тем, что может стать причиной полного выхода двигателя из строя.
Детонация случается при слишком раннем УОЗ и высокой степени сжатия. Происходит она в результате самопроизвольного возгорания топливовоздушной смеси.
Сила самого взрыва незначительна, но температура и давление возрастают, что и может привести к поломке деталей двигателя. Чаще всего возникают повреждения поршней и прокладки головки блока цилиндров, особенно возле клапанов.
Вероятность возникновения детонации особенно высока при:
• высокой нагрузке на мотор и приближающейся к критической частоте оборотов коленвала;
• разгоне — когда нагрузка на двигатель большая, но обороты малые; такая детонация слышится как серия стуков и металлического звона, её принято считать самым опасным видом детонации, так как рёв мотора способен полностью заглушить звуки взрывов;
• конструктивных дефектах двигателя;
• некачественном топливе.
avto.land
Система зажигания бензиновых двигателей автомобиля
Система зажигания предназначена для поджигания топливовоздушной смеси в бензиновых и газовых двигателях внутреннего сгорания. Поджог осуществляется за счет электрического разряда между электродами свечи при подведении к ней напряжения в 18000 – 20000 Вольт.
Основные составные части системы зажигания (каждый из элементов описан подробно ниже):
- выключатель зажигания;
- катушка зажигания;
- прерыватель-распределитель;
- регуляторы опережения зажигания;
- свечи зажигания;
- провода, соединяющие данные элементы.
Система зажигания с распределителем
На рисунке 10.6 приведена типичная схема системы зажигания с распределителем.
Рисунок 10.6 Контактная система зажигания двигателя с распределителем.
Выключатель зажигания
Выключатель зажигания собран в сборе с замком зажигания. Основная функция данного выключателя — запитывание потребителей электрическим током от источников питания. Система зажигания в целом — это тоже потребитель электротока. Как видно из схемы ниже, через выключатель от источника питания запитывается первичная обмотка катушки зажигания.
Катушка зажигания
По сути, катушка зажигания — это трансформатор, который преобразует низкое напряжение от бортовых источников питания (12 В) в напряжение, достаточное для получения мощной искры между электродами свечи, необходимой для поджигания топливовоздушной смеси в цилиндре двигателя. Достаточное напряжение – это 20 – 30, а то и 60 тысяч вольт.
Для такого рода преобразования в корпусе катушки имеются две обмотки – первичная и вторичная, а также сердечник. Каждая обмотка имеет различное количество витков и сечение проводов.
Когда вы поворачиваете ключ и включаете зажигание от аккумуляторной батареи, электрический ток поступает на первичную обмотку и через контакты замыкается на «массу». При прохождении через первичную обмотку тока вокруг катушки создается электромагнитное поле. Как только контакты разомкнутся и течение тока через первичную катушку резко прекратится, во вторичной катушке возникнет необходимое напряжение и ток. И уже ток в 30 и более тысяч вольт от вторичной обмотки катушки зажигания потечет через распределитель к свече зажигания.
Прерыватель-распределитель
Прерыватель-распределитель (в простонародии — «трамблер») предназначен для того, чтобы прерывать и распределять: прерывать — ток, текущий через первичную обмотку катушки зажигания, распределять – ток от вторичной катушки зажигания между свечами зажигания в той последовательности, которая предусмотрена порядком работы двигателя. В центр крышки распределителя подсоединен высоковольтный провод от вторичной обмотки катушки зажигания, а по периметру крышки расположены выводы, которые через высоковольтные провода соединены со свечами зажигания.
Прерыватель может быть контактным и бесконтактным. В контактном прерывателе разрыв цепи первичной обмотки катушки зажигания происходит за счет контактов, что очень ненадежно.
Примечание
Причина ненадежности контактов в том, что исчезающее магнитное поле пересекает витки не только вторичной, но и первичной обмотки, вследствие чего в ней возникает ток самоиндукции и напряжение около 250-300 вольт. Это приводит к искрению и обгоранию контактов, кроме того, замедляется прерывание тока в первичной обмотке, что приводит к уменьшению напряжения во вторичной обмотке. Конечно, это решается установкой конденсатора (обычно емкостью в 0,25 мкф). Однако все-таки имеет место такое явление, как эрозия – постепенное разрушение поверхности контактов, вследствие которого контакты прилегают неплотно и понижается напряжение, возникающее во вторичной обмотке катушки зажигания.
Чтобы исключить механическую составляющую прерывателя, вместо контактов установили специальное устройство, называемое датчиком Холла. Никаких контактов, только управляющие импульсы, которые контролируют работу катушки зажигания.
Регуляторы опережения зажигания
Для того чтобы топливовоздушная смесь успела сгореть, пока поршень движется от верхней мертвой точки к нижней, ее необходимо поджигать немного раньше. Основным показателем момента зажигания является угол опережения зажигания, который говорит нам о том, за сколько градусов до ВМТ на такте сжатия возникнет пробой между электродами свечи.
В распределителях описанного выше типа изменение угла опережения зажигания осуществляется механическим путем — проворачиванием контактов относительно приводного вала в ту или иную сторону.
Свечи зажигания
Элемент, благодаря которому в цилиндре поджигается топливовоздушная смесь, называется свечой зажигания. Устройство этого элемента простейшее (смотрите рисунок 10.7): корпус с нарезанной резьбой и электродом (отрицательным, так как контактирует с «массой» — головкой блока цилиндров), изолятор, внутри которого проходит положительный электрод. К этому электроду с одной стороны через наконечник подсоединен высоковольтный провод системы зажигания. Положительный электрод расположен рядом с отрицательным электродом (воздушный зазор между ними составляет 0,8-1,2 мм — в зависимости от модели свечи). Когда от распределителя зажигания высоковольтный разряд по проводу подводится к положительному электроду, воздушный зазор пробивается, то есть возникает искра — довольно мощная, чтобы поджечь топливовоздушную смесь.
Рисунок 10.7 Свеча зажигания.
Микропроцессорная система зажигания
Как уже не раз было сказано, развитие автомобилестроения движется семимильными шагами и на смену системе зажигания с распределителем пришли микропроцессорные системы. В них нет каких-либо вращающихся и подвижных частей (смотрите рисунок 10.8), но есть катушки зажигания (все чаще — по катушке на каждый цилиндр), электронный блок управления (с интегрированным блоком зажигания) и коммутатор (если блок катушки зажигания один) или коммутаторы (если катушек зажигания несколько).
Рисунок 10.8 Система зажигания с микропроцессорным управлением.
В электронный блок управления стекаются данные от ряда датчиков, обрабатывая которые ЭБУ выдает управляющий сигнал на коммутатор (или коммутаторы), определяющий, в какой момент поджечь в цилиндре топливовоздушную смесь. Получение каждого искрового разряда производится по электронным сигналам с очень высокой точностью и без использования каких-либо подвижных частей. Во многих двигателях искра образуется не только во время такта сжатия (это значит, что каждая свеча генерирует искровой разряд каждый раз, когда поршень доходит до ВМТ). Содержание вредных компонентов в отработавших газах при этом несколько снижается.
monolith.in.ua
Система зажигания и электрооборудование двигателей
Категория:
Передвижные электростанции
Публикация:
Система зажигания и электрооборудование двигателей
Читать далее:
Система зажигания и электрооборудование двигателей
Электрическая энергия в двигателях внутреннего сгорания применяется для зажигания рабочей смеси в цилиндрах карбюраторных двигателей, для работы электростартера, питания контрольно-измерительных приборов и освещения.
Воспламенение рабочей смеси в цилиндрах карбюраторных двигателей производится искровым разрядом между электродами свечей зажигания, ввернутых в головку цилиндров. Для образования искры между электродами необходим ток высокого напряжения (не менее 10 000 в).
В карбюраторных двигателях применяются система зажигания рабочей смеси от магнето и батарейное зажигание. При батарейном зажигании ток низкого напряжения, получаемый от аккумуляторной батареи или генератора, преобразуется в ток высокого напряжения при помощи индукционной катушки и механического прерывателя.
Рекламные предложения на основе ваших интересов:
Магнето представляет собой электрическую машину., в которой вырабатывается ток низкого напряжения. Ток низкого напряжения образуется в первичной обмотке трансформатора, проходит через прерыватель и «массу» и возвращается к другому концу первичной обмотки. При размыкании контактов прерывателя во вторичной обмотке создается ток высокого напряжения, который подается на свечу зажигания.
Различают два типа магнето: с неподвижным магнитом и вращающимся якорем; с вращающимся магнитом и неподвижной индукционной катушкой.
На отечественных двигателях применяются магнето с вращающимся магнитом и неподвижной катушкой.
Магнитная система магнето состоит из двухполюсного подковообразного магнита (ротора), вращающегося между неподвижными стальными башмаками (стойками), и сердечника трансформатора (индукционной катушки).
Сердечник выполнен из магнитной стали. Кроме сердечника, трансформатор имеет первичную и вторичную обмотки и конденсатор. В первичную обмотку включен прерыватель для размыкания цепи. Прерыватель имеет контакты: подвижный короткий и неподвижный длинный. Контакт через рычажок прерывателя и пружину соединен с массой, а контакт через соединительную пластину — с первичной обмоткой трансформатора. Первичная обмотка одним концом присоединена к сердечнику трансформатора, т.е. к массе, а другим — к пластине, на которой укреплен контакт.
Параллельно прерывателю (контактным винтам) включен конденсатор, предназначенный для уменьшения искрения между контактами и для предохранения их таким образом от быстрого обгорания. Кроме того, благодаря конденсатору з. д. е., индуктируемая во вторичной обмотке, увеличивается в четыре-пять раз. Когда ток в первичной обмотке достигнет максимального значения, кулачок повернет рычажок с контактом и произойдет размыкание контактов. В этот момент во вторичной обмотке трансформатора образуется ток высокого напряжения. Один конец вторичной обмотки трансформатора присоединен через первичную обмотку к массе магнето, а другой — к центральному контакту. К этому же контакту пружиной приживается уголек бегунка распределителя тока высокого напряжения. Бегунок укреплен на большой шестерне, которая вращается в два раза медленнее вала ротора магнита. Против бегунка распределителя с обеих сторон расположены карболитовые щеки с неподвижными электродами.
Ток вторичной обмотки с центрального контакта через уголек идет на боковой электрод бегунка. Затем по проводу поступает к центральному электроду свечи зажигания и в виде искры проскакивает через воздушный зазор на боковой электрод. В щеках закреплены концы проводов, идущих к центральным электродам свечей.
Рис. 1. Магнето с вращающимся магнитом: 1 — двухполюсный магнит, 2- башмаки, 3 — пружина, 4 — кулачок, 5 — рычажок, 6- короткий контакт, 7 -длинный контакт, 8 — соединительная пластина, 9 — выключатель зажигания, 10 — первичная обмотка, 11 — сердечник трансформатора, 12 — вторичная обмотка, 13 — конденсатор, 14 — уголек бегунка, 15 — боковой электрод бегунка, 16 и 17 — щеки, 18 — большая шестерня, 19 — центральный контакт
Для выключения зажигания в магнето предусмотрен выключатель, который при выключении замыкает первичную обмотку трансформатора на массу.
Магнето работает следующим образом. При вращении магнита его полюса поочередно подходят к стойкам и в сердечнике И трансформатора за один оборот магнита дважды индуктируется магнитный поток, меняющийся по величине и направлению. Когда ротор находится в положении А (рис. 2), магнитный поток проходит от северного полюса N к южному S по стойкам, достигая максимального значения. При повороте магнита на четверть оборота (положение Б) магнитный поток замыкается по нижней части стоек и в сердечник не поступает. Такое положение магнита называется нейтральным. При дальнейшем вращении магнита, когда его полюса снова будут подходить к стойкам (положение В), в сердечнике опять возникнет магнитный поток, противоположный по направлению потоку при положении А. Максимального значения этот магнитный поток достигнет при положении Г.
Рис. 2. Схема работы магнето
В результате изменения магнитного потока в первичной обмотке индуктируется ток низкого напряжения. Ток высокого напряжения, индуктирующийся во вторичной обмотке трансформатора, поступает к электродам соответствующей свечи зажигания. В результате этого между электродами свечи проскакивает электрическая искра, которая воспламеняет рабочую смесь в цилиндре двигателя. Для нормальной работы магнето необходимо, чтобы зазор между контактами прерывателя при размыкании находился в пределах 0,25-0,35 мм.
Для обеспечения полного сгорания и наибольшей мощности зажигание рабочей смеси производится с некоторым углом опережения, т.е. раньше, чем поршень придет в в. м. т. при такте сжатия.
Наивыгоднейший угол опережения зажигания рабочей смеси зависит от числа оборотов коленчатого вала двигателя. При увеличении числа оборотов угол опережения зажигания должен соответственно увеличиваться. Слишком большой угол опережения зажигания (раннее зажигание) вызывает преждевременные вспышки и стуки, в результате которых снижается мощность двигателя и происходит повышенный износ его деталей. Позднее зажигание тоже приводит к уменьшению мощности и экономичности двигателя и сопровождается его перегревом, так как рабочая смесь не успевает сгорать в цилиндрах и догорает в выпускном коллекторе.
Для регулирования угла опережения зажигания при работе двигателя применяется специальная муфта опережения зажигания (рис. 3). Муфта состоит из ведущей обоймы, соединяемой с приводным валом двигателя, и ведомой шайбы, закрепляемои ступицеи с помощью шпонки и гаики на валу ротора магнето.
Рис. 3. Муфта опережения зажигания МС-22А: 1 — обойма, 2 — ось, 3 — грузик, 4 — пружина, 5 и 6 — штифты, 7 — ведомая шайба
В обойме на двух штифтах свободно установлены грузики. Каждый грузик состоит из двух частей, соединенных одна с другой шарнирно на оси. Обе части каждого грузика устанавливаются в соответствующем положении плоской пружиной, закрепленной винтом на одной из частей грузика. На ведомой шайбе закреплены два штифта. В собранной муфте штифты свободно входят в отверстия концов грузиков; центральная же часть обоймы устанавливается свободно на выступающую часть ступицы шайбы и предохраняется от одвига стопорными кольцами.
Во время работы двигателя вращение от приводного вала передается через обойму, грузики и шайбу муфты на ротор магнето. При небольшом числе оборотов муфты центробежная сила грузиков мала и пружины удерживаются в распрямленном состоянии; вращение с приводного вала двигателя передается на вал ротора магнето без взаимного смещения валов.
С увеличением числа оборотов двигателя центробежная сила грузиков возрастает и они, сжимая пружины и поворачиваясь на осях, поворачивают ведомую шайбу, а следовательно, и вал магнето на некоторый угол в сторону вращения. Поэтому размыкание контактов прерывателя и подача искры к свече зажигания происходят с некоторым опережением, т.е. угол опережения зажигания увеличивается. При уменьшении числа оборотов двигателя центробежная сила грузиков уменьшается, пружины выпрямляются и смещают ведомую шайбу в первоначальное положение, уменьшая угол опережения зажигания.
Таким образом, с помощью муфты автоматически устанавливается наивыгоднейший угол опережения зажигания в соответствии с числом оборотов двигателя.
Рис. 4. Пусковой ускоритель магнето: 1 — ротор магнето, 2 — упорный кронштейн, 3 — ведомый диск, 4 — собачка, 5 — выступ ведомого диска, 6 — пружина, 7 — обойма, 8 – выступ обоймы, 9 — выступ диска
Ручной пуск карбюраторного двигателя не обеспечивает необходимого числа оборотов ротора магнето, в результате чего напряжение вторичного тока снижается и затрудняется зажигание рабочей смеси. Для повышения числа оборотов вала магнето при пуске карбюраторного двигателя вручную применяют ускоритель (рис. 4).
Пусковой ускоритель состоит из ведомой части (ведомого диска с собачками), сидящей на валу магнето, и ведущей части (ведущей обоймы), соединенной с приводом магнето.
Ведущая обойма связана со ступицей ведомого диска через спиральную плоскую пружину, наружный конец которой закреплен на выступе диска, а внутренний соединен с прорезью обоймы. Обойма внутренней частью установлена свободно на ступице диска и от продольного смещения закреплена стопорным кольцом. Закрученная пружина в диске с собачками охватывается наружной стенкой обоймы.
На ведомом диске с внутренней стороны на пальцах шарнир-но установлены две собачки. Упорный кронштейн, за который могут зацепляться выступы собачек, закреплен на корпусе магнето. Выступ диска упирается в выступ обоймы и ограничи: вает раскручивание пружины.
В момент пуска двигателя вращение от приводного вала передается через обойму и пружину диску ускорителя и ротору магнето. При повороте диска выступ собачки задевает за выступ упорного кронштейна и диск с ротором магнето останавливаются, в то время как обойма продолжает вращаться и туго заводит пружину. При полном заводе пружины выступ обоймы приближается к собачке и сбрасывает ее с выступа кронштейна. В этот момент пружина освобождается и быстро поворачивает диск ускорителя с ротором магнето, что обеспечивает достаточный ток в первичной обмотке. В результате такого действия ускорителя между электродами свечи появится искра.
Когда двигатель заведется и разовьет 120- 150 об/мин, длинные концы собачек под действием центробежной силы разойдутся, выступы их не будут задевать за выступы кронштейна и ускоритель автоматически выключится.
Свеча зажигания состоит из стального корпуса с боковым электродом, центрального электрода с изолятором и уплотняющей прокладки. Изолятор с центральным электродом завальцованы в корпусе. Свечи ввертывают в нарезные отверстия головки цилиндров. Для удобства ввертывания на корпусе свечи сделаны грани под ключ.
Для каждого типа двигателя применяют свечи зажигания соответствующего размера и соответствующей тепловой характеристики.
Изоляторы свечей зажигания для автотракторных двигателей изготовляют из уралита с содержанием 69% окиси алюминия или же из кристаллокорунда (98% окиси алюминия). Электроды выполняют из материала, хорошо противостоящего коррозии (окислению) при высокой температуре. (из никеля с примесью 2,5-3% марганца).
Теплоотдача свечи зажигания зависит главным образом от длины нижней части изолятора и диаметра расточки корпуса. Свечи с низкой теплоотдачей условно называют «горячими», а с высокой — «холодными».
Свечи зажигания маркируют по диаметру резьбы ввертываемой части корпуса, длине нижней части изолятора и материалу изолятора. Диаметр резьбы 18 мм обозначают буквой М, а 14 мм — буквой А. Например, у свечи А14У диаметр резьбы 14 мм, длина нижней части изолятора 14 мм и изолятор изготовлен из уралита.
Искровой зазор между электродами свечи зажигания устанавливают в зависимости от степени сжатия и типа двигателя — при батарейном зажигании 0,6-0,7 мм, при зажигании от магнето 0,4-0,6 мм. Регулируют зазор подгибанием бокового электрода.
Рис. 5. Свеча зажигания: 1 — боковой электрод, 2 — прокладка, 3 – корпус, 4 — изолятор, 5 — верхнее уплотнение, 6 — центральный электрод
Если зажигание установлено неточно, рабочая смесь воспламеняется или рано, или поздно. Это значительно снижает мощность двигателя.
Зажигание на пусковом двигателе ПД-10М устанавливают следующим образом. Поршень цилиндра не должен доходить до в. м. т. на 5,8 мм. При этом положении поршня устанавливают начало размыкания контактов прерывателя. Момент размыкания контактов определяют путем поворота корпуса магнето на болтах фланца. Фланец магнето имеет удлиненные прорези под болты для поворота магнето на некоторый угол.
По мере увеличения числа оборотов пускового двигателя угол опережения зажигания возрастает. Начиная с 800- 1100 об/мин в работу включается муфта опережения зажигания МС-22А. При 1700-2000 обIмин угол опережения зажигания равен 45°.
В комплект электрооборудования дизеля Д6 входят: аккумуляторная батарея 6СТЭ-128 напряжением 24 в, генератор постоянного тока Г-731 (мощностью 1000 вт, напряжением 24 в), реле-регулятор РРТ-24М, стартер СТ-710, пусковое реле РС-400, кнопка 12 стартера КС-31М, выключатель массы ВБ-400, блок защиты БЗ-ЗО с плавкими предохранителями П-20 и ПВ-50, штепсельная розетка, переносная лампа и вольтамперметр.
Аккумуляторная батарея обеспечивает электроэнергией стартер и аварийное освещение станции.
Батарея представляет собой несколько последовательно соединенных аккумуляторов. Аккумулятор состоит из банки с крышкой, залитой мастикой, положительных и отрицательных пластин, сепараторов и электролита (раствора серной кислоты в дистиллированной воде). Банки аккумуляторов делают из пластмассы или эбонита и помещают в деревянном ящике.
Аккумуляторные пластины изготовляют в виде свинцовых решеток из сплава, содержащего 94% свинца и 6% сурьмы. Для повышения емкости решетки пластин заполняют активной массой. Активная масса положительных пластин, состоящая из перекиси свинца, имеет темно-коричневый цвет, активная масса отрицательных пластин, состоящая из губчатого свинца, — светло-серый. Пластины аккумулятора соединяют параллельно в полублоки при помощи свинцовой перемычки, на которой имеется выводной штырь. Каждая из положительных пластин помещена между двумя отрицательными пластинами. Пластины изолированы одна от другой сепараторами, изготовленными из минора или мипласта.
Аккумуляторная батарея 6СТЭ-128 состоит из шести последовательно соединенных аккумуляторов, установленных в общем деревянном ящике с откидными ручками, вставленными в серьги. Горловины бачков (банок) закрыты пробками, имеющими отверстия для выхода газов. Выводы батареи расположены на торце ящика и закрываются коробкой, закрепляемой стопором.
Рис. 6. Схема электрооборудования дизеля Д6 (Д6Б и Д6В):
1 — аккумуляторная батарея, 2 — пусковое реле стартера, 3 сетевой фильтр ФГ-60, 4 — стартер, 5 — зарядный генератор, 6 — реле-регулятор, 7 — вольтамперметр, 8 — шунт вольтамперметра, 9 — электродвигатель маслопрокачивающего насоса, 10 кнопка включения электродвигателя маслопрокачивающего насоса, 11 — розетка переносной лампы, 12- пусковая кнопка стартера, 13 — выключатель батарей, 14 — переключатель включения указателя уровня топлива в топливных баках, 15 — приемник указателя уровня топлива в топливных баках; НИ — клемма шунтовой обмотки генератора, +Б — положительная клемма, +Я — клемма якоря генератора
Номинальное напряжение одного аккумулятора 2 в, емкость 128 а-ч (ампер-часов). Номинальное напряжение батареи соответственно 12 в, масса 58 кг. Для получения номинального напряжения 24 в соединяют последовательно две батареи.
Зарядный генератор установлен в верхней части картера дизеля на кронштейне, к которому прикреплен двумя стальными лентами. Вал якоря генератора через упругую муфту соединен с горизонтальным валиком привода генератора. Стартер установлен и закреплен на другом кронштейне картера подобно генератору. Часть корпуса стартера входит в отверстие в кожухе маховика.
Стартер представляет собой электродвигатель постоянного тока сериесного возбуждения, соединенный приводным механизмом с фрикционной муфтой свободного хода. Стартер предназначен для пуска дизеля и рассчитан на кратковременную работу (не более 5 сек) от аккумуляторной батареи. Он состоит из корпуса с двумя крышками, якоря и реле привода. Реле привода представляет собой электромагнит с двумя обмотками: втягивающей сериесной и удерживающей шунтовой, внутри которых расположены неподвижный и подвижный сердечники.
Рис. 7. Аккумуляторная батарея 6СТЭ-128: 1- отрицательная пластина, 2- подставки под бачки, 3 — бачок, 4 — мастика, 5 — деревянный ящик, 6 — свинцовая перемычка, 7 — пробка, 8 — выводы батареи, 9 — серьга, 10 — откидная ручка, 11 — защитная коробка, 12 — свинцовая полоса (баретка), соединяющая отрицательные пластины, 13 — сепаратор, 14 — стопор, 15 — положительная пластина
Реле привода и приводной механизм предназначены для автоматического введения в зацепление шестерни стартера с венцом маховика дизеля во время пуска. Кроме того, реле привода и приводной механизм предохраняют стартер от механических повреждений при резком возрастании крутящего момента и при позднем выключении пусковой кнопки после начала работы дизеля.
Пусковое реле РС-400 предназначено для замыкания цепи стартера с аккумуляторной батареей и представляет собой электромагнитный выключатель, помещенный в корпус с фланцем. Пуск стартера дистанционный с помощью кнопки 12 и пускового реле РС-400, рассчитанного на большие (до 2000 а) токи включения.
Реле-регулятор РРТ-24М представляет собой сочетание нескольких электромагнитных реле: реле обратного тока, ограничителя тока и двух регуляторов напряжения. Он включается в сеть” электрооборудования совместно с зарядным генератором, реле-регулятор предназначен для следующих целей: автоматического включения и отключения генератора от общей сети, чем достигается возможность параллельной работы аккумуляторной батареи и зарядного генератора; ограничения максимальной нагрузки генератора; поддержания напряжения на зажимах генератора в заданных пределах при изменении числа оборотов дизеля.
Рекламные предложения:
Читать далее: Синхронные генераторы
Категория: — Передвижные электростанции
Главная → Справочник → Статьи → Форум
stroy-technics.ru
Система зажигания двигателя. Принцип действия — Мегаобучалка
Основное назначение системы зажигания автомобиля является подача искрового разряда на свечи зажигания в определённый такт работы бензинового двигателя. Для дизельных двигателей под зажиганием понимают момент впрыска топлива в такт сжатия. В некоторых моделях автомобилей система зажигания, а именно ее импульсы, подаются на блок управления погружным топливным насосом. Систему зажигания, по мере своего развития, можно разделить на три типа. Контактная система зажигания, импульсы у которой создаются во время работы контактов на разрыв. Бесконтактная система зажигания, управляющие импульсы создаются электронным транзисторным управляющим устройством – коммутатором, (хотя правильно его назвать генератором импульсов). Микропроцессорная система зажигания — это электронное устройство, которое управляет моментом зажигания, а также другими системами автомобиля. Для двухтактных двигателей, без внешнего источника питания используются системы зажигания типа магнето. Основана на принципе создания ЭДС при вращении постоянного магнита в катушке зажигания по заднему фронту импульса. Устройство системы зажигания Схема системы зажигания: 1 — замок зажигания; 2 — катушка зажигания; 3 — распределитель, 4 — свечи зажигания; 5 — прерыватель, 6 — масса. Все вышеперечисленные виды систем зажигания похожи между собой, отличаются только методом создания управляющего импульса. Так в систему зажигания входят: Источник питания для системы зажигания, это аккумуляторная батарея (в момент запуска двигателя), и генератор (во время работы двигателя). Выключатель зажигания – это механическое или электрическое контактное устройство подачи напряжения на систему зажигания, или по-другому – замок зажигания. Как правило, выполняет две функции: подачи напряжения на бортовую сеть и систему зажигания, подачи напряжения на втягивающее реле стартера автомобиля. Накопитель энергии – узел предназначенный для накопления, преобразования энергии достаточной для возникновения электрического разряда между электродами свечи зажигания. Условно накопители энергии можно разделить на индуктивный и емкостный. Простейший индуктивный накопитель – это катушка зажигания, которая представляет собой автотрансформатор, первичная обмотка у него подключается к плюсовому полюсу и через устройство разрыва к минусовому. Во время работы устройства разрыва, например кулачков зажигания, в первичной обмотке возникает напряжение самоиндукции. Во вторичной обмотке образуется повышенное напряжение, достаточное для пробоя воздушного зазора свечи. Емкостный накопитель представляет собой емкость, которая заряжается повышенным напряжением и в нужный момент отдает свою энергию на свечу зажигания Свечи зажигания, представляют собой устройство с двумя электродами находящимися друг от друга на расстоянии 0,15-0,25 мм. Это фарфоровый изолятор, насаженный на металлическую резьбу. В центре находится центральный проводник, который служит электродом, вторым электродом является резьба. Система распределения зажигания предназначена для подачи в нужный момент энергии от накопителя к свечам зажигания. В состав системы входят распределитель, и(или) коммутатор, блок управления системой зажигания. Распределитель зажигания (трамблёр) – устройство распределения высокого напряжения по проводам, ведущим к свечам цилиндров. Обычно в распределителе собран и кулачковый механизм. Распределение зажигания может быть механическим и статическим. Механический распределитель представляет собой вал, который приводится в действие от двигателя и при помощи «бегунка» распределяет напряжение по высоковольтным проводам. Статическое распределение зажигания подразумевает под собой отсутствие вращающихся деталей. При таком варианте катушка зажигания присоединятся непосредственно к свече, а управление происходит от блока управления зажиганием. Если, например, двигатель автомобиля имеет четыре цилиндра, то и катушек будет четыре. Высоковольтные провода в данной системе отсутствуют. Коммутатор – электронное устройство для генерации импульсов управления катушкой зажигания, включается в цепь питания первичной обмотки катушки и по сигналу от блока управления разрывает питание, в результате чего возникает напряжение самоиндукции. Блок управления системой зажигания – микропроцессорное устройство, которое определяет момент подачи импульса в катушку зажигания, в зависимости от данных датчиков положения коленвала, лямбда-зондов, температурных датчиков и датчика положения распредвала. Высоковольтный провод — это одножильный провод с повышенной изоляцией. Внутренний проводник может иметь форму спирали, для исключения помех в радиодиапазоне. Принцип работы системы зажигания Рассмотрим принцип действия классической системы зажигания. При вращении вала привода трамблёра в действие приводятся кулачки, которые «разрывают» подаваемые на первичную обмотку автотрансформатора (бобину) 12 вольт. При пропадании напряжения на трансформаторе, в обмотке появляется ЭДС самоиндукции, соответственно на вторичной обмотке возникает напряжение порядка 30000 вольт. Высокое напряжение подается в распределитель зажигания (бегунок), который вращаясь попеременно подает напряжение на свечи в зависимости от такта работы двигателя внутреннего сгорания. Высокого напряжения достаточно для пробоя искровым разрядом воздушного зазора между электродами свечи зажигания. Опережение зажигания нужно для более полного сгорания топливной смеси. Из-за того, что топливо сгорает не сразу, поджечь его необходимо немного раньше, до прихода в ВМТ. Момент подачи искры должен быть точно отрегулирован, потому что в ином случае (раннее или позднее зажигание) двигатель потеряет свою мощность, возможна повышенная детонация.
megaobuchalka.ru