Свойства моторных масел – статья автотехцентра Ойл Сервис
Рассмотрим, какими же свойствами должно обладать хорошее масло, чтобы выполнять все функции, возложенные на него.
В двигателе внутреннего сгорания неизбежны высокотемпературные отложения. Умение их смывать – одно из важнейших свойств моторного масла. Но смыть недостаточно, частицы этих отложений необходимо измельчить и нейтролизовать. За это отвечают диспергирующие свойства масла.
Моюще-диспергирующие свойства
характеризуют способность масла обеспечивать необходимую чистоту деталей двигателя, поддерживать продукты окисления и загрязнения во взвешенном состоянии. Чем выше моюще – диспергирующие свойства масла, тем больше нерастворимых веществ – продуктов старения может удерживаться в работающем масле без выпадения в осадок, и тем меньше нагаров и лакообразных отложений образуется на поверхности деталей. А вследствие этого – может достигаться более высокая допустимая температура в двигателе (степень форсирования ДВС).
В составах моторных масел в качестве моющих присадок используют сульфонаты, алкилфеноляты, алкилсалицилаты и фосфонаты кальция или магния. Рациональное сочетание этих зольных присадок друг с другом и с беззольными дисперсантами-присадками, обеспечивает уменьшение низкотемпературных отложений в двигателе и положительно влияет на скорость загрязнения масляных фильтров. Модифицированные термостойкие беззольные дисперсанты также способствуют уменьшению нагарообразования на поршнях и кольцах.
При работе ДВС на топливе с увеличенным содержанием серы, моющие присадки, повышающие в масле щелочное число, препятствуют образованию отложений на деталях двигателя путем нейтрализации кислот, образующихся из продуктов сгорания топлива.
Металлсодержащие моющие присадки повышают зольность масла, что может привести к образованию зольных отложений в камере сгорания, замыканию электродов свечей зажигания, преждевременному воспламенению рабочей смеси, прогару выпускных клапанов, снижению детонационной стойкости топлива.
Антиокислительные свойства
в значительной степени определяют стойкость масла к старению. Условия работы моторных масел в двигателях настолько жестки, что предотвратить их окисление полностью практически не возможно.
Окисление масла приводит к росту его вязкости и коррозионности, склонности к образованию отложений, загрязнению масляных фильтров и другим неблагоприятным последствиям (затруднение холодного пуска, ухудшение прокачиваемости масла).
Значительно затормозить процессы окисления масла можно соответствующей очисткой базовых масел от нежелательных соединений, присутствующих в сырье, использованием синтетических базовых компонентов, а также введением эффективных антиокислительных присадок.
Окисление масла в двигателе наиболее интенсивно происходит в тонких пленках масла на поверхностях деталей, нагревающихся до высокой температуры и соприкасающихся с горячими газами (поршень, цилиндр, поршневые кольца, направляющие и клапаны). В объеме масло окисляется менее интенсивно, так как в поддоне картера, радиаторе, маслопроводах температура ниже и поверхность контакта масла с окисляющей газовой средой меньше.
На скорость и глубину окислительных процессов значительно влияют загрязнения неорганического происхождения, которые накапливаются в масле в результате изнашивания деталей двигателя, (соединения меди, железа и других металлов, образующиеся в результате коррозии деталей двигателя). Еще больше на окисление масла влияют попадающие в него продукты неполного сгорания топлива. Они проникают в масло вместе с газами, прорывающимися из надпоршневого пространства в картер.
Стойкость моторных масел к окислению, повышается введением в его состав антиокислительных присадок.
Наилучший антиокислительный эффект достигается при добавлении в масло присадок, обладающих различным механизмом действия. В качестве антиокислительных присадок к моторным маслам применяют диалкил и диарилдитиофосфаты цинка, которые улучшают противоизносные и антикоррозионные свойства. Их часто комбинируют друг с другом и с беззольными антиокислителями. Довольно энергичными антиокислителями являются некоторые моюще-диспергирующие присадки, в частности, алкилсалицилатные и алкилфенольные.
Противоизносные свойства
моторного масла зависят от химического состава базового масла, общего состава присадок и вязкостно-температурных характеристик масла. Это в основном и определяет температурные пределы его применяемости (защита деталей от износа при холодном запуске двигателя и максимальных температурных нагрузках).
При работе на топливе с высоким содержанием серы, а также в условиях, способствующих образованию азотной кислоты из продуктов сгорания (газовые двигатели, дизели с высоким наддувом), важнейшей характеристикой способности масла является предотвращение коррозионного износа поршневых колец и цилиндров.
Множественность факторов, влияющих на износ деталей в ДВС и принципиальные различия режимов трения, затрудняют оптимизацию противоизносных свойств моторных масел. Придание маслу максимальной нейтрализующей способности и введение в его состав дитиофосфатов цинка, часто оказывается достаточным для предотвращения коррозионно-механического изнашивания и избежание задиров. Однако тенденция к применению маловязких масел, для достижения экономии топлива и уменьшения расхода на угар, требует улучшения противоизносных свойств масел. Это достигается введением специальных присадок, содержащих серу, фосфор, галогены, бор, а также беззольные дисперсанты, содержащие противоизносные фрагменты.
Большое влияние на износ оказывает наличие в масле абразивных загрязнений. Их наличие в свежем масле не допускается, а масло, работающее в двигателе, должно подвергаться очистке в фильтрах, центрифугах, сепараторах. Высокие диспергирующие свойства масла так же уменьшают вред, оказываемый действием абразивных частиц.
Антикоррозионные свойства
моторных масел зависят от состава базовых компонентов, концентрации и эффективности антикоррозионных, антиокислительных присадок и деактиваторов металлов. Антикоррозионные присадки защищают антифрикционные материалы , образуя на их поверхности прочную защитную пленку. Антиокислители препятствуют образованию агрессивных кислот, а присадки-деактиваторы предохраняют поверхности металлов от коррозионного разрушения. Минеральные масла из малосернистой нефти, с высоким содержанием парафиновых углеводородов, наиболее подвержены коррозионности в процессе старения. Их углеводороды, в ходе окисления, образуют органические кислоты, которые взаимодействуют с цветными металлами и их сплавами.
Вязкостно-температурные свойства
одна из важнейших характеристик моторного масла. От этих свойств зависит в каком диапазоне температур окружающей среды, данное масло сможет обеспечить запуск двигателя без предварительного подогрева, беспрепятственное прокачивание насосом по всей системе, надежное смазывание, очистка и охлаждение деталей двигателя при наибольших допустимых нагрузках.
Даже в умеренных климатических условиях, диапазон изменения температуры масла от холодного пуска зимой до максимального прогрева, в подшипниках коленчатого вала или в зоне поршневых колец составляет от -30° до +150°С. Вязкость масел в этом интервале температур изменяется многократно.
Летние масла, имеющие достаточную вязкость при высокой температуре, обеспечивают легкий запуск двигателя при температуре окружающей среды не ниже 0°С. В свою очередь зимние масла, обеспечивающие холодный пуск при отрицательных температурах, имеют недостаточную вязкость при высокой температуре. Таким образом, сезонные масла независимо от их наработки (пробега автомобиля) необходимо менять дважды в год, или использовать так называемые «всесезонные» масла.
Вязкостно-температурные свойства «всесезонных» масел таковы, что при отрицательных температурах они подобны зимним, а в области высоких температур – летним. Вязкостные присадки относительно мало повышают вязкость базового масла при низкой температуре, но значительно увеличивают ее при высокой температуре.
В отличие от сезонных, «всесезонные» масла изменяют вязкость под влиянием не только температуры, но и скорости сдвига, причем это изменение временное. С уменьшением скорости относительного перемещения смазываемых деталей вязкость возрастает, а с увеличением – снижается. Этот эффект больше проявляется при низкой температуре, но сохраняется и при высокой, что имеет два позитивных последствия: большее снижение вязкости в начале проворачивания холодного двигателя стартером, облегчая его запуск, а в прогретом двигателе, небольшое снижение вязкости масла в зазорах между поверхностями трения деталей, уменьшает потери энергии на трение и дает экономию топлива.
Характеристиками вязкостно-температурных свойств служат кинематическая вязкость, динамическая вязкость, а также индекс вязкости – безразмерный показатель пологости вязкостно-температурной зависимости, рассчитываемый по значениям кинематической вязкости масла, измеренной при 40° и 100°С. Синтетические базовые компоненты имеют индекс вязкости 120-150, что дает возможность получать на их основе всесезонные масла с очень широким температурным диапазоном работоспособности.
К низкотемпературным характеристикам масел относят температуру застывания, при которой масло не течет под действием силы тяжести, т. е. теряет текучесть. Она должна быть на 5-7°С ниже той температуры, при которой масло должно обеспечивать прокачиваемость. В большинстве случаев застывание моторных масел обусловлено образованием в объеме охлаждаемого масла кристаллов парафинов.
Температура застывания масла
указывает только на возможность перелить масло из канистры в картер двигателя, не прибегая к предварительному подогреву. Однозначной взаимосвязи температуры застывания масла с его пусковыми свойствами на холоде не существует.
Температура вспышки
Если масло нагревать, то его пары образуют с воздухом смесь. Температуру, при которой эти пары способны воспламениться, называют температурой вспышки. Температура вспышки связана с фракционным составом масла и структурой молекул базовых компонентов. При прочих равных условиях высокая температура вспышки предпочтительна.
Она существенно снижается по сравнению с исходным значением, если в процессе работы масло разжижается топливом из-за неисправностей двигателя. В сочетании со снижением вязкости масла, понижение температуры вспышки служит сигналом для поиска неисправностей системы подачи топлива, системы зажигания или карбюратора.
Сульфатная зольность
При сгорании масла образуется зола, которая, в свою очередь, состоит из солей и минералов, находящихся в масле во взвешенном состоянии. При очистке базового масла зольность должна быть минимальной и составляет порядка 0,005% и меньше. Однако, при введении необходимых для качественного масла присадок, зольность резко возрастает и достигает 1-1,5%. Сульфатная зольность масла в процессе работы двигателя, почти не изменяется и в нормативной документации ограничена верхним пределом. Это обусловлено тем, что излишне зольное масло может способствовать повышенному износу деталей, вследствие абразивного воздействия на поверхности трения, а также приводить к преждевременному воспламенению рабочей смеси из-за образования отложений в камере сгорания и неблагоприятно влиять на работоспособность свечей зажигания.
Базовые масла практически беззольны. Довольно высокая сульфатная зольность моторных масел в основном, обусловлена наличием в их составе моющих присадок, содержащих металлы. Эти присадки необходимы для предотвращения нагара и лакообразования на поршнях, кольцах, клапанах и придания маслам способности нейтрализовывать кислоты. Чем больше щелочное число, тем большее количество кислот, образующихся при окислении масла и сгорании топлива, может быть переведено в нейтральное соединение. В противном случае эти кислоты вызвали бы коррозионный износ деталей двигателя и усилили процессы образования различных углеродистых отложений. При работе масла в двигателе, щелочное число неизбежно снижается. Такое снижение имеет допустимые пределы, по достижении которых масло считается утратившим свою работоспособность. Поэтому, при прочих равных условиях, предпочтительнее масло у которого щелочное число выше.
www.maslo.od.ua
Основные функции и свойства моторного масла / Блог АвтоТО — Обслуживание автомобиля
Основные функции моторного масла:
- Обеспечивать чистоту деталей двигателя за счет высоких моющих, диспергирующе-стабилизирующих и солюбилизирующих свойств по отношению к различным нерастворимым загрязнениям.

- Способствовать легкому холодному пуску двигателя, обеспечивать хорошую прокачиваемость при холодном пуске и надежное смазывание в экстремальных условиях при высоких нагрузках и температуре окружающей среды за счет оптимальных вязкостно-температурных свойств.
- Отводить тепло от нагретых деталей двигателя, обеспечивать надежную работу двигателя при высоких температурах в зоне цилиндропоршневой группы и в зоне картера за счет высокой термической и термоокислительной стабильности.
- Обеспечивать надежную смазку деталей двигателя при любых режимах его работы за счет высоких антифрикционных, противоизносных и противозадирных свойств.
- Нейтрализация коррозионно-агрессивных компонентов, накапливающихся в процессе эксплуатации двигателя (продукты неполного сгорания топлива, а также воздействия кислорода воздуха и воды на материал деталей двигателя) за счет высоких противокоррозионных и защитных свойств.
Для придания необходимых эксплуатационных свойств или улучшения имеющихся (за счет оптимизированного состава базовой основы) в масло добавляют функциональные присадки.
Все моторные масла выпускаются с присадками, их число достигает до 8 различных соединений, а общее массовое содержание – до 25%. Почти все присадки, как одиночные, так и пакеты, поставляются на маслосмесительные заводы в виде растворов присадок в масле, содержащих около 50% активного вещества.
Основные присадки, имеющиеся в составе масла:
- моющие
- диспергирующие
- антиокислительные
- противокоррозионные
- антифрикционные (модификаторы трения)
- противоизносные
- депрессорные
- загущающие (модификаторы вязкости)
- противопенные
Моюще-диспергирующие свойства.
Моюще-диспергирующие свойства характеризуют способность масла обеспечивать необходимую чистоту деталей двигателя, поддерживать продукты окисления и загрязнения во взвешенном состоянии.Чем выше моюще-диспергирующие свойства масла, тем больше нерастворимых веществ — продуктов старения может удерживаться в работающем масле без выпадения в осадок, тем меньше лакообразных отложений и нагаров образуется на горячих деталях, тем выше может быть допустимая температура деталей (степень форсирования двигателя).
Кроме концентрации моюще-диспергирующих присадок на чистоту двигателя существенно влияет эффективность используемых присадок, их правильное сочетание с другими компонентами композиции, а также приемистость базового масла. В композициях моторных масел в качестве моющих присадок используют сульфонаты, алкилфеноляты, алкилсалицилаты и фосфонаты кальция или магния и реже (по экологическим соображениям) бария, а также рациональные сочетания этих зольных присадок друг с другом и с беззольными дисперсантами-присадками, снижающими, главным образом, склонность масла к образованию низкотемпературных отложений («шламов») и скорость загрязнения фильтров тонкой очистки масла. Модифицированные термостойкие беззольные дисперсанты способствуют и уменьшению лако- и нагарообразования на поршнях (находят все большее распространение в новых пакетах присадок).
Механизм действия моющих присадок объясняют их адсорбцией («прилипанием и обволакиванием») на поверхности нерастворимых в масле частиц. В результате на каждой частице образуется оболочка из обращенных в объем масла углеводородных радикалов.
Она препятствует коагуляции («выпадению в осадок») частиц загрязнений, их соприкосновению друг с другом («слипанию в более крупные частицы»).
При работе двигателей на топливах с повышенным содержанием серы моющие присадки, придающие маслу щелочность, препятствуют образованию отложений на деталях двигателей также и путем нейтрализации кислот, образующихся из продуктов сгорания топлива.
Металлсодержащие моющие присадки повышают зольность масла, что может привести к образованию зольных отложений в камере сгорания, замыканию электродов свечей зажигания преждевременному воспламенению рабочей смеси, прогару выпускных клапанов, снижению детонационной стойкости топлива, абразивному изнашиванию. Поэтому сульфатную зольность моторных масел ограничивают верхним пределом. Ее допустимое значение зависит от типа и конструкции двигателя, расхода масла на угар, условий эксплуатации, в частности, от вида применяемого топлива. Наименее зольные масла необходимы для смазывания двухтактных бензиновых двигателей и двигателей, работающих на газе.
Антиокислительные свойства.
Антиокислительные свойства в значительной степени определяют стойкость масла к старению. Условия работы моторных масел в двигателях настолько жестки, что предотвратить их окисление полностью не представляется возможным. Соответствующей очисткой базовых масел от нежелательных соединений, присутствующих в сырье, использованием синтетических базовых компонентов, а также введением эффективных антиокислительных присадок можно значительно затормозить процессы окисления масла, которые приводят к росту его вязкости и коррозионности, склонности к образованию отложений, загрязнению масляных фильтров и другим неблагоприятным последствиям (затруднение холодного пуска, ухудшение прокачиваемости масла).
Окисление масла в двигателе наиболее интенсивно происходит в тонких пленках масла на поверхностях деталей, нагревающихся до высокой температуры и соприкасающихся с горячими газами (поршень, цилиндр, поршневые кольца, направляющие и стебли клапанов). В объеме масло окисляется менее интенсивно, так как в поддоне картера, радиаторе, маслопроводах температура ниже и поверхность контакта масла с окисляющей газовой средой меньше.
Во внутренних полостях двигателя, заполненных масляным туманом, окисление более интенсивно.
На скорость и глубину окислительных процессов значительно влияют попадающие в масло продукты неполного сгорания топлива. Они проникают в масло вместе с газами, прорывающимися из надпоршневого пространства в картер. Ускоряют окисление масла частицы металлов и загрязнений неорганического происхождения, которые накапливаются в масле в результате изнашивания деталей двигателя, недостаточной очистки всасываемого воздуха, нейтрализации присадками неорганических кислот, а также металлорганические соединения меди, железа и других металлов, образующиеся в результате коррозии деталей двигателя или взаимодействия частиц изношенного металла с органическими кислотами. Все эти вещества — катализаторы окисления.
Стойкость моторных масел к окислению повышают введением в их состав антиокислительных присадок. Довольно энергичными антиокислителями являются некоторые моюще-диспергирующие присадки, в частности алкилсалицилатные и алкилфенольные.
При длительной работе масла в двигателе интенсивный рост вязкости, обусловленный окислением, начинается после практически полного истощения антиокислительных присадок.
Смазочные свойства.
Смазочные свойства включают в себя: антифрикционные свойства (снижение трения), противоизносные свойства (препятствие изнашиванию поверхностей трения контактирующих поверхностей) и противозадирные свойства (предотвращение задиров поверхностей и вырывания металла).
Антифрикционные свойства достигаются путем добавления различных модификаторов трения.
Противоизносные свойства моторного масла зависят от химического состава и полярности базового масла, состава композиции присадок и вязкостно-температурной характеристики масла с присадками, которая в основном предопределяет температурные пределы его применимости (защита деталей от износа при пуске двигателя, при максимальных нагрузках и температурах окружающей среды). Особенно важны эффективная вязкость масла при температуре 130-180 °С и градиенте скорости сдвига 105-107 с-1, зависимость вязкости от давления, свойства граничных слоев и способность химически модифицировать поверхностные слои сопряженных трущихся деталей.
При работе на топливах с повышенным или высоким содержанием серы, а также в условиях, способствующих образованию азотной кислоты из продуктов сгорания (газовые двигатели, дизели с высоким наддувом), важнейшей характеристикой способности масла предотвращать коррозионный износ поршневых колец и цилиндров является его нейтрализующая способность, показателем которой в нормативной документации служит щелочное число.
Различные узлы и детали двигателей, как правило, смазываются обычно одним маслом, а условия трения, изнашивания и режим смазки существенно различны. Подшипники коленчатого вала, поршневые кольца в сопряжении с цилиндром работают преимущественно в условиях гидродинамической смазки. Зубчатые колеса привода агрегатов, масляных насосов и детали механизма привода клапанов работают в условиях эластогидродинамической смазки. Вблизи мертвых точек жидкостное трение поршневых колец по стенке цилиндра переходит в граничное. Множественность факторов, влияющих на износ деталей двигателей принципиальные различия режимов трения и изнашивания узлов затрудняют оптимизацию противоизносных свойств моторных масел.
Придание маслу достаточной нейтрализующей способности и введение в его состав дитиофосфатов цинка часто оказывается достаточным для предотвращения коррозионно-механического изнашивания и модифицирования поверхностей деталей тяжело нагруженных сопряжений во избежание задиров или усталостного выкрашивания. Однако тенденция к применению маловязких масел для достижения экономии топлива и ограничение поступления масла к верхней части цилиндра для уменьшения расхода на угар требуют улучшения противоизносных свойств масел при граничной смазке. Это достигается введением специальных противоизносных присадок, содержащих серу, фосфор, галогены, бор, а также введением беззольных дисперсантов, содержащих противоизносные фрагменты.
Большое влияние на износ оказывает наличие в масле абразивных загрязнений. Их наличие в свежем масле не допускается, а масло, работающее в двигателе, должно подвергаться очистке в фильтрах, центрифугах, сепараторах. Уменьшению вредного действия абразивных частиц способствуют высокие диспергирующие свойства масла.
Противокоррозионные свойства.
Противокоррозионные свойства моторных масел зависят от состава базовых компонентов, концентрации и эффективности антикоррозионных, антиокислительных присадок и деактиваторов металлов. В процессе старения коррозионность моторных масел возрастает. Противокоррозионные присадки защищают антифрикционные материалы (свинцовистую бронзу), образуя на их поверхности прочную защитную пленку.
Антиокислители препятствуют образованию агрессивных кислот.
Вязкостно-температурные свойства.
Вязкостно-температурные свойства — одна из важнейших характеристик моторного масла. От этих свойств зависит диапазон температуры окружающей среды, в котором данное масло обеспечивает пуск двигателя без предварительного подогрева, беспрепятственное прокачивание масла насосом по смазочной системе, надежное смазывание и охлаждение деталей двигателя при наибольших допустимых нагрузках и температуре окружающей среды. Даже в умеренных климатических условиях диапазон изменения температуры масла от холодного пуска зимой до максимального прогрева в подшипниках коленчатого вала или в зоне поршневых колец составляет до 180-190 °С.
Летние масла, имеющие достаточную вязкость при высокой температуре, обеспечивают пуск двигателя при температуре окружающей среды около 0 °С. Зимние масла, обеспечивающие холодный пуск при отрицательных температурах, имеют недостаточную вязкость при высокой температуре. Таким образом, сезонные масла независимо от их наработки (пробега автомобиля) необходимо менять дважды в год. Это усложняет и удорожает эксплуатацию двигателей. Проблема решена созданием всесезонных масел, загущенных полимерными присадками.
Вязкостно-температурные свойства загущенных масел таковы, что при отрицательных температурах они подобны зимним, а в области высоких температур — летним, то есть легко поступают к узлам трения при низких температурах и образуют надежный смазочный слой при высоких нагрузках и температурах.
В отличие от сезонных, загущенные всезонные масла изменяют вязкость под влиянием не только температуры, но и скорости сдвига, причем это изменение временное. С уменьшением скорости относительного перемещения смазываемых деталей вязкость возрастает, а с увеличением — снижается.
Этот эффект больше проявляется при низкой температуре, но сохраняется и при высокой, что имеет два позитивных последствия: снижение вязкости в начале проворачивания холодного двигателя стартером облегчает пуск, а небольшое снижение вязкости масла в зазорах между поверхностями трения деталей прогретого двигателя уменьшает потери энергии на трение и дает экономию топлива.
Характеристиками вязкостно-температурных свойств служат кинематическая вязкость, определяемая в капиллярных вискозиметрах, и динамическая вязкость, измеряемая при различных градиентах скорости сдвига в ротационных вискозиметрах, а также индекс вязкости — безразмерный показатель пологости вязкостно-температурной зависимости, рассчитываемый по значениям кинематической вязкости масла, измеренной при 40 и 100 °С . В нормативной документации на зимние масла иногда нормируют кинематическую вязкость при низких температурах. Индекс вязкости минеральных масел без вязкостных присадок составляет 85-100. Синтетические базовые компоненты имеют индекс вязкости 120-150, что дает возможность получать на их основе всесезонные масла с очень широким температурным диапазоном работоспособности.
К низкотемпературным характеристикам масел относят температуру застывания, при которой масло не течет под действием силы тяжести, т.е. теряет текучесть. Она должна быть на 5-7 °С ниже той температуры, при которой масло должно обеспечивать прокачиваемость.
Если у вас газовое оборудование, тогда стоит прочитать о моторных маслах MANNOL для моторов на газовом топливе.
Запись опубликована в рубрике Моторное масло с метками замерзание масла, вязкость масла, Термоокислительная стабильность, моющие сойства масла, диспергирующе-стабилизирующие диспергирующе-стабилизирующие свойства масла, солюбилизирующие свойства масла, прокачиваемость, холодный пуск, вязкостно-температурные свойства, термическая стабильность, антифрикционные свойства, противоизносные свойства, противозадирные свойства, противокоррозионные свойства, ащитные свойства, функциональные присадки, моющие присадки, диспергирующие присадки, антиокислительные присадки, противокоррозионные присадки, антифрикционные присадки, противоизносные присадки, депрессорные присадки, загущающие присадки, противопенные присадки, Моторное масло 04.
08.2010 автором dimalgor.
← Предыдущая запись
Следующая запись →
Физические свойства масел и жиров в питании
Анализ физических свойств масел и жиров позволяет понять поведение и характеристики этих элементов, а также их различия. Для этого будут проанализированы:
- Кристаллизация
- Температура плавления
- Вязкость
- Показатель преломления
- Плотность
- Растворимость
- Пластик
- Эмульгирующая емкость
Здесь мы предоставляем более подробную информацию о каждом из них.
КристаллизацияЖиры отличаются от масел степенью затвердевания при комнатной температуре , так как в этих условиях масла находятся в жидком состоянии ( не кристаллизуется ), а жиры находятся в твердом состоянии ( кристаллизуется ) государство.
Доля кристаллов в жирах имеет большое значение для определения физических свойств продукта.
Жиры считаются твердыми, если в них содержится не менее 10% их кристаллизованных компонентов .
Жировые кристаллы имеют размер от 0,1 до 0,5 мкм и иногда могут достигать 100 мкм. Кристаллы удерживаются силами Ван-дер-Ваальса, образуя трехмерную сеть, которая придает изделию жесткость.
Важной особенностью жира является его кристаллический полиморфизм , поскольку моно-ди и триглицериды кристаллизуются в различных кристаллических формах (α, β, β’) .
Форма α (стекловидное состояние)- Появляется при застывании жира быстрым методом.
- Образовавшиеся кристаллы относятся к гексагональному типу и беспорядочно организованы в пространстве.
- Возникает при медленном охлаждении или при проведении отпуска при температуре несколько ниже точки плавления, причем эта форма является наиболее стабильной из всех .

- В β-форме образуются трициклических кристалла , ориентированных в одном направлении.
- Форма β типична для пальмового масла, арахиса, кукурузы, кокоса, подсолнечника, оливок и свиного сала.
- Производится отпуском выше температуры плавления формы α.
- В β-форме образуется орторомбических кристалла , ориентированных в противоположных направлениях.
- β’форма типична для модифицированного неполного хлопкового масла, жиров, жиров и модифицированного свиного сала.
Обе формы α, β и β’ имеют температура плавления, рентгенограмма и показатель преломления .
Чем больше двойных связей, тем затруднена кристаллизация, при которой он становится жидким.
Точка плавления Точка плавления жира соответствует температуре плавления β-формы , которая является наиболее стабильной полиморфной формой и является температурой, при которой плавятся все твердые вещества.
При наличии короткоцепочечных или ненасыщенных кислот температура плавления снижается.
Температура плавления имеет большое значение в переработке животных жиров .
Точки плавления чистых жиров очень точны, но поскольку жиры или масла состоят из смеси липидов с разными точками плавления, мы должны ссылаться на зону плавления , которая определяется как точка плавления компонента жира, который плавится при более высокой температуре.
ВязкостьВязкость жира обусловлена внутреннее трение между составляющими его липидами . Это , как правило, высокое из-за большого количества молекул, составляющих жир.
При увеличении степени ненасыщенности вязкость снижается, а при увеличении длины цепи компоненты жирных кислот также увеличивают вязкость.
Показатель преломления Показатель преломления вещества определяется как отношение между скоростью света в воздухе и в веществе (масло или жир), который анализируется.
Увеличение степени ненасыщенности увеличивает показатель преломления, а при увеличении длины цепи показатель преломления также увеличивается, поэтому используется для управления процессом гидрирования .
При повышении температуры показатель преломления уменьшается.
Показатель преломления характерен для каждого масла и жира, что помогает нам проводить контроль качества на них.
ПлотностьЭто физическое свойство имеет большое значение, когда речь идет о разработке оборудования для переработки смазки .
Плотность уменьшается, когда жиры расширяются при переходе из твердого состояния в жидкое
Когда жиры плавятся, их объем увеличивается, и поэтому плотность уменьшается.
Для контроля процентного содержания твердых и жидких веществ в коммерческом жире используются дилатометрические кривые .
Растворимость Растворимость имеет большое значение в переработке жиров .
Жиры полностью растворимы в неполярных растворителях (бензол, гексан…).
За исключением фосфолипидов, полностью нерастворимы в полярных растворителях (вода, ацетонитрил). Они частично растворимы в растворителях средней полярности (спирт, ацетон)
Растворимость жиров в органических растворителях уменьшается с увеличением длины цепи и степени насыщения.
Фосфолипиды могут взаимодействовать с водой, поскольку фосфорная кислота и входящие в их состав спирты имеют гидрофильные группы.
Обычно поверхностное натяжение увеличивается с увеличением длины цепи и уменьшается с температурой. Поверхностное натяжение и межфазное натяжение легко уменьшаются при использовании поверхностно-активных веществ, таких как моноглицериды и фосфолипиды.
Пластичность
Это свойство тела сохранять свою форму, сопротивляясь определенному давлению .
Пластичность жира обусловлена наличием трехмерной сети кристаллов, внутри которой иммобилизован жидкий жир.
Чтобы смазка была пластичной и растяжимой, должно быть соотношение между твердой и жидкой частями (20-40% жира в твердом состоянии), сетки не должны быть плотными, а их кристаллы должны быть в α-форме.
Пластические жиры действуют как твердое вещество до тех пор, пока приложенные деформирующие силы не разрушат кристаллическую решетку и смазка не станет вести себя как вязкая жидкость и, следовательно, ее можно будет размазать.
Эмульгирующая способностьЭмульгирующая способность — емкость на границе раздела вода/нефть, позволяющая образовать эмульсию .
Загрузите нашу электронную книгу и узнайте, как выбрать идеальный антиоксидант для вашего продукта !
СКАЧАТЬ ЭЛЕКТРОННУЮ КНИГУ
17.2: Жиры и масла — Химия LibreTexts
- Последнее обновление
- Сохранить как PDF
- Идентификатор страницы
- 16138
- Анонимный
- LibreTexts
Цели обучения
- Объяснить, почему жиры и масла называются триглицеридами.

- Объясните, как жирнокислотный состав триглицеридов определяет, является ли вещество жиром или маслом.
- Опишите важность ключевых реакций триглицеридов, таких как гидролиз, гидрирование и окисление.
Жиры и масла являются наиболее распространенными липидами в природе. Они обеспечивают энергию для живых организмов, изолируют органы тела и транспортируют через кровь жирорастворимые витамины.
Структуры жиров и масел
Жиры и масла называются триглицеридами (или триацилгеролами ), потому что они представляют собой сложные эфиры, состоящие из трех звеньев жирных кислот, соединенных с глицерином , тригидроксиспиртом:
Если все три группы ОН молекула глицерина этерифицируется одной и той же жирной кислотой, полученный эфир называется простой триглицерид . Хотя простые триглицериды были синтезированы в лаборатории, они редко встречаются в природе. Вместо этого типичный триглицерид, полученный из встречающихся в природе жиров и масел, содержит два или три различных компонента жирных кислот и поэтому называется смешанным триглицеридом .
Тристеарин
простой триглицерид
смешанный триглицерид
Триглицерид называется жиром, если он находится в твердом состоянии при 25°C; оно называется маслом, если оно является жидкостью при данной температуре. Эти различия в температурах плавления отражают различия в степени ненасыщенности и количестве атомов углерода в составляющих жирных кислотах. Триглицериды, полученные из животных источников, обычно представляют собой твердые вещества, тогда как растительного происхождения обычно представляют собой масла. Поэтому мы обычно говорим о животных жирах и растительных маслах.
Невозможно составить единую формулу, представляющую встречающиеся в природе жиры и масла, поскольку они представляют собой очень сложные смеси триглицеридов, в которых представлено множество различных жирных кислот. В таблице \(\PageIndex{1}\) показан состав жирных кислот некоторых распространенных жиров и масел. Состав любого данного жира или масла может варьироваться в зависимости от вида растений или животных, из которых он получен, а также от диетических и климатических факторов.
Приведу лишь один пример: сало свиней, питающихся кукурузой, более насыщено, чем сало свиней, питающихся арахисом. Пальмитиновая кислота является наиболее распространенной из насыщенных жирных кислот, а олеиновая кислота является наиболее распространенной ненасыщенной жирной кислотой.
| Лаурик | Миристин | Пальмитиновая | Стеариновая | Олеик | линолевая | Линоленовая | |
|---|---|---|---|---|---|---|---|
| †Coconut oil is highly saturated. It contains an unusually high percentage of the low-melting C8, C10, and C12 saturated fatty acids.»> Жиры | |||||||
| сливочное масло (коровье) | 3 | 11 | 27 | 12 | 29 | 2 | 1 |
| жир | 3 | 24 | 19 | 43 | 3 | 1 | |
| †Coconut oil is highly saturated. It contains an unusually high percentage of the low-melting C8, C10, and C12 saturated fatty acids.»> сало | 2 | 26 | 14 | 44 | 10 | ||
| Масла | |||||||
| масло канолы | 4 | 2 | 62 | 22 | 10 | ||
| †Coconut oil is highly saturated. It contains an unusually high percentage of the low-melting C8, C10, and C12 saturated fatty acids.»> кокосовое масло † | 47 | 18 | 9 | 3 | 6 | 2 | |
| кукурузное масло | 11 | 2 | 28 | 58 | 1 | ||
| †Coconut oil is highly saturated. It contains an unusually high percentage of the low-melting C8, C10, and C12 saturated fatty acids.»> оливковое масло | 13 | 3 | 71 | 10 | 1 | ||
| арахисовое масло | 11 | 2 | 48 | 32 | |||
| †Coconut oil is highly saturated. It contains an unusually high percentage of the low-melting C8, C10, and C12 saturated fatty acids.»> соевое масло | 11 | 4 | 24 | 54 | 7 | ||
| *Сумма менее 100% указывает на наличие жирных кислот с менее чем 12 атомами углерода или более чем с 18 атомами углерода. | |||||||
| † Кокосовое масло очень насыщено. Он содержит необычно высокий процент легкоплавкого C 8 , С 10 и С 12 насыщенные жирные кислоты. | |||||||
Такие термины, как насыщенный жир или ненасыщенное масло , часто используются для описания жиров или масел, полученных из пищевых продуктов. Насыщенные жиры содержат большое количество насыщенных жирных кислот, тогда как ненасыщенные масла содержат большое количество ненасыщенных жирных кислот.
Высокое потребление насыщенных жиров, наряду с высоким потреблением холестерина, является фактором повышенного риска сердечных заболеваний.
Физические свойства жиров и масел
Вопреки тому, что можно было ожидать, чистые жиры и масла не имеют цвета, запаха и вкуса. Характерные цвета, запахи и вкусы, которые мы связываем с некоторыми из них, придаются чужеродным веществам, растворимым в липидах и поглощенным этими липидами. Например, желтый цвет масла обусловлен наличием пигмента каротина; вкус масла обусловлен двумя соединениями — диацетилом и 3-гидрокси-2-бутаноном — вырабатываемыми бактериями сливок для созревания, из которых сделано масло.
Жиры и масла легче воды и имеют плотность около 0,8 г/см 3 . Они являются плохими проводниками тепла и электричества и поэтому служат прекрасными изоляторами для тела, замедляя потерю тепла через кожу.
Химические реакции жиров и масел
Жиры и масла могут участвовать в различных химических реакциях, например, поскольку триглицериды представляют собой сложные эфиры, они могут гидролизоваться в присутствии кислоты, основания или специфических ферментов, известных как липазы.
. Гидролиз жиров и масел в присутствии основания используется для получения мыла и называется омылением. Сегодня большинство мыл получают путем гидролиза триглицеридов (часто из жира, кокосового масла или того и другого) с использованием воды под высоким давлением и температурой [700 фунтов/дюйм 9].0424 2 (∼50 атм или 5000 кПа) и 200°С]. Затем карбонат натрия или гидроксид натрия используется для превращения жирных кислот в их натриевые соли (молекулы мыла):
Глядя ближе: мыла
Обычное мыло представляет собой смесь натриевых солей различных жирных кислот, полученную в одном из старейший органический синтез, практикуемый людьми (уступает только ферментации сахаров с получением этилового спирта). И финикийцы (600 г. до н.э.), и римляне делали мыло из животного жира и древесной золы. Тем не менее, широкое производство мыла началось только в 1700-х годах. Мыло традиционно изготавливали путем обработки расплавленного сала или сала небольшим избытком щелочи в больших открытых чанах.
Смесь нагревали и через нее пропускали пар. После завершения омыления мыло осаждали из смеси добавлением хлорида натрия (NaCl), удаляли фильтрованием и несколько раз промывали водой. Затем его растворяли в воде и переосаждали, добавляя дополнительное количество NaCl. Глицерин, полученный в результате реакции, также выделяют из водных промывных растворов.
Пемза или песок добавляются для производства чистящего мыла, а такие ингредиенты, как отдушки или красители, добавляются для производства ароматного цветного мыла. Продувание воздуха через расплавленное мыло приводит к образованию плавающего мыла. Мягкое мыло, изготовленное из солей калия, дороже, но дает более тонкую пену и лучше растворяется. Они используются в жидком мыле, шампунях и кремах для бритья.
Грязь обычно прилипает к коже, одежде и другим поверхностям, смешиваясь с маслами для тела, кулинарными жирами, консистентными смазками и подобными веществами, действующими как клей. Поскольку эти вещества не смешиваются с водой, промывание одной водой мало что дает для их удаления.
Однако мыло удаляет их, потому что молекулы мыла имеют двойственную природу. Один конец, называемый головка , несет ионный заряд (карбоксилатный анион) и поэтому растворяется в воде; другой конец, хвост , имеет углеводородную структуру и растворяется в маслах. Хвосты углеводородов растворяются в почве; ионные головки остаются в водной фазе, а мыло разбивает масло на крошечные капли, заключенные в мыло, называемые мицеллами , которые рассеиваются по всему раствору. Капли отталкиваются друг от друга из-за их заряженных поверхностей и не сливаются. Поскольку масло больше не «приклеивает» грязь к испачканной поверхности (кожа, ткань, посуда), мыльную грязь можно легко смыть.
Двойные связи в жирах и маслах могут подвергаться гидрированию, а также окислению. Гидрогенизация растительных масел с получением полутвердых жиров является важным процессом в пищевой промышленности. Химически она по существу идентична реакции каталитического гидрирования, описанной для алкенов.
В промышленных процессах количество двойных связей, которые подвергаются гидрогенизации, тщательно контролируется для получения жиров с желаемой консистенцией (мягкой и податливой). Таким образом, недорогие и обильные растительные масла (рапсовое, кукурузное, соевое) превращаются в маргарин и кулинарные жиры. Например, при приготовлении маргарина частично гидрогенизированные масла смешивают с водой, солью и обезжиренным сухим молоком, а также с ароматизаторами, красителями и витаминами А и D, которые добавляют для приближения внешнего вида, вкуса и питательных свойств. масла. (Также добавляются консерванты и антиоксиданты.) В большинстве коммерческих арахисовых масел арахисовое масло частично гидрогенизировано, чтобы предотвратить его отделение. Потребители могли бы уменьшить количество насыщенных жиров в своем рационе, используя оригинальные необработанные масла в своих продуктах, но большинство людей скорее намазывают тосты маргарином, чем поливают их маслом.
Многие люди перешли от сливочного масла к маргарину или растительному жиру из-за опасений, что насыщенные животные жиры могут повысить уровень холестерина в крови и привести к закупорке артерий.
Однако при гидрогенизации растительных масел происходит реакция изомеризации, в результате которой образуются транс- жирных кислот, упомянутых во вступительном очерке. Однако исследования показали, что транс- жирных кислот также повышают уровень холестерина и увеличивают частоту сердечных заболеваний. Транс-жирные кислоты не имеют изгиба в своей структуре, который происходит в цис- жирных кислотах, и, таким образом, упаковываются близко друг к другу так же, как это делают насыщенные жирные кислоты. В настоящее время потребителям рекомендуется использовать полиненасыщенные масла и мягкий или жидкий маргарин, а также сократить общее потребление жиров до уровня менее 30% от общего потребления калорий каждый день.
Жиры и масла, находящиеся в контакте с влажным воздухом при комнатной температуре, со временем подвергаются реакциям окисления и гидролиза, в результате чего они прогоркают, приобретая характерный неприятный запах. Одной из причин запаха является высвобождение летучих жирных кислот в результате гидролиза сложноэфирных связей.
Сливочное масло, например, выделяет зловонные масляную, каприловую и каприновую кислоты. Микроорганизмы, присутствующие в воздухе, поставляют липазы, которые катализируют этот процесс. Гидролитическое прогорклость можно легко предотвратить, если накрыть жир или масло и хранить в холодильнике.
Другой причиной образования летучих пахучих соединений является окисление компонентов ненасыщенных жирных кислот, особенно легко окисляемой структурной единицы
в полиненасыщенных жирных кислотах, таких как линолевая и линоленовая кислоты. Одним особенно неприятным продуктом, образующимся при окислительном расщеплении обеих двойных связей в этом звене, является соединение, называемое малоновым альдегидом .
Прогорклость является серьезной проблемой пищевой промышленности, поэтому пищевые химики всегда ищут новые и лучшие антиоксиданты, вещества, добавляемые в очень малых количествах (0,001%–0,01%), чтобы предотвратить окисление и, таким образом, подавить прогорклость.
Антиоксиданты — это соединения, сродство которых к кислороду больше, чем у липидов в пище; таким образом, они функционируют за счет преимущественного истощения запасов кислорода, поглощенного продуктом. Поскольку витамин Е обладает антиоксидантными свойствами, он помогает уменьшить повреждение липидов в организме, особенно ненасыщенных жирных кислот, содержащихся в липидах клеточных мембран.
Резюме
Жиры и масла состоят из молекул, известных как триглицериды, которые представляют собой сложные эфиры, состоящие из трех звеньев жирных кислот, связанных с глицерином. Увеличение процентного содержания жирных кислот с более короткой цепью и/или ненасыщенных жирных кислот снижает точку плавления жира или масла. Гидролиз жиров и масел в присутствии основания дает мыло и называется омылением. Двойные связи, присутствующие в ненасыщенных триглицеридах, могут быть гидрогенизированы для превращения масел (жидких) в маргарин (твердые). Окисление жирных кислот может привести к образованию соединений с неприятным запахом.



