Топливная рейка тнвд – Устройство ТНВД

Содержание

Топливный насос высокого давления. Рядный ТНВД

Примером рядного топливного насоса высокого давления применяемого на легковых автомобилях является насос дизеля Мерседес 190, состоящий из нескольких одинаковых секций. В передней части этого насоса расположен вакуумный насос 14, приводимый в движение эксцентриком 2, расположенным на торце кулачкового вала.

В нижней части  корпуса насоса установлен кулачковый вал, который соединяется со звездочкой привода через муфту опережения впрыска.

На кулачковом валу имеются про­филированные кулачки для каждой насосной секции и эксцентрик для приведения в движение насоса низкого давления, который крепится к привалочной плоскости насоса высокого давления.

Рис. Топливный насос высокого давления Мерседес:
1 – штуцер подключения вакуумного усилителя тормозов; 2 – эксцентрик привода вакуумного насоса; 3 – звездочка приводной цепи; 4 – автоматическая муфта опережения впрыска; 5 – винт установки начала впрыска; 6 – подача топлива; 7 – трубопровод высокого давления; 8 – рычаг перекрытия подачи топлива; 9 – вакуумная камера остановки двигателя; 10 – вакуумная камера увеличения частоты вращения коленчатого вала; 11 – регулятор частоты вращения; 12 – пробка для установки приспособления регулировки начала впрыска; 13 – топливоподкачивающий насос; 14 – вакуумный насос

В перегородке корпуса против каждого кулачка установлены роликовые толкатели 14. Оси роликов своими концами входят в пазы корпуса насоса, предотвращая проворачивание толкателей.

Рис. Секция рядного ТНВД:
1 – зубчатый сектор; 2 – регулирующая поворотная втулка плунжера; 3 – боковая крышка;  4 – штуцер нагнетательного клапана; 5 – корпус нагнетательного клапана; 6 – нагнетательный клапан; 7 – гильза плунжера; 8 – плунжер; 9 – рейка ТНВД; 10 – поводок плунжера; 11 – возвратная пружина плунжера; 12 – нижняя тарелка возвратной пружины; 13 – регулировочный болт; 14 – роликовый толкатель; 15 – кулачковый вал

Насосные секции установлены в верхней части корпуса и крепятся винтами. Основной частью каждой насосной секции является плунжерная пара, состоящая из плунжера 8 и гильзы 7. Плунжерную пару изготовляют из хромомолибденовой стали и подвергают закалке до высокой твердости. После окон­чательной обработки подбором производят сборку плунжеров и гильз так, чтобы обеспечить в соединении зазор, равный 3…5 мкм. Этим достигается  максимальная плотность сопряжения взаимодейст­вующих деталей обеспечивающих давление впрыскивания топлива до 1200 кгс/см2.

Сверху каждой плунжерной пары установлен нагнетательный клапан 6, размещенный в корпусе 5.

При вращении кулачкового вала 15 насоса выступ кулачка набегает на роликовый толкатель 14, который через регулировочный болт воздействует на плунжер 8 и перемещает его вверх. Когда выступ кулачка выходит из-под ролика толкателя, пружина 11, упирающаяся в тарелки, возвращает плунжер в первоначаль­ное положение. Рейка 9 входит в зацепление с зубчатым венцом поворотной втулки 2, надетой на гильзу.

Регулирование состава топливовоздушной смеси в дизельном двигателе происходит изменением подачи топлива при неизменном количестве воздуха, в отличие от бензиновых двигателей, где изменяется и то и другое. В рядных ТНВД изменение подачи топлива, обычно осуществляется за счет рейки, однако изменение подачи может осуществляться и за счет золотника, который перемещается по плунжеру. В рассматриваемом ТНВД при перемещении рейки 9 вдоль ее оси втулка 2  поворачивается на гильзе и, действуя на выступы  плунжера, поворачивает его, в результате чего изменяется количество топлива, подаваемого к форсункам. Ход рейки ограничивается стопорным винтом, входящим в ее продольный паз. Задний конец рейки соединен с тягой  регулятора частоты вращения коленчатого вала, установленного в корпусе ТНВД.

Принцип работы секции насоса

Принцип работы секции насоса заключается в следующем. При движении плунжера 1 вниз внутреннее пространство гильзы 12 наполняется топливом, и одновременно оно подается насосом низкого давления в подводящий канал 10 корпуса 11 насоса.

Рис. Схема работы секции насоса высокого давления:
а – впуск топлива; б – начало подачи; в – конец подачи;
1 – плунжер; 2 – продольный паз; 3 – выпускное отверстие; 4 – сливной канал; 5 – пружина; 6 – нагнетательный клапан; 7 – разгрузочный поясок; 8 – надплунжерное пространство;  9 – впускное отверстие; 10 – подводящий канал; 11 – корпус насоса; 12 – гильза; 13 – винтовая кромка

При этом открывается впускное отверстие 9, и топливо поступает в надплунжерное пространство 8. Затем под действием кулачка плунжер начинает подниматься вверх, перепуская топливо обратно в под­водящий канал 10 до тех пор, пока верхняя кромка плунжера 1 не перекроет впускное отверстие 9 гильзы. После перекрытия этого отверстия давление топлива резко возрастает и при рабочем давлении  топливо, преодолевая усилие пружины 5, поднимает нагнетательный клапан 6 и поступает в топливопровод.

Дальнейшее перемещение плунжера вверх вызывает повышение давления, превышающее давление, создаваемое пружиной форсунки, в результате чего игла форсунки приподнимается и проис­ходит впрыскивание топлива в камеру сгорания. Подача топлива про­должается до тех пор, пока винто­вая кромка 13 плунжера не откроет выпускное отверстие 3 в гильзе, в результате чего давление над плунжером резко падает, нагнетательный клапан 6 под действием пружины закрывается и надплунжерное пространство разъе­диняется с топливопроводом высокого давления. При дальнейшем движении плунжера вверх топливо перетекает в сливной канал 4 через продольный паз 2 и винтовую кромку 13 плунжера.

Нагнетательный клапан 6 разгружает топливопровод высокого давления, так как он снабжен цилиндрическим разгрузочным пояском 7, который при посадке клапана на седло обеспечивает увеличение объема топливопровода. Этим достигается резкое прекращение впрыскивания топлива и устраняется возможность его подтекания через распылитель форсунки, что улучшает процесс смесе­образования и сгорания рабочей смеси, а также повышает надежность работы форсунки.

Клапаны ТНВД

В ТНВД с рядным расположением плунжерных пар применяются нагнетательные клапана объемного течения и ограничения обратного течения, а также клапана постоянного давления.

Клапана обратного течения применяются для демпфирования волн обратного давления топлива, возникающих при закрытии распылителя форсунки, что уменьшает износ распылителя и подвпрыски топлива в цилиндры двигателя. Клапан  устанавливается как дополнительный над обычным клапаном перед топливопроводом высокого давления, идущим к форсунке.

Рис. Штуцер ТНВД с нагнетательным клапаном:
а – с клапаном объемного течения и ограничением обратного течения; b – с клапаном постоянного течения; 1 – корпус нагнетательного клапана; 2 – обратный клапан; 3 – промежуточный объем; 4 – разгрузочный поясок; 5 – сферический клапан; 6 – втулка клапана; 7 – нагнетательный клапан; 8 – жиклер; 9 – обратный клапан

Клапан состоит из головки с запорной конической фаской, разгрузочного пояска 4 и хвос­товика с прорезями для прохода топлива. Сверху на клапан установлена пружина 3, которая прижимает его к седлу. При подаче топлива разгрузочный поясок вместе с конусом клапана приподнимается над направляющей втулкой и топливо под давлением поступает к форсунке. При закрытии основного клапана клапан обратного течения перекрывает доступ обратных волн топлива.

Клапана постоянного течения применяются на ТНВД с давлением впрыска более 800 кг/см2, для уменьшения кавитации. При подаче топлива через нагнетательный клапан в конце хода нагнетания шариковый обратный клапан под действием обратных волн давления топлива открывается и система топливоподачи действует как нагнетательный клапан с перепускным дросселем. При уменьшении давления клапан закрывается, при этом в магистрали сохраняется постоянное давление.

Перемещение плунжера во втулке с момента закрытия впускного отверстия до момента открытия вы­пускного отверстия  называется активным  ходом  плунжера, который в основном и определяет количество подаваемого топлива за цикл работы топливной секции.

Изменение количества топлива, подаваемого секцией за один цикл, происходит в результате поворота плунжера зубчатой рейкой 5. При различных углах поворота плунжера благодаря винтовой кромке смещаются моменты открытия выпускного отверстия. При этом, чем позднее открывается выпускное отверстие, тем большее количество топлива может быть подано к форсункам.

Рис. Схема изменения подачи топлива:
1 – гильза; 2 –  впускное отверстие; 3 – плунжер; 4 – винтовая кромка; 5 –рейка

На рисунке показаны следующие положения винтовой кромки плунжера за цикл работы топливной секции:

  • положение а – нулевая подача топлива. Плунжер 3 повернут так, что его продольный паз расположен против выпускного отверстия, в результате чего при перемещении плунжера вверх топливо вытесняется в сливной канал, подача топлива прекращается и двигатель останавливается
  • положение  б – промежуточная подача, так как при повороте плунжера 3 по часовой стрелке объем вытесненного топлива уменьшается так как выпускное отверстие открывается раньше
  • положение в – максимальная подача топлива и наибольший активный ход плунжера 3. В этом случае расстояние от винтовой кромки 4 плунжера до выпускного отверстия будет наибольшим

ustroistvo-avtomobilya.ru

Электронные системы управления рядными ТНВД

Как и в обычном рядном ТНВД, оснащенном механическим регулятором, количество впрыскиваемого топлива является функцией положения управляющей рейки подачи топлива 3 и частоты вращения вала привода ТНВД. Управление рейкой осуществляется с помощью специального электромагнитного регулятора количества топлива 8, присоединенного непосредственно к ТНВД. Электромагнитный регулятор состоит из катушки и сердечника, воздействующего на рейку ТНВД. Положение рейки насоса определяется индуктивным датчиком положения рейки 9, закрепленным на ней. В катушку электромагнитного регулятора, в зависимости от сигналов входных датчиков температуры двигателя, частоты вращения вала насоса, положения педали управления рейкой и др. от блока управления поступает ток возбуждения различной величины. При этом сердечник регулятора, втягиваясь под воздействием магнитного поля, воздействует на рейку насоса преодолевая усилие пружины, изменяя количество впрыскиваемого топлива. С увеличением силы тока поступаемого от блока управления, сердечник, втягиваясь на большую величину и воздействуя на рейку, увеличивает подачу топлива. При отключении соленоида пружина прижимает рейку в положение остановки двигателя и прекращает подачу топлива.

Общий вид рядного ТНВД с электронным управлением показан на рисунке:

Рис. Рядный ТНВД с электронным управлением:
1 – гильза; 2 – втулка управления; 3 – рейка подачи топлива; 4 –плунжер; 5 – кулачковый вал; 6 – электромагнитный клапан начала подачи топлива; 7 – вал управления регулирующей втулкой; 8 – электромагнитный регулятор количества топлива; 9 – индуктивный датчик положения рейки; 10 – вилочное соединение; 11 – диск; 12 – топливоподкачивающий насос

На кулачковом валу ТНВД устанавливается зубчатый диск 11, который при вращении подает импульсы на индуктивный измерительный преоб­разователь. Электронный блок управления использует импульсные ин­тервалы для вычисления частоты вра­щения коленчатого вала двигателя.

Датчик положения рейки подает сигналы для различных устройств на двигателе и автомобиле:

  • сигнал о моменте переключения передач для гидравлической коробки передач
  • сигнал для подачи максимальной порции топлива скоординированной с давлением наддува для соблюдения норм на дымность отработавших газов
  • сигнал о нагрузке, как указание момента переключения для переключения передач в механической коробке передач
  • сигнал для измерения расхода топлива
  • сигнал для запуска рецеркуляции отработавших газов
  • сигнал диагностики и др.

Рис. Датчик положения рейки:
1 – контрольная катушка; 2 – сердечник; 3 – короткозамкнутый подвижный контур; 4 – рейка; 5 – лыска; 6 – возвратная пружина; 7 – измерительная катушка; 8 – магнитопровод; 9 – неподвижный контур

Датчик состоит из пластинчатого стального сердечника 2 с двумя наружными открытыми концами. На одном конце закреплена измерительная катушка 7, которая запитывается переменным током 10 кГц, на другом конце контрольная катушка 1. Короткозамкнутый подвижный контур 3, предназначенный для регистрации хода рейки крепится к ней. Датчик хода рейки соединен с блоком управления.

Принцип работы датчика состоит в том, что короткозамкнутый неподвижный контур 9, окружающий конец сердечника, экранирует переменное магнитное поле (индукцию), вырабатываемое контрольной катушкой 1. Распространение магнитного поля ограничивается пространством между катушкой и короткозамкнутым кольцом. Учитывая то, что короткозамкнутое подвижное кольцо перемещается вместе с рейкой и изменяет своё положение относительно измерительной катушки, магнитное поле воздействующее на измерительную обмотку изменяется. Реагирующая цепь преобразует отношение индукции измерительной катушки 7 к индукции контрольной катушки 1 в отношении напряжений, которые пропорциональны ходу рейки. Величина измеряемого напряжения постоянно сравнивается с напряжением контрольной катушки.

Датчик информирует о текущем положении рейки с точностью 0,2 мм.

Электронный блок управления сравнивает частоту вращения и другие параметры работы двигателя с целью определения оптимального ко­личества подаваемого топлива (выра­жаемого как функция положения рей­ки). С помощью электронного контрол­лера сравнивается положение рейки насоса с конкретной точкой для опре­деления значения тока возбуждения соленоида, который сжимает возврат­ную пружину. Когда отклонения опре­деляются, регулируется ток возбужде­ния, обеспечивая смещение рейки насо­са к более точному положению.

Подача топлива к форсункам принципиально не отличается от механических ТНВД. Однако в насосах с электронным управлением отсутствует муфта опережения впрыска и в них угол опережения впрыска управляется по сигналам, подаваемым от блока управления в электромагнитный клапан начала подачи топлива. В зависимости от величины силы тока поступающего в катушку электромагнитного клапана начала подачи топлива 6, его сердечник, преодолевая сопротивление пружины, втягивается в катушку на определенную величину, поворачивая при этом вал управления 7 регулирующей втулкой. В свою очередь вал управления связан с втулкой управления. При повороте вала управляющая втулка может приподниматься или опускаться. При обесточивании электромагнитного клапана вал под воздействием пружины переводит втулки в верхнее положение (поздний впрыск).

Начало подачи может регулироваться при изменении положения втулок в пределах до 40° поворота коленчатого вала.

Принцип работы прецизионных деталей гильзы, плунжера и управляющей втулки показан на рисунке:

Рис. Принцип работы плунжерной пары с управляющей втулкой:
a – НМТ плунжера; b – начало подачи топлива; c – завершение подачи топлива; d – ВМТ плунжера; h2 – предварительный ход; h3 – полезный ход; h4 – холостой ход; 1 – нагнетательный клапан; 2 – полость высокого давления; 3 – втулка плунжера; 4 – управляющая втулка; 5 – винтовая канавка плунжера; 6 – распределительное отверстие в плунжере; 7 – плунжер; 8 – пружина плунжера; 9 – роликовый толкатель; 10 – кулачок; 11 – разгрузочное отверстие; 12 – камера низкого давления

Плунжер кроме обычной спиральной канавки изменяющей подаваемую порцию топлива к форсункам имеет распределительное отверстие 6, которое может быть закрыто или открыто управляющей втулкой 4. При движении плунжера вниз топливо поступает в надплунжерное пространство.

При движении плунжера 7 вверх, до тех пор, пока распределительное отверстие 6 находится в полости всасывания камеры низкого давления 12, давление в полости нагнетания 2 выравнивается с давлением во всасывающей полости через центральный канал.

Как только распределительное отверстие 6 плунжера перекрывается кромкой управляющей втулки 4 полость всасывания и полость высокого давления разобщаются и давление в полости нагнетания начинает расти. После того как под воздействием высокого давления открывается нагнетательный клапан 1, давление в трубопроводе высокого давления растет до величины открытия иглы форсунки (начало впрыска).

Впрыск продолжается при движении плунжера вверх пока кромка спиральной канавки 5 не достигнет разгрузочного отверстия 11 в управляющей втулке 4. После этого давление в полостях выравнивается, и нагнетательный клапан 1 под воздействием пружины и давления топлива закрывается.

Регулирование начала впрыска топлива зависит от частоты вращения коленчатого вала, нагрузки на двигатель и его температуры. Начало впрыска топлива зависит от положения управляющей втулки, размещенной в кольцевой выточке гильзы. Изменение начала впрыска происходит одновременно во всех секциях насоса за счет поднятия или опускания управляющих втулок. Начало впрыска топлива зависит от положения управляющей втулки, так как нагнетание может произойти только после перекрытия распределительного отверстия плунжера 6, в противном случае топливо через вертикальный канал и отверстие 6 будет вытесняться полость 12 и давление в надплунжерном пространстве возрастать не будет. В момент перекрытия отверстия 6 полость в надплунжерном пространстве становится герметичной и давление топлива начинает резко возрастать, открывая при этом нагнетательный клапан. Если втулка находится относительно отверстия плунжера 6 выше, впрыск начинается позже, так как позже будет перекрываться окно плунжера. При более низком положении втулки относительно окна плунжера перекрытие окна плунжера будет более ранним и впрыск начинается раньше. Ход втулки составляет около 5,5 мм при изменении угла опережения впрыска топлива 12° по углу поворота коленчатого вала.

Регулирование количества подаваемого топлива осуществляется как и у обычных механических ТНВД поворотом плунжера 7, на котором распределительное отверстие 6 соединено с винтовой канавкой 5 плунжера. Если плунжер повернут на небольшой угол, количество подаваемого топлива будет малым, так как спиральная канавка очень быстро после закрытия распределительного отверстия в плунжере 6 управляющей втулкой достигает разгрузочного отверстия 11 втулки. При большем повороте плунжера подача топлива соответственно увеличивается.

Прекращение подачи топлива осуществляется при останове двигателя. При этом плунжер устанавливается в такое положение, при котором в любой позиции между мертвыми точками полости всасывания и нагнетания соединены через центральное отверстие плунжера.

ustroistvo-avtomobilya.ru

Рядный ТНВД

Рядный ТНВД

Быстро войти через сайт:

Преимущества зарегистрированных пользователей

?

Преимущества зарегистрированных пользователей:

  • после авторизации автоматическое заполнение формы записи на техобслуживание;
  • возможность редактирования всех своих комментариев;
  • уведомлении письмом об ответе на Ваш комментарий;
  • упрощение процедуры оформления покупок в интернет-магазине;
  • ведение истории покупок в интернет магазине.

J

L

LЗакрыть товар

VПредыдущий

СледующийW

ttttt ttttt

Рейтинг: 0

0 голосов

17.08.2014 / 25.04.2018   •   17994 / 3516 ttttt ttttt
Особенности:
  • Плунжерные пары и нагнетательные клапана нужно устанавливать в насос одной группы плотности.
  • При хорошей плунжерной паре насос может работать без подкачивающего насоса.
  • Изменение толщины пяты толкателя (КамАЗ) на 0,05мм соответствует 0,12* угла кулачкового вала.
  • Увеличение момента затяжки штуцера высокого давления до 14-15кг и по сравнению с нормой 10-12 ускоряет износ плунжерной пары на 20%.
  • Работу регулятора можно попробовать на работающем двигателе со снятой крышкой насоса.
  • Угол впрыска (начало впрыска) определять ручной прессовкой при снятом НК.
  • Может оснащаться устройством отключения цилиндров при работе на режиме холостого хода с целью обеспечения более низкого уровня оборотов холостого хода и уменьшения расхода топлива на этом режиме.
  • Отношение хода к диаметру плунжера 0,8-1,0.
  • Чем больше ширина ролика толкателя, тем труднее обеспечить хороший контакт.
  • На мерседесовском насосе плунжерная пара имеет подачу на малых порциях с изменением по началу и концу подачи.
Технические требования:
  • Запас хода плунжера (после регулировки угла впрыска) при положении кулачка в ВМТ не менее 0,3м.
  • Давление в головке ТНВД при полностью включенной подаче и n=600об/мин должно быть не менее 0,7кг/см2.
  • Герметичность топливных магистралей проверяют давлением 20-22кг/см2.
  • Разница геометрического нагнетания не должно превышать 30*.
  • Неравномерность подачи:
    1 — номинальный режим – 3%;
    2 — холодный ход – 30%;
  • зазор в прорези винта поворотной втулки не менее 0,3мм.
  • Свободный ход рейки относительно зубчатого венца 0,17мм, МАХ – 0,25мм.
  • Изменение подачи секций на номинальном положении при перестановке (перекрещивании) форсунок и ТПВД не более 2см3/мин.
  • Регулировка ТНВД с эталонными форсунками и ТПВД, требует высокого качества изготовления ТПВД и форсунок.
  • Допустимая неточность интервала начала впрыскивания топлива между первой и любой другой секциями должна составлять 0о-30о.
  • ТНВД со смазыванием от системы дизеля должны иметь устройства для отвода от плунжерных пар дренажного топлива в систему низкого давления.
Ремонт:
  • Обнаружить зависание плунжера можно при частичной разборке насоса, снятием крышки насоса, наблюдая за положением плунжеров проворачивая кулачковый вал. Частичное заклинивание плунжера обнаруживают, отворачивая по очереди хомутики поводков, проворачивая кулачковый вал насоса относительно гильзы. Износ и разрушение подшипников кулачкового вала определяют, вставляя через лючок, для покачивающего насоса прутик, накачивая вал вверх и вниз, заметного перемещения вала не должно быть.
Влияние неисправностей на работу дизеля:
  • Частичное заклинивание плунжеров проявляется в виде перебоев подачи топлива отдельными цилиндрами и неустойчивой работы регулятора.
  • Высокая загрязнённость картерного масла вызывает заклинивание рейки, а также попадание воды, особенно в зимнее время (абразивные частицы).
  • При дефектных нагнетательных клапанах герметичность происходит уменьшение подачи топлива.
  • Запаздывание угла впрыска: вследствие износа – плотность регулировочного болта толкателя, ось ролика и сопрягаемые с ней корпус толкателя, а также ролик, шарикоподшипники и сопрягаемые с ними гнёзда корпуса насоса, кулачковый вал.
  • Поломку подшипников кулачкового вала: при значительном износе подшипников нарушается чередование подачи и впрыска по отдельным секциям. Угол опережения по всем секциям запаздывает, снижается мощность, увеличивается дымность, на малой частоте работает неустойчиво, «рычит», наблюдается сильный нагрев корпуса ТНВД.
  • Наличие воды вызывает коррозию зубьев рейки и венцов, которая приводит к повышенному сопротивлению, перемещению рейки и в неблагоприятных случаях к заклиниванию.
  • Заклинивание рейки может возникнуть за счёт закусывания в хомутиках поводков плунжеров в их крайних положениях.
  • Косвенными причинами потери подвижности рейки являются также заклинивание плунжерных пар, дозатора и его привода. Определить заедающую секцию можно, покачивая зубчатый венец относительно рейки. В исправном сопряжении должен ощущаться небольшой зазор.
  • При повышенных зазорах, усилиях (сил трения) в регуляторе и в сопряжениях приводят к тому, что регулятор не успевает реагировать на изменение нагрузки и частоты вращения, в результате чего двигатель работает неустойчиво. А диапазон изменения частоты вращения коленчатого вала увеличивается, работая на холостом ходу двигатель «рычит».
  • Плунжерные пары изнашиваются неодинаково, отчего повышается неравномерность подач. При больших износах неравномерность может увеличиваться в 3 раза на номинальных оборотах и в 5 раз на пусковых.
  • При комплектации насоса плунжерными парами, имеющие различные зазоры на номинальном режиме, за счёт регулировки будет малая неравномерность подач, однако при частичных подачах будет наблюдаться повышенная неравномерность (чем меньше зазоры, тем легче обеспечить насос идентичными парами).

Рекомендуем посетить раздел:

kovsh.com

Электронные системы управления рядными ТНВД

Рядный ТНВД с электронным управлением. Общий вид рядного ТНВД с электронным управлением: 1 – гильза; 2 – втулка управления; 3 – рейка подачи топлива; 4 –плунжер; 5 – кулачковый вал; 6 – электромагнитный клапан начала подачи топлива; 7 – вал управления регулирующей втулкой; 8 – электромагнитный регулятор количества топлива; 9 – индуктивный датчик положения рейки; 10 – вилочное соединение; 11 – диск; 12 – топливоподкачивающий насос.

Как и в обычном рядном ТНВД, оснащенном механическим регулятором, количество впрыскиваемого топлива является функцией положения управляющей рейки подачи топлива 3 и частоты вращения вала привода ТНВД. Управление рейкой осуществляется с помощью специального электромагнитного регулятора количества топлива 8, присоединенного непосредственно к ТНВД. Электромагнитный регулятор состоит из катушки и сердечника, воздействующего на рейку ТНВД.

Положение рейки насоса определяется индуктивным датчиком положения рейки 9, закрепленным на ней. В катушку электромагнитного регулятора, в зависимости от сигналов входных датчиков температуры двигателя, частоты вращения вала насоса, положения педали управления рейкой и др. от блока управления поступает ток возбуждения различной величины. При этом сердечник регулятора, втягиваясь под воздействием магнитного поля, воздействует на рейку насоса преодолевая усилие пружины, изменяя количество впрыскиваемого топлива.

С увеличением силы тока поступаемого от блока управления, сердечник, втягиваясь на большую величину и воздействуя на рейку, увеличивает подачу топлива. При отключении соленоида пружина прижимает рейку в положение остановки двигателя и прекращает подачу топлива.

На кулачковом валу ТНВД устанавливается зубчатое колесо, которое при вращении подает импульсы на индуктивный измерительный преоб­разователь. Электронный блок управления использует импульсные ин­тервалы для вычисления частоты вра­щения коленчатого вала двигателя.

Датчик положения рейки подает сигналы для различных устройств на двигателе и автомобиле:

  • сигнал о моменте переключения передач для гидравлической коробки передач; сигнал для подачи максимальной порции топлива скоординированной с давлением наддува для соблюдения норм на дымность отработавших газов;
  • сигнал о нагрузке, как указание момента переключения для переключения передач в механической коробке передач;
  • сигнал для измерения расхода топлива;
  • сигнал для запуска рецеркуляции отработавших газов;
  • сигнал диагностики и др.

Датчик положения рейки 1 – контрольная катушка; 2 – сердечник; 3 – короткозамкнутое подвижный контур; 4 – рейка; 5 – лыска; 6 – возвратная пружина; 7 – измерительная катушка; 8 – магнитопровод; 9 – неподвижный контур

Датчик состоит из пластинчатого стального сердечника 2 с двумя наружными открытыми концами. На одном конце закреплена измерительная катушка 7, которая запитывается переменным током 10 кГц, на другом конце контрольная катушка 1. Короткозамкнутый подвижный контур 3, предназначенный для регистрации хода рейки крепится к ней. Датчик хода рейки соединен с блоком управления.

Принцип работы датчика состоит в том, что короткозамкнутый неподвижный контур 9, окружающее конец сердечника, экранирует переменное магнитное поле (индукцию), вырабатываемое контрольной катушкой 1. Распространение магнитного поля ограничивается пространством между катушкой и короткозамкнутым кольцом. Учитывая то, что короткозамкнутое подвижное кольцо перемещается вместе с рейкой и изменяет своё положение относительно измерительной катушки, магнитное поле воздействующее на измерительную обмотку изменяется. Реагирующая цепь преобразует отношение индукции измерительной катушки 7 к индукции контрольной катушки 1 в отношении напряжений, которые пропорциональны ходу рейки. Величина измеряемого напряжения постоянно сравнивается с напряжением контрольной катушки. Датчик информирует о текущем положении рейки с точностью 0,2 мм.

Электронный блок управления сравнивает частоту вращения и другие параметры работы двигателя с целью определения оптимального ко­личества подаваемого топлива (выра­жаемого как функция положения рей­ки). С помощью электронного контрол­лера сравнивается положение рейки насоса с конкретной точкой для опре­деления значения тока возбуждения соленоида, который сжимает возврат­ную пружину. Когда отклонения опре­деляются, регулируется ток возбужде­ния, обеспечивая смещение рейки насо­са к более точному положению.

Подача топлива к форсункам принципиально не отличается от механических ТНВД. Однако в насосах с электронным управлением отсутствует муфта опережения впрыска и в них угол опережения впрыска управляется по сигналам, подаваемым от блока управления в электромагнитный клапан начала подачи топлива. В зависимости от величины силы тока поступающего в катушку электромагнитного клапана начала подачи топлива 6 (рис.), его сердечник, преодолевая сопротивление пружины, втягивается в катушку на определенную величину, поворачивая при этом вал управления 7 регулирующей втулкой. В свою очередь вал управления связан с втулкой управления. При повороте вала управляющая втулка может приподниматься или опускаться. При обесточивании электромагнитного клапана вал под воздействием пружины переводит втулки в верхнее положение (поздний впрыск).

Начало подачи может регулироваться при изменении положения втулок в пределах до 40° поворота коленчатого вала. Принцип работы прецизионных деталей гильзы, плунжера и управляющей втулки показан на рисунке.

Принцип работы плунжерной пары с управляющей втулкой. a – НМТ плунжера; b – начало подачи топлива; c – завершение подачи топлива; d – ВМТ плунжера; h2 – предварительный ход; h3 – полезный ход; h4 – холостой ход; 1 – нагнетательный клапан; 2 – полость высокого давления; 3 – втулка плунжера; 4 – управляющая втулка; 5 – винтовая канавка плунжера; 6 – распределительное отверстие в плунжере; 7 – плунжер; 8 – пружина плунжера; 9 – роликовый толкатель; 10 – кулачок; 11 – разгрузочное отверстие; 12 – камера низкого давления.

Плунжер кроме обычной спиральной канавки изменяющей подаваемую порцию топлива к форсункам имеет распределительное отверстие 6, которое может быть закрыто или открыто управляющей втулкой 4. При движении плунжера вниз топливо поступает в надплунжерное пространство.

При движении плунжера 7 вверх, до тех пор, пока распределительное отверстие 6 находится в полости всасывания камеры низкого давления 12, давление в полости нагнетания 2 выравнивается с давлением во всасывающей полости через центральный канал.

Как только распределительное отверстие 6 плунжера перекрывается кромкой управляющей втулки 4 полость всасывания и полость высокого давления разобщаются (рис b) и давление в полости нагнетания начинает расти. После того как под воздействием высокого давления открывается нагнетательный клапан 1, давление в трубопроводе высокого давления растет до величины открытия иглы форсунки (начало впрыска).

Впрыск продолжается при движении плунжера вверх пока кромка спиральной канавки 5 не достигнет разгрузочного отверстия 11 (рис. с) в управляющей втулке 4. После этого давление в полостях выравнивается, и нагнетательный клапан 1 под воздействием пружины и давления топлива закрывается.

Регулирование начала впрыска топлива зависит от частоты вращения коленчатого вала, нагрузки на двигатель и его температуры. Начало впрыска топлива зависит от положения управляющей втулки, размещенной в кольцевой выточке гильзы. Изменение начала впрыска происходит одновременно во всех секциях насоса за счет поднятия или опускания управляющих втулок. Начало впрыска топлива зависит от положения управляющей втулки, так как нагнетание может произойти только после перекрытия распределительного отверстия плунжера 6, в противном случае топливо через вертикальный канал и отверстие 6 будет вытесняться полость 12 и давление в надплунжерном пространстве возрастать не будет. В момент перекрытия отверстия 6 полость в надплунжерным пространством становится герметичной и давление топлива начинает резко возрастать, открывая при этом нагнетательный клапан. Если втулка находится относительно отверстия плунжера 6 выше, впрыск начинается позже, так как позже будет перекрываться окно плунжера. При более низком положении втулки относительно окна плунжера перекрытие окна плунжера будет более ранним и впрыск начинается раньше. Ход втулки составляет около 5,5 мм при изменении угла опережения впрыска топлива 12° по углу поворота коленчатого вала.

Регулирование количества подаваемого топлива осуществляется как и у обычных механических ТНВД поворотом плунжера 7, на котором распределительное отверстие 6 соединено с винтовой канавкой 5 плунжера. Если плунжер повернут на небольшой угол, количество подаваемого топлива будет малым, так как спиральная канавка очень быстро после закрытия распределительного отверстие в плунжере 6 управляющей втулкой достигает разгрузочного отверстия 11 втулки. При большем повороте плунжера подача топлива соответственно увеличивается.

Прекращение подачи топлива осуществляется при останове двигателя. При этом плунжер устанавливается в такое положение, при котором в любой позиции между мертвыми точками полости всасывания и нагнетания соединены через центральное отверстие плунжера.

Основные неисправности рядных электронных ТНВД и их причины.

  • Большинство неисправностей электронных рядных ТНВД, аналогичны механическим рядным ТНВД. Отличительными особенностями являются неисправности электронной части насоса.
  • Двигатель не запускается. Повреждена обмотка электромагнитного регулятора количества топлива; неисправность блока управления; остальные неисправности характерные как и для механических рядных ТНВД.
  • Блок управления двигателя включает программу аварийной работы, двигатель не развивает полной мощности. Замыкание обмоток катушек индуктивного датчика положения рейки или индуктивного датчика частоты вращения кулачкового вала ТНВД.
  • Неправильное измерение частоты вращения. Биение зубчатого колеса импульсов более 0,03 мм.

00:4922.05.2013

Проверка механизма опережения на ТНВД H типа с дополнительной втулкой

Для определения работоспособности электромагнита опережения, регулировки втулок опережения, рекомендую выкрутить с регулятора заглушку, вставить внутрь отвёртку, упёршись в сам сердечник электромагнита и прогазовывать, наблюдая за перемещением вниз электромагнита. Чем раньше зажигание, тем ниже перемещается электромагнит. Можно также вручную делать зажигание раньше, имея достаточный опыт в работе дизельных двигателей.

L

kovsh.com

Топливная рейка: особенности конструкции и применение

С появлением двигателей внутреннего сгорания и усовершенствования их конструкций остро встала необходимость централизованного и регулируемого впрыска топлива в камеры сгорания. Различные производители автомобильной техники пришли практически к одной по смыслу конструкции, позволяющей подавать топливо в камеру сгорания. Было разработано специальное приспособление, названное топливной рейкой. При помощи этого приспособления автомобильная техника получила стабильную подачу топлива в цилиндр.

Топливная рейка

Топливная рампа — обязательный элемент топливной системы автомобильной техники, без которой невозможен нормальный режим работы двигателя внутреннего сгорания с распределенным впрыском. Топливная рейка представляет собой полую трубку, закрытую с двух концов. По всей длине трубки проходят отверстия с отводами, к которым присоединяются трубки с форсунками на концах. Рейка перекочевала в бензиновый двигатель от дизельного агрегата.

Иногда конструктивно сами форсунки присоединяются непосредственно к рампе, что немного упрощает конструкцию топливной системы. Изначально рейка применялась только в двигателях, основанных на работе дизельного топлива, в эпоху карбюраторных бензиновых двигателей ее не использовали. И лишь с приходом двигателей внутреннего сгорания на бензиновом топливе и инжекторе топливная рейка нашла широкое применение.

Описание работы

Во время запуска двигателя нагнетающий насос подает бензин в топливную магистраль. Топливо стремится к дальней стенке трубки, попадая в топливную рейку. При этом в системе достигается необходимое давление для нормальной работы двигателя. Иногда систему подачи топлива оснащают подогревом от тепла работающего двигателя. Подогретое топливо улучшает свои характеристики и увеличивает распыление при попадании в камеру сгорания.

При обслуживании топливной рейки следует соблюдать правила технической эксплуатации, чтобы избежать выхода ее из строя. При демонтаже необходимо соблюдать осторожность, чтобы не повредить разъемы и распылители форсунок. Не допускать попадания грязи в открытые каналы и отверстия, это приведет к нарушению нормальной работы топливной системы, поэтому при работе с топливной рейкой следует закрывать отверстия заглушками. Перед тем как провести демонтаж, рейку очищают специальным баллоном для очистки.

Запрещается помещать рейку в растворители — это приведет к выходу из строя резиновых прокладок между форсунками и рейкой, поэтому в инструкциях рекомендуют при разборе обязательно менять прокладки, даже если они визуально в хорошем состоянии.

Конструктивная особенность

В автомобильной технике на двигателе рейка устанавливается на впускной коллектор. Имейте в виду, что кроме отводов к форсункам рампа имеет отверстие, на которое устанавливают штуцер для присоединения манометра — он помогает контролировать давление в топливной рейке. Чтобы предотвратить попадание внутрь мусора (при условии отсутствия манометра), отверстие перекрывают пробкой с резьбой. На штуцере есть клапан топливной рейки, который не допускает выхода топлива без надобности.

Материал трубки — сталь, не имеющая швов соединения, что позволяет выдерживать высокое давление в топливной системе.

Применение

Как было описано выше, топливная рейка предназначена для своевременного и нормального впрыска топлива в камеру сгорания. Топливо подается при определенной температура и под нужным давлением. Все это можно настраивать и контролировать при помощи специальных приспособлений, находящихся на рейке и в ней — они обеспечат правильную и стабильную работу двигателя внутреннего сгорания.

fb.ru

Регулировка топливного насоса высокого давления (ТНВД)

Регулировка ТНВД на проверочном стенде

Регулировка плунжерных пар на одинаковую величину хода и одинаковое количество подачи, а также регулировка регулятора числа оборотов и устройства (муфты) опережения впрыска выполняются на специальном проверочном стенде для ТНВД. Эти стенды оснащены всеми необходимыми измерительными устройствами и приводом с изменяемым числом оборотов. Инструкции по ремонту и проверкам на проверочном стенде вместе с необходимыми данными содержат всю необходимую информацию для ремонтных и сервисных работ.

Регулировка ТНВД на двигателе

ТНВД синхронизируется с двигателем с помощью установочных меток для начала впрыска (закрывания канала). Эти метки находятся на двигателе и на ТНВД.

Обычно такт сжатия двигателя используется в качестве основы (точки отсчета для регулировок момента впрыска, хотя для конкретной модели двигателя могут использоваться и другие возможности). В связи с этим важно, чтобы учитывались инструкции завода-изготовителя. В большинстве случаев установочная метка для закрывания канала находится на маховике двигателя, на шкиве клинового ремня или на гасителе колебаний. Имеется несколько возможностей для регулировки ТНВД и установки правильного значения начала впрыска (закрывания канала).

  1. ТНВД поставляется с завода в таком виде, когда его кулачковый вал заблокирован в заданном положении. После у становки ТНВД на двигатель и укрепления его болтами, когда коленчатый вал находится в соответствующем положении, кулачковый вал ТНВД отпускается. Этот хорошо проверенный метод недорог и приобретает все большую и большую популярность.
  2. ТНВД снабжается индикатором закрывания канала на конце регулятора, который должен быть совмещен с установочными метками, когда ТНВД устанавливается на двигатель.
  3. На устройстве (муфте) опережения момента впрыска имеется метка закрывания отверстия, которая должна быть совмещена с меткой на корпусе ТНВД. Этот метод является не таким точным, как два описанных раньше.
  4. После того, как ТНВД установлен на двигателе, используется метод перетока высокого давления на одном из выходных отверстий насоса, чтобы определить точку (момент) закрывания канала (т.е. когда плунжер перекрывает выходной топливный канал). Этот «мокрый» метод также активно заменяется методом 1 и 2, описанным раньше.

Рис. Регулировка ТНВД

Удаление воздуха из системы впрыска топлива

Рис. Удаление воздуха из системы впрыска топлива

Пузырьки воздуха в топливе могут ухудшать работу ТНВД или даже делают ее невозможной. В связи с этим устройства, которые устанавливаются впервые или временно отключаются, должны быть избавлены от воздуха.

Если топливоподкачивающий насос снабжен ручным насосом, то он используется для заполнения магистрали, топливного фильтра и ТНВД топливом. При этом винты для вентиляции (1) на крышке фильтра и на ТНВД должны остаться открытыми, пока выходящее топливо не будет содержать пузырьков. Удаление воздуха должно производиться каждый раз, когда заменяется топливный фильтр или производятся какие-либо работы на системе.

При работе в реальных условиях из системы впрыска воздух удаляется автоматически через клапан перетока (2) на топливном фильтре (постоянная вентиляция). Вместо клапана может использоваться ограничитель, если насос не имеет клапана перетока.

Смазка ТНВД

Рис. Смазка ТНВД

ТНВД и регулятор лучше всего соединить с системой смазки двигателя, т.к. при этой форме смазки ТНВД остается необслуживаемым. Фильтрованное моторное масло подается к ТНВД и регулятору через нагнетательную магистраль и входной канал через отверстие роликового толкателя или с помощью специального клапана подачи масла. В случае ТНВД с основанием или рамой, возврат смазочного масла к двигателю осуществляется через возвратную магистраль (b).

В случае фланцевого крепления возврат смазочного масла может происходить через подшипник кулачкового вала (а) или через специальные каналы. Перед первым включением ТНВД и регулятора, они должны быть заполнены тем же самым маслом, что и двигатель. В случае ТНВД без прямого соединения с масляной системой двигателя, масло вливается внутрь через крышку после снятия колпачка для удаления воздуха или фильтра. Уровень масла в насосе проверяется путем снятия винта уровня масла на регуляторе в интервалы времени, предписанные заводом-изготовителем двигателя для замены в нем масла. Избыточное масло (увеличение количества за счет утечки масла из системы смазки) нужно слить, а если масла не хватает, то долить свежего масла. Когда ТНВД снимается или когда двигатель подвергается серьезному ремонту, то смазочное масло нужно заменить. Для проверки уровня масла, ТНВД и регуляторы с отдельной подачей масла, снабжены своим собственным щупом.

Отключение ТНВД на длительное время

Если двигатель и, соответственно, ТНВД остаются необслуживаемыми в течение долгого времени, то в ТНВД не должно оставаться дизельного топливо, т.к. с течением времени оно становится густым и вязким, плунжеры и нагнетательные клапаны могут заесть и даже подвергнуться коррозии. По этой причине перед консервацией нужно добавить примерно 10% подходящего средства против ржавчины в топливный бак и в той же самой пропорции в масло в камеру кулачкового вала ТНВД. Двигатель затем следует запустить примерно на 15 минут, в течение которых все «нормальное- дизельное топливо вымоется из ТНВД, который в то же время будет эффективно защищен от загустевания топлива и коррозии. Новые ТНВД, которые уже были эффективно защищены от коррозии на заводе, маркируются буквой «р».

ustroistvo-avtomobilya.ru

Устройство ТНВД с системой электронного управления (СЭУ) двигателя ЯМЗ-6561

Топливный насос высокого давления ТНВД двигателей ЯМЗ-6561 устанавливается в развале картера между рядами цилиндров. Количество секций ТНВД соответствует количеству цилиндров двигателя. В одном агрегате с топливным насосом высокого давления объединены механизм исполнительный, топливоподкачивающий насос и демпферная муфта.                                                               Схема ТНВД с блоком электронного управления:

1. ТНВД 2. Механизм исполнительный 3. Топливоподкачивающий насос 4. Муфта демпферная 5. Крышка рейки 6. Клапан перепускной 7.  Вилка кабеля механизма исполнительного 8.Электронный блок управления 9. Модуль педальный 10. 11. Датчик частоты вращения 12. Датчик температуры наддува воздуха 13. Датчик температуры охлаждающей жидкости 14. Датчик давления наддува воздуха

Содержание статьи:

Устройство секции ТНВД двигателя ЯМЗ-6561

1. Корпус насоса 2. Вал кулачковый 3. Толкатель 4. Тарелка пружины толкателя нижняя 5. Пружина толкателя 6. Пробка 7. Кольцо пружинное 8. Втулка поворотная 9. Рейка 10.11.20. Кольцо уплотнительное 12. Плунжер 13. Втулка плунжера 14. Шрифт 15. Экран 16.  Седло нагнетательного клапана 17. Клапан нагнетательный 18. Ролик толкателя 19. Шпилька 21. Фланец нажимной 22. Корпус секции 23. Штуцер 24. Тарелка верхняя 25. Пружина нагнетательного клапана 26. Упор клапана 27. Гайка 28. 29.30 Прокладки

В корпусе ТНВД установлены корпуса секций с парами плунжерными, клапанами нагнетательными, толкателями плунжера и штуцерами топливными, к которым подсоединяются топливопроводы высокого давления. Плунжер и втулка плунжера, седло нагнетательного клапана и клапан нагнетательный являются прецизионными парами, замена которых возможна только комплектно. Втулка плунжера фиксируется в определенном положении штифтом, запрессованным в корпус секции.

Плунжер приводиться в движение от кулачкового вала через роликовый толкатель. Пружина толкателя через тарелку пружины толкателя нижнюю постоянно прижимает ролик толкателя к кулачку. Толкатели плунжера, имеющие лыски на боковых поверхностях, удерживаются от разворота фиксаторами, запрессованными в корпус ТНВД.

Конструкция плунжерной пары позволяет дозировать топливо изменением момента начала и конца подачи. Для изменения количества и момента начала подачи топлива плунжер во втулке поворачивается втулкой поворотной, входящей в зацепление с рейкой топливного насоса.

Регулировка равномерности подачи топлива на максимальном режиме каждой секцией ТНВД производится разворотом корпуса секции при ослабленных гайках крепления секций. Изменение начала подачи топлива в зависимости от её величины (нагрузки двигателя) обеспечивается управляющими кромками, выполненными на торце плунжера.

Работа секции осуществляется следующим образом.

При движении плунжера вниз под небольшим давлением, создаваемым топливоподкачивающим насосом, поступает через продольный канал корпуса ТНВД в надплунжерное пространство. При движении плунжера вверх топливо через нагнетательный клапан поступает в топливопровод высокого давления и перепускается в топливоподводящий канал до тех пор, пока торцовая кромка плунжера не перекроет впускное отверстие втулки плунжера. При дальнейшем движении плунжера вверх давление топлива в надплунжерном пространстве резко возрастает. Когда давление достигнет величины, превышающей усилие пружины форсунки, игла форсунки поднимается и начинается процесс впрыскивания топлива в цилиндр двигателя. При дальнейшем движении плунжера вверх, спиральные кромки плунжера открывают отсечные отверстия во втулке, что вызывает резкое падение давления топлива в топливопроводе. При этом нагнетательный лапан, опускаясь в седло под действием пружины, увеличивает объем в топливопроводе между форсункой и клапаном. Этим достигается более четкое окончание впрыскивания топлива и разгрузка топливопровода высокого давления.

На внутренней поверхности втулки плунжера имеется кольцевая канавка, а в стенке — отверстие для отвода топлива, просочившегося через зазор в плунжерной паре. Герметизация зазоров между втулкой плунжера и корпусом секции, корпусом секции и корпусом ТНВД осуществляется резиновыми уплотнительными кольцами. Из полости вокруг втулки плунжера просочившееся топливо поступает по пазу на втулке плунжера в топливный канал корпуса ТНВД и далее через перепускной клапан по топливопроводу в топливный бак.

В нижней части корпуса ТНВД расположен кулачковый вал, вращающийся в роликовых конических подшипниках. Он имеет в зависимости от модели ТНВД одну или две промежуточные опоры. Кулачковый вал установлен с осевым натягом 0,01 …0,07 мм, который обеспечивается регулировочными прокладками, установленными между крышкой подшипника и корпусом ТНВД.

Связь секций с исполнительным механизмом осуществляется через рейку топливного насоса, перемещающуюся в направляющих втулках, запрессованных в корпус ТНВД. Выступающий из корпуса конец рейки защищен крышкой рейки.

Механизм исполнительный

Представляет собой электромагнит, размещенный в корпусе. Крепится к корпусу ТНВД. Электромагнит, получая команду от электронного блока управления, через систему рычагов, перемещает рейку топливного насоса в заданное положение.

Демпферная муфта

Предназначена для защиты механизмов ТНВД от разрушения. Устанавливается на конической поверхности переднего конца кулачкового вала с натягом, создаваемым кольцевой гайкой. От проворота демпферная муфта фиксируется шпонкой.

razvar.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *