Тормозная система автомобиля: Тормозная система автомобиля

Содержание

Тормозная система автомобиля

Устройство тормозной системы


Тормозная система авто состоит из двух групп устройств:
  1. Устройства привода: педаль (выполняет роль рычага), цилиндры, вакуумный усилитель для повышения усилия давления на педаль, бачок, трубопроводы, шланги (у гидроприводов), рычаги, система тяг, всевозможные тросы, наконечники (у механических приводов), воздухозаборник, компрессор, ресивер, дроссель, распределитель, пневмомотор (у пневмоприводов). Привод нужен для создания усилия и передачи воздействия непосредственно от педали к тормозному механизму.
  2. Тормозные механизмы: диск, суппорт, накладки (для дисковых механизмов) или барабан, колодки, поршень, цилиндр (для барабанных механизмов). Дисковый механизм монтируют на передних , барабанный – на задних  колёсах Тормозной механизм формирует  тормозной момент – главное условие для замедления или полной остановки машины.

На картинке представлено устройство системы с гидроприводом и задними барабанными тормозными механизмами:

  1. Колесный цилиндр заднего барабанного тормоза.
    Прижимает к барабанам тормозные колодки заднего тормоза. Переносит на колодки давление, полученное в главном цилиндре (мастер-цилиндре).
  2. Тросовый привод ручного тормоза.
  3. Уравновешивающий механизм.
  4. Регулируемая тяга стояночного тормоза (такой тормоз выручает, когда нужно удержать машину на  уклонах).
  5. Рукоятка стояночного тормоза. 
  6. Педаль. Рычажный механизм, формирующий тормозное усилие,пропорциональное силе, прилагаемой к педали. 
  7. Вакуумный усилитель рабочего привода. Работает совместно с главным (мастер-) цилиндром. В бензиновых моторах вакуум создается подключением вакуумной камеры к впускному коллектором, в дизелях – за счёт работы специального вакуумного насоса.
  8. Шланг тормозного механизма.
  9. Мастер-цилиндр. 
  10. Суппорт. Предназначен для крепления переднего дискового механизма к неподвижной части подвески колеса.
  11. Компенсационный бачок. Обеспечивает требуемое количество тормозной жидкости в контуре.
  12. Механический регулятор тормозных сил в задней оси. В быту – «колдун». Помогает  оказать противодействие заносу задней оси транспортного средства, обеспечить пропорциональное  торможение  каждым из  колёс автомобиля минимизировать риски ДТП.
  13. Рычаг привода регулятора

Виды тормозных систем

Существует несколько классификаций. Самая распространённая – деление по функциональному назначению и применению. В зависимости от этого система может быть четырёх видов.

Рабочая. Задействована во всех режимах движения транспорта. Предназначена для снижения скорости транспортного средства до момента полной остановки и кратковременного удержания авто на месте. 

Запасная. Нужна для остановки транспортного средства в чрезвычайной  ситуации (при выходе из строя базовой – рабочей системы). Тормозящее действие – существенно меньше. Но в экстренной ситуации его достаточно, чтобы предотвратить аварию.

Стояночная. Служит для удержания транспортного средства на месте, предупреждает его самопроизвольное движение. Это, прежде всего, актуальное решение при уклоне дорожного полотна в холмистой местности. Кроме того, для коммерческого транспорта большой грузоподъёмности, автобусов это ещё и отличное подспорье для оптимизации нагрузки на цилиндры основной – рабочей системы. Управляется водителем посредством рычага ручного тормоза.

Вспомогательная. Устанавливается на коммерческом транспорте. Помогает при движении на затяжном спуске. Сохраняет стабильную скорость транспортного средства, снижает нагрузку на колёсный тормоз. 

В ряде случаев функции могут совмещаться . Например, функцию запасной системы может взять на себя  стояночная система 

Кроме того, в зависимости от рабочего тела , за счёт которой система приводится в действие, выделяют следующие типы тормозных систем:

  • Гидравлическая. Это решение используют для легковых автомобилей, внедорожников, микроавтобусов, малогабаритных грузовиков и спецтехники. 
  • Пневматическая. Монтируется на грузовых машинах, погрузчиках, грейдерах, автокранах, бульдозерах.
  • Механическая. Привод механическими тягами  был использован на первых автомобилях. Но из-за низкого КПД и проблем с равномерным распределением усилия на все колёса, сейчас это решение не актуально .
  • Комбинированная (например, может совмещаться гидравлический и пневматический механизм работы).
Отдельно следует выделить систему рекуперативного торможения. Чаще устанавливается на грузовом транспорте (карьерных самосвалах) на городских автобусах и на современных легковых гибридных автомобилях.
Физические основы торможения.

Движение авто всегда связано с наличием кинетической  энергии. Процесс торможения всегда связан с преобразованием кинетической энергии в тепловую. Тепловая энергия, выделяющаяся при трении диска и колодок рассеивается в окружающую среду. При рекуперативном торможении  часть кинетической энергии преобразуется в электрическую энергию, которая запасается для её использования при разгоне автомобиля. 

Принцип рекуперативного торможения долгое время использовался  на железнодорожном транспорте, но вскоре  он стал базовым и для работы тормозной системы авто.

Принцип действия гидравлической системы

Гидравлическая система реализует следующий принцип:
  • Водитель нажимает на педаль, мышечное усилие передаётся на поршень  главного   цилиндра где преобразуется в давление тормозной жидкости.
  • Жидкость вытесняется  поршнем в гидравлические линии (трубки).
  • По  трубопроводам жидкость под давление подаётся  к исполнительным цилиндрам.
  • Срабатывают механизмы торможения.
  • Скорость вращения колёс уменьшается.

Рабочим телом  в гидравлической системе является жидкость, на 93-98%, состоящая из полигликолей и их эфиров, и на 2-7% - из присадок, предназначенных для защиты деталей от коррозии. 

Обладающая высокой плотностью, жидкость не сжимается, и гидропривод срабатывает очень быстро. Еще одно достоинство гидропривода – его самодостаточность. Конструкция не содержит  компрессор или иное устройство, зависимое от работы мотора.

При перемещении жидкости по трубопроводу потеря энергии – несущественная, и КПД гидропривода достаточно высок (исключение – работа при температурах ниже минус 30 °С).

Работа тормозной системы с рекуперацией

Принцип же действия тормозной системы с рекуперацией иной:

При нажатии на педаль в генераторном режиме запускается электромотор  (у электрического и гибридного транспорта) Создаётся тормозной момент на валу мотора.

Начинает вырабатываться электрическая энергия, направляемая в аккумуляторы или суперконденсаторы.

Если транспорт неэлектрический – запасается кинетическая энергия вращения маховика (впоследствии её используют для разгона).

Многие современные автомобили оснащены электронно-управляемой системой торможения, которая одновременно выполняет функции антиблокировочной, пробуксовочной системы; а также оснащена функцией  динамической стабилизации транспортного средства.

Решения с рекуперацией способны обеспечить безисносную  работу тормоза, кратчайший путь во время торможения с обеспечением высокой курсовой устойчивости, и предотвращение потери  сцепления колёс с дорожным полотном.

Конструктивные решения с пневматикой

Отдельного внимания заслуживают решения с пневматикой.
  • Энергоносителем служит  сжатый воздух.
  • В работе участвуют компрессор, осушитель, регулятор давления (может быть встроенным в осушитель или самостоятельным устройством) и ресиверы регенерации (компоненты хранения и подачи сжатого воздуха), краны, передаточные устройства.
  • Через воздушный фильтр в компрессор, работающий при включенном двигателе, втягивается воздух, и через регулятор и многоконтурный защитный клапан воздух под давлением закачивается  в ресиверы. Осушитель оптимизирует состав воздуха, а регулятор - его давление.
У решения много достоинств. При нажатии на педаль сжатый воздух подаётся к исполнительным устройствам, а при освобождении педали он не возвращается обратно в систему, а выходит через клапаны сброса в атмосферу. Система изнашивается менее интенсивно, чем у решений с гидравликой (воздух менее агрессивен, нежели жидкостный наполнитель, нет риска, что энергоноситель закипит или замёрзнет).

На схеме:

  1. Центральный электронный блок управления.
  2. Кран EBS.
  3. Пропорциональный ускорительный клапан.
  4. Магнитный клапан ABS.
  5. Модулятор задней оси.
  6. Разобщающий клапан резервного контура.
  7. Клапан управления тормозами прицепа.

Деление систем на независимые контуры

Тормозные системы могут быть одноконтурными, двухконтурными и многоконтурными.

У одноконтурных решений магистрали всех колёс – передних и задних объединены в одну ветвь, для управления воздухом используется всего один кран. Решение дешёвое, не крайне ненадёжное . На практике его сейчас можно встретить только на некоторых сельскохозяйственных машинах и прицепах с пневматикой, причём речь идёт только о старых моделях машин, новые решения с пневмоприводом ориентированы на несколько контуров.

Если же речь идёт о решениях с гидроприводом, то весьма вероятна   разгерметизация, и жидкость вытечет из системы. И здесь об использовании одного контура и вовсе не может быть и речи. Предотвратить риски помогает наличие нескольких контуров. Даже если произойдёт разгерметизация одного из них, хоть и возникнет потеря эффективности, катастрофы можно будет избежать. Ведь контуры подстраховывают друг друга.

Самый распространённый вариант – наличие двух контуров. При этом схемы разделения гидропривода на 2 контура могут быть очень разными:

  • 2 +2, параллельное подключение. 1-й контур действует на тормоза передней оси, второй — на заднюю ось). Недостаток—задняя ось обеспечивает не более 40% тормозных сил. Поэтому, если исправен только 2-й контур, длина тормозного пути (ТП) увеличится в 2,5-3 раза. 
  • 2+ 2 – диагональное подключение. 1-й контур действует на правое переднее и левое заднее колёса, а второй — на левое переднее и правое заднее.
  • Подходит для переднеприводных машин. Неисправность любого из контуров чревата увеличением ТП в два раза.
  • 4 + 2. 1-й контур действует на все колеса, а второй — только на передние.

Наиболее безопасно, с точки зрения опытных автомехаников, диагональное деление (эффективности удаётся  достичь, даже если один из контуров поврежден) и схема разделения 4 + 2.

У грузовых автомобилей, автобусов часто может встречаться 4 и 5 контуров. Это сложные, но очень надёжные конструкции. У каждого контура— своя «зона ответственности (например, передняя ось, задняя тележка, стояночный, аварийное растормаживание), при этом каждый контур независим. Это возможно благодаря присутствию в конструкции специальных разделяющих клапанов. 

Многоконтурная пневмосистема оптимизирует уровень устойчивости крупногабаритного транспортного средства, процесс управления им. Кроме того, пневматическая система позволяет без опасения потери рабочего тела подключать и отключать пневмосистемы тягача к прицепу или полуприцепу. При отсоединении прицепа автоматически срабатывает стояночная топливная система.

Диагностика и неисправности тормозной системы

Неисправности тормозного привода или механизма могут быть самыми разными. И каждый из них может стать сигналом нескольких проблем:
  • При торможении траектория движения начинает непредсказуемо изменяться, непонятная сила «уводит» авто в сторону. Это может свидетельствовать о загрязнении или поломке колодок с одной стороны, заклинивании поршня главного цилиндра, повреждении подвески, рулевого управления, ослабевших или изношенных стяжных болтах рессор. Также такое «поведение» автомобиля возможно при неисправности гидроклапана антиблокировочной системы. Для обнаружения этой неисправности на каждое колесо нужно установить манометры. Если будет обнаружен значительный перепад давления, это прямое указание на такую неисправность.
  • Свободный ход педали существенно увеличивается. Такая проблема чаще всего возникает при неисправностях главного рабочего цилиндра, вакуумного усилителя. Если применяется  гидравлический привод, то к такой проблеме также может привести его завоздушивание.
  • Педаль при нажатии «проваливается», становится «мягкой». Это опять-таки может быть и сигналом появления воздуха в гидравлическом приводе, и сигналом износа главного цилиндра либо повреждения шлангов и трубопроводов.
  • Педаль «стопорит», для нажатия приходится прикладывать огромные усилия. Очень часто это вызвано, некорректно установленными  колодками  или неправильно присоединёнными шлангами (стоит только их демонтировать и поставить правильно – проблема тут же решится), повреждение контуров гидропривода. Также иногда это прямая реакция на заклинивший поршень в колёсном цилиндре. 
  • При торможении чувствуется биение, вибрации: со стороны педали или со стороны педали и руля. Как правило, это ответная реакция на коробление диска, ослабленное крепление суппорта или износ одного из элементов рулевого управления, подвески.
  • Колодки быстро стираются под углом. Главные виновники – неисправные суппорты.
Появление одного или сразу нескольких из перечисленных явлений чревато быстрым выходом из строя системы в целом и поэтому с диагностикой и ремонтом нельзя затягивать.

Профилактика тормозной системы


В первую очередь, важно проводить профилактику суппорта. Практика показывает, что профилактику суппорта важно проводить не реже одного раза в два года и при каждой замене колодок. Обязательными мероприятиями является диагностика суппортов, их очистка и смазка.

Для смазки \рекомендуется использовать высокотемпературные, нерастворимые в воде и химически стойкие пастообразные составы, совместимые с эластомерными и пластиковыми деталями. Для этого снимается пылезащитные колпачки и очищаются контактные поверхности, затем равномерно наносится смазка.

Одновременно с профилактикой суппортов проводят замену тормозной жидкости, удаление воздуха из системы.
Важными профилактическими мероприятиями также являются регулировка стояночного тормоза, диагностика вакуумного усилителя, проверка на видимые дефекты шлангов, проверка на износ колодок (для этого замеряется их остаточная толщина).

Своевременный осмотр, диагностика, очистка и обработка деталей смазочными пастами, замена отдельных деталей – это предотвращение дорогостоящего ремонта в будущем.

Для того, чтобы максимально систематизировать знания, проверить уровень своих умений, навыков по этой теме, рекомендуем обратить внимание на электронный интерактивный тренинг и систему проверки знаний "Тормозная система автомобиля" на базе электронной платформы ELECTUDE. Обучающий продукт включает 19 учебных модулей, 15 тестовых модулей. Удобный вариант для дистанционного обучения автомехаников, а также проверки знаний при подборе кандидатов на эту вакансию , проведения аудита и аттестации персонала  СТО.

Обучение является модульным. Электронная программа позволяет перейти от азов физики к нюансам взаимной работы, включая роль каждого компонента  системы. В обучающую платформу встроен специализированный тренажёр. Поэтому слушателям доступны симуляции различных неисправностей. На конкретных примерах можно отточить навыки и увеличить скорость диагностики, ремонта.


Ещё больше систематизированной информации по системам, устройству автомобиля.

Устройство тормозной системы автомобиля [ для начинающих и чайников ]

Расскажем про устройство тормозной системы автомобиля для начинающих и чайников: из чего состоит и как работает (основы).

Тормозная система авто состоит из:
  • основная (рабочая) - обеспечивает замедление машины не менее 5,8 м/с2, движущегося со скоростью не более 80 км/ч при усилии на педаль менее 50 кг;
  • вспомогательная (аварийная) - обеспечивает замедление не менее 2,75 м/с2;
  • стояночная - может быть совмещена с аварийной.

Как работает

Принцип работы любой тормозной системы прост. Водитель, воздействуя на педаль тормоза передает усилие через ряд устройств на колесные механизмы, которые, в свою очередь, воздействуют на тормозные диски, прижимая к ним колодки и тем самым останавливая их вращение и, соответственно автомобиль в целом. Наиболее часто используется рабочая. Она состоит из ряда устройств, позволяющих водителю снижать скорость вплоть до полной остановки. В неё входят тормозные устройства (дисковые, барабанные), главный тормозной цилиндр, вакуумный усилитель тормозов и регулятор тормозных сил. Плюс магистрали с тормозной жидкостью.

Главный тормозной цилиндр (ГТЦ)

Предназначен для преобразования усилия, прилагаемого к педали тормоза, в избыточное давление тормозной жидкости и распределения его по рабочим контурам. Бачок с запасом жидкости может крепиться на ГТЦ или вне его.

Вместе с ГТЦ устанавливают вакуумные усилители, которые увеличивают силу, создающую давление в тормозной системе. Т.е. он усиливает силу при нажатии педали тормоза - не нужно давить изо всех сил.


Регулятор

Уменьшает давление в приводе механизмов задних колес. Его ещё называют «колдун». При торможении сила инерции движущегося автомобиля и противодействующая ей сила трения создают опрокидывающий момент. Передняя подвеска, реагируя на него, «проседает», а задние колеса «разгружаются». Поэтому даже при не интенсивном торможении задние колёса могут блокироваться, что часто приводит к заносу машины. В зависимости от изменения расстояния между элементами задней подвески и кузовом давление в приводе задних тормозов (по сравнению с передними) ограничивается.

В результате блокировки задних колес (в зависимости от замедления и загруженности автомобиля) не происходит или она возникает значительно позже.


Рабочий контур

Делится на основной и вспомогательный. Если система исправна, то работают оба, но при разгерметизации одного - другой продолжает работать, становясь вспомогательным (аварийным). Распространены три компоновки разделения:
  • 2 + 2 подключенных параллельно (передние + задние)
  • 2 + 2 подключенных диагонально (правый передний + левый задний и т. д.)
  • 4 + 2 тормозных механизма (в один контур подключены тормозные механизмы всех колес, а в другой только два передних)

Схема компоновки гидропривода:
1 - главный тормозной цилиндр с вакуумным усилителем; 2 - регулятор давления жидкости в задних механизмах; 3-4 - рабочие контуры.

На многих машинах в тормозной привод встраивают антиблокировочные системы (АБС). Конструктивно АБС - это совокупность датчиков, модуляторов и блока управления. При торможении блок управления анализирует поступающую от датчиков информацию о скорости автомобиля и угловой скорости вращения колес, отслеживает работу исполнительных механизмов, которые регулируют давление жидкости в том или ином колесном механизме, не давая ему заблокироваться в случае экстренного торможения.

Таким образом, для любого состояния дороги определяется режим «относительного скольжения», обеспечивающего минимальный тормозной путь, и полная блокировка колес становится невозможной при любом усилии на педаль тормоза.

Тормозные механизмы

Разделяют на дисковые и барабанные.

Дисковые бывают с подвижным или неподвижным суппортом. Наибольшее распространение получили механизмы с подвижным суппортом, которые исключают неравномерный износ колодок. Еще одной особенностью механизма с подвижным суппортом является меняющееся расстояние от внешнего габарита до колесного диска в зависимости от состояния колодок.

Положение суппорта: а - с изношенными колодками; б - после установки новых колодок.

Дисковые тормоза эффективнее барабанных и работают в более высоком температурном режиме. Для лучшего отвода тепла из рабочей зоны часто используют вентилируемые диски. Его увеличенная толщина позволяет разместить между поверхностями трения ребра жесткости, которые обеспечивают принудительную циркуляцию воздуха. При вращении создается центробежная сила, она заставляет поступающий воздух устремляться от центра к краям диска. Нагретый воздух выбрасывается в окружающую среду, а вентилируемый диск охлаждается. Барабанные механизмы устанавливают обычно на задние колёса. В процессе работы зазор между колодкой и барабаном увеличивается. Для его устранения предназначены механические регуляторы. Износ колодок компенсируется их самоподводкой, происходящей, как правило, при резком торможении. Теплоотвод осуществляется через колодочные накладки, массивную металлическую основу и ребра охлаждения тормозного барабана.

Вспомогательная (аварийная) система

Начинает действовать при разгерметизации одного из рабочих контуров (вытекает тормозная жидкость). В этом случае в бачке с тормозной жидкостью, разделенном на два независимых объема, уровень понижается до критической отметки. Далее он продолжает понижаться только в объеме неисправного контура, а объем исправного сохраняет критический уровень жидкости.

Стояночная система

Имеет механический привод, как правило, на задние колёса. Рычаг стояночного тормоза соединяется тонким тросом с задними механизмами, в которых находится устройство, приводящее в действие штатные или дополнительные (стояночные) колодки.

Вопросы по работе

Каков срок службы тормозных колодок?

Для большинства автомобилей пробег колодок до полного износа составляет до 60 000 км при езде в обычном режиме. Срок службы зависит от стиля вождения, а наличие дефектов на поверхности диска может заметно его сократить. Подробнее в статье - как определить износ колодок.

Каковы температуры торможения?

Температуры, возникающие при трении между колодками и дисками, в норме не превышают 370°С даже в условиях интенсивного движения. При спортивной езде - порядка 480-650°С являются обычной, возрастая до 820°С, Примерно до такой температуры нагреваются колодки машины, когда они приобретают красноватый оттенок.

Не стоит приобретать спортивные колодки из-за того, что любите быструю езду. Подавляющее большинство их нуждается в предварительном «разогреве» и не будут эффективно работать при обычных температурах, а это чревато аварийной ситуацией.

Почему педаль тормоза становиться мягкой или жесткой?

Зачастую педаль тормоза кажется в первое время «мягкой» после установки новых колодок. Необходим некоторый промежуток времени для притирки трущихся поверхностей. «Жесткой» педаль становится после некоторого времени.

Есть ли преимущества в перфорированных дисках?

Они имеют некоторые преимущества - разрушают поверхностную пленку, образующуюся при перегревании тормозов, поддерживают чистоту поверхности тормозной колодки, удаляя продукты сгорания, образующиеся на трущихся поверхностях под воздействием высоких температур.

Как развивалась тормозная система

Даже на дешевых машинах барабанные тормоза исчезают, а система АБС обязательна для всех новых авто. Взамен появляются дисковые тормоза, которые обладают большей эффективностью. Производители устанавливают на передней оси вентилируемые диски, а на задней - дисковые без вентиляции. Это понятно, ведь нагрузка на задние тормоза меньше, чем на передние.

Путь от момента нажатия на педаль тормоза до начала торможения составляет: при скорости 20 км/ч - 4 м, 40 - 8 м, 60 км/ч - 12 м, 80 - 16 м, 100 км/ч - 20 м. Соответственно тормозной путь в этих случаях составляет: 3, 11, 24, 42, 66 м. Дистанция до впереди идущего автомобиля должна быть не менее: при скорости 40 км/ч - 20 м, 50 - 25 м, 80 км/ч - 80 м. В дождь дистанция должна быть увеличена в полтора раза.


С повышением скорости автомобилей возросла мощность тормозной системы, значит требуется дополнительное охлаждение. Стали применять диски с перфорацией и дополнительными канавками, которые ранее были привилегией спортивных машин. Их устанавливают на мощных авто в базовой комплектации. Из автоспорта перешли керамические тормозные диски. Они обладают большей прочностью и быстрее охлаждаются, по сравнению с чугунными. Возможно, «керамика» в будущем будет ставиться на машины среднего класса.

Главное достоинство керамических дисков - они не перегреваются при интенсивном торможении. По этой причине их применяют в автоспорте и на спортивных машинах в качестве опции.

Новинка тормозной системы - система Brake Assist. Суть в том, что радар, установленный на бампере определяет расстояние до впереди идущего автомобиля. Если это расстояние, по его мнению будет критическим, то система подает сигнал на привод тормозов. Он приближает колодки к диску всего на несколько десятых долей миллиметра. При нажатии на педаль тормоза в этот момент, система Brake Assist позволяет сократить тормозной путь.

Последнее веяние - тормоза без механической связи. Они управляются электронными устройствами по проводам, никакой механической связи нет. Некоторые производители применяют электронные тормоза на концепт карах, но в серийное производство не запускают.

На современных авто тормозной путь со 100 км/ч до полной остановки составляет 40-45 метров. На некоторых машинах - до 38 метров. Если посмотрим на 20 лет назад, тогда он составлял 50-60 метров. Прогресс очевиден.

Устройство тормозной системы

Назначение тормозной системы

Тормозная система предназначена для снижения скорости движения и полной остановки (экстренной) автомобиля, а также для удержания на месте неподвижно стоящего автомобиля.

Процесс торможения движущегося автомобиля заключается в создании искусственного сопротивления этому движению. Обычно уменьшение скорости автомобиля вплоть до полной его остановки осуществляется путем создания тормозных сил в контакте колес с дорогой, направленных в сторону, противоположную движению. Тормозные силы необходимы и для удерживания автомобиля на месте.

Тормозная сила создается путем торможения колеса специальным, обычно фрикционным, устройством — тормозным механизмом. Наиболее высокая эффективность торможения требуется в экстренных случаях. Именно на это должна быть рассчитана тормозная система, хотя они составляют не более 1—3% от общего числа использования тормозной системы.

Устройство тормозной системы делится на:

Рабочая тормозная система позволяет водителю снижать скорость движения автомобиля и останавливать его при обычном режиме эксплуатации.


Схема рабочей тормозной системы  автомобиля:

1 — тормозной диск колеса;
2 — скоба тормозного механизма передних колес;
3 — передний тормозной контур;
4 — главный тормозной цилиндр;
5 — бачок с датчиком аварийного падения уровня тормозной жидкости;
6 — вакуумный усилитель;
7 — толкатель;
8 — педаль тормоза;
9 — выключатель света торможения;
10 — тормозные колодки задних колес;
11 — тормозной цилиндр задних колес;
12 — задний контур;
13 — кожух полуоси заднего моста;
14 — нагрузочная пружина;
15 — регулятор давления;
16 — задние тросы;
17 — уравнитель;
18 — передний (центральный) трос;
19 — рычаг стояночного тормоза;
20 — сигнализатор аварийного падения уровня тормозной жидкости;
21 — выключатель сигнализатора стояночного тормоза;
22 — тормозная колодка передних колес.

Запасная тормозная система позволяет водителю уменьшать скорость движения автомобиля и останавливать его при неисправности рабочей тормозной системы. С целью упрощения конструкции отдельная (автономная) запасная система практически не применяется. Обычно ее роль выполняют оставшиеся исправные части (контуры привода) рабочей тормозной системы или специальным образом спроектированная стояночная тормозная система. Часто на больших автомобилях для повышения надежности используют одновременно оба указанных технических решения.

Стояночная тормозная система позволяет удерживать автомобиль в неподвижном состоянии на наклонной поверхности и при отсутствии водителя.

Вспомогательная тормозная система предназначена для длительного поддержания постоянной скорости, в основном на затяжных спусках. Используемые в остальных тормозных системах фрикционные тормозные механизмы при длительной работе перегреваются и резко снижают эффективность торможения. Поэтому на некоторых типах автомобилей (автобусы, грузовые автомобили большой грузоподъемности) для поддержания безопасной скорости на длительных спусках применяют вспомогательные механизмы, так называемые тормоза-замедлители.

Автоматическая тормозная система — оборудование, автоматически затормаживающее прицеп при его случайном отделении от тягача.

Содержание:

1. Привод тормозной системы

1.1 Системы тормозов

1.2 Приводы тормозных механизмов

1.3 Механический привод тормозов

1.4 Гидропривод тормозов

1.5 Пневмопривод тормозов

1.6 Усилители тормозных приводов

1.7 Двухконтурные тормозные приводы

1.8 Многоконтурные тормозные приводы

1.9 Приборы тормозного пневмопривода

1.10 Двухсекционный тормозной кран

1.11 Кнопочный тормозной кран

1.12 Двухпроводный привод

1.13 Защитные устройства пневматических приводов

1. 14 Механизмы пневматических тормозных приводов

 

2. Тормозная система и ее обслуживание

2.1 Как подобрать тормозную жидкость

2.2 Какой ресурс тормозных колодок?

2.3 Как работает АБС

2.4 Устройство антиблокировочной системы

2.5 Стояночная тормозная система

2.6 Как менять тормозные колодки самому

Назначение и типы тормозных систем автомобиля.

Тормозная система автомобиля служит для снижения его скорости или полной остановки.

По назначению выделяют следующие типы тормозных систем: рабочую, резервную и стояночную.

1. Рабочая (основная) тормозная система предназначена для снижения скорости движения автомобиля и для его остановки. Часть системы, которая переносит усилие с педали тормоза на тормозные колодки, называют тормозным приводом.

а. Механический привод осуществляется при помощи тросов и рычагов: механический, пневматический, гидравлический и комбинированный. Из-за его малой эффективности и неудобства обслуживания в современном автомобилестроении практически не используется. Существуют различные виды тормозных приводов.

б. Пневматический привод в своей работе использует разрежение воздуха. В настоящее время распространен на грузовиках и автобусах.

в. Гидравлический привод приводится в действие благодаря жидкости на основе спирта, гликоля или силикона. Распространен повсеместно.

д. Комбинированный привод использует несколько типов энергоносителей и, ввиду своей сложности, не применяется без крайней необходимости.

2. Резервная (запасная) тормозная система включается при неисправности рабочей системы. В современном автомобилестроении, как правило, выполнена не автономно, а в составе одной из частей рабочей системы.

3. Стояночная тормозная система, в первую очередь, служит для предотвращения нежелательного самопроизвольного движения автомобиля во время стоянки.

Кроме того, ее используют для облегчения трогания в гору, при длительной остановке в «пробке», для ухода в управляемый занос или при полном отказе рабочей тормозной системы.

Эта система может быть реализована механическим способом (тросы к задним колесам или к трансмиссии) или посредством гидравлики.


История развития тормозных механизмов.

Самый примитивный тормозной механизм, использовавшийся в гужевых повозках,представлял собой деревянную колодку, затормаживающую непосредственно рабочую поверхность колеса.

Эта колодка приводилась в рабочее положение ручным рычагом.

Этот механизм посредством колодок воздействовал на металлический обод колеса и приводился в действие тросами. Ближайший современный аналог — это тормозные механизмы велосипедов.С распространением резиновых шин данный способ торможения стал абсолютно неэффективным, что привело к появлению клещевого колодочного тормоза.

Параллельно с колодочным тормозом появился ленточный механизм.

Гибкая металлическая лента охватывала тормозной барабан. При торможении, посредством рычагов, лента натягивалась, что приводило к затормаживанию колес. Данная система довольно долго использовалась еще и в качестве стояночного тормоза.

В 1910-20-х годах стали появляться барабанные тормоза, которые по своему принципу работы соответствуют современным. Однако, за это время существенно изменились тормозные приводы, пройдя свой путь от раздельного механического до совмещенного гидравлического. Впервые гидравлическая система была применена в 1921 году Малкольмом Локхидом.

Примерно в конце 1920-х конструкторы начали реализовывать системы, снижающие усилие на педаль тормоза. Ввиду сложности конструкции, усилители тормозов использовались только на автомобилях класса люкс.

Их широкое распространение пришлось на 1950-е годы. Этому развитию послужило увеличение скоростных характеристик и динамических качеств автомобилей.

В конце 1950-х начали серийно устанавливать дисковые тормоза. В данной системе колодки прижимаются не к внутренней поверхности барабана, а к наружным плоскостям диска. Этот тормоз конструктивно проще барабанного, обладает лучшей эффективностью, меньшей массой, и он проще в обслуживании. В усовершенствованном виде такие тормоза используются до сих пор.


Гидравлическая тормозная система.

Получила распространение в 1930-е годы, как альтернатива механическим тормозам. Системы того времени отличались простотой своей конструкции. В тормозном приводе использовались: главный тормозной цилиндр, тормозные трубки и 2 рабочих цилиндра (по одному на каждое заднее колесо). В качестве жидкости использовалось растительное масло. Совершенствование данной системы проходило сразу в нескольких направлениях. Улучшение качества энергоносителя — переход от жидкости на основе растительного масла к жидкости на основе спирта и глицерина, а затем к гликолевым и силиконовым жидкостям. Следующее улучшение — практически повсеместное появление усилителя тормозов — сначала гидро-вакуумного, затем вакуумного. И самое важное нововведение — появление двухконтурной тормозной системы. Дело в том, что при потере герметичности любого из элементов одноконтурной системы, тормоза полностью теряли свою работоспособность. Если же сломается какой-либо элемент двухконтурной системы, то в качестве резервной тормозной системы продолжит работать один из контуров.


Двухконтурная гидравлическая тормозная система.

Существует несколько основных способов разделить тормозную систему на контуры: поосевой, диагональный и полный. Рассмотрим каждый подробнее.

1. Поосевая система — один контур на передние колеса, второй контур — на задние. Это наиболее простой способ, часто применяемый на автомобилях классической компоновки, например, ВАЗовская «классика». К его достоинствам можно отнести отсутствие увода в сторону при торможении с одним рабочим контуром. Однако, есть важный недостаток — при обрыве переднего контура эффективность торможения значительно падает (примерно на 65%).

2. Диагональная система — один контур на переднее левое и заднее правое колеса, второй контур — на переднее правое и заднее левое. К положительным сторонам этого способа можно отнести равномерное распределение нагрузки между контурами. То есть, не зависимо от того, какой контур выйдет из строя, эффективность торможения упадет ровно на 50%.

Главный недостаток — увод от прямолинейного движения при торможении после обрыва одного из контуров. Это связано с тем, что эффективность работы передних тормозных механизмов значительно выше, чем в задних. Данный тип разделения применим в большинстве современных автомобилей.

3. Полная система — значительно сложнее двух предыдущих. Один из контуров работает на все 4 колеса, второй контур — только на передние. При этом, передние тормозные механизмы имеют минимум по 2 полностью независимых цилиндра. Система нашла свое применение на автомобилях Москвич, Волга, Нива.

Выше говорилось, что эффективность передних тормозов легковых автомобилей значительно выше, чем в задних. Поскольку при торможении автомобиля центр тяжести смещается вперед, нагрузка на переднюю ось возрастает, а на заднюю ось — уменьшается. Соответственно задние колеса имеют худшее сцепление с дорогой, чем передние и при большом тормозном усилии могут сорваться в юз. Это особенно опасно на скользкой дороге или при торможении во время прохождения поворота.

Один из самых простых способов борьбы с этой проблемой — применение на задней оси автомобиля тормозных систем со сниженной эффективностью. Например, на переднюю ось устанавливаются тормозные диски на 14 дюймов, а на заднюю — на 12. Более надежный способ — применение регулятора тормозных усилий. Впервые в отечественном автомобилестроении данный элемент применен на Жигулях ВАЗ-2101. Принцип его работы был не совсем понятен рядовым автолюбителям, поэтому его в народе прозвали «колдун». Регулятор имеет в своей конструкции клапан, частично перекрывающий тормозную жидкость и снижающий ее давление. Регулятор обычно закрепляют под днищем автомобиля, а от клапана ведут тягу к задней балке. При торможении автомобиля его задняя подвеска разгружается, увеличивается расстояние между днищем и балкой, а тяга перекрывает клапан, снижая тормозное усилие. Существуют регуляторы, снижающие усилие постоянно, не зависимо от загруженности подвески. Такие регуляторы ранее применялись на ВАЗ-1111; в настоящее время нашли применение на корейских автомобилях эконом-класса.


Стояночная тормозная система.

На большинстве современных легковых автомобилей применяют механический стояночный тормоз, представляющий собой рычаг и систему тросов.

Если задние тормоза барабанные, то тросы присоединяются к распоркам колодок. При наличии на задней оси дисковых механизмов, осуществить механический способ подключения стояночной тормозной системы сложно, поэтому часто применяют отдельные барабанные стояночные механизмы.

В автоспорте нашел применение гидравлический тормозной привод. При его применении давление жидкости передается на задний контур поосевой тормозной системы или на задние магистрали диагональной системы (причем, в обход регулятора тормозных усилий). Гидравлический привод обладает большей эффективностью, чем механический, и позволяет точно дозировать усилие. Поэтому его используют для увода автомобиля в управляемый занос. Однако, эта система не подходит для повседневного использования, так как не позволяет оставить машину на длительной стоянке. Дело в том, что давление в системе постепенно снижается и колодки отпускаются.


Проверка технического состояния тормозных систем.

Для проверки стояночной системы в «гаражных» условиях рычаг затягивают до упора, включают первую передачу и плавно отпускают сцепление. Если система работает, то двигатель заглохнет.

Проверка рабочей тормозной системы в «домашних» условиях малоэффективна. Ее начинают с осмотра. Оценивают уровень тормозной жидкости в бачке, проверяют систему на отсутствие подтеков жидкости. При нажатии педали тормоза во время движения, должны блокироваться все колеса. При этом автомобиль не должно вести в сторону, недопустимы вибрации педали тормоза и ее провалы, срабатывание тормоза не с первого «качка», появление посторонних скрипов и увеличение тормозного пути.

Для более точной диагностики необходимо обращаться в сервисный центр. Полную проверку необходимо проводить не реже, чем через каждые 50000 км.

Тормозная система транспортных средств

Тормозная система является важнейшим оборудованием для обеспечения безопасности транспортных средств. Дисковые тормоза все чаще используются в легковых автомобилях в течение шестидесяти лет. Позже их стали использовать в мотоциклах, а затем и в мотоциклах. Для замедления транспортного средства кинетическая энергия движущегося транспортного средства преобразуется в тепловую энергию с использованием трения скольжения между тормозными дисками (например, тормозные диски LEXUS LX470) и тормозными колодками.  

Работа тормозной системы влияет на устойчивость и управляемость автомобиля [1,2,3]. Особенно это имеет большое значение для двухколесных транспортных средств. Транспортные средства этого типа характеризуются чувствительностью к эффективному торможению. В целом, мотоциклы и велосипеды имеют отдельные передние и задние тормозные системы, которые требуют балансировки оператора для достижения эффективного торможения. Велосипеды и мотоциклы не остаются устойчиво в вертикальном положении, например, после появления чрезмерной блокировки передних колес и заноса. Возможность управления движением чувствительна к поверхностным условиям, таким как выбоины, мокрые или масляные дороги. Кроме того, велосипедные шины, как правило, имеют уменьшенный участок дорожного контакта по сравнению с автомобилями. 

Тяговые схемы и составы, используемые для их изготовления, могут подходить для ограниченного набора дорожных условий. Торможение мотоцикла включает в себя задачи по управлению водителем, которые могут быть значительно более сложными, чем в случае с автомобилями. Соответствие между навыками оператора и свойствами транспортного средства имеет большее значение для безопасности в случае мотоцикла и велосипедов, чем автомобиля. Как обычно, опытный гонщик максимально использовал передний тормоз. Однако начинающие гонщики, по-видимому, из-за отсутствия уверенности в управлении торможением передними колесами, в большей степени использовали задний тормоз. Из-за места, где он собран, тормозной диск подвергается воздействию внешних факторов. Это приводит к чувствительности эффективности крутящего момента к присутствию воды на поверхности диска. Как следует из вышесказанного, система тормозных дисков должна характеризоваться стабильным трением и свойствами в различных условиях.


Разница между тормозными системами заключается в механизме и компонентах, используемых при сборке системы. Все они используют фрикционные материалы. Тормозная колодка обычно прижимается к вращающемуся тормозному диску. Таким образом замедлится автомобиль и остановит движение. Базовую геометрию тормозного диска можно разделить на два основных типа: твердый дисковый тормоз и вентилируемый дисковый тормоз. Классификация основана на их конструктивной форме. Он может иметь вентилируемую геометрию или не иметь вентилируемой геометрии [4,5]. 

Твердый дисковый тормоз - это плоская поверхность, не имеющая надрезов или канавок на диске. Эта конструктивная форма имела большую площадь контактной поверхности во время торможения по сравнению с вентилируемым дисковым тормозом. Это имеет тенденцию иметь более локализованную термоупругую неустойчивость на контактных участках. Поскольку твердотельный диск не имеет подходящего вентилируемого отверстия, которое может помочь рассеивать тепло от трения при торможении в окружающую среду, возникают некоторые проблемы. Термоэластичная нестабильность может быть причиной явления затухания тормозов и остекления колодок [6,7,8]. Геометрия вентилируемых дисковых тормозов широко исследовалась в промышленности. Свойства геометрии сравнивались с твердым дисковым тормозом. Вентилируемый дисковый тормоз легче по сравнению с твердым. Еще одной особенностью является конвективный теплообмен, который также лучше благодаря преимуществу вентиляционного зала [9]. Кан и Чо [6] изучали влияние геометрии дискового тормоза на характеристики рассеяния тепла. Их анализ показал, что вентилируемый диск обладает лучшими характеристиками торможения с точки зрения отвода тепла по сравнению с твердым диском. Также на меньшей скорости вентилируемый диск может быть более управляемым. Он может обеспечить подходящее значение крутящего момента во время торможения. 

Есть также исследователи, которые связывают дизайн геометрии вентиляционного отверстия с аэродинамическим охлаждением. Воздушный поток может повысить эффективность торможения во время торможения [7]. Кроме того, форма поперечного сечения играет важную роль в эффективности торможения [8]. Вентилируемый дисковый тормоз получил больше преимуществ по сравнению с твердым диском. Тем не менее, он имеет некоторые недостатки, такие как: меньшая теплоемкость и более высокая скорость повышения температуры при повторном применении торможения. При проектировании и выборе вентилируемого диска следует также учитывать его теплоемкость и коэффициент тепловой деформации, чтобы он мог оптимизировать конструкцию тормозного диска. Во время процесса торможения сила трения в области контакта тормозной колодки и тормозного диска вызывает износ области контакта. Поведение при износе влияет на коэффициент трения, который стал причиной разрушения зоны контакта. 

Проектирование геометрии тормозного диска должно быть направлено на продление жизненного цикла диска. Сила трения возникает в результате механического воздействия и межмолекулярной силы между поверхностями трения колодки и дискового ротора. Поверхность трения характеризуется большим количеством микропиков или впадин. Микропики обычно называются неровностями. Механическая сила включала микропики и впадины, связанные друг с другом. Они приводят к деформации и сдвигу неровностей. Взаимодействие неровностей с двойными поверхностями вызывает вспашки на поверхностях трения [10,11,12]. Что касается сложных дорожных условий, транспортные средства испытывают различные режимы торможения. Во время длительного торможения на спуске и многократного высокоскоростного торможения фрикционный нагрев может существенно повысить температуру пары трения [13,14]. Многие исследования показали, что такой перегрев может привести к ухудшению коэффициента трения в тормозе, повышенному износу тормозной колодки, термическому растрескиванию, сотрясению и визгу тормозной системы из-за неравномерной термической деформации тормозного диска [14,15,16,17,18]. Таким образом, эффективное охлаждение тормозного диска является значительным для обеспечения безопасности и комфорта тормозов, особенно для современных транспортных средств.

Эта трибосистема очень сложна и изменчива, и, несмотря на множество исследований, проведенных на ней, все еще не полностью изучена и понята.

Выводы

Тормозная система является важнейшим охранным оборудованием для транспортных средств. Для замедления транспортного средства кинетическая энергия движущегося транспортного средства преобразуется в тепловую энергию с использованием трения скольжения между тормозными дисками и тормозными колодками. Работа тормозной системы влияет на устойчивость и управляемость автомобиля. Особенно это имеет большое значение для двухколесных транспортных средств. Измерения, проведенные на испытательном стенде, позволили сравнить трибологические характеристики двух тормозных дисков различной геометрии. Диски отличались диаметром и расположением вентиляционных отверстий. Изменение условий эксплуатации в результате загрязнения окружающей среды, попадающего на поверхность диска, может оказать существенное влияние на изменение коэффициента трения и, следовательно, эффективность торможения.

На основании проведенного исследования можно сделать следующие выводы:

1. Наиболее значимым фактором, определяющим значение коэффициента трения пары тормозных колодок и диска, является температура тормозного диска. В оцененном диапазоне изменчивости это вызвало изменение коэффициента трения до 15%.

2. Независимо от геометрии диска при увеличении скорости скольжения наблюдалось увеличение значения коэффициента трения. В диапазоне изменения скорости от 0,1 до 0,5 м / с изменение превысило 15%.

3. Геометрия тормозного диска может оказать существенное влияние на сохранение эффективности торможения в случае мокрых дисков. Установлено, что в этом случае различия значений коэффициента трения могут достигать 30%. Их геометрия также определяет стабильность коэффициента трения при изменении скорости скольжения. Это связано со способностью удаления воды из зоны контакта диска и колодки.

Использованные источники

[1] Yan HB Feng SS Yang XH Lu TJ 2015 Role of cross-drilled holes in enhanced cooling of ventilated brake discs, Appl. Therm. Eng. 91 318–333

[2] Szczypinski-Sala W Lubas J 2016 Evaluation the course of the vehicle braking process in case of hydraulic circuit malfunction IOP Conference Series: Materials Science and Engineering Vol. 148, Nr 1

[3] Wach K 2016 The theoretical analysis of an instrument for linear and angular displacements of the steered wheel measuring IOP Conference Series: Materials Science and Engineering Vol. 148, No 1.

[4] Belhocine A and Bouchetara M 2012 Thermal analysis of a solid brake disc Appl. Therm. Eng., vol. 32, p. pp 59–67

[5] Bouchetara M Belhocine A Nouby M Barton DC and Bakar A 2014 Thermal analysis of ventilated and full disc brake rotors with frictional heat generation, Appl. Comput. Mech., vol. 8, pp 5–24

[6] Kang SS and Cho SK 2012 Thermal deformation and stress analysis of disk brakes by finite element method, J. Mech. Sci. Technol. vol. 26, no. Issue 7, p. pp 2133–2137

[7] McPhee AD and Johnson DA 2008 Experimental heat transfer and flow analysis of a vented brake rotor,” Int. J. Therm. Sci. vol. 47, p. pp 458–467

[8] Jung SP Song HS Park TW Chung WS 2012 Numerical analysis of thermoelastic instability in disc brake system, Appl. Mech. Mater., vol. Volume 110, p. pp 2780–2785, 2012.

[9] Mosleh M Blau PJ and Dumitrescu D 2004 Characteristics and morphology of wear particles from laboratory testing of disk brake materials Wear, vol. 256, no. Issue 11–12, pp 1128–1134

[10] Limpert R 2009 Brake Design and Safety, Society of Automobile Engineers, Inc. Warrendale, USA, pp. 2–4, 66–67.

[11] Mew TD Kang KJ Kienhofer FW Kim T 2015 Transient thermal response of a highly porous ventilated brake disc, IMechE J. Automobile Eng. 229 (6) 674–683

[12] Eriksson M Jacobson S 2000 Tribological surfaces of organic brake pads Tribology International 33 pp 817–827

[13] Palmer E Mishra R Fieldhouse J Layfield J Analysis of Air Flow and Heat Dissipation from a High Performance GT Car Front Brake, SAE Technical Paper, No. 2008-01-0820

[14] Pevec M Potrc I Bombek G Vranesevic D 2012 Prediction of the cooling factors of a vehicle brake disc and its influence on the results of a thermal numerical simulation, Int. J. Automotive Technol. 13 (5) 725–733

[15] Lee K Numerical Prediction of Brake Fluid Temperature Rise During Braking and Heat Soaking, SAE Technical Paper, No. 1999-01-0483

[16] Ahmed I Leung PS Datta PK Experimental investigations of disc brake friction SAE Technical Paper, No. 2000-01-2778

[17] Cho MH Kim SJ Basch RH Fash JW Jang H 2003 Tribological study of gray cast iron with automotive brake linings: the effect of rotor microstructure, Tribol.Int. 36 (7) pp 537–545

[18] Anoop S Natarajan S Kumaresh BSP 2009 Analysis of factors influencing dry sliding wear behavior of Al/SiCp-brake pad tribosystem, Mater. Des. 30 (9) pp 3831–3838.

[19] Okamura T Yumoto H Fundamental Study on Thermal Behavior of Brake Discs, SAE Technical Paper, No. 2006-01-3203

[20] Mackin TJ at all 2002 Thermal cracking in disc brakes, Eng. Failure Anal. 9 (1) 63–76

[21] Belhocine A Bouchetara M 2012 Thermal behavior of full and ventilated disc brakes of vehicles, J. Mech. Sci. Technol. 26 (11) pp 3643–3652

[22] Eriksson M Bergman F Jacobson S 1999 Surface characteristic of brake pads after running under silent and squealing conditions Wear 232 pp 621–628.


The influence of cross-drilled brake disc geometry on the tribological performances of brake system
W Szczypinski-Sala, J Lubas


☰ Как работает гидравлическая тормозная система автомобиля

Гидравлический тип тормозной системы используют на легковых автомобилях, внедорожниках, микроавтобусах, малогабаритных грузовиках и спецтехнике. Рабочая среда - тормозная жидкость, 93-98% которой составляют полигликоли и эфиры этих веществ. Остальные 2-7% - присадки, которые защищают жидкости от окисления, а детали и узлы от коррозии.

Схема гидравлической тормозной системы

Составные элементы гидравлической тормозной системы:

  • 1 - педаль тормоза;
  • 2 - центральный тормозной цилиндр;
  • 3 - резервуар с жидкостью;
  • 4 - вакуумный усилитель;
  • 5, 6 - транспортный трубопровод;
  • 7 - суппорт с рабочим гидроцилиндром;
  • 8 - тормозной барабан;
  • 9 - регулятор давления;
  • 10 - рычаг ручного тормоза;
  • 11 - центральный трос ручного тормоза;
  • 12 - боковые тросы ручного тормоза.

Чтобы понять работу тормозов, рассмотрим подробнее функционал каждого элемента.

Педаль тормоза

Это рычаг, задача которого - передача усилия от водителя на поршни главного цилиндра. Сила нажатия влияет на давление в системе и скорость остановки автомобиля. Чтобы уменьшить требуемое усилие, на современных автомобилях есть усилители тормозов.

Главный цилиндр и резервуар с жидкостью

Центральный тормозной цилиндр - узел гидравлического типа, состоящий из корпуса и четырех камер с поршнями. Камеры заполнены тормозной жидкостью. При нажатии на педаль, поршни увеличивают давление в камерах и усилие передается по трубопроводу на суппорты.

Каталог тормозных суппортов

Перейти

Над главным тормозным цилиндром расположен бачок с запасом “тормозухи”. Если тормозная система протекает, уровень жидкости в цилиндре уменьшается и в него начинает поступать жидкость из резервуара. Если уровень “тормозухи” упадет ниже критической отметки, на приборной панели начнет мигать индикатор ручного тормоза. Критический уровень жидкости чреват отказом тормозов.

Вакуумный усилитель

Тормозной усилитель стал популярный благодаря внедрению гидравлики в тормозные системы. Причина - чтобы остановить автомобиль с гидравлическими тормозами нужно больше усилий, чем в случае с пневматикой.

Вакуумный усилитель создает вакуум с помощью впускного коллектора. Полученная среда давит на вспомогательный поршень и в разы увеличивает давление. Усилитель облегчает торможение, делает вождение комфортным и легким.

Трубопровод

В гидравлических тормозах четыре магистрали - по одной на каждый суппорт. По трубопроводу жидкость из главного цилиндра попадает в усилитель, увеличивающий давление, а затем по отдельным контурам поставляется в суппорты. Металлические трубки с суппортами соединяют гибкие резиновые шланги, которые нужны, чтобы связать подвижные и неподвижные узлы.

Тормозной суппорт

Узел состоит из:

  • корпуса;
  • рабочего цилиндра с одним или несколькими поршнями;
  • штуцера прокачки;
  • посадочных мест колодок;
  • креплений.

Если узел подвижный, то поршни расположены с одной стороны от диска, а вторую колодку прижимает подвижная скоба, которая движется на направляющих. У неподвижного тормозного суппорта поршни расположены по обе стороны диска в цельном корпусе. Суппорта крепят к ступице или к поворотному кулаку.

Задний тормозной суппорт с системой ручного тормоза

Жидкость поступает в рабочий цилиндр суппорта и выдавливает поршни, прижимая колодки к диску и останавливая колесо. Если отпустить педаль, жидкость возвращается, а так как система герметичная, подтягивает и возвращает на место поршни с колодками.

Тормозные диски с колодками

Диск - элемент тормозного узла, которые крепится между ступицей и колесом. Диск отвечает за остановку колеса. Колодки - плоские детали, которые находятся на посадочных местах в суппорте по обе стороны диска. Колодки останавливают диск и колесо с помощью силы трения.

Регулятор давления

Регулятор давления или, как его называют в народе, “колдун” - это страхующий и регулирующий элемент, который стабилизирует автомобиль во время торможения. Принцип работы - когда водитель резко нажимает на педаль тормоза, регулятор давления не дает всем колесам автомобиля тормозить одновременно. Элемент передает усилие от главного тормозного цилиндра на задние тормозные узлы с небольшим опозданием.

Такой принцип торможения обеспечивает лучшую стабилизацию автомобиля. Если все четыре колеса затормозят одновременно, автомобиль с большой долей вероятности занесет. Регулятор давления не дает уйти в неконтролируемый занос даже при резкой остановке.

Ручной или стояночный тормоз

Ручной тормоз удерживает автомобиль во время остановки на неровной поверхности, например, если водитель остановился на склоне. Механизм ручника состоит из ручки, центрального, правого и левого тросиков, правого и левого рычагов ручного тормоза. Ручной тормоз обычно соединяют с задними тормозными узлами.

Когда водитель тянет за рычаг ручника, центральный тросик натягивает правый и левый тросики, которые крепятся к тормозным узлам. Если задние тормоза барабанные, то каждый тросик крепится к рычагу внутри барабана и придавливает колодки. Если тормоза дисковые, то рычаг крепится к валу ручного тормоза внутри поршня суппорта. Когда рычаг ручника в рабочем положении, вал выдвигается, нажимает на подвижную часть поршня и прижимает колодки к диску, блокируя задние колеса.

Большой выбор тормозных суппортов

Перейти в магазин

Это основные моменты, которые стоит знать о принципе работы гидравлической тормозной системы. Остальные нюансы и особенности функционирования гидравлических тормозов зависят от марки, модели и модификации автомобиля.

Тормозная система и тормозная жидкость

Автоцентр Атлант-М

Официальный дилер Volkswagen

Частые трогания и остановки, движение в вечерний час пик, преодолевание гористой местности с затяжными спусками или узкими извилистыми дорогами – каждая поездка имеет свои особенности. Однако в любой ситуации вы всегда можете положиться на оригинальную тормозную систему Volkswagen.

Оригинальные тормозные колодки и диски Volkswagen

Созданы специально для вашего Volkswagen

Информация о продукте

Тормозная система — средство безопасности номер один, от неё в значительной степени зависит ваша безопасность на дороге. Она должна работать безотказно, чтобы в опасной ситуации можно было быстро остановить автомобиль. Определяющими факторами при торможении являются характер движения, масса автомобиля, его скорость; немаловажную роль здесь играет качество деталей тормозной системы.

Преимущества

  • Короткий тормозной путь
  • Высокопрочные тормозные диски
  • Износостойкие тормозные колодки
  • Неизменная эффективность торможения
  • Тихое и плавное торможение (без вибраций и скрипов)

Гарантируют наилучшую эффективность торможения

Тормозные диски должны выдерживать огромное давление и высокие температуры в случае аварийного торможения без образования трещин и деформации.

Температуроустойчивость

Тормозные диски выдерживают перепад температур от 800 °C до 1000 °C.

Производительность

При аварийной остановке мощность торможения достигает 883 кВт (1200 л.с.), что в десять раз превышает мощность двигателя.

Высокие нагрузки

Во время экстренного торможения колодка прижимается к диску с усилием, достигающим одной тонны, при этом она не деформируется и не разрушается.

Включен стояночный тормоз, слишком низкий уровень тормозной жидкости или неисправность в тормозной системе

Если при нажатии педали тормоза вы замечаете снижение эффективности торможения (внезапное увеличение тормозного пути), это означает, что мог произойти отказ контура тормозной системы. При этом загорится данная контрольная лампа, а на дисплее информационного центра появится соответствующее сообщение. При первой же возможности обратитесь в авторизованный сервисный центр для устранения неисправности.

Двигайтесь с низкой скоростью и помните о том, что эффективность торможения снижена и при нажатии педали тормоза необходимо прилагать больше усилий.

Затянут стояночный тормоз

Затяните стояночный тормоз.

Горит: нажать педаль тормоза!

Чтобы переместить рычаг селектора, нажмите педаль тормоза.

Мигает: кнопка блокировки в селекторе не зафиксирована.

Нажмите кнопку блокировки рычага селектора.

Нажмите педаль тормоза!

Нажмите педаль тормоза до упора.

Тормозные колодки передних колёс изношены

Незамедлительно обратитесь в авторизованный сервисный центр. Проверьте и при необходимости замените тормозные колодки.

Советы по использованию тормозной системы вашего Volkswagen

Обеспечьте соответствие

Тормозная система должна полностью соответствовать характеристикам двигателя, массе и максимальной скорости вашего автомобиля Volkswagen.

Проверьте безопасность

Выполняйте проверку тормозов при каждой замене шин. А также советуем проводить ежегодную проверку тормозной системы вашего автомобиля Volkswagen.

Заменяйте только парами

Тормозные диски и колодки одной оси следует заменять парами. Если диски или колодки сильнее изношены с одной стороны, в случае экстренного торможения ваш автомобиль может уйти в занос.

Пользуйтесь услугами специалистов

На приборной панеле мигает сигнальная лампа тормозной системы? Обратитесь на дилерское предприятие Volkswagen — все работы с тормозной системой должны выполнять только квалифицированные специалисты.

Выбирайте только правильное сочетание

В целях снижения износа тормозные диски и колодки должны соответствовать друг другу.

Оригинальная тормозная жидкость Volkswagen

Гарант вашей безопасности

Мы гарантируем высокий уровень безопасности в условиях низких температур и высоких нагрузок, а также длительный срок службы. Оригинальная тормозная жидкость Volkswagen разработана специально для тормозной системы вашего автомобиля и соответствует требованиям высокотехнологичных тормозных систем.

Любая информация, содержащаяся на настоящем сайте, носит исключительно справочный характер и ни при каких обстоятельствах не может быть расценена как предложение заключить  договор (публичная оферта). Фольксваген Россия не дает гарантий по поводу своевременности, точности и полноты информации на веб-сайте, а также по поводу беспрепятственного доступа к нему в любое время. Технические характеристики и оборудование автомобилей, условия приобретения автомобилей, цены, спецпредложения и комплектации  автомобилей, указанные на сайте, приведены для примера и могут быть  изменены в любое время без предварительного уведомления.

Компоненты тормозной системы вашего автомобиля> Columbia Auto Care & Car Wash

Многое зависит от ваших тормозов. Собственно, вся ваша машина. Не говоря уже о вас и ваших пассажирах. Ох, и все остальные водители на дороге. Эти тормоза очень важны, и их необходимо поддерживать в отличном состоянии, чтобы они работали на должном уровне. Итак, как работает тормозная система и из каких компонентов состоит тормозная система вашего автомобиля?

Как работают тормоза
Не знаю, откуда она взялась, но помню старую шину, валявшуюся во дворе, когда я был ребенком.Мы с братьями иногда катали эту шину по двору или по подъездной дорожке. Когда я хотел, чтобы шина перестала катиться, я хватал ее за стороны и сжимал. Трение моих рук о боковины в конечном итоге остановило шину. Позже я узнал, что десятискоростной велосипед останавливается примерно так же. Я мог выжать тормозной рычаг, который прижал пару резиновых тормозных колодок к колесу. И снова возникшее трение остановило мой байк.

Тот же принцип применим к вашему автомобилю, грузовику или внедорожнику.Тормозная система принимает кинетическую энергию движущегося автомобиля и преобразует ее в тепловую энергию за счет трения. Эта энергия используется, чтобы замедлить и остановить вашу металлическую машину весом более четырех тысяч фунтов. Концепция та же; оборудование, ну это немного сложнее.

Например, там, где велосипед может использовать трос для активации тормозов, автомобиль полагается на гидравлику. Насос, расположенный в моторном отсеке, главный цилиндр, воздействует на гидравлическое масло в тормозных магистралях каждый раз, когда вы нажимаете на педаль тормоза.Эта сила ощущается в каждом углу транспортного средства, где зажимные устройства, суппорты, сжимают пару тормозных колодок против вращающихся металлических дисков (роторов), прикрепленных к каждому колесу. Тормозные колодки захватывают роторы, как эти резиновые колодки захватывают колесо велосипеда. Трение и тепло приводят к остановке колес и вашего автомобиля.

В то время как большинство транспортных средств на дорогах сегодня оснащены четырехколесными дисковыми тормозными системами, некоторые старые легковые и грузовые автомобили на дороге (и некоторые новые грузовики) имеют барабанные тормоза.Обычно используемые для задних колес (хотя некоторые автомобили имели четырехколесные барабанные тормоза много лет назад), барабанные тормоза имеют полый цилиндр ( барабан ), прикрепленный к оси, которая вращается вместе с колесом. Когда вы нажимаете на тормоз, пара тормозных колодок давит на внутреннюю часть барабана, а не на внешнюю часть ротора. Барабанные тормоза могут обеспечить большее тормозное усилие, чем дисковые тормоза пропорционального размера. Кроме того, они служат дольше и дешевле в производстве. Но барабанные тормоза сложнее обслуживать.Они тяжелые, сохнут долго и могут быстро перегреваться. Дисковые тормоза стали стандартом для большинства современных автомобилей.

Антиблокировочная система тормозов
Вместе с тормозами работает антиблокировочная тормозная система, или АБС. Когда вы резко тормозите в экстренной ситуации, на рыхлом гравии или на скользкой поверхности, ваши колеса могут заблокироваться и перестать вращаться. Если бы это произошло, то количество шины, контактирующей с дорогой, уменьшилось бы до небольшого участка резины.Недостаточно, чтобы остановить вас. Конечно, недостаточно, чтобы позволить вам управлять. Когда ваши передние колеса перестают вращаться, вы теряете способность управлять автомобилем. Таким образом, АБС предотвращает заклинивание шин.

Как это сделать? Специальные датчики скорости вращения колес, расположенные в каждой ступице колеса, постоянно определяют скорость ваших колес. Компьютер (модуль ABS) отслеживает данные с датчиков и знает, когда одно из ваших колес изменило скорость. Если при нажатии на педаль тормоза одно или несколько колес перестают вращаться, модуль ABS дает команду насосу попеременно накачивать и отпускать тормоза до пятнадцати раз в секунду.Быстрое сжатие и отпускание позволяет автомобилю замедляться и останавливаться без полной остановки колес, что позволяет сохранять управляемость. В некоторых случаях вы можете прекратить раньше; в других случаях остановка может занять немного больше времени. Но в любом случае вы сможете держать свою машину под контролем.

Компоненты тормозной системы
Когда дело доходит до отдельных компонентов вашей тормозной системы, это зависит от того, есть ли у вас четырехколесные дисковые тормоза (вероятно, так), четырехколесные барабанные тормоза (гораздо менее вероятно) или комбинация этих двух дисков. спереди и барабаны сзади (возможно).Тем не менее, вот краткая разбивка каждого компонента тормозной системы.

Главный цилиндр и усилитель тормозов . Главный цилиндр - это гидравлический насос, который приводится в действие педалью тормоза. К насосу прикреплен резервуар с тормозной жидкостью и вакуумный усилитель мощности, чтобы облегчить нажатие на педаль.

Ротор . Тормозной ротор - это тяжелый металлический диск, прикрепленный к колесу (фактически, к ступице колеса). Он вращается вместе с колесом и шиной.Тормозные роторы со временем изнашиваются из-за всего приложенного к ним трения. Они также подвержены перегреву, если вы склонны к агрессивному вождению или перевозите тяжелые грузы.

Колодки тормозные . Тормозные колодки предназначены для захвата тормозного ротора. Жертвенный фрикционный материал колодок входит в контакт с ротором при торможении, создавая трение и тепло, используемое для передачи кинетической энергии в тепловую. Материалы тормозных колодок бывают самых разных составов, от органических до керамических и полуметаллических.У каждого типа тормозных колодок есть свои достоинства и недостатки.

Колодки тормозные . Как и тормозные колодки, тормозные колодки создают трение, чтобы остановить ваш автомобиль. Но обувь чаще встречается на автомобилях прошлых десятилетий или на грузовиках. Представьте себе чашу, крутящуюся на гончарном круге, или ленивую сьюзан. Если бы вы залезли в миску, раздвинули руки и надавили бы на внутреннюю часть миски, вы создадите сопротивление. Это в основном то, что делают тормозные колодки внутри тормозного барабана.

Тормозной барабан . Когда ротор захватывается снаружи тормозными колодками, тормозной барабан захватывается изнутри парой тормозных колодок.

• Суппорт и кронштейн суппорта. Тормозной суппорт - это гидравлический зажим, который прижимает тормозные колодки к ротору в ответ на усилие, прилагаемое вашей педалью тормоза через насос главного цилиндра. Кронштейн суппорта удерживает суппорт на месте и подвешивает тормозные колодки по обе стороны от ротора.

Колесный цилиндр .В установке барабанного тормоза нет суппорта. Вместо этого гидравлическое устройство, называемое колесным цилиндром, раздвигает тормозные колодки и прижимает их к внутренней части барабана.

В дополнение к этим компонентам тормозной системы есть другие второстепенные детали: крепежные зажимы, прокладки, направляющие, штифты и тому подобное. Эти компоненты могут быть небольшими и казаться незначительными, но отсутствующий зажим или корродированный штифт могут помешать правильной работе тормозов - или вообще. Вот почему выбор дешевого сервиса тормозов - плохой вариант при ремонте тормозов.Качественный сервис тормозов должен включать в себя все необходимые запчасти и аксессуары. Если вы слышите визг при нажатии на педаль тормоза или замечаете, что загорается сигнальная лампа тормоза, запишитесь на прием к квалифицированному специалисту в проверенной ремонтной мастерской.

Columbia Уход за автомобилем и автомойка | Автор: Майк Алес | Авторское право
Эта статья предназначена только в качестве общего руководства, и вы полагаетесь на ее материалы на свой страх и риск. Используя этот общий руководящий документ, вы соглашаетесь защищать, освобождать от ответственности и оградить Columbia Auto Care & Car Wash и ее дочерние компании от любых претензий, убытков, издержек и расходов, включая гонорары адвокатов, возникающих в связи с вашими или связанными с ними. использование этого руководящего документа.В той мере, в какой это полностью разрешено действующим законодательством, Columbia Auto Care & Car Wash не делает никаких заявлений или гарантий любого рода, явных или подразумеваемых, в отношении информации, содержания или материалов, включенных в этот документ. Это резервирование прав должно быть настолько широким и всеобъемлющим, насколько это разрешено законодательством государства вашего проживания.

Как работает тормозная система вашего автомобиля


Тормозная система - самый важный элемент безопасности транспортного средства, и важно знать, как она работает и как ее обслуживать, чтобы предотвратить аварии.У нас есть краткое руководство, которое поможет вам понять, как работает тормозная система вашего автомобиля, и несколько советов по обслуживанию тормозов.

Как работает тормозная система вашего автомобиля?

У автомобилей есть тормоза на всех четырех колесах, которые приводятся в действие гидравлической системой. Тормоза бывают дискового или барабанного типа. Многие автомобили имеют четырехколесные дисковые тормоза, хотя у некоторых есть диски для передних колес и барабаны для задних колес. Поскольку львиная доля остановки движущегося вперед автомобиля зависит от передних тормозов, более эффективные дисковые тормоза задействуются на передних колесах; менее дорогая установка барабана обеспечивает адекватную, но более экономичную помощь в остановке движения автомобиля.Тормозная система автомобиля работает несколькими способами:

  1. Ваша нога нажимает на педаль тормоза, и сила, создаваемая вашей ногой, увеличивается в несколько раз за счет механического воздействия. Затем он еще больше усиливается действием усилителя тормозов.
  2. Поршень движется в цилиндр и выдавливает гидравлическую жидкость из конца.
  3. Гидравлическая тормозная жидкость нагнетается по всей тормозной системе в сети тормозных магистралей и шлангов.
  4. Давление передается одинаково на все четыре тормоза.
  5. Сила создает трение между тормозными колодками и роторами дисковых тормозов, что и останавливает ваш автомобиль.

Как обслуживать тормозную систему автомобиля

Техническое обслуживание автомобиля может помочь вам сэкономить деньги, вместо того, чтобы приносить машину в магазин только тогда, когда что-то пойдет не так. Будьте осторожны, прежде чем столкнуться с несчастным случаем. Когда ваш автомобиль проходит ежегодный государственный техосмотр, ваши тормоза проверяются на пригодность для движения. Вот несколько шагов по уходу за тормозной системой вашего автомобиля, которые могут вам помочь.

  • Следите за уровнем тормозной жидкости и выполняйте проверку каждые три месяца. Тормозную жидкость следует заменять каждые два года или каждые 30 000-40 000 миль.
  • Тормозные диски следует менять по мере необходимости в зависимости от вашего стиля вождения и условий окружающей среды. Заменяйте тормозные диски через одинаковые промежутки времени для обычного автомобиля. Тормоза спорткара следует менять после 20 000 км пробега. Если вы меняете тормоза в Fred’s, мы добавляем новую жидкость в ваш главный цилиндр. Не забудьте узнать о нашем жизненном плане BG Fluids Lifetime Plan, чтобы повысить защиту вашей тормозной системы.
  • Удалите воздух из тормозных магистралей, чтобы удалить воздух из системы. Это означает, что ваши тормоза будут накачаны, пока кто-то будет следить за спускным клапаном и закрывать клапан, когда тормозная жидкость начинает течь через него.
  • Проверьте тормозные колодки и роторы, чтобы убедиться, что они находятся в отличном рабочем состоянии. Если тормоз сильно изношен, пора заменить тормозную колодку.

Fred’s Auto Repair предлагает отличные услуги по ремонту автомобилей, и каждый из наших механиков имеет сертификат ASE.Свяжитесь с нами сейчас, чтобы узнать о доступных шинах и тормозах, а также о другом обслуживании автомобилей.

7: основы тормозной системы, которые вы должны знать

Когда дело доходит до критически важных систем автомобиля, то, что заставляет вас остановиться, может оказаться самой важной. Любой, кто испытал ужас перед отказом тормозов, скорее всего, согласится с этим, поскольку радость от вождения растворяется, когда ваша безопасность зависит от того, что вы управляете своим любимым автомобилем как можно мягче. Первый шаг к работе с тормозами - понять, как они работают.Вот семь терминов о тормозной системе, которые помогут вам разобраться в основах.

Тормоза барабанные

Во всех тормозах кинетическая энергия превращается в тепло за счет трения. Контролируемое приложение трения предназначено для замедления и, в конечном итоге, остановки вашего автомобиля. Барабанные тормоза - самый распространенный тип тормозов на старинных и классических автомобилях. Идея проста: металлический «барабан» крепится к шпилькам колеса, а тормозные колодки, покрытые фрикционным материалом, выдавливаются наружу внутрь барабана.То, что вы видите выше, - это обычная конструкция с внутренним расширением, но есть версии с внешним сжатием, которые приводятся в действие путем прижатия фрикционного материала к внешней поверхности барабана.

Сколько стоит застраховать машину? Узнайте, выполнив четыре простых шага.

Получить расценки

Тормоза дисковые

Более современная система по сравнению с барабанами, диски используются почти исключительно в современных автомобилях.В этой конструкции фрикционный материал прижимается к диску, прикрепленному к шпилькам колеса. Большим преимуществом перед барабанами является то, что диски саморегулируются; без пружин, возвращающих фрикционный материал в заданное положение - как в барабанной тормозной системе - суппорты, удерживающие фрикционный материал, автоматически регулируются с учетом износа колодок. Дисковые тормоза часто отводят тепло более эффективно, чем барабанные, что означает более стабильную работу в экстремальных условиях эксплуатации и многократное резкое торможение.

Дозировочный клапан

Wikimedia Commons / Rasi57

При торможении вес естественным образом переносится на переднюю часть автомобиля.Из-за неравной нагрузки просто прикладывать одинаковое тормозное усилие к каждому колесу - не лучший вариант. Вот тут-то и вступает в игру дозирующий клапан; По сути, это ограничение, иногда регулируемое, которое регулирует распределение давления в гидравлической тормозной системе. В некоторых системах не используется пропорциональный клапан, а вместо этого они сконструированы таким образом, что поршни колесных цилиндров имеют размер, обеспечивающий надлежащее тормозное усилие. Это еще одна причина полностью разобраться в нюансах вашей тормозной системы, прежде чем вносить изменения или модификации.

Главный цилиндр

При нажатии на педаль в гидравлической тормозной системе рычаг педали толкает поршень в главный цилиндр. Затем этот поршень выталкивает жидкость из портов, которые связаны с тормозными магистралями, идущими к каждому тормозному блоку. Резервуар находится наверху главного цилиндра, чтобы компенсировать расширение жидкости или износ системы.

Колесный цилиндр

Колесный цилиндр реагирует на давление, создаваемое главным цилиндром.Колесные цилиндры установлены на опорных пластинах барабанных тормозов для приведения в действие тормозных колодок. Давление, передаваемое через жидкость от главного цилиндра, толкает пару поршней в колесном цилиндре, заставляя тормозные колодки упираться в тормозной барабан. Колесный цилиндр также имеет спускной винт, используемый для удаления воздуха из системы.

Hardline против softline

Между главным цилиндром и колесными цилиндрами проложена сеть трубопроводов для передачи тормозной жидкости под давлением.Большинство спусков на большие расстояния выполняется с помощью жестких линий, которые обычно изготавливаются из металлических труб относительно небольшого диаметра, которые не расширяются под давлением. Эти жесткие линии соединяются с расширяющимися фитингами, чтобы уменьшить вероятность утечки или потери давления.

Кайл Смит | Hagerty Media Site

Мягкие стропы полезны для пробежек на короткие дистанции, где необходима гибкость, например, для соединения тормозной магистрали от рамы к колесному цилиндру на автомобиле с независимой подвеской. Резиновые стропы соединяются с жесткими стропами и позволяют перемещаться в системе без риска поломки металлической стропы.

Со временем жесткие линии корродируют, а мягкие линии необходимо проверять на износ. Оба имеют решающее значение для обеспечения безопасной работы ваших тормозов, и, поскольку они находятся под давлением и обычно подвергаются воздействию элементов, эти части часто могут подвергаться коррозии и способствовать отказу ТО или консультативному сообщению.

Тормоза механические

Гидравлические тормозные системы являются наиболее популярными, но некоторые старинные автомобили имеют механические системы для приведения в действие тормозов без посторонней помощи. Модель A Ford является ярким примером автомобиля, оснащенного механическими тормозами.Вместо того, чтобы полагаться на жидкость для передачи давления от педали к тормозной колодке, в большинстве механических систем используются стержни и шарниры. Такие системы по-прежнему могут быть надежными и безопасными, но правильная настройка является ключевым моментом; в системе без посторонней помощи нет гидродинамики для увеличения силы между педалью и приводом на колесе.

Это, конечно, только верхушка айсберга тормозной терминологии. Оставьте ниже комментарий с дополнительными условиями, которые, по вашему мнению, важны для новичка.

Через Hagerty US.

Как работают автомобильные тормоза?

О чем вы думаете, когда едете в машине с друзьями или членами семьи? По дороге в школу вы, возможно, думаете о тесте, который у вас сегодня есть, или о том, что на обед. По дороге домой с футбольной тренировки вы можете ЗАДАВАТЬСЯ, что на ужин, или как вы собираетесь выполнить все домашние задания до завтра.

Вы, наверное, не особо задумываетесь о самой машине. Нужна ли замена масла? Как работает двигатель? Нужно ли поворачивать шины? Если что-то не сломается, мы склонны воспринимать автомобили и то, как они работают, как должное.Они просто быстро доставят вас из одного места в другое.

Однако, если олень выбегает перед вашей машиной, вы можете начать думать о том, как работает одна часть машины: тормоза. Когда водитель нажимает на тормоза, вы будете рады, что они быстро остановят машину, предотвратив серьезное столкновение.

Если задуматься, тормоза - удивительное изобретение. Если вы едете на самокате и вам нужно замедлить ход, вы можете выставить ноги и тащить их по земле.Но как насчет того, чтобы мчаться по шоссе со скоростью 55 миль в час? Выталкивать ноги на шоссе не принесет особой пользы, не так ли?

Так как же легкое нажатие на педаль тормоза автомобиля может замедлить движущийся автомобиль до резкой остановки? Это волшебство? Конечно нет! Это наука.

Автомобиль в движении обладает большой кинетической энергией, то есть энергией движения. Чтобы остановить машину, тормоза должны избавиться от кинетической энергии. Они делают это, используя силу трения для преобразования этой кинетической энергии в тепло.

Когда вы нажимаете ногой на педаль тормоза, подключенный рычаг толкает поршень в главный цилиндр, который заполнен гидравлической жидкостью. Эта гидравлическая жидкость впрыскивается по системе труб в другие, более широкие цилиндры, расположенные рядом с тормозами на каждом колесе.

Эта гидравлическая система умножает силу, которую вы нажимаете на педаль тормоза, до силы, достаточной для включения тормозов и остановки автомобиля. Сами тормоза обычно бывают двух типов: дисковые или барабанные.

Многие современные автомобили имеют дисковые тормоза на передних колесах и барабанные тормоза на задних колесах. Более дорогие модели могут иметь дисковые тормоза на всех четырех колесах. Только очень старые или очень маленькие автомобили имеют барабанные тормоза на всех четырех колесах.

Дисковые тормоза состоят из тормозного диска, тормозного суппорта и тормозной колодки. Когда педаль тормоза нажата, гидравлическая жидкость заставляет тормозной суппорт прижимать тормозную колодку к тормозному диску. Трение тормозной колодки о тормозной диск вызывает трение, которое преобразует кинетическую энергию в тепло в тормозной колодке.

Сколько тепла? Много! Остановка движущегося на скорости автомобиля может привести к нагреву тормозов до 950º F или более! Чтобы выдерживать такую ​​высокую температуру, тормозные колодки должны быть изготовлены из специальных материалов, которые не плавятся при таких высоких температурах. Некоторые из этих специальных материалов включают композиты, сплавы и керамику.

Барабанные тормоза также используют трение, но немного по-другому. Барабанные тормоза состоят из тормозного барабана и тормозных колодок. Полый барабан вращается вместе с колесом. Когда педаль тормоза нажата, гидравлический цилиндр прижимает тормозные колодки с фрикционными накладками к внутренней поверхности тормозного барабана, создавая трение и тем самым замедляя колесо.

Как работают автомобильные тормоза

Изображение предоставлено: Capri23auto / Pixabay

Джон Линден

Водители нажимают на свои автомобильные тормоза, предполагая, что эти компоненты будут работать без сбоев, но мало кто задумывается о том, как на самом деле работают тормоза. Даже если вы не автомеханик, вам будет полезно понять, как работают автомобильные тормоза. Хотя вы, возможно, не отремонтируете или не замените тормоза вашего автомобиля самостоятельно, довольно интересно понять, как работают эти важные компоненты автомобиля.Кроме того, понимание функций тормозной системы поможет вам лучше понять, когда что-то пойдет не так. Давайте взглянем на основы автомобильных тормозов.

Основы тормозов

Изображение предоставлено: Joenomias / Pixabay

Большинство современных автомобилей имеют тормоза на каждом из четырех колес. Эти колеса работают с гидравлической системой. Тормоза в передней части автомобиля более важны, чем в задней части, поскольку в процессе торможения вес автомобиля перемещается вперед на переднюю часть автомобиля.Сравнимая эффективность дисковых тормозов делает их идеальными для передней части автомобиля, в то время как задние колеса часто имеют барабанные тормоза. Некоторые недорогие и высокопроизводительные автомобили имеют полностью дисковые тормозные системы.

Тормоза в действии

Принцип работы автотормоза интересен как с точки зрения физики, так и с точки зрения дизайна. Удивительно думать о том, как простое нажатие одной ногой на педаль тормоза может за секунды остановить автомобиль, который весит несколько тысяч фунтов.Сила, прикладываемая ногой, довольно быстро умножается, чтобы остановить транспортное средство. Вот как это работает.

Когда педаль тормоза нажата, транспортное средство передает усилие непосредственно от кроссовок водителя на тормоза посредством жидкости. Однако для тормозов требуется большее усилие, чем то, которое можно приложить ногой. Следовательно, транспортное средство должно умножать силу стопы за счет увеличения гидравлической силы или рычага, создаваемого механическим преимуществом.Тормоз передает усилие непосредственно на шины за счет трения. Шины также полагаются на трение, чтобы передать силу на дорогу.

Тормозная гидравлика

Большинство современных автомобилей имеют два гидравлических контура и два главных цилиндра. Использование двух цилиндров и контуров гарантирует, что один будет работать в случае отказа другого. В определенных ситуациях цепь задействует передние тормоза, а другая задействует задние тормоза. В качестве альтернативы, каждый контур может работать как на передние, так и на задние тормоза.Фактически, некоторые тормозные системы рассчитаны на работу в одном контуре всех четырех тормозов.

Если применяется резкое торможение, при блокировке с задних колес снимается значительный вес, что может привести к заносу, который подвергает жизнь водителя опасности. Именно поэтому тормоза в задней части автомобиля намеренно сделаны менее мощными, чем тормоза в передней части автомобиля. Большинство автомобилей оборудовано клапаном ограничения давления, чувствительным к нагрузке.Этот клапан закрывается, когда резкое торможение увеличивает гидравлическое давление до такой степени, что может привести к блокировке задних тормозов, предотвращая попадание жидкости к ним. К счастью, большинство современных автомобилей оснащено очень сложными антиблокировочными системами, которые быстро и многократно включают и отпускают тормоза, чтобы предотвратить их блокировку.

Трение при торможении

Изображение предоставлено: lex-ger-2021617 / Pexels

Трение затрудняет перемещение одного объекта над другим.Этот процесс важен для работы тормозов автомобиля. Уровень силы, необходимой для перемещения чего-либо, прямо пропорционален весу этого объекта. Чем больше весит объект, тем больше сила, необходимая для создания трения. В контексте автоматических тормозов трение создается, когда тормозная колодка прижимается к вращающемуся диску тормоза. Чем больше сила давления на тормозную колодку, тем мощнее тормозная сила.

Коэффициент статического трения определяет уровень силы, необходимой для остановки транспортного средства, когда две поверхности скользят относительно друг друга.В контексте автомобильной шины коэффициент динамического трения значительно меньше, чем коэффициент статического трения. Это означает, что шина транспортного средства создает наибольшее сцепление с дорогой, когда пятно контакта не скользит относительно земли под ней. Тяга значительно снижается при скольжении, например, при заносе.

Роль расстояния и диаметра в своевременном торможении

Расстояние между педалью тормоза и шарниром тормозной системы имеет особое значение.Если расстояние между ними в четыре раза больше, чем между цилиндром и шарниром, сила, прикладываемая к педали, должна увеличиться в четыре раза до ее передачи на цилиндр. Диаметр тормозного цилиндра также может в три раза превышать диаметр педального цилиндра. Эта разница диаметров увеличивает силу еще больше.

Предположим, сила умножена на девять. В общей сложности эта система увеличивает силу стопы водителя в 36 раз. Следовательно, если к педали приложено усилие в 12 фунтов, создается 432 фунта, когда тормозные колодки сжимаются колесами.

Как насчет утечки тормозной жидкости?

Изображение предоставлено: IgorShubin / Pixabay

Тормозная жидкость - это гидравлическая жидкость, которая передает усилие, создавая давление, которое в конечном итоге увеличивает тормозное усилие. Если есть утечка тормозной жидкости, и она происходит довольно медленно, жидкости не останется достаточно для заполнения тормозного цилиндра. В результате тормоза не будут работать должным образом. Если утечка значительная, при первом нажатии на тормоза жидкость будет вытекать, что приведет к полному отказу тормозов.Однако в современных автомобилях есть главный цилиндр, предназначенный для решения таких проблем.

Дисковые тормоза и барабанные тормоза

Мало кто знает, что есть два разных типа автоматических тормозных систем: барабанные и дисковые. Дисковые тормоза более эффективны из двух. Оба типа тормозных систем транспортных средств используют трение для снижения скорости. Усилие, прикладываемое к педали тормоза, преобразуется в гидравлическое давление, которое перемещается по трубопроводам гидравлической жидкости непосредственно к колесам, заставляя тормозные колодки давить на барабанные тормоза.

Если тормозная система является дисковой, давление перемещается по жидкостным трубопроводам, достигает колес и заставляет тормозные колодки давить на тормозные диски. Последующая фикция уменьшает вращение колеса по отношению к уровню силы, приложенной к педали. Хотя нюансы каждой тормозной системы, безусловно, уникальны, обе основаны на трении, которое преобразует кинетическую энергию движения колеса в тепло тепловой энергии.

Антиблокировочная система тормозов современных автомобилей

Новые автомобили оснащены антиблокировочной тормозной системой или сокращенно АБС.Это автоматизированная система, предотвращающая остановку вращения колес и последующее проскальзывание. ABS улучшает управляемость и сокращает тормозной путь как на скользкой, так и на сухой поверхности. Эта система разработана таким образом, чтобы водителю не приходилось нажимать на тормоза. Скорее, водителю просто нужно нажать на тормоз со значительной силой, оставить ногу на педали и позволить системе творить чудеса. Тормоза не вечны

Ваши тормоза со временем изнашиваются до уровня, требующего замены.Было бы ошибкой позволять вашим тормозам изнашиваться до уровня, при котором металл прижимается к металлу. Как только это произойдет, замена тормозного барабана или ротора обойдется довольно дорого. Именно поэтому вам следует провести осмотр тормозов, как только вы заметите какие-либо признаки износа. Если вы заметили, что ваш автомобиль тянет в сторону, когда вы нажимаете на тормоз, это повод для беспокойства.

К дополнительным признакам износа тормозов относятся:

  • Писк
  • Мягкое ощущение
  • Пульсация и / или тряска
  • Странные запахи
  • Необходимость доливки тормозной жидкости с высокой частотой

Кроме того, если загорается стоп-сигнал, это признак серьезной проблемы с гидравликой.Как можно скорее после того, как загорится сигнальная лампа тормоза, доставьте свой автомобиль к механику для проверки.

А как насчет механического ручного тормоза?

Механический стояночный тормоз действует на башмаки автомобиля через сложную механическую систему. Эта система отличается от гидравлического цилиндра и имеет рычаг и уровень внутри тормозного барабана, управляемый тросом, идущим от рычага ручного тормоза. Ручной тормоз оказывает тормозное давление на два колеса автомобиля, как правило, на задние колеса.Этот тормоз позволяет ограниченное торможение в случае, если гидравлическая система больше не работает. Однако основной причиной существования ручного тормоза является его использование в качестве стояночного тормоза.

Вот как работает ручной тормоз. Уровень внутри ручного тормоза тянет трос или несколько тросов, подключенных к тормозам с помощью набора крошечных рычагов и шкивов. Храповик рычага ручного тормоза обеспечивает включение тормоза после его нажатия. Храповик отключается с помощью кнопки, в конечном итоге освобождая рычаг.Ручные тормоза сложны до такой степени, что они предназначены для прижатия накладок тормоза к барабанам, чтобы обеспечить быструю и полную остановку.

Подробнее:

https://auto.howstuffworks.com/auto-parts/brakes/brake-types/brake.htm

The Ultimate Guide to Car Brakes

https://www.howacarworks.com/basics/how-the-braking-system-works

https://www.mysynchrony.com/resources/car-brakes.html

https: // en.wikipedia.org/wiki/Brake?intcmp=carcare-pagena-article-data_reason-external

https://www.yourmechanic.com/article/top-10-brake-system-issues-every-car-owner-needs-to-know?intcmp=carcare-pagena-article-data_reason-external

https://wonderopolis.org/wonder/how-do-car-brakes-work

https://www.autoguide.com/auto-news/2019/04/how-do-car-brakes-work-.html

Gearhead 101: Understanding the Braking System

https://haynes.com/en-us/tips-tutorials/how-do-car-brakes-work

Auto Safety Blog 1: Тормозные системы

Тормозные системы - одна из самых важных систем безопасности в наших автомобилях.Их часто принимают как должное, но когда важно остановить автомобиль, чтобы избежать аварии, мы осознаем ценность наших тормозов.

Основы

Тормоза используют трение для остановки наших транспортных средств. Существует несколько типов тормозных систем: дисковые тормоза, барабанные тормоза и рекуперативные тормоза. Технология торможения Anti-Lock добавляет дополнительную безопасность тормозным системам.

Дисковые тормозные системы

  • Когда педаль тормоза нажата, автомобиль использует главный цилиндр для подачи гидравлического давления через тормозные магистрали к тормозным поршням.
  • Поршни оказывают давление на тормозные колодки, заставляя их сжимать металлический диск, называемый ротором, чтобы создать достаточное трение для замедления или остановки автомобиля.
  • В старых автомобилях дисковые тормоза обычно устанавливаются на передние колеса, а барабанные - на задние. В более новых автомобилях дисковые тормоза установлены на все четыре колеса.
  • Тормозные колодки являются основным элементом, который изнашивается, но поверхность роторов может нуждаться в механической обработке, чтобы обеспечить плоскую поверхность колодок для приложения трения.

Барабанные тормозные системы

  • Барабанные тормоза работают аналогично дисковым тормозам, создавая трение между тормозной колодкой и тормозным барабаном для создания силы, необходимой для остановки транспортного средства.
  • Барабанные тормоза обычно устанавливаются только на задние колеса автомобилей.
  • Основным элементом износа являются тормозные колодки, но тормозные барабаны могут нуждаться в механической обработке, чтобы обеспечить плоскую поверхность колодок для приложения трения.

Антиблокировочная тормозная система

Благодаря современным технологиям автомобили оснащены антиблокировочной тормозной системой, предотвращающей занос.В дополнение к механическим частям тормозных систем, описанных выше, автомобиль имеет электронную систему, которая измеряет скорость колес вместе друг с другом и может определять, буксует ли автомобиль или буксует. Если одно колесо вращается со скоростью 20 миль в час, а другое находится на нулевой отметке, автомобиль отпускает тормоз на нулевом колесе и подает импульс, чтобы автомобиль не заносил.

Системы рекуперативного торможения

  • Системы рекуперативного торможения используются в электрических гибридных транспортных средствах, таких как Toyota Prius, и электромобилях, таких как Tesla Model 3.
  • Они замедляют транспортное средство, применяя движение транспортного средства вперед, чтобы вращать электродвигатели в обратном направлении, чтобы восстановить энергию. Это вызывает достаточное трение, чтобы при некоторых обстоятельствах замедлить или остановить автомобиль.
  • В рекуперативных тормозах используется контроллер тормоза, интегрированный с антиблокировочной тормозной системой, чтобы определять, когда использовать рекуперативные тормоза, а когда - фрикционные тормоза.
  • По мере того, как системы рекуперативного торможения становятся зрелыми, фрикционные тормозные системы становятся менее необходимыми и служат гораздо дольше.

Нормальный износ

Средний срок службы тормозной системы может сильно варьироваться в зависимости от привычек и режима вождения. При движении по городу тормоза необходимы, чтобы останавливаться на светофоре, замедляться для поворотов и регулировать скорость для изменения зон скорости. Если в основном ездить по городу, тормоза пригодятся больше, чем если бы ездили в основном по шоссе. Большинство производителей рекомендуют проверять тормозную систему каждый год или каждые 12 000 миль.

Проверку тормозов рекомендуется проводить, если:

  • При нажатии педали тормоза слышен скрежет или визг.
  • Педаль уходит слишком далеко от пола или дальше, чем обычно.
  • Автомобиль заносит в сторону.
  • Автомобиль останавливается дольше, чем ожидалось.
  • На приборной панели горит сигнальная лампа.

Уход и техническое обслуживание

Тормоза имеют решающее значение для безопасности транспортных средств на дороге, поэтому важно следить за их правильной работой. Чтобы обеспечить безопасность, ваша бригада по уходу за автомобилем должна выполнить следующие простые шаги.

  1. Ежегодно проверяйте износ тормозных колодок и колодок.
  2. Убедитесь в отсутствии утечек в гидравлической системе.
  3. Тест тормозной жидкости. Медь может попасть в тормозную жидкость из тормозных магистралей. В противном случае тормозная жидкость не будет работать правильно.

Как работают автомобильные тормоза | Искусство мужественности

Добро пожаловать обратно в Gearhead 101 - серию статей об основах работы автомобилей для новичков в автомобилестроении.

Если вы следили за Gearhead 101, вы знаете, как работает двигатель автомобиля, как двигатель передает генерируемую мощность через трансмиссию и как механическая или автоматическая трансмиссия функционирует как своего рода распределительный щит между двигателем и трансмиссия.

Сегодня мы собираемся обсудить автомобильную систему, которую вы используете сотни раз в день, выход из строя которой может убить или серьезно повредить вам.

Я говорю о ваших тормозах.

Превращение движения в тепло

Физика автомобильных тормозов довольно проста. Чтобы замедлить и остановить автомобиль, ваша тормозная система преобразует кинетическую энергию (движение ваших колес) в тепловую энергию посредством трения, прикладываемого тормозами к колесам. Как только вся кинетическая энергия колес преобразуется тормозами в тепловую, ваш автомобиль останавливается.

Довольно просто.

Но есть два разных способа снять шкуру с этого кота, превращающего движение в тепловую энергию, и несколько других частей, которые позволяют им обоим работать.

Детали тормозной системы автомобиля

Педаль тормоза. Вы знакомы с педалью тормоза. Это рычаг, на который вы нажимаете ногой, чтобы замедлить и остановить машину. Педаль тормоза на большинстве современных автомобилей подключается к. . .

Усилитель тормозов. Сегодня у большинства автомобилей есть так называемые «механические тормоза».”Тормоза с усилителем увеличивают усилие, возникающее при нажатии на педаль, которое прилагается к остальной тормозной системе. Это означает, что вам не нужно слишком сильно нажимать на педаль тормоза, чтобы ваш автомобиль замедлился или остановился. Усилитель тормозов - это то, что делает силовые тормоза, силовые тормоза.

Существует два типа усилителей тормозов: усилители с вакуумным усилителем и усилители с гидроусилителем . Бустеры с вакуумным усилителем создают разрежение, используя воздухозаборник двигателя.Этот вакуум увеличивает силу, создаваемую при нажатии на педаль, которая применяется к поршням в главном цилиндре (подробнее об этом чуть позже). Усилители с гидроусилителем используют гидравлическое давление от гидроусилителя рулевого управления вашего автомобиля для увеличения усилия, действующего на главный цилиндр.

Итак, вы нажимаете педаль тормоза. Сила, создаваемая этим действием, усиливается усилителем тормозов. Усилитель тормозов передает эту силу на. . .

Главный цилиндр. Если вы заглянули под капот своей машины, вы, вероятно, видели главный цилиндр, но не знали, что он так называется.Главный цилиндр удерживает тормозную жидкость вашего автомобиля. Тормозная жидкость проходит через тормозные магистрали к каждому колесу вашего автомобиля. Когда вы нажимаете педаль тормоза, энергия усиливается усилителем тормозов, который, в свою очередь, перемещает поршень внутри главного цилиндра, который, в свою очередь, выталкивает тормозную жидкость из главного цилиндра в тормозные магистрали, идущие к каждому колесу. Затем жидкость приводит в действие тормоза ваших колес.

Главный цилиндр обеспечивает передачу одинаковой гидравлической мощности на все четыре тормоза.Если один тормоз будет иметь больше мощности, чем другой, это приведет к неравномерному тормозному давлению, что вызовет небезопасное замедление или остановку. Представьте, что случилось бы с вашей машиной, если бы ваши правые колеса тормозили быстрее, чем левые. Вы бы рыбачили или, возможно, перевернули машину.

Большинство современных главных цилиндров разделены на два резервуара, каждый из которых заполнен тормозной жидкостью. Это называется двойной тормозной системой . Он действует как отказоустойчивый в случае утечки или блокировки жидкости на передних или задних тормозах.

На заднеприводных автомобилях один резервуар в главном цилиндре имеет линии, ведущие к передним колесам; другой резервуар имеет трубопроводы, идущие к задним колесам. Если в трубопроводах, ведущих к передним колесам, произойдет утечка, жидкость все равно будет поступать из резервуара к задним колесам.

В переднеприводных автомобилях используется гидравлическая система с диагональным разделением. Это потому, что в переднеприводных автомобилях передние тормоза выполняют 90% торможения. Если бы у автомобиля с передним приводом вышли из строя оба передних тормоза, вам было бы очень трудно сбавить скорость и остановиться.Чтобы гарантировать, что хотя бы один передний тормоз остановит автомобиль в случае утечки или блокировки, переднее правое колесо и заднее левое колесо связаны вместе, а переднее левое колесо связано вместе с задним правым колесом.

Конечно, если и резервуары , и тормозные магистрали, выходящие из них, протекают или забиты, ни один из тормозов не будет работать. Это то, что называется катастрофическим отказом тормозов.

Тормозные магистрали. Тормозные магистрали - это стальные трубки, которые выходят из главного цилиндра и проходят к каждому из четырех тормозов на колесах вашего автомобиля.Тормозные магистрали передают тормозную жидкость либо в барабанный, либо в дисковый тормоз. Давление жидкости приводит в действие тормоза.

Барабанные тормоза. В автомобилях используются тормозные устройства двух типов: барабанные и дисковые. Барабанные тормоза используются в автомобилях с 1900 года и используются до сих пор. Барабанные тормоза прикрепляют к колесу. Внутри барабана находятся две термостойкие колодки, называемые тормозными колодками. Когда вы нажимаете педаль тормоза, тормозная жидкость попадает в колесный цилиндр барабанного тормоза . Затем жидкость приводит в действие два маленьких поршня внутри колесного цилиндра, которые выталкивают тормозные колодки и прижимают их к тормозному барабану. Подушечки замедляют барабан, а барабан (который прикреплен к колесу) замедляет колесо.

У барабанных тормозов несколько преимуществ: они дешевы в изготовлении и ремонте, для их активации требуется меньшее гидравлическое давление, и они могут служить дольше, чем дисковые тормоза.

Как упоминалось выше, барабанные тормоза все еще используются на автомобилях.Если у автомобиля есть барабанные тормоза, вы обычно найдете их на задних колесах автомобиля.

Тормоза дисковые. Одним из недостатков барабанных тормозов является их автономность. Тепло, создаваемое трением в тормозных колодках, остается внутри барабанных тормозов. В тяжелых условиях и при частом торможении барабанные тормоза могут сильно нагреваться. Если тормоза становятся слишком горячими, они больше не могут создавать трение, необходимое для замедления автомобиля.

Чтобы решить эту проблему, инженеры разработали дисковый тормоз.

Дисковые тормоза работают довольно просто. Вы нажимаете педаль тормоза, и тормозная жидкость направляется к поршню дискового тормоза. Поршень заставляет суппорты сжимать диск или ротор. Колодки внутри суппортов создают трение, которое замедляет вашу машину.

Вместо того, чтобы давить на барабан для замедления автомобиля, суппорты дисковых тормозов сжимают тормозные колодки и по направлению к металлическому диску, прикрепленному к колесу. Использование суппортов помогает улучшить торможение.Во-первых, это позволяет создавать большее давление, что способствует увеличению трения. Во-вторых, конструкция дискового тормоза открытая. Тормоза не внутри барабана. Это позволяет воздуху охладить их намного быстрее, что также увеличивает трение. Наконец, конструкция позволяет увеличить площадь поверхности тормозной колодки, что также способствует увеличению трения.

Дисковые тормоза впервые были применены на гоночных автомобилях в 1951 году. В 1955 году они начали появляться на автомобилях массового производства. К 1980-м годам в большинстве автомобилей использовались дисковые тормоза, по крайней мере, на передних колесах.

Когда вы тормозите, ваши передние колеса делают большую часть работы по остановке автомобиля, потому что весь импульс направлен на передние колеса. Поскольку большую часть торможения выполняют передние колеса, производители устанавливают дисковые тормоза на передние колеса, потому что они лучше тормозят, чем барабанные.

Собираем все вместе

Итак, давайте соберем все части тормозной системы вместе.

Вы нажимаете педаль тормоза. Это активирует усилитель тормозов, который увеличивает усилие от педали тормоза.Эта сила передается на главный цилиндр. Поршень в главном цилиндре выталкивает тормозную жидкость через тормозные магистрали к каждому колесу.

Если колесо оснащено барабанным тормозом, тормозная жидкость будет взаимодействовать с поршнем в колесном цилиндре, который активирует другой поршень, который вытолкнет тормозные колодки на тормозной барабан. Автомобиль замедляется или останавливается. Когда вы отпускаете педаль тормоза, тормозная жидкость возвращается в главный цилиндр, и тормоза отпускаются.

Если колесо оснащено дисковым тормозом, тормозная жидкость активирует поршень, который заставит суппорты с тормозными колодками прижаться к диску или ротору, прикрепленному к колесу, замедляя автомобиль.Когда вы отпускаете педаль тормоза, тормозная жидкость возвращается в главный цилиндр, в результате чего суппорты дискового тормоза снова открываются.

Вот вкратце, как работают тормоза вашего автомобиля.

А как насчет антиблокировочной системы тормозов?

Но подождите. . . есть больше. Скорее всего, у вашего автомобиля есть антиблокировочная система тормозов (ABS). До появления АБС, когда вы нажимали на тормоз, ваши колеса полностью останавливались. Они заперты. Это привело к заносу ваших шин. Проскальзывающая шина практически не дает вам возможности управлять автомобилем.Таким образом, если вы в 1950 году водили машину и вам пришлось резко нажать на тормоз, чтобы не сбить ребенка, выбежавшего на середину улицы, вы все равно поскользнулись бы вперед и не смогли бы управлять машиной влево или вправо. Если вы хотите избежать заноса при использовании тормозов на старых автомобилях, вам придется многократно нажимать на тормоз (чтобы многократно отпускать и блокировать колеса), что легче сказать, чем сделать.

Чтобы избежать пробуксовки шин, ABS использует компьютер и датчики рядом с каждым колесом для контроля скорости вращения колес.Когда вы сильно нажимаете на педаль тормоза, система ABS независимо проверяет скорость каждого колеса. Если одно колесо движется медленнее, чем другие, это означает, что это колесо, вероятно, заблокировано. Таким образом, система ABS снизит гидравлическое давление, подаваемое на этот тормоз, что позволит ему снова повернуться, предотвращая занос и позволяя вам сохранять управляемость.

Вы знаете, что ваша АБС работает, потому что, когда вы нажимаете педаль тормоза, вы можете почувствовать пульсацию тормоза.Не пугайтесь. Продолжайте оказывать давление. Вы не хотите качать тормоза на автомобилях с АБС, иначе они не будут работать должным образом.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *