Устройство системы смазки двигателя: Устройство системы смазки двигателя | автомеханик.ру

Содержание

Устройство системы смазки двигателя | автомеханик.ру

Устройство и принцип работы системы смазки двигателя ни чем не отличается от принципа работы любой гидравлической системы. В экскаваторе или подъёмном кране работа масляной системы основана на одних и тех же законах. Неисправности также имеют общие причины.

Содержание статьи:

  1. Масляные каналы
  2. Масляный насос
  3. Давление масла в системе
  4. Магистраль высокого  и низкого давления
  5. Фильтр тонкой очистки масла
  6. Причины низкого давления масла в двигателе
  7. Износ деталей.
  8. Какое давление масла должно быть в двигателе.
  9. Последствия низкого давления масла
  10. Износ масляного насоса
  11. Сетка маслозаборника.
  12. Механическое повреждение поддона двигателя.
  13. Трещина на трубке масло заборника.
  14. Уплотнения в магистрали высокого давления.
  15. Диагностика давления масла.
  16. Износ  распредвала и гидрокомпенсаторов

Масляные каналы

Система смазки двигателя обеспечивает подачу масла под давлением во все трущиеся и вращающиеся элементы. Коренные и шатунные шейки коленчатого вала вращаются во вкладышах. Вкладыши имеют масляную канавку. В которую подаётся масло из масляного канала. Давление с которым масло подаётся. Создаёт вокруг шеек масляное кольцо. Шейки коленвала вращаются в масляном кольце. Масло смягчает все удары от возникающих нагрузок. Это способствует тому что коленвал служит длительный срок. По масляным каналам коленвала от коренных шеек  масло так же под давлением подаётся в шатунные шейки. Обеспечивает вращение шатунов. Шатунный палец и гильзы цилиндров смазываются разбрызгиванием масла. Для этого в шейках шатуна имеются калиброванные отверстия.

Масло к  коленчатому валу подаётся из центрального канала. Канал имеет ответвления под каждую коренную шейку коленчатого вала.

Параллельно от центрального канала масло подаётся  к шейкам распределительного вала. Вращение распределительного вала происходит по тому же принципу что и вращение коленчатого вала. Масло создаёт кольцо вокруг каждой шейки распределительного вала.

Если устройство системы смазки двигателя имеет конструкцию газораспределительного механизма с применение коромысел клапанов. Присутствует канал который подаёт масло в вал коромысел. По валу к втулкам коромысел. Через втулки и канал в коромыслах масло поступает в регулировочный винт. Через него смазываются штанги толкателей  коромысел.  При использовании других конструкций ГРМ. Существуют масляные каналы, через которые масло поступает к ним. Рокера, гидрокомпенсаторы, толкатели и другие элементы конструкции ГРМ.

То есть все механизмы двигателя связаны между собой масляными каналами.  В которых создаётся давление масла.

Масляный насос

Давление масла создаёт масляный насос. Как правило шестеренный. Благодаря минимальным зазорам между вкладышами, шейками валов, калиброванными отве5рстиями. Предназначенными для разбрызгивания масло. В системе поддерживается необходимое рабочее давление масла.

Любая гидравлическая система имеет один и тот же принцип действия. Масляный насос не начнет создавать давление до тех пор пока масло не встретить сопротивление. Или в нашем случае пока есть сопротивление для масла во вкладышах и калиброванных отверстиях насос создает необходимое рабочее  давление.

Давление масла в системе

Коренные и шатунные шейки коленчатого вала, шейки распределительного вала, вал коромысел имеют зазоры между втулками и вкладышами в среднем не превышающим 0,15 мм. Этого достаточно чтобы насос создавал  в системе на рабочее давление от 0,2  до 6,5мм. Давление может создавать и большее. Насос будет давить до тех пор пока н разрушится. Разрушение насоса предохраняет редукционный клапан. Он устанавливается либо в самом насосе, либо в масляном канале. Давление при котором происходит сброс масла в обратку составляет 6,5 нм. Как только давление в системе становится меньше. Насос снова вступает в работу. Редукционный клапан представляет  собой шарик и поршенек с пружиной. Пружина подбирается таким образом. Что сдерживает требуемое давление . При возникновении большего давления. Шарик или поршенек открывают магистраль где создаётся основное давление и по каналам масло начинает поступает на слив в картер двигателя, То есть в обратку. Давление падает шарик или поршенёк закрывают магистраль. В ней снова начинает поддерживаться рабочее давление.

Магистраль высокого  и низкого давления

Устройство системы смазки двигателя имеет магистраль низкого и высокого давления. Высокое давление создаётся нагнетанием масла в систему. Низкая магистраль подает масло в насос. Элементами низкой магистрали являются масло заборник и трубка подводящая масло от масло забурника к насосу. Масло заборник представляет собой расширение на конце поводящей трубки. Закрытое сеткой. Сетка служит для предохранения от попадания в насос крупных элементов. Это может быть нагар, куски металла, стружка.

Фильтр тонкой очистки масла

В магистрали высокого давления установлен   фильтр тонкой очистки масла. Параллельно с ним , или непосредственно в фильтре предусмотрен клапан. Он открывается в случае засорения фильтрующего элемента. Масло начинает проходить через клапан. Так как фильтр перестаёт пропускать требуемое для работы двигателя количество масла.  Еще его называют байпасный клапан. Или проще сказать резервный, запасной путь для движения масла.

Причины низкого давления масла в двигателе

Причины низкого давления масла в двигателе могут возникать в различных узлах. Они  связаны между собой как с общим износом двигателя, так и с выходом из строя отдельных механизмов двигателя. Влияющих на работу системы смазки  в целом.

Износ деталей.

Износ шеек валов, вкладышей, приводит к увеличению зазора между ними.  Маслу становится легче выходить из под  рабочей поверхности. В результате снижается нагрузка на насос. Он начинает создавать меньшее давление.  Соответственно снижается общее давление в магистралях высокого давления двигателя.

Какое давление масла должно быть в двигателе.

Давление масла должно создавать оптимально устойчивое масляное кольцо вокруг валов и шеек коленчатого и распределительного валов.

Последствия низкого давления масла

 Если давление ниже нормы возникает усиленное трение между валом и вкладышем. Удары возникающие при работе вала о вкладыш становятся более сильными и действенными.  И как результат вкладыши разбиваются. Двигатель клинит.

В среднем практически на всех двигателях допустимое низкое давление составляет  0,2  Нм

Нормальное давление на холостых оборотах двигателя от1,5 до2,5 Нм

При скорости движения 60 км/ч и оборотах 2000 об/мин нормальное давление составляет от3-4 Нм до 6.5 Нм

Выше давление в масляной системе не создаётся благодаря редукционному клапану. Современные автомобили не оборудуются приборами указывающими давление масла. Для контроля давления  достаточно контрольной лампочки давления масла. Она загорается если давление в системе становится ниже 0,2 Нм.

Когда  на холостых оборотах лампочка начинает помаргивать. То это первый звонок того что двигатель подходит к критическому износу. Скоро потребуется ремонт. Если на скорости 60 км/ час лампочка не тухнет, давление масла в системе составляет 0,6 Нм . двигатель эксплуатировать еще можно.

Например двигатель ЗМЗ 511,его устанавливают на автомобиле Газ 53. Очень чувствителен к износу. Низкое давление масла для этих двигателей почти норма. Некоторые водители заклеивают контрольную лампочку, чтобы не  светила в глаза и не отвлекала.  Двигатель завелся на холодную и лампочка погасла на короткое время, до прогрева. Это нормально и лучшего желать не приходится. Но как бы ни было низкое давление губит мотор. И рассчитывать на его долгую работу не приходится.

Износ масляного насоса

Масляный насос как любой механизм подвергается износу. Стачиваются шестерни и плоскости их прилегания. Масло начинает перепускаться внутри насоса. Давление в системе падает. Насосы очень редко выходят из строя. Скорее двигатель станет не пригодным для ремонта.  Ничто не вечно. Существуют специальные стенды для проверки работы насоса. И если возникли сомнения насос можно проверить.

Сетка маслозаборника.

Причины низкого давления масла в двигателе возникают в ситеме забора масла масляным насосом. Нагар стружка, грязь которая возникает в полости двигателя. Забивает сетку маслозаборника. Масло через неё начинает проходить с большим трудом. Насосу не достаточна масла для работы . как результат падение давления в системе двигателя. Прочистить сетку можно, только если снять поддон.

Механическое повреждение поддона двигателя.

Вмятина на поддоне может служить падению давления. Если поддон вмялся внутрь от удара он мог вплотную приблизиться к масло заборнику. Частично перекрыть его. Так же как и при засорении поступления масла будет недостаточно для создания нормального давления в системе.

Трещина на трубке масло заборника.

Возможный удар по поддону может согнуть трубку маслозаборника. В результате в нем появится трещина. Которая нарушит герметичность трубки. Она начнет вместе с маслом подавать воздух в масляный насос. Давление от этого так же упадет. Трубка соединяется с насосом через резиновое уплотнительное кольцо. Таких  уплотнении может быть несколько. В зависимости от конструкции маслозаборника. Возможно, он состоит из нескольких трубок и переходов.  В качестве уплотнений устанавливаются резиновые колечки. Со временем они теряют эластичность. Становятся твердыми. И малейшая нагрузка или смещение трубки. Может вызвать подсос воздуха в месте уплотнения. Это приведет к снижению давления масла в системе высокого давления. Поэтому при вскрытии поддона требуется убедиться что колечки в порядке. Лучше их заменить на новые.

Уплотнения в магистрали высокого давления.

В некоторых конструкциях масляной системы предусмотрены резиновые уплотнения и в магистрали высокого давления. Например, в двигателе Газ 53. Штуцер притягивает корпус  редукционного клапана. Под ним предусмотрена для уплотнения плоское резиновое кольцо. Со временем оно теряет эластичность и становится хрупким. При замене масляного фильтра. Откручивается корпус фильтра. Он вкручен в этот штуцер. Фильтр откручивается.  Штуцер как при откручивании фильтра так и при его затягивании. Обязательно прокручивается. При этом резиновое кольцо, которое должно быть эластичным лопается. Все давление масла уходит под это кольцо. Если об этом не знать давление в двигателе не появится. Поэтому если существует проблема с давлением масла. Необходимо тщательно изучить схему масляной системы.

Диагностика давления масла.

Самая дальняя точка от масляного насоса головка блока двигателя. Естественно  на коромыслах или на распревалу если он расположен в головке блока. Образуется самое низкое давлене. Но для нормальной работы двигателя оно должно присутствовать. Поэтому если даже просто открыть заливную пробку в клапанной крышке. Детали головки тщательно смазываются. При работающем двигателе будут видны брызги масла. Если их нет значит масло поступает с низким давлением. И уже даже по этому факту можно судить о том что в масляной системе неисправность. И уже можно судить о том почему загорелась лампа давления масла.

Но может быть и такое что неисправен датчик давления масла. Лампочка загорается . а детали головки блока смазываются обильно. Можно просто попробовать заменить датчик. Но будет более правильно, если измерить давление при помощи механического манометра.

Необходимо найти где находится датчик давления масла. Открутить его. На его место установить механический манометр. Он точно покажет давление масла в масляной системе. Давление масла ниже 0,2 Нм на холостых оборотах. Означает наличие неисправности.

Любую неисправность в двигателе необходимо начинать со снятия поддона. В первую очередь, конечно необходимо убедиться  в исправном состоянии маслоприёмника и мест соединения с насосом. Отсутствие трещин, грязи состояние уплотнений. Если все в порядке. Проверяются вкладыши коренных и шатунных шеек коленвала. Это можно сделать при помощи калиброванной пластиковой проволоки . Откручивается крышка коренных и шатунных подшипников ставится между шейкой коленвала  и вкладышем пластиковая проволока. Крышка закручивается с усилием, предназначенным для данной модели двигателя. Крышка снова снимается. И по ширине полученного пятна можно судить о величине  образовавшегося зазора. Он не должен превышать более 0,15 мм. Измерение это можно назвать условным. Потому что шейка коленвала изнашивается не равномерно. Износ образует овал. По поперечному сечению шейки вала. Поэтому данное измерение может дать приблизительное представление о износе. И  условно исключить или подтвердить причину неисправности.  Для того чтобы двигаться дальше в поиске неисправности.

Износ  распредвала и гидрокомпенсаторов.

Устройство системы смазки двигателя предполагает размещение распредвала в головке блока. Величина износа также проверяется при помощи пластиковой проволоки . Он не должен превышать  0,1 мм.

Если устройство системы смазки двигателя  предполагает размещение  рапредвала в блоке двигателя.  Можно попробовать  просунуть щуп между шейкой распредвала и втулкой. Если щуп походит, то износ недопустимый для дальнейшей работы. При наличии шатунов сделать это будет трудно. Но как вариант.

О потере масла в валах коромысел можно судить по износу втулок . Коромысла не должны болтаться влево вправо на валу

Стук гидрокомпенсаторов говорит о утечки давления в них.

Конечно более точная картина будет видна при полной разборке двигателя. И все подобные измерения не могут дать точного ответа на вопрос о износе двигателя. Единственное почему можно провести эти измерения, только  для того чтобы обнаружить причину не связанную с износом. Такую как нарушение уплотнений, трещины. Возможно масляный насос вышел из строя или заклинил редукционный клапан в одном положение. В результате чего  масло с магистрали высокого давления сбрасывается в обратку.

Устройство системы смазки двигателя имеет различные конструкции. Правильно определить причину неисправности можно . Зная конструкцию и схему. Но если двигатель прошел более 150 тыс км дело скорее всего в износе.

Назначение и устройство системы смазки

Система смазки служит для подвода масла к трущимся поверхно­стям деталей двигателя, частичного отвода теплоты и продуктов изнаши­вания.

Масло, поступающее к трущимся поверхностям, уменьшает потери на трение и износ деталей, охлаждает трущиеся поверхности и очищает их от продуктов изнашивания.

Автомобильные двигатели имеют комбинированную сма­зочную систему, в которой масло к трущимся поверхностям одних деталей подается под давлением от насоса, а к другим -путем разбрызгивания и самотеком.

Под давлением смазываются наиболее нагруженные детали; коренные и шатунные шейки коленчатого вала, коренные шейки распределительного вала, подшипники коромысел, поршневые пальцы.

Разбрызгиванием смазываются такие детали, как клапанный механизм, зубчатые колеса газораспределения, «зеркало» цилиндров.

Самотеком смазываются штанги, толкатели, кулачки распределитель­ного вала и др.

Система смазки включает в себя масляный насос, резервуар для масла (поддон картера), маслоприемник с сетчатым фильтром первичной очистки масла, масляные фильтры, масляные каналы и маслопроводы, масляный радиатор, редукционный и перепускные клапаны, масло заливную горловину с крышкой, приборы контроля уровня и давления масла, приборы вентиляции картера.

Редукционный клапан

Редукционный клапан предохраняет систему масло подачи от чрезмерных давлений, возникающих при пуске холодного двигателя, когда вязкость масла велика. Редукционный клапан находится в канале, соединяющем полости нагнетания и всасывания. Канал перекрывается шариком или поршнем, поджимаемым пружиной. С помощью пробки регулируют сжатие пружины, а следовательно, и давление в масляной магистрали. При повышении давления поршень отходит от седла, и масло проходит из полости нагнетания в полость всасывания.

При работе двигателя масло засасывается из поддона картера насосом через маслоприемник и подается в фильтр. Фильтр, через который прохо­дит все масло, поступающее в главную магистраль, называется последова­тельно включенным или полно поточным. Если проходит только часть мас­ла (10—15 %), фильтр называется не полно поточным.

Из фильтра масло поступает в масляную магистраль, выполненную и виде продольного канала в картере двигателя. Максимальное давление масла, создаваемое насосом, ограничивается редукционным клапаном. Из главной магистрали масло пол давлением по каналам поступает к корен­ным подшипникам коленчатого вала, подшипникам распределительного вала и в полую ось коромысел. От коренных полтинников по каналам и шейках и шеках масло поступает к шатунным подшипникам коленчатого вала. В двигателях марки «ЯМЗ» по каналу в шатуне масло подается под даменнем для смазывания поршневого пальца.
Вытекающее через зазоры в подшипниках коромысел масло разбрызгивается движущимися деталями, стекая по штангам, смазывает их наконечники, толкатели и кулачки распределительного вала.

В картере масло в виде тумана оседает на стенки цилиндров. У некоторых двигателей ь нижней головке шатуна имеется отверстие, через которое при его совпадении с каналом в шатунной шейке масло выбрасывается в наиболее нагруженную часть стенки цилиндра.
Давление масла контролируется электрическим манометром, датчик которого установлен в главной масляной магистрали, а указатели — на щитке приборов. Давление масла в карбюраторных двигателях 0,05 — 0,4 МПа, в дизелях 0,1 — 0,6 МПа.

Для охлаждения масла некоторые двигатели снабжены радиатором. Охлажденное масло сливается в поддон картера.

 

 

 

 

 

Устройство масляного фильтра 

Масляные фильтры служат для очистки масла

от механических примесей (продуктов изнашивания трущихся деталей, нагара и т. п.).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Назначение и устройство системы смазки: 1 и 18 —  пробки маслосливных отверстий; 2- маслоприемник;   3 — масляный насос; 4 — редукционный клапан; 5 — коленчатый вал; 6 – масляная магистраль, 7 — распределительный вал, 8 – масляный радиа­тор; 9 — крышка масло заливной горловины, 10 — коромысло; 11 – крышка головки блока цилиндров; 12 — головка блока цилиндров; 13 — клапан; 14 — штанга; 15 — толкатель; 16 — дат­чик указатель давления масла; 17 — масляный фильтр; 19 — датчик лампы ава­рийного снижения давления масла;   20 — ограничительный клапан; 21 — кран масляного радиатора; 22 — поддон; 23 — отверстие в шатуне; 24 и 25 — масляные каналы в головке и блоке цилиндров, 26 – указатель уровня масла (щуп), 27 — винтовая канавка; 28 и 32 — каналы для стока масла; 29 — пробка; 30 — капал и коленчатом валу; 31 — грязеуловитель; 33- трубка для смазывания зубчатых колес; 34 — канавки на шейке распределительного вала; 35 — зубчатое колесо распределительного вала; 36 — зубчатое колесо коленчатого вала.

Система смазки: 1 — масляный радиатор; 2 — кран масляного радиатора;  3 -предохранительный клапан; 4 — ось коромысел; 5 — стойка оси коромысел; 6 — канал в головке блока цилиндров; 7 – масляный канал в  блоке цилиндров; 8 — центрифуга; 9 — штанга; 10 — толкатель; 11 — главная масляная магистраль; 12 – отверстие в корпусе распределителя; 13 — полость; 14 — маслопровод к центрифуге; 15 и 16 — верхняя и нижняя секции масляного насоса; 17 и 18 — маслоприемник; 19 — поддон; 20 — маслопровод для слива масла из радиатора, 21 — редукционные клапаны, 22 — вторая шейка распределительного нала; 23 — четвертая шейка распределительного вала.

Система смазки

Система смазки служит для подвода масла к трущимся поверхно­стям деталей двигателя, частичного отвода теплоты и продуктов изнаши­вания.

Масло, поступающее к трущимся поверхностям, уменьшает потери на трение и износ деталей, охлаждает трущиеся поверхности и очищает их от продуктов изнашивания.

Автомобильные двигатели имеют комбинированную сма­зочную систему, в которой масло к трущимся поверхностям одних деталей подается под давлением от насоса, а к другим -путем разбрызгивания и самотеком.

Под давлением смазываются наиболее нагруженные детали; коренные и шатунные шейки коленчатого вала, коренные шейки распределительного вала, подшипники коромысел, поршневые пальцы.

Разбрызгиванием смазываются такие детали, как клапанный механизм, зубчатые колеса газораспределения, «зеркало» цилиндров.

Самотеком смазываются штанги, толкатели, кулачки распределитель­ного вала и др.

Система смазки включает в себя масляный насос, резервуар для масла (поддон картера), маслоприемник с сетчатым фильтром первичной очистки масла, масляные фильтры, масляные каналы и маслопроводы, масляный радиатор, редукционный и перепускные клапаны, масло заливную горловину с крышкой, приборы контроля уровня и давления масла, приборы вентиляции картера.

Редукционный клапан

Редукционный клапан предохраняет систему масло подачи от чрезмерных давлений, возникающих при пуске холодного двигателя, когда вязкость масла велика. Редукционный клапан находится в канале, соединяющем полости нагнетания и всасывания. Канал перекрывается шариком или поршнем, поджимаемым пружиной. С помощью пробки регулируют сжатие пружины, а следовательно, и давление в масляной магистрали. При повышении давления поршень отходит от седла, и масло проходит из полости нагнетания в полость всасывания.

При работе двигателя масло засасывается из поддона картера насосом через маслоприемник и подается в фильтр. Фильтр, через который прохо­дит все масло, поступающее в главную магистраль, называется последова­тельно включенным или полно поточным. Если проходит только часть мас­ла (10—15 %), фильтр называется не полно поточным.

Из фильтра масло поступает в масляную магистраль, выполненную и виде продольного канала в картере двигателя. Максимальное давление масла, создаваемое насосом, ограничивается редукционным клапаном. Из главной магистрали масло пол давлением по каналам поступает к корен­ным подшипникам коленчатого вала, подшипникам распределительного вала и в полую ось коромысел. От коренных полтинников по каналам и шейках и шеках масло поступает к шатунным подшипникам коленчатого вала. В двигателях марки «ЯМЗ» по каналу в шатуне масло подается под даменнем для смазывания поршневого пальца.
Вытекающее через зазоры в подшипниках коромысел масло разбрызгивается движущимися деталями, стекая по штангам, смазывает их наконечники, толкатели и кулачки распределительного вала.

В картере масло в виде тумана оседает на стенки цилиндров. У некоторых двигателей ь нижней головке шатуна имеется отверстие, через которое при его совпадении с каналом в шатунной шейке масло выбрасывается в наиболее нагруженную часть стенки цилиндра.
Давление масла контролируется электрическим манометром, датчик которого установлен в главной масляной магистрали, а указатели — на щитке приборов. Давление масла в карбюраторных двигателях 0,05 — 0,4 МПа, в дизелях 0,1 — 0,6 МПа.

Для охлаждения масла некоторые двигатели снабжены радиатором. Охлажденное масло сливается в поддон картера.

 

 

 

 

 

Устройство масляного фильтра 

Масляные фильтры служат для очистки масла

от механических примесей (продуктов изнашивания трущихся деталей, нагара и т. п.).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Назначение и устройство системы смазки: 1 и 18 —  пробки маслосливных отверстий; 2- маслоприемник;   3 — масляный насос; 4 — редукционный клапан; 5 — коленчатый вал; 6 – масляная магистраль, 7 — распределительный вал, 8 – масляный радиа­тор; 9 — крышка масло заливной горловины, 10 — коромысло; 11 – крышка головки блока цилиндров; 12 — головка блока цилиндров; 13 — клапан; 14 — штанга; 15 — толкатель; 16 — дат­чик указатель давления масла; 17 — масляный фильтр; 19 — датчик лампы ава­рийного снижения давления масла;   20 — ограничительный клапан; 21 — кран масляного радиатора; 22 — поддон; 23 — отверстие в шатуне; 24 и 25 — масляные каналы в головке и блоке цилиндров, 26 – указатель уровня масла (щуп), 27 — винтовая канавка; 28 и 32 — каналы для стока масла; 29 — пробка; 30 — капал и коленчатом валу; 31 — грязеуловитель; 33- трубка для смазывания зубчатых колес; 34 — канавки на шейке распределительного вала; 35 — зубчатое колесо распределительного вала; 36 — зубчатое колесо коленчатого вала.

Система смазки: 1 — масляный радиатор; 2 — кран масляного радиатора;  3 -предохранительный клапан; 4 — ось коромысел; 5 — стойка оси коромысел; 6 — канал в головке блока цилиндров; 7 – масляный канал в  блоке цилиндров; 8 — центрифуга; 9 — штанга; 10 — толкатель; 11 — главная масляная магистраль; 12 – отверстие в корпусе распределителя; 13 — полость; 14 — маслопровод к центрифуге; 15 и 16 — верхняя и нижняя секции масляного насоса; 17 и 18 — маслоприемник; 19 — поддон; 20 — маслопровод для слива масла из радиатора, 21 — редукционные клапаны, 22 — вторая шейка распределительного нала; 23 — четвертая шейка распределительного вала.

Как работает система смазки двигателя?

Функцией номер один масла в двигателе является именно то, что Вы от него, собственно, и ожидаете: оно позволяет деталям двигателя двигаться. Только представьте себе двигатель без масла — звонкие скрежущие и скрипящие звуки металлических поршней, с трудом продирающихся вверх и вниз внутри сухого цилиндра… Вызывает дрожь по телу, не правда ли?!

Действительно, масло делает очень большую работу в поддержке эффективности работы двигателя. Оно значительно уменьшает трение, что означает, что двигатель должен приложить меньше усилий, чтобы раскручивать шестерни коробки и, в конце концов, колёса нашего авто. Это в свою очередь означает, что наша машина может ездить с меньшим расходом топлива и меньшим пробегом на одном баке. И всё это, не говоря уже о том, как бы двигатель нагревался при сильнейшем трении молниеносно движущегося поршня. Всё это означает меньший износ движущихся деталей двигателя. Регулярная замена масла в системе означает, что Ваш двигатель будет счастлив, что означает, что и Ваш кошелек будет счастлив, и, в конце концов, и Вы сами. Как видим, выигрывают все!

Давайте придумаем сюжет, чтобы нам легче было понять работу смазочной системы двигателя! В роли случайно выбранной молекулы масла из двигателя представим некое живое существо и назовём его Оливером и далее опишем весь его путь вокруг двигателя.

Знакомьтесь, это Оливер!

Масляный картер: Это то место, где Оливер болтается без дела и спит, когда двигатель не делает ничего… гостиная комната, если до конца ассоциировать. В большинстве легковых автомобилей этот «чан» содержит около 4-6 литров масла.

Трубка для подачи масла: Когда двигатель включается, он должен получить нужное количество масла немедленно. Оливер и его нефтяные приятели всасываются через трубку подачи масла и становятся готовы к действию.

Масляный насос: Трубка для подачи масла расположена вертикально, и масло должно подняться вверх. Насос обеспечивает всасывание масла так, что Оливер может двигаться вверх против силы тяжести, а затем немного потесниться со своими друзьями, расположившись значительно ближе друг к другу так, что создаётся давление масла (будем надеяться, что Оливер не забыл использовать дезодорант сегодня).

Клапан сброса давления: Если Оливер и его друзья слишком приблизились друг к другу, то они начинают планировать бунт, а предохранительный клапан даёт им столь необходимого передышку и ослабевает пыл бунтарей. Этот компонент системы смазки двигателя будто говорит Оливеру и его друзьям: «Успокойтесь, дети«.

Масляный фильтр: В то время как Оливер и его друзья могут проходить в двигатель, фильтр проверяет, чтобы те не взяли с собой ничего из запрещённых предметов: песчинки (Оливер очень любит притягивать их), стружка металла — масляный фильтр останавливает проникновение грязи и мусора в рабочее пространство двигателя, которое масло может подобрать на своём последнем этапе пути через систему.

Перфорированные отверстия: Оливер хихикает каждый раз, когда он слышит это словосочетание. Просто он очень маленький и не совсем понимает сложных слов. Это маленькие отверстия, просверленные в коленчатом вале и некоторых других частях системы смазки, которые позволяют маслу покрыть собой все подшипники и цилиндры, которые должны оставаться смазанными.

Отстойник (маслосборник): После того, как Оливер выполнил свою основную работу — позволять движущимся частям двигателя оставаться подвижными за счёт смазки, его рабочий день закончен, и Оливер скользит коротким путём в маслосборник, также известный как отстойник, чтобы снова ничего не делать, пока начальник снова не вызовет его на работу — трубка для подачи масла снова не всосёт его в рабочее пространство двигателя, где он снова начнёт свою работу.

Есть ещё ряд компонентов смазочной системы, и их проще всего увидеть:

Типы смазочных систем двигателя

Есть два основных типа смазочной системы в автомобилях, оба из которых звучат как некие подвиды моржей или что-то вроде того: система с мокрым картером и с сухим картером.

Большинство автомобилей используют мокрый картер. Это означает, что масляный поддон находится в нижней части двигателя, и масло хранится там. Помните гостиную Оливера? Это вроде того, как у него есть ещё и танцпол в клубе. И в этой странной метафоре в роли танцоров выступают поршни с цилиндрами и подшипники.

Главным преимуществом мокрой системы отстойника является его простота. Масло находится в том месте, куда оно стекает самотёком, для этого необходимо не особо много компонентов и инженерных задумок, а также простой ремонт, и всё это относительно дёшево встраивается в машину.

Некоторые автомобили, особенно, спортивные дорогие автомобили используют систему смазку с сухим картером. Это означает, что картер находится не под двигателем — на самом деле, он может быть расположен в любом месте в моторном отсеке. После того, как Оливер делает свою работу в двигателе, он не просто капает в гостиную. Он направляется в самый настоящий VIP номер.

Система сухого картера получает пару бонусов в свои преимущества: во-первых, это означает, что двигатель может быть расположен немного ниже, что дает автомобилю низкий центр тяжести и улучшает стабильность на скорости; во-вторых, он не даёт лишнему количеству масла поступать к коленчатому валу, мешая ему работать, что может сократить мощность автомобиля. А ещё, так как картер может быть расположен в любом месте, означает, что он также может быть любого размера и формы.

Существуют и иные типы систем смазки по другим критериям: так, двухтактные двигатели часто используют совершенно другой тип технологии смазки. Некоторые скутеры, многие газонокосилки и другие машины с двухтактными двигателями имеют получают смазку за счёт смешивания масла с бензином ещё до поступления в рабочее пространство двигателя. В таких двигателях когда бензин испаряется в процессе горения, остаётся масло, которое покрывает движущиеся части двигателя собой.

1.2. Принцип работы системы смазки

Принцип работы всех смазочных систем одинаков (см. рис. 1 и 2). Масло из поддона или масляного бака отсасывается насосом через маслозаборник и нагнетается в главную масляную магистраль. Роль главной магистрали могут выполнять продольные каналы в блок-картере, откуда масло по поперечным сверлениям подводится к подшипникам коленчатого и распределительного валов и другим точкам.

Масло, вытекающее из коренных и шатунных подшипников коленчатого вала и подшипников распределительного вала, а также снимаемое маслосъемными кольцами с зеркала цилиндров, подхватывается кривошипами и противовесами коленчатого вала и разбрызгивается в картере, создавая масляный туман, который, оседая, смазывает зеркало цилиндров, кулачки, зубчатые колеса распределительного вала и поршневые пальцы. В некоторых конструкциях капельки масла, оседая, самотеком поступают к толкателям.

Масляный туман проникает также в зазор между стержнем клапана и его направляющей втулкой.

Некоторые детали двигателя (оси коромысел, узел осевой фиксации распределительного вала, распределительные зубчатые колеса) могут смазываться путем пульсирующей подачи масла. Прерывистость смазывания этих узлов осуществляется посредством золотникового устройства, образуемого лысками и канавками на опорных шейках распределительного вала.

В сетке маслозаборника масло проходит первичную фильтрацию, а после насоса — вторичную.

Часть масла проходит в масляный радиатор и, охлаждаясь, стекает в масляный картер двигателя по шлангу.

Так как давление в главной масляной магистрали должно поддерживаться в определенных значениях (оно не должно меняться в зависимости от температуры масла и частоты вращения коленчатого вала двигателя), то в системе устанавливают редукционный клапан, который при критическом давлении открывается и возвращает часть масла во впускную полость насоса.

Предохранительный клапан установлен последовательно в магистраль радиатора и отключает его, если при малой частоте вращения коленчатого вала давление в смазочной системе падает ниже допустимого; этим достигается увеличение поступления масла в магистраль к подшипникам коленчатого и распределительного валов. В смазочной системе, показанной на рис. 2, перепускной клапан 6 радиатора установлен параллельно. При засорении радиатора или пуске холодного двигателя, когда вязкость масла велика, клапан перепускает масло мимо радиатора, что ускоряет прогрев двигателя.

Давление масла в главной масляной магистрали контролируется манометром. Иногда для контроля температуры масла используют термометр.

Кроме основного контура циркуляции масла, могут быть предусмотрены следующие параллельные контуры:

• неполнопоточного (параллельного) фильтра тонкой очистки;

• смазочной системы воздушного компрессора пневмосистемы автомобиля.

Основными элементами смазочных систем являются масляный насос, редукционные клапаны, масляные фильтры и масляный радиатор.

К смазочной системе относится и устройство для вентиляции картерного пространства.

Назначение, устройство и работа системы смазки двигателя. — Студопедия.Нет

Смазочная система двигателя необходима для непрерывной по­дачи масла к трущимся поверхностям деталей и отвода от них теп­лоты.

При работе двигателя масляный насос нагнетает масло по каналув центробежный фильтр. Далее оно поступает в магистраль, рас­положенную в правой части блок-картера, и по каналам в картере — к опорам коленчатого и распределительного валов. От коренных подшипников по каналам коленчатого вала масло попадает в шатун­ные подшипники и, выходя из них, разбрызгивается с внешней сто­роны на стенки цилиндров, образуя масляный туман. В летнее время для охлаждения масла включают радиатор с по­мощью крана. Клапан предотвращает падение давления в мас­ляной магистрали из-за излишнего поступления масла в радиатор. В случае падения давления масла ниже допустимого значения на щитке приборов загорается сигнальная лампа.

Устройство смазочной системы:

 Масляный насос создает циркуляцию масла в смазочной системе. Его обычно устанавлива­ют на блок-картере или крышке коренного подшипника коленча­того вала. Масляный радиатор используют в летнее время для охлаждения масла. Он представляет собой неразборный узел, состоящий из ряда стальных трубок овального сечения и двух боковых бачков. Для увеличения поверхности охлаждения трубки проходят через охлаждающие пластины. Фильтра служат для очистки масла в системе от примесей, которые появляются из-за износа трущихся деталей, по­падания пыли из воздуха, образования нагара и отложения смолис­тых веществ. В двигателях используют фильтры тонкой очистки со сменными филь­трующими элементами и фильтры грубой очистки масла. При загрязнении фильтрующего элемента и охлажденном масле, поступающем под давлением, открывается перепускной клапан и масло направляется в масляную магистраль, минуя фильтр.

 

2. Неисправности приборов освещения и способы их устранения.

К характерным неисправностям системы освещения можно отнести: полный или частичный отказ в работе отдельных ламп освещения, частое перегорание нитей ламп, отказ в работе всех приборов освещения, нарушение регулировки света фар. Причинами отказа могут быть: обрыв в цепи, окисление или плохой контакт в соединениях цепи, короткое замыкание проводов на массу. Неисправный участок цепи может быть обнаружен с помощью контрольной лампы. Сгоревшие лампы заменяются на новые. Нарушение контакта восстанавливают зачисткой и подтяжкой клемм, оборванный провод сращивают или заменяют на новый. Частое перегорание нитей ламп обычно вызывается повышенным напряжением генератора. Поэтому следует проверить или заменить регулятор напряжения. Отказ в работе всех приборов может быть вызван срабатыванием предохранителей из-за короткого замыкания в цепях. Следует проверить состояние предохранителей и устранить короткое замыкание.Для световой сигнализации характерны те же неисправности, что и для приборов освещения. Кроме того, может быть неисправен переключатель или прерыватель указателей поворота, а также включатель сигнала торможения. Эти приборы подлежат ремонту в мастерской или замене на новые.

 

Работы, проводимые на автомобиле УРАЛ-4320 при подготовке к преодолению водной преграды.

Перед преодолением брода необходимо тщательно проверить состояние дна, убедиться в отсутствии глубоких ям, крупных камней, топких мест, а также тщательно выбрать и проверить места входа автомобиля в воду и выхода его из воды.

Непосредственно перед переездом брода необходимо установить давление в шинах в пределах 0,15 … 0,05 МПа (1,5 … 0,5 кгс/см2) соответственно плотности прибрежного грунта. Закрыть кран на трубке вентиляции картера двигателя.Отключить вентилятор, для чего ослабить натяжение приводного ремня перемещением генератора на кронштейне Вывернуть коническую пробку со шплинтом из нижней крышки картера сцепления и завернуть герметичную пробку. В аккумуляторную батарею следует установить гидростатические пробки.Перед входом в воду двигатель должен поработать 3…5 мин со средней частотой вращения коленчатого вала. При этом автомобиль не должен двигаться; за это время при закрытом кране вентиляции в картере двигателя создается некоторое избыточное давление.

При входе в воду автомобиля водитель должен открыть дверь кабины для того, чтобы вода быстро затопила кабину, не позволяя ей всплывать и разгружать передний мост. При выходе из брода двери кабины должны быть открыты, чтобы вода быстрее вылилась из нее. Входить в брод следует осторожно, не создавая большой волны перед автомобилем; двигаться при преодолении брода следует на первой или второй передаче коробки передач и на пониженной передаче раздаточной коробки, избегая маневрирования.

При переезде брода нельзя останавливаться, так как вода сразу же начнет вымывать грунт из-под колес, и они будут погружаться. Двигаться надо по возможности по прямой, избегая крутых поворотов.

Протяженность брода, если дно его тщательно разведано и не представляет опасности, может быть достаточно большой и ограничивается только временем движения автомобиля в воде, которое должно быть в пределах 10 … 15 мин. После каждого преодоления брода необходимо проверить состояние масла во всех агрегатах, приоткрывая на них спускные пробки.

Если в каком-либо агрегате в масле будет обнаружена вода — сменить масло в агрегате. Наличие воды в масле можно определить по изменению цвета.

Каждый раз после выхода из брода следует 2…3 раза затормозить автомобиль рабочим тормозом для удаления воды из тормозных камер.

Билет 7

1. Охлаждающие жидкости и требования к ним. Растворы для удаления накипи.

В качестве охлаждающей жидкости применяется низкозамерзающая жидкость ТОСОЛ-А40М или ОЖ-40 «Лена», а также различные антифризы или вода.

Охлаждающая жидкость должна отвечать следующим основным требованиям: иметь достаточно высокую температуру кипения и теплоемкость; обладать температурой замерзания ниже температуры окружающего воздуха; не образовывать на водяной рубашке двигателя и приборах системы охлаждения накипи; не вызывать коррозию деталей двигателя и быть нейтральной к уплотнительным соединениям в системе охлаждения; быть безопасной в обращении.

Удаление накипи с поверхности рубашки охлаждения головки и блока цилиндров и в радиаторах, производится главным образом химическим способом. 10 %-ный раствор каустической соды, кислотные растворы или керосиновый контакт пропускают через рубашку охлаждения блока и головки цилиндров в специальной установке. Раствор каустической соды, подогретый до 80—90 °С, применяют при удалении накипи, содержащей силикатные и гипсовые отложения, только с чугунных блоков и головки цилиндров. После удаления или размягчения накипи детали промывают водой.

Широко применяют для удаления накипи кислотные растворы, главным образом раствор соляной кислоты. Для предотвращения коррозии в раствор соляной кислоты добавляют ингибитор (замедлитель коррозии). При обработке чугунных деталей используют ингибиторы ПБ-5, ПБ-6. Накипь на деталях из алюминиевых сплавов удаляют 6%-ным раствором молочной кислоты с уротропином в качестве ингибитора. После удаления накипи детали промывают 0,5—1 %-ным раствором хромпика. Продолжительность обработки одного блока цилиндра кислотным раствором в установке составляет 20—30 мин.

Накипь из системы охлаждения двигателя периодически удаляют, применяя раствор соляной кислоты. При этом выделяется углекислота, которая разрыхляет накипь и отделяет ее от стенок деталей двигателя, часть накипи переходит в раствор и удаляется из системы охлаждения последующей промывкой.

Соляная кислота разрушает детали двигателя, поэтому к кислотному раствору добавляют специальную присадку — пассиватор («Антра», КС, Ж-1, и др.), которая, не влияя на удаление накипи, ослабляет действие соляной кислоты на металл, уменьшает выделение вредного для здоровья кислотного тумана и взрывоопасного водорода

При образовании накипи ее очищают заправкой системы водой с добавлением 20г техническоготриалона на один литр воды. С таким раствором автомобиль используют 4 …5 дней, при этом в конце дня раствор сливают и заливают новый.

 

Система смазочного масла

Система смазочного масла

Меню 4-тактный двигатель 2-тактный двигатель 2-тактный двигатель крейцкопфа продувка Охлаждение Смазка Система топливного масла Система пуска воздуха

Основы

В Система смазочного масла

**** Выпадающее меню DHTML на основе JavaScript, созданное NavStudio.(OpenCube Inc. — http://www.opencube.com) ****

Смазочное масло для судовой дизельный двигатель решает две задачи; это должно остыть и смазать.

Масло взято из сливной бачок обычно под двигателем винтового типа насос. Его охлаждают, фильтруют и подают в двигатель через впускной маслопровод или впускной коллектор под давлением около 4 бар. На среде 4-х тактный двигатель масло подается в подшипники через отверстия в раме двигателя к Коренные подшипники коленчатого вала.Просверливание коленвала потом подайте масло к шатунной шейке или нижнему подшипнику. Масло затем подводится шатун к поршню или поршню штифт и оттуда до охлаждения поршня, прежде чем вернуться в картер.

Масло также поставляется для смазки коромысла, управляющего впускным и выпускным отверстиями клапаны, а также к распредвалу и приводу распредвалов.

Затем масло стекает из картера в сливной бачок или поддон.

Масло в стоке резервуар постоянно циркулирует через центробежный очиститель. Это необходимо для удаления воды и продуктов горение плюс любые посторонние частицы, которые могут быть масло.

Гильза цилиндра также должны быть смазаны. Это так будет фильм масла между поршневыми кольцами и гильзой, а также что любая кислота, образующаяся при сгорании топлива, нейтрализуется маслом и не вызывает коррозии. Некоторые из эта смазка будет производиться так называемым «разбрызгиванием» смазка », то есть масло, разбрызгиваемое на гильзу вращающийся коленчатый вал.Однако более крупный среднескоростной морской дизельные двигатели также используют отдельные насосы для подачи масла под давление на гильзу цилиндра. Масло проходит через сверления на поверхности хвостовика, где канавки распределяют его по окружности гильзы, а поршневые кольца распределите его вверх и вниз по поверхности лайнера.

Насос предварительной смазки иногда устанавливается особенно на двигатели, где главный насос приводится в движение двигателем.Этот насос имеет электрический привод и перед запуском циркулирует масло по двигателю.

На двухтактном Смазочное масло двигателя крейцкопфа подается в главный подшипники распредвала и привода распредвалов.Отдельная поставка подводится через поворотный рычаг или телескопическую трубу к крейцкопф, где его часть отводится для охлаждения поршня (перемещаясь вверх и назад через шток поршня), в то время как некоторые используется для смазки крейцкопфа и направляющих, а остальное привел просверливание в шатун к нижнему концу или шатунный подшипник. Масло также используется для работы гидравлические выпускные клапаны.

На некоторых двигателях подача масла в подшипник крейцкопфа усилена давлением до примерно 12 бар с помощью второго комплекта насосов. Это масло также используется для управления гидравлической реверсивной передачей для двигатель.

Гильзы цилиндров на двухтактных двигателях смазываются с помощью отдельные нагнетательные насосы, которые используют другую спецификацию масло.Масло, попадающее в отверстия в хвостовике, способно иметь дело с кислотами, образующимися при горении высоких серное топливо.

Масляные канавки в гильза цилиндра

Цилиндровые масленки

Меню DHTML / Меню JavaScript на базе OpenCube

Система смазки

| authorSTREAM

СИСТЕМА СМАЗКИ:

СИСТЕМА СМАЗКИ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ

Потребность в смазке:

Потребность в смазке в I.C. двигатель, движущиеся части трутся друг о друга, вызывая силу трения. Из-за силы трения выделяется тепло, и детали двигателя легко изнашиваются. Мощность также теряется из-за трения, поскольку для приведения в действие двигателя, имеющего большее трение между трущимися поверхностями, требуется больше мощности. Чтобы уменьшить потерю мощности, а также износ движущихся частей, между трущимися поверхностями вводится вещество, называемое смазкой.

Функции смазочного материала:

Функции смазочного материала Смазка уменьшает трение между движущимися частями.Это снижает износ движущихся частей. Он сводит к минимуму потери мощности из-за трения. Обеспечивает охлаждающий эффект. Во время смазки он также отводит некоторое количество тепла от движущихся частей и передает его в окружающую среду через нижнюю часть двигателя (картер). Это помогает уменьшить шум, создаваемый движущимися частями.

Детали двигателя, подлежащие смазке:

Детали двигателя, подлежащие смазке Коленчатый вал Коленчатый вал Большой и малый конец шатуна Поршневой палец Внутренние поверхности стенок цилиндра Поршневые кольца Механизмы клапана Кулачковый вал и т. Д.

Типы систем смазки:

Типы систем смазки Бензиновая система смазки или система смазки туманом. Система смазки с мокрым картером. Система смазки с сухим картером.

Бензиновая система смазки:

Бензиновая система смазки Эта система смазки используется в скутерах и мотоциклах. От 3% до 6% смазочного масла добавляется с бензином в бензобак. Бензин испаряется при работе двигателя. Смазочное масло остается в виде тумана.Детали двигателя, такие как стенки поршневого цилиндра, шатун, смазываются путем смачивания масляным туманом.

Двухтактный двигатель I.C:

Двухтактный двигатель I.C

Недостатки:

Недостатки Если добавлено меньше масла, не будет достаточной смазки и даже это приведет к заклиниванию двигателя. Если добавить больше масла, это приведет к избыточному дыму выхлопных газов и отложению нагара в цилиндре, выхлопных деталях и свечах зажигания.

Система смазки с мокрым картером:

Система смазки с мокрым картером Смазка двигателя В двигателях внутреннего сгорания используются два типа систем смазки двигателей с мокрым картером. Это: Система разбрызгивания Система подачи давления.

PowerPoint Presentation:

Система нагнетания, с небольшими изменениями, является более популярной для более популярных для современных автомобильных двигателей. Система разбрызгивания используется на большинстве газонокосилок и подвесных двигателях. Система с мокрым отстойником проста, недорога и легка.Вот почему практически в каждом производственном двигателе в мире используется смазка с мокрым картером.

Система подачи давления:

Система подачи давления В системе подачи давления масло нагнетается масляным насосом через маслопроводы и просверленные каналы. Масло, проходя через просверленные каналы под давлением, обеспечивает необходимую смазку для коренных подшипников коленчатого вала, втулок поршневых пальцев шатунных подшипников, подшипников распределительного вала, толкателей клапанов, толкателей клапанов и шпилек коромысел.Масло, проходящее по маслопроводам, направляется к распределительным механизмам и коромыслам клапанов для смазки этих деталей.

Система подачи под давлением:

Система подачи под давлением

Система подачи под давлением:

Система подачи под давлением

Презентация в PowerPoint:

Стенки цилиндра смазываются маслом, сбрасываемым с подшипников шатуна и поршневого пальца. В некоторых двигателях в шатунах есть отверстия для слива масла, которые совпадают с просверленными отверстиями в шейке коленчатого вала во время каждого оборота и пропускают масляный пар на стенки цилиндра.Поскольку масло в каналах находится под давлением, каждый раз, когда просверленные отверстия в коленчатом валу и шатуне совпадают с отверстиями в подшипниках, давление заставляет масло через эти просверленные каналы в коленчатый вал и шатун, смазывая их соответствующие подшипники. .

PowerPoint Presentation:

После того, как масло направлено в область, требующую смазки, оно падает обратно в масляный поддон, готовое для повторного сбора и возврата через систему.Когда масло падает, движущиеся части часто разбрызгивают его на другие части, требующие смазки.

Система разбрызгивания:

Система разбрызгивания Система разбрызгивания используется только на небольших четырехтактных двигателях, таких как двигатели газонокосилок. Во время работы двигателя ковши на концах шатунов входят в маслоснабжение, собирают масло, достаточное для смазки шатунного подшипника, и разбрызгивают масло на верхние части двигателя. Масло выбрасывается в виде капель или мелких брызг, которые смазывают стенки цилиндров, поршневые пальцы и клапанный механизм.

Система разбрызгивания:

Система разбрызгивания

Система смазки с сухим поддоном:

Система смазки с сухим поддоном В мокром картере масляный насос всасывает масло со дна масляного поддона через трубку, а затем перекачивает его в остальную часть двигателя. В сухом картере излишки масла хранятся в резервуаре вне двигателя, а не в масляном поддоне. В сухом картере есть как минимум два масляных насоса — один вытягивает масло из картера и отправляет его в бак, а другой забирает масло из бака и отправляет его для смазки двигателя.В двигателе остается минимально возможное количество масла.

Смазка с сухим картером:

Смазка с сухим картером

Презентация в PowerPoint:

Система с сухим картером имеет несколько преимуществ перед мокрой, но главное — это дополнительная мощность. Поскольку в поддоне только минимальное количество масла, значительно снижается вероятность налипания или разбрызгивания масла на вращающиеся узлы двигателя.

PowerPoint Presentation:

В дополнение к откачке масла из поддона внешний масляный насос создает разрежение внутри поддона и блока, что дополнительно увеличивает мощность за счет улучшения кольцевого уплотнения.Другими преимуществами системы с сухим картером являются увеличенная емкость масла из-за внешнего бака, возможность легко добавлять удаленные маслоохладители, а поскольку поддон не хранит масло, он может быть довольно мелким, чтобы обеспечить более низкое размещение двигателя.

Недостатки:

Недостатки Система с сухим картером сложнее, дороже и тяжелее, но она обеспечивает непрерывную смазку при любых условиях и обещает повышенную мощность за счет уменьшения ветрового сопротивления.

ВОПРОСЫ:

ВОПРОСЫ

СПАСИБО !!:

СПАСИБО !! — MIHIR


централизованная система смазки и смазка для промышленности

Централизованная смазка Vogel:

Центральные смазочные узлы для смазочных машин и механизмов подразделяются на следующие системные варианты:

  • Однопоточные системы
  • Прогрессивные системы
  • Системы смазки цепей
  • Многополюсные системы

Однолинейные системы:

Однолинейная смазка часто используется в следующих областях применения: каландр, машиностроение, пластинчатые конвейеры, машины для очистки бутылок, прессы, упаковочные машины, нагрев шин, станки, оборудование для кирпичных заводов и т.

Эти однолинейные системы подходят для более чем 100 точек смазки. Однако общая длина линии 30 метров и давление насоса 160 бар не должны превышаться.

Насос централизованной системы смазки подает смазочный материал (масло или полужидкую консистентную смазку) в главный трубопровод. Затем основная линия разветвляется отдельно или группируется к распределителям рядом с точкой смазки. Эти распределители точно дозируют смазку (даже при высоком противодавлении) в линии, ведущей непосредственно к месту износа.Во время цикла смазки трубопровод находится под давлением, которое затем распределяет дозированное масло или полужидкую консистентную смазку по всем точкам смазки. Далее магистральный трубопровод выводится через соединение с всасывающей камерой насоса. Здесь смазка переставляется внутри распределителей.

Однолинейная централизованная смазка дает множество преимуществ:

  • Системы могут быть легко расширены за счет новых дистрибьюторов (или равно сокращены) в зависимости от требований.
  • Дозируемое количество можно точно согласовать с точками смазки, отрегулировав распределительный винт внутри распределительных устройств в соответствии с количеством необходимого смазочного материала.
  • Основная линия разгружается во время интервалов смазки.
  • Во время интервалов смазки излишек смазочного материала перемещается внутри распределителей, т.е. переносится с нижней стороны поршня на его верхнюю сторону. Одновременно этот процесс обеспечивает то, что смазка не попадает ни в какие нерегулируемые точки смазки.
  • Количество смазки, которое распределяют распределители, во многом не зависит от противодавления.
  • Возможна полностью автоматическая работа в установках с однопроводными насосами с приводом от двигателя.Единственное, что нужно знать, — это правильная настройка периодов простоя.

Прогрессивные системы:

Системы

Progressive могут использоваться в установках с количеством точек смазки до 100, в которых прогрессивный насос сочетается с прогрессивными распределителями. Эти системы также подходят как для масляной, так и для полужидкой смазки. Прогрессивный насос транспортирует смазочный материал по главной магистрали к главному распределителю, который распределяет среду по остальным распределителям и, таким образом, к точкам смазки.Прогрессивные распределители могут выпускать смазочный материал в очень небольших заданных количествах постепенно (продвигаясь) и в определенной последовательности через все отдельные выпускные отверстия к связанным точкам износа. Как только будет поставлена ​​последняя точка износа, система смазки автоматически перейдет в первую позицию. Если во время цикла происходит прерывание, после перезапуска смазка продолжается именно с этой точки. Эти системы можно найти в таких областях применения, как деревообрабатывающее оборудование, прессы, штампы, упаковочное оборудование, растениеводство, станки и т. Д.

Прогрессивные системы обладают следующими преимуществами:

  • Незначительные капиталовложения (необходимы только одна основная линия, один стандартный нагнетательный насос и сравнительно стандартные распределители).
  • Если установлены клапаны обратного давления, несколько групп смазки можно включать и выключать через прогрессивные распределители.
  • Функциональное управление легко с помощью индикаторов движения на распределителях или пульте дистанционного управления.
  • Дистрибьюторы относительно небольшие по размеру.

Системы смазки цепей:

Система смазки цепи для полужидкой консистентной смазки / пластичной смазки:

Пластинчатые конвейеры и другие подобные устройства часто оснащены подъемно-транспортными устройствами и масленками. Для этого существуют системы смазки, обеспечивающие непрерывную автоматическую смазку. Используется лишь небольшое количество подвижных частей. Смазочные элементы управляются поворотными клапанами. Эти элементы смазывают болты на цепных колесах при отклонениях.

Системы смазки цепи маслом:

Мы также предлагаем решения по централизованной смазке для подачи в точки смазки цепей небольшого количества масла без использования сжатого воздуха. Соответствующие насосы могут обеспечивать до 12 точек смазки цепей. Многопоточные системы позволяют подавать значительно большее количество точек смазки. Их главное преимущество — минимальное количество масла (0,01 см³ / 0,025 см³), необходимое для каждой точки смазки и цикла смазки.Эти системы часто используются в автомобильной промышленности.

Многополюсные системы:

Многоканальная централизованная смазка в основном используется для смазывания отдельных машин и небольших машин или групп устройств. Смазка дозируется и дозируется через несколько небольших выходов на насосе. Каждая выпускная линия соединяется непосредственно с точкой смазки. Из-за типа конструкции смазочных насосов количество точек смазки ограничено 32. Дальнейшее увеличение точек износа возможно только при использовании прогрессивных распределителей.

Максимальная длина строки зависит от нескольких параметров:

  • Консистенция смазочного материала и возможности транспортировки
  • Поперечное сечение линий
  • Насос напорный
  • Объемный поток
  • Рабочая температура

Обычно макс. Длина линии может оцениваться от 20 до 40 метров. Если линия слишком длинная, сопротивление трению труб увеличивается, в случае сомнений может превысить избыточное давление насосов.

Многополюсные системы используются для следующих приложений:
Деревообрабатывающее оборудование, прессы, штампы, экскаваторы, краны, обрезки, подъемники, станки, конвейерные системы, упаковочные машины, компрессоры, камнедробилки, строительная техника, автомобильная промышленность и катки.

Заметным преимуществом централизованной смазки является возможность подачи питания в систему через машину, которую необходимо смазывать, что устраняет необходимость в дополнительных системах управления.Дозирование доступно индивидуально для каждой точки смазки. Продолжительная работа приводит к небольшому количеству смазки.

Как работает система воздушной смазки для судов?

Когда Mitsubishi выпустила свою систему воздушной смазки, это была лишь одна из нескольких технологий энергосбережения для судов. Система воздушной смазки Mitsubishi (MALS) была первой системой такого рода, которая обещала экономию энергии и сокращение выбросов с судов, использующих инновационную технологию воздушной смазки.

Однако судоходная отрасль вскоре осознала потенциал этой технологии, и вскоре крупные игроки, такие как NYK Group of Companies и Damen Shipyards Group, представили свои собственные исследования и эксперименты в этой области.

Согласно DNV, одному из ведущих мировых классификационных обществ, система воздушно-пузырьковой смазки является одной из многообещающих технологий, которая поможет судам повысить их эффективность и сократить потери энергии.

Что такое система воздушной смазки для судов?

Система воздушной смазки

— это метод уменьшения сопротивления между корпусом корабля и морской водой с помощью пузырьков воздуха.Распределение пузырьков воздуха по поверхности корпуса снижает сопротивление, действующее на корпус корабля, создавая эффекты энергосбережения. При правильной конструкции корпуса ожидается, что система воздушной смазки позволит сократить выбросы CO2 на 10-15% при значительной экономии топлива.

Как работает система воздушной смазки?

Система воздушной смазки работает по простому принципу, заключающемуся в улавливании слоя пузырьков воздуха под корпусом корабля. Воздуходувка или специальная система используются для создания пузырьков воздуха, которые непрерывно пропускают их под поверхностью корабля.Выпускные отверстия для воздушных пузырьков создаются в разных местах в нижней части корпуса, симметрично по обеим сторонам от центральной линии корабля.

Воздух продувается с постоянной скоростью, образуя слой пузырьков, который снижает сопротивление и сопротивление между кораблем и морской водой. Система

для непрерывного восполнения потерянных пузырьков воздуха обеспечивает поддержание равномерного слоя пузырьков воздуха под кораблем и получение желаемого эффекта.

Проблемы с системой воздушной смазки

Несмотря на то, что система воздушной смазки является многообещающей технологией, ее применение и эффективность на судах вызывают некоторые опасения.Некоторые из основных:

  • Система воздушной смазки (ALS) до сих пор может использоваться только для определенных типов судов с плоским днищем. Суда с V-образным корпусом, такие как некоторые военные корабли или прогулочные суда, могут не воспользоваться преимуществами системы воздушной смазки.
  • Удержать слой пузырей под корпусом корабля — непростая задача. Хотя такие решения, как выступающие гребни по краям корпуса, могут помочь в улавливании слоя пузырьков, всасывающий эффект гребного винта на пузырьки трудно отрицать.Другое решение — спроектировать корму или корпус корабля таким образом, чтобы они задерживали пузырьки воздуха под корпусом. Однако это существенно увеличило бы стоимость постройки корабля.
  • Также есть опасения, что воздушные полости, предназначенные для улавливания пузырьков воздуха, могут повлиять на управляемость и устойчивость корабля в море. Если это правда, это может вызвать затруднения для корабля и экипажа, особенно в бурном море.
  • Пузырьки воздуха, покидающие поверхность корпуса, попадают в гребной винт корабля.Это может повлиять на эффективность, шум и вибрацию гребного винта. Хотя согласно экспериментам, проведенным Mitsubishi, влияние пузырьков воздуха на винт было незначительным, волнение на море и изменение плотности жидкости могут привести к неблагоприятным результатам.
  • Для получения желаемого эффекта важно, чтобы пузырьки воздуха были одинакового размера и равномерно распределялись под поверхностью корпуса. Более того, изменение диаметра воздушных пузырей резко повлияет на распределение воздушных пузырей под корпусом.Поэтому необходимо расположение пузырьков, чтобы пузырьки имели одинаковый диаметр (если это возможно) и были хорошо распределены под корпусом судна.

Что касается MALS, компания утверждает, что наряду с высокоэффективным корпусом судна контейнеровоз, оснащенный системой воздушной смазки, может предложить сокращение выбросов CO2 до 35% по сравнению с обычными контейнеровозами. . Недавние результаты также подтвердили утверждение, что существенная экономия топлива и сокращение выбросов углерода возможны с помощью системы воздушной смазки в сочетании с другими многообещающими экологичными технологиями для судов. Система воздушной смазки

— это теперь технология, которая доказала свою эффективность, например, снижение выбросов углерода и значительную экономию топлива. С ростом цен на топливо и усиливающимся давлением с целью сделать суда экологичнее, судоходные компании сейчас внедряют многообещающие технологии, которые помогут им сократить выбросы углерода и снизить эффективность судов. Согласно сообщениям, такие компании, как круизные лайнеры AIDA, а также несколько других судоходных компаний уже подтвердили свои планы по внедрению систем воздушной смазки на своих судах.

Узнайте больше о системе воздушной смазки Mitsubishi здесь.

Артикул: Mitsubishi

Кредиты изображений: nyk, mhi-global, motorship

li {float: left; width: 48%; min-width: 200px; list-style: none; margin: 0 3% 3% 0 ;; padding: 0; overflow: hidden;} # marin-grid-81401> li .last {margin-right: 0;} # marin-grid-81401> li.last + li {clear: both;}]]>

Общие сведения о лубрикаторах и смазочных системах

Смазочные устройства и системы смазки распределяют масла и смазку по механическим устройствам, таким как подшипники, конвейерные цепи, железнодорожные рельсы, пневматические инструменты или сальники, с целью минимизации трения между движущимися частями.Смазочные материалы уменьшают трение качения и скольжения, сводят к минимуму износ и коррозию, повышают эффективность, изолируют загрязнения и имеют решающее значение для работы многих движущихся механических компонентов. Лубрикаторы могут варьироваться от простейшего ручного шприца для смазки до сложных автоматизированных центральных систем, которые периодически распределяют смазочные материалы во множество точек смазки на производственном предприятии, на корабле или в аналогичных ситуациях, когда механическое оборудование работает и нуждается в преимущества смазочных материалов.

Что касается систем, то данная статья в первую очередь касается именно этих последних, внешних систем. Хотя в двигателе внутреннего сгорания определенно используется система смазки, ее нельзя будет покупать скрытно, но по большей части она присуща самому двигателю. Некоторые очень большие низкооборотные дизели используют внешние лубрикаторы для впрыска масла на стенки цилиндров, но это особые области применения.

В строительном оборудовании используются системы смазки, обеспечивающие эффективную работу
соединений и компонентов.

Изображение предоставлено: Lestertair / Shutterstock.com

Основная идея лубрикаторов и систем смазки состоит в том, чтобы взять ручную, важную задачу — снизить трение за счет смазки или смазки — и устранить некоторые неудобные, иногда опасные и, безусловно, повторяющиеся аспекты деятельности, применяя автоматизацию для меньшего или в большей степени. Если не брать в расчет шприцы для смазки, в этой статье будут рассмотрены системы смазки, охарактеризованные этими тремя классификациями:

  1. Лубрикаторы одноточечные
  2. Многоточечные системы смазки
  3. Системы централизованные, автоматизированные

Также будут обсуждаться некоторые специальные области применения систем смазки.Для получения дополнительной информации о типах масел и пластичных смазок, обычно используемых в смазочных материалах, см. Соответствующее руководство по смазочным материалам.

Особые типы оборудования

Одноточечные лубрикаторы

Одноточечные лубрикаторы предназначены для одной пресс-масленки, например, на опорных блоках или подшипниках двигателя. Они могут быть с пружинным приводом, с электрохимическим давлением или с двигателями с батарейным питанием. Одноточечные лубрикаторы также используются для дозирования масла к механическим компонентам и иногда называются капельными лубрикаторами или масленками.Они оснащены щетками и представляют собой эффективный метод смазки роликовой цепи.

Вязкость смазки зависит от температуры и влияет на способность лубрикатора распределять смазку по компоненту. Такое поведение может повлиять на выбор лубрикаторов для использования вне помещений. Моторизованные или поршневые лубрикаторы не работают против какого-либо противодавления в компоненте и могут быть рассчитаны по времени для периодической подачи известного объема масла или смазки. Электрохимические лубрикаторы вырабатывают сжатый газ, который вытесняет смазку из устройства с постоянной скоростью.Скорость можно отрегулировать в соответствии с использованием компонента, но на скорость будут влиять колебания вязкости.

Электрохимические лубрикаторы обычно приобретаются как одноразовые устройства, которые можно настроить для подачи смазки в течение определенного периода времени, например, одного месяца, трех месяцев или одного года. После установки устройства в точке смазки установщик активирует его, что начинает процесс электрохимического производства газа, создающего давление в устройстве. Поскольку смешивание различных пластичных смазок может ухудшить характеристики смазочного материала, производители этих устройств обычно продают их с предварительно заполненными различными составами.

Моторизованные лубрикаторы, поскольку они более сложные и, следовательно, более дорогие, обычно продаются в виде повторно заправляемых единиц. Как правило, аккумулятор меняют во время заправки.

Эти узлы очень популярны для смазки подшипников и подшипниковых узлов конвейеров, двигателей, насосов и воздуходувок. Их можно установить непосредственно на подшипник или по трубопроводу можно подвести к точке смазки поблизости, чтобы обойти ограждения или барьеры или упростить замену / заправку в труднодоступных или опасных местах.

Узлы с пружинным приводом — самые простые из одноточечных лубрикаторов. Для работы им не нужны батареи или электричество. Пружины можно выбирать из нескольких диапазонов, чтобы соответствовать выбору смазочных материалов и рабочим температурам. Многие из них многоразовые; некоторые предназначены для одноразового использования.

Масляные лубрикаторы бывают нескольких видов: самотечные или капельные, фитильные и постоянного уровня. В масленках с гравитационным потоком используются регулируемые вручную игольчатые клапаны для подачи прерывистого потока масла к механическим компонентам.Подсчет капель в минуту осуществляется путем наблюдения за ними через смотровое стекло, которое является неотъемлемой частью масленки. Добавление фитиля или щетки в масленку с гравитационным потоком позволяет маслу лучше достигать детали, как, например, в случае кулачкового толкателя или роликовой цепи.

Даже в старых капельных лубрикаторах используются прозрачные резервуары и стаканы.

Изображение предоставлено: MRo / Shutterstock.com

Лубрикаторы постоянного уровня используются в основном с закрытыми подшипниками и зубчатыми передачами, для обеспечения надлежащей смазки которых требуется определенный уровень масла в корпусе.Внешний лубрикатор определяет падение уровня в корпусе и добавляет необходимое количество подпитки. Эти системы обычно не имеют питания и включают в себя прозрачные масляные резервуары, которые необходимо время от времени пополнять.

Многоточечные лубрикаторы

Простейшим из многоточечных лубрикаторов является групповая компоновка Церка, очень распространенная на мобильном оборудовании, которая позволяет механику распределить порцию смазки на все основные компоненты с одной станции. Это не совсем лубрикатор как таковой, каждый смазочный ниппель жестко прикреплен к своему конкретному компоненту, что предотвращает частое ползание со стороны механика или оператора для проведения этого базового обслуживания.На следующем этапе все точки смазки связываются с одним фитингом Zerk, и оператор смазывает все сразу с помощью ручного пистолета. Такие приспособления популярны на строительной технике и аналогичных машинах, где регулярная и частая смазка является постоянной рутиной.

Подвод нескольких точек смазки к центральному месту несколько упрощает смазочные работы.

Изображение предоставлено: Стивен Дилкс / Shutterstock.com

Автоматические многоточечные лубрикаторы сочетают в себе идею одноточечного лубрикатора и нескольких мест смазки для достижения автоматизированного дозирования смазки с помощью одного электрического подключения.Эти устройства часто имеют программируемые функции, ограниченный набор сигналов тревоги, а также резервуары значительной емкости.

Централизованные автоматизированные системы

Автоматизированные системы смазки можно охарактеризовать как одно-, двух- и многорядные. Система обычно включает в себя насос, устройства измерения и мониторинга, контроллер, а также необходимые трубки и фитинги для каждой точки смазки.

Решение об установке одно- или двухмагистральной системы основывается на количестве точек, требующих смазки.Однолинейные системы обычно могут обрабатывать почти тысячу точек, в то время как двухлинейные системы могут обрабатывать почти вдвое больше. Оба обычно способны достигать расстояния до 100 ярдов или около того от насоса / резервуара. Однолинейные системы часто подходят для автономных машин, например, в упаковочной, полиграфической и подобных отраслях. Более крупные двухпоточные системы подходят для тяжелых, грязных перерабатывающих производств, таких как сталелитейные или цементные заводы.

Системы описываются как параллельные или прогрессивные.Параллельные системы будут распределять смазку в каждую точку независимо от состояния любой другой точки. То есть, если одна точка смазки заблокирована, все остальные точки в системе все равно будут смазаны. Прогрессивные системы полагаются на то, что каждая точка системы успешно смазывается до того, как будут обработаны последующие точки. У каждого подхода есть свои преимущества. В параллельных системах вероятность нехватки нескольких точек сводится к минимуму. В прогрессивных системах можно потерять несколько баллов из-за одной блокировки, но это маловероятно, поскольку любая неисправность в системе будет быстро обнаружена.

Ни один из методов не требует подачи электроэнергии на точки смазки. Эти системы приводятся в действие гидравлически, дозируемое количество определяется отверстиями, которые можно приобрести в различных фиксированных размерах или в виде регулируемых единиц. Электроэнергия требуется для насоса и для одного или двух датчиков давления, которые расположены прямо перед последними дозирующими устройствами. Электромагнитные клапаны могут быть добавлены для создания многозонных систем; эти клапаны, конечно, требуют энергии для работы. Смазка не подается постоянно, а впрыскивается в течение части системного цикла.В циркуляционных системах смазки масло обычно подается непрерывно. Автоматизированными системами смазки можно управлять с помощью базовых таймеров выдержки или с помощью более сложных программируемых логических контроллеров или ПЛК, которые могут определять, когда система работает, количество циклов и т. Д. И которые предлагают уровни сигналов тревоги для состояния низкого резервуара, заблокированных выходов и т. Д. и т.д., а также обеспечивают мониторинг расхода и температуры. Насосы обычно конфигурируются для работы с маслом или консистентной смазкой, но они могут быть ручными, гидравлическими, пневматическими или электрическими.Форсунки, используемые в однолинейных системах, полагаются на давление в системе для преодоления сопротивления пружины в форсунках. Они индивидуально регулируются для дозирования определенных объемов смазки и рассчитываются на основе максимального количества, вводимого за один выстрел. Форсунки разной мощности можно комбинировать в одной системе смазки. Обычно штифт или шток обеспечивают визуальную индикацию того, что каждый инжектор работает. Разделительные клапаны используются для разделения цикла смазки на полупериоды с помощью перемещающихся поршней, которые позволяют смазывать большее количество точек данной системой.Такие клапаны обычно объединены в группы и могут быть установлены с закупоренными портами, чтобы в дальнейшем можно было расширить систему смазки.

Приложения

Строительное оборудование использует автоматические и ручные системы для смазывания многих соединений кранов, экскаваторов и аналогичного крупного механического оборудования. В оборудовании, используемом для обработки и упаковки пищевых продуктов, используются системы автоматической смазки для распределения смазки во многих точках, которые часто подвергаются мойке. Конвейерные системы и подвесные тележки полагаются на автоматическую смазку конвейерных цепей.На железных дорогах применяется автоматическая смазка на крутых поворотах, чтобы уменьшить износ гребней колес и шум.

В станках используются системы смазки для уменьшения трения на путях, а также для подачи смазочно-охлаждающей жидкости в сам процесс обработки. Так называемые системы смазки с минимальным количеством смазки стали популярными благодаря своей способности уменьшать количество смазки, используемой при удалении металла. Редукторы часто оснащены распылительными лубрикаторами, которые непрерывно направляют масло в зубчатое зацепление.Воздушное оборудование обычно требует, чтобы FRL или лубрикаторы-регуляторы были установлены перед точками подачи.

Типичный автоматический многоточечный лубрикатор для конвейерной цепи.

Изображение предоставлено: DropsA USA

Примечания к выбору

Как и любая автоматизированная система, лубрикаторы и системы смазки усложняют то, что можно было бы считать рутинной, но необходимой ручной задачей. Одним из преимуществ смазывания оборудования вручную является то, что механик или оператор вынужден обходить его и визуально и на слух проверять работоспособность и состояние машины.Регулярные визуальные осмотры могут выявить проблемы до того, как они перерастут в более серьезные поломки, которые могут привести к затратам, связанным с простоем оборудования. Этот риск не исчезает с добавлением автоматизированной системы, и ее добавление добавляет еще один уровень сложности к задаче обеспечения правильной работы системы. Производители лубрикаторов и систем смазки добились многих успехов, чтобы гарантировать правильную работу своего оборудования и уведомлять пользователей при наличии неисправностей.

Автоматизация некоторых или всех аспектов смазки дает множество преимуществ. Правильно откалиброванные автоматические системы смазки могут подавать нужное количество смазки или масла — таким образом, избегая неудач, связанных с добавлением слишком большого или слишком малого количества смазки — и делают это по регулярному графику. Такое регулярное и последовательное введение смазки не только способствует здоровью машины, но также может снизить расходы на смазку. Смазку можно добавлять во время работы оборудования, что считается более эффективным, чем нанесение ее на статический компонент.Вращающееся оборудование с ручной смазкой также может подвергать обслуживающий персонал воздействию опасных условий, например, механических муфт. Автоматические системы также снижают риск загрязнения смазочного материала грязью и мусором.

Сколько смазки?

Чтобы получить максимальную выгоду от лубрикаторов и автоматизированных систем смазки, масло или консистентная смазка должны быть распределены в соответствии с требованиями к смазке рассматриваемого элемента. Слишком мало оказывает очевидное отрицательное влияние на срок службы компонентов; слишком много может быть вредным.Производители подшипников и других смазываемых компонентов часто могут быть источником информации о рекомендуемых интервалах смазки, но факторы окружающей среды также играют роль в определении пригодности этих рекомендаций. В цитируемой ниже статье читатели знакомятся с двумя формулами для определения подходящего объема смазки и применяют их к ряду компонентов, которые обычно смазываются консистентной смазкой, включая подшипники качения и опорные подшипники. Согласно статье, смазываемые системы обычно представляют собой системы с непрерывными потерями, и, поскольку рабочие стекла не используются, в таких ситуациях сложно определить, достаточно ли смазаны компоненты.

ресурсов

Общие

Следующие организации могут предоставить дополнительную полезную информацию по многим аспектам смазки.

Общество трибологов и инженеров-смазчиков

https://www.stle.org

Американская ассоциация производителей подшипников

https://www.americanbearings.org

Американская ассоциация производителей шестерен

https://www.agma.org

Отдел трибологии ASME

https: // community.asme.org

График смазки

https://www.stle.org

S мкм арри

Это руководство дает общее представление о лубрикаторах и системах смазки, а также об их выборе, использовании и применении. Для получения дополнительной информации о сопутствующих продуктах обратитесь к другим нашим руководствам или посетите платформу Thomas Supplier Discovery Platform, чтобы найти потенциальные источники поставок или просмотреть подробную информацию о конкретных продуктах.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *