Увеличение камеры сгорания двигателя что дает: Если увеличить камеру сгорания что будет

Содержание

Если увеличить камеру сгорания что будет

Увеличение степени сжатия

Увеличение степени сжатия является одной из основных методик поднятия мощности. Тем самым можно получить больше отдачи с того же объема двигателя. Одним словом мощность повысится, а расход останется на прежнем уровне. Возникает вопрос, а почему с завода не поднимают степень сжатия до максимально возможного уровня?

Как увеличить степень сжатия? 2 способа

1. Установка более тонкой прокладки двигателя. При таком варианте, клапана могут столкнуться с поршнями и нужно все тщательно рассчитывать. Как вариант, это установка новых поршней с более глубокими выемки под клапана. Также изменятся фазы газораспределения и нужно будет их заново настраивать.

2. Растачивание цилиндров. Такая процедура требует замены поршней, но этот метод увеличивает рабочий объем двигателя и одновременно повышает степень сжатия, так как камера сгорания остается прежней но объем цилиндра увеличивается. Отношение объема возросшего цилиндра к прежнему объему камеры сгорания покажет большую величину степени сжатия.

Прибавка мощности за счет степени сжатия тем выше, чем под более низкую степень сжатия изначально настроен двигатель. Простыми словами, повышение мощности более эффективно при поднятии степени сжатия с 8 до 9, чем с 13 до 14.

Уменьшение степени сжатия

Так, в старые времена поступали владельцы «Жигулей» и «Москвичей», когда переводили машины с дорогого 92-ого бензина на более дешевый и доступный 76-ой. Для этих целей используется аналогичный способ, только придется увеличить высоту прокладки под головку двигателя. Берем две обычные прокладки и между ними вставляем алюминиевую нужной толщины. Прокладки, если нужно, вырезались самостоятельно в гараже с помощью подручных средств.

Если на современной иномарке уменьшить степень сжатия до 8, то ее динамика будет как у «копейки». Многие моторы можно заправлять 92-ым бензином вместо 95-ого и у многих даже детонации не случается. Но если машина на гарантии, я бы не стал этого делать, ради мнимой экономии. Ведь на 95-ом бензине расход топлива меньше, чем на 92-ом и при чуть высшей цене – общая стоимость на бензин выходит равной. Что было проверено на практике.

Другое дело, производитель указывает ездить за более высокооктановом бензине из-за норм экологичности. Если в новую машину заправить более дешевый бензин может выйти из строя катализатор, т.к. 92-ый бензин имеет меньшую температуру горения. Плюс могут засориться форсунки. По поводу детонации. Делать переделку мотора, ради того, чтобы заправлять 92 вместо 95 бензина – глупо. Чтобы сознательно уменьшать степень сжатия нужны более веские причины, например так поступают при установке турбокомпрессора на двигатель, чтобы избавиться от детонации.

Что в первую очередь делают при диагностике двигателя? Правильно, измеряют компрессию в цилиндрах. Многие считают, что ее величина определяет здоровье мотора. Так ли это, выясняют в ходе очередной аналитической экспертизы авторы.

Компрессия — это вульгаризм. Правильно — давление конца такта сжатия. Это давление, которое создается в цилиндре при выключенном зажигании (или без подачи топлива — для дизеля) при положении поршня в верхней мертвой точке. Так вот, многие диагносты по величине замеренной компрессии (прости, наука, за жаргон!) дают заключение: «жив пациент» или «в морг», то есть на капитальный ремонт.

По мнению многих продвинутых автомобилистов, компрессия для мотора чуть ли не всё! Но так ли это?

Компрессия и степень сжатия — одно и то же: сказка первая

Нет, не так! Компрессия — это давление в цилиндре, степень сжатия — безразмерный параметр, описывающий геометрические параметры цилиндра: это отношение полного объема цилиндра к объему камеры сжатия (камера сжатия — это объем пространства над поршнем при его положении в ВМТ (еще он называется объемом конца сжатия — это то же самое). Называть ее камерой сгорания некорректно, поскольку сгорание топлива происходит во всем объеме цилиндра.) Компрессия от степени сжатия зависит, а степень сжатия от компрессии — нет! Компрессия зависит еще от кучи параметров: давления начала сжатия, регулировки фаз газораспределения, температуры, при которой проводится замер, протечек из камеры сгорания. А протечки определяются изношенностью колец и цилиндров.

«Компрессия» — то максимальное давление, которое мы измеряем в цилиндре при выключенном зажигании.

1 no copyright

Поднял компрессию — увеличил мощность: сказка вторая

Не совсем так. Компрессию можно поднять двумя способами — увеличить степень сжатия или уменьшить протечки из камеры сгорания. Посмотрим, что будет в каждом случае: в нашем распоряжении стенд.

Для начала уменьшим объем камеры сжатия. Проще всего для этого прошлифовать нижнюю плоскость головки цилиндров. У базового мотора «одиннадцатого» ВАЗа рабочий объем цилиндра чуть больше 370 кубиков. При штатной степени сжатия 9,8 объем камеры сжатия составит 42,6 см³. Можно посчитать, что, сняв 2 мм с посадочной поверхности головки блока цилиндров, мы уменьшаем объем камеры сжатия на 5,1 см³. Новая степень сжатия составит 11 единиц, то есть на 1,2 выше, чем у базового мотора. А теперь, просто из интереса, уберем еще 2 мм. Степень сжатия возрастает уже до 12,6. В учебнике находим нужную формулу и получаем: термический КПД цикла поршневого двигателя теоретически должен вырасти в первом случае минимум на 4%, во втором — на 9%. Здорово!

А теперь ставим эти головки на стендовый мотор и снимаем моментные характеристики. Снижение расхода топлива существенно меньше, чем обещала теория, — на 2,5% в первом случае и на 4,5% во втором. Причем эффект более выражен в зоне малых нагрузок. Прибавка мощности еще меньше: от силы 2–3%, причем в зоне малых и средних оборотов. А на высоких — никакого эффекта.

Все ясно: с увеличением степени сжатия резко растет давление в цилиндре, этот рост провоцирует детонацию, ее ловит соответствующий датчик — и сдвигает угол опережения зажигания назад. Следовательно, мощность падает. А потому и теоретический эффект существенно уменьшается. Зато растут температуры на выпуске, — стало быть, риск пожечь клапаны и поршни с таким мотором значительно выше.

Способ второй — уменьшаем протечки. Пойдем от обратного: сравним, что станет с моментной характеристикой, если заменить кольца такими, чтобы зазоры в них стали больше, скажем, раза в два.

Сделали. Для нового мотора — всё нормально, для всех цилиндров компрессия 13,2. 13,4 бар. Для испорченного кольцами с большими зазорами — 10,8. 11,1. А что показали замеры мощности? В зоне малых оборотов мощность испорченного мотора чуть-чуть упала, но когда перешли 2500 об/мин, кривые момента практически слились. Всё потому, что протечки из камеры сгорания в картер, которые должны бы снизить мощность, заметны только на малых оборотах, а на высоких их масса за один цикл резко падает, ведь с уменьшением времени цикла при увеличении частоты вращения коленчатого вала уменьшается и время на протечку.

Компрессия резко выросла, а мощность — нет. Вместе с компрессией проснулась детонация, и угол опережения зажигания пришлось сдвигать назад. А он влияет на мощность сильнее.

2 no copyright

Нет компрессии — сразу на капиталку: сказка третья

Обычно механик, обнаруживший низкую компрессию, тут же заявляет: «Двигатель изношен, требуется капиталка». Так ли все однозначно?

Нет, конечно! На спор можем назвать двадцать возможных причин снижения компрессии. Тут и проблемы с механизмом газораспределения, и механические или термические повреждения деталей двигателя, и закоксованность поршневых колец. И только одна из них будет связана с катастрофическим износом мотора. Важно уметь различать эти причины, понимать степень их опасности и знать методы борьбы с ними. Но это — тема отдельной статьи.

Чем выше компрессия, тем лучше: сказка четвертая

Частенько от апологетов разных присадок приходится слышать, как подпрыгнула компрессия после очередной обработки мотора. Рост до 15 бар, до 17 бар! Но надо иметь в виду, что в нормальном состоянии, даже восстановив зазоры до состояния нового двигателя, компрессию выше штатной не получить.

Откуда же цифры? Обычно на разобранном двигателе видно, что камера сгорания после обработки заросла непонятно чем и, как следствие, уменьшился объем камеры сжатия. Но эти отложения нарушают теплоотвод от камеры сгорания. Отсюда детонация, калильное зажигание и прочее. Так что небывалому росту компрессии не радоваться надо, а наоборот.

Изменение удельного расхода топлива при фиксированных оборотах (2500 об/мин) в двух вариантах двигателя — базовом и с кольцами, в которых увеличены зазоры. Компрессия упала, но по расходу это заметно только при малых нагрузках.

3 no copyright

И совсем не сказка.

Так на что же влияет компрессия? На многое! Главное — на пусковые свойства мотора, особенно при низких температурах.

В первую очередь это касается дизельных двигателей, где от давления и температуры конца сжатия зависит, воспламенится топливо в цилиндре или нет. Но и бензиновые двигатели в холодном состоянии тоже чувствительны к изменению компрессии: она влияет на испаряемость топлива, которое при холодном пуске только теоретически должно испаряться по пути в цилиндр. А реально — попадает туда в виде негорючих жидких капель.

Сниженная компрессия повышает давление картерных газов. В этом случае через систему вентиляции на впуск двигателя летит больший объем паров масла. Плохо это: и токсичность растет, и темп загрязнения камеры сгорания резко увеличивается.

Неравномерная по цилиндрам компрессия вызывает вибрации двигателя, особенно ощутимые на холостом ходу и при малых оборотах. А это, в свою очередь, вредит и трансмиссии, и подвеске мотора. Да и самому водителю.

Словом, роль компрессии как диагностического признака, во многом характеризующего состояние двигателя, очень велика. И наши «сказки» никоим образом не призывают махнуть на нее рукой — наоборот! Но стремление к безудержному ее повышению в поисках дополнительных «лошадок» — дело в целом бесперспективное.

Cделай свою жизнь проще и ярче

Хитрости Жизни

Cделай свою жизнь проще и ярче

Добавьте сюда пользовательский текст или удалите его.

Японский мотор в классику

Купил автомобиль ВАЗ 2107 ВАЗ 2106 дизель от гольф 2, расход 4л/100км + задние дисковые тормоза. какой двигатель от иномарки можно поставить на ваз 2106?…

Японский двигатель на ниву 2121

Зачем некоторые владельцы устанавливают двигатель на Ниву от иномарки? Старые советские автомобили вроде ВАЗ-2121 «Нива», ВАЗ-2107, ВАЗ-2108 в данное время могут показаться по меньшей мере…

Японская коробка на ниву

Передаточные числа КПП AISIN (Япония) VAZ серия I передача 3,704 3,667 II передача 2,020 2,100 III передача 1,369 1,361 IV передача 1,000 1,000 V передача…

Яндекс навигатор на лада веста

СитиГид Лада Веста – это мультимедийная навигационная система для автомобиля Лада Веста, отвечающая всем стандартом навигационных устройств нового поколения. Приложение позволяет не только отлично ориентироваться…

Ямаха диверсия 600 отзывы

Плюсы Отличная эргономика. Приемлемая разгонная динамика. Хорошие тормоза. Великолепная управляемость на всех скоростях. Небольшая цена. Минусы Шумная работа сцепления. Мотоцикл производился только для европейского и…

Двигатель внутреннего сгорания

26. 07.2014 / 30.03.2019   •   59789 / 12397

Кратко мы разберем основные характеристики и отличия поршневых автомобильных двигателей внутреннего сгорания.

  • Тип ( код) двигателя.
  • Каждый производитель автомобилей присваивает своим силовым агрегатам буквенно-цифровые коды, позволяющие подобрать запасные части в зависимости от комплектации конкретной модели автомобиля. Тип двигателя наносится методом выдавливания на отфрезерованный, технологический отлив блока цилиндров или выдавливается на специальной табличке, которая прикрепляется к блоку цилиндров. Как правило, там же содержится информация и о номере двигателя. Некоторые производители наносят эти данные на головку блока цилиндров (например, AUDI двигатель AAN). В подавляющем большинстве случаев можно прочесть нанесенные данные о типе двигателя, без подъемных механизмов или снятия агрегата с автомобиля.
  • Диаметр цилиндра. ( D )
  • Диаметр цилиндра это размер отверстия в блоке цилиндров (гильзе цилиндра), в котором поступательно двигается поршень. Это конструктивный параметр блока цилиндров влияющий на рабочий объем двигателя. Помимо этого, от диаметра цилиндра зависит общая габаритная ширина и длина двигателя. Размер указывается, как правило, в миллиметрах или дюймах с точностью до сотых долей. Данные размере номинального диаметра цилиндра указываются при комнатной температуре (+20 градусов Цельсия). Измерения производятся нутромером или аналогичным по точности инструментом.

  • Ход поршня. ( S )
  • Ход поршня это расстояние между положением любой точки поршня в верхней мертвой точке (В.М.Т. Верхняя Мертвая Точка – крайнее верхнее положение, достигаемое поршнем в цилиндре ДВС ) и положение поршня в
    нижней мертвой точке
    (Н.М.Т). Это конструктивный параметр коленчатого вала, влияющий на рабочий объем двигателя. Размер указывается, как правило, в миллиметрах или дюймах с точностью до сотых долей. Измерения производятся штангель-циркулем или аналогичным по точности инструментом. Как правило, измерения производятся непосредственно на коленчатом валу. От размера, хода поршня зависит габаритная высота двигателя .
  • Количество цилиндров двигателя. ( z )
  • Количество цилиндров является важнейшей конструктивной характеристикой двигателя. В зависимости от количества цилиндров рассчитывается и проектируется и система охлаждения двигателя. Количество цилиндров самым прямым образом влияет на общие габаритные размеры и вес автомобиля. Например: c увеличением количества цилиндров при одном и том же литраже двигателя размеры его цилиндров уменьшаются. Это уменьшение вследствие увеличения отношения внутренней поверхности цилиндра к его объему сопровождается усилением охлаждения двигателя. Уменьшение диаметра цилиндра позволяет создавать камеру сгорания улучшенной формы и вместе с обстоятельством усиления охлаждения позволяет производителем создавать более экономичные двигатели. Но есть и обратная сторона, увеличение количества цилиндров ведет к общему удорожанию силового агрегата. В современном автомобильном моторостроении получили распространение 2-х, 3-х , 4-х , 5-и , 6-и , 8-и , 10-и , 12-и , 16 –и цилиндровые двигатели.

  • Объем двигателя. ( V )
  • Как правило, в справочниках и каталогах указывается рабочий объем двигателя.
    Рабочий объем двигателя ( VH ) (литраж двигателя) складывается из рабочих объемов всех цилиндров. То есть, это произведение рабочего объема одного цилиндра на количество цилиндров.

    VH = Vp * Z

    Рабочий объем цилиндра ( Vp ) — это пространство, которое освобождает поршень при перемещении из верхней мертвой точки (ВМТ) к нижней мертвой точки (НМТ).
    Объем камеры сгорания ( Vk )— объем полости цилиндра и камеры сгорания в головке блока цилиндров над поршнем, находящимся в верхней мертвой точке (ВМТ) — т.е. в крайнем положении и в наибольшем удалении от коленчатого вала. Параметр, прямо влияющий на степень сжатия двигателя. В гаражных условиях измерение камеры сгорания производится с помощью измерения объема жидкости заполняющего камеру.
    Полный объем цилиндра ( Vo ) это сумма рабочего объема одного цилиндра + объем одной камеры сгорания в головке блока.

    Vo = Vp + Vk


  • Количество клапанов на один цилиндр.
  • В современном автомобилестроении все чаще и чаще применяются двигатели с мульти клапанным газораспределительным механизмом. Увеличение количества клапанов является важнейшим параметром позволяющим получать большую мощность при одном и том же объеме двигателя, за счет увеличения объема смеси или воздуха попадающего в цилиндры на такте впуска. Увеличение количества клапанов позволяет получать, лучшее наполнение цилиндров свежей рабочей смесью и быстрее освобождать камеру сгорания от отработанных газов.
  • Тип топлива.
  • По типу топлива двигатели разделяются на следующие группы:. Бензиновые двигатели ( Petrol ) — имеют принудительное зажигание топливовоздушной смеси искровыми свечами. Принципиально различаются по типу системы питания:
    В карбюраторных системах питания смешение бензина с воздухом начинается в карбюраторе и продолжается во впускном трубопроводе.
    В настоящее время выпуск таких двигателей практически прекращено из-за высокого расхода топлива и несоответствия предъявляемым современным экологическим требованиям.
    Во впрысковых ( инжекторных ) двигателях топливо может распылятся одним инжектором (форсункой) в общий впускной трубопровод (центральный, моновпрыск) или несколькими инжекторами перед впускными клапанами каждого цилиндра двигателя (распределенный впрыск). В этих двигателях, возможно, небольшое увеличение максимальной мощности и снижение расхода топлива и уменьшение токсичности отработавших газов за счет рассчитанной дозировки топлива блоком электронного управления двигателем;
    Двигатели с непосредственным впрыскиванием бензина в камеру сгорания , который подается в цилиндр несколькими порциями, что оптимизирует процесс сгорания, позволяет двигателю работать на обедненных смесях, соответственно максимально уменьшается расход бензина и выброс вредных веществ в атмосферу.
    Дизельные двигатели (Diesel) — поршневые двигатели внутреннего сгорания с внутренним смесеобразованием, в которых воспламенение смеси дизельного топлива с воздухом происходит от возрастания ее температуры при сжатии. По сравнению с бензиновыми, дизельные двигатели обладают лучшей экономичностью (примерно на 15-20%) благодаря более чем в два раза большей степени сжатия, значительно улучшающей процессы горения топливо — воздушной смеси. Неоспоримым достоинством дизелей является конструктивное отсутствие дроссельной заслонки, которая создает сопротивление движению воздуха на впуске и в связи с этим увеличивает расход топлива. Максимальный крутящий момент дизели развивают на меньшей частоте вращения коленчатого вала.
    Гибридные двигатели. Двигатели совмещающие характеристики дизеля и двигателя с искровым зажиганием.

  • Компоновка поршневых двигателей (тип расположения).
  • Значительное разнообразие компоновок поршневых двигателей связано с их размещением в автомобиле и необходимостью уместить определенное количество цилиндров в ограниченном объеме моторного отсека.

Компоновка и порядок работы цилиндров (схемы, описание):

  • Рядный двигатель — конфигурация двигателя внутреннего сгорания с рядным расположением цилиндров, вращающих один общий коленчатый вал. Часто обозначается IN или LN («Straight-N», «In-Line-N»), где N-число цилиндров. Плоскость, в которой находятся цилиндры может быть строго вертикальной, или находиться под определённым углом к вертикали.

l2-12

l3-123

l4-1243

l4-1342

l4-1342R

l5-12453

l6-135642

l6-142635

l6-153624

l8-14738526

    • V-образный двигатель(V) — цилиндры у него расположены в двух плоскостях, как бы образуя латинскую букву V. Угол между этими плоскостями называют углом развала двигателя. V-образные двигатели выпускаются, по понятным причинам, только с четным количеством цилиндров. Такая компоновка позволяет значительно уменьшить длину двигателя, но увеличивает его ширину. Наиболее распространенными являются двигатели с компоновкой V6 и V8, реже встречаются V4, V10, V12, V16.

    v4-1243

    v6-142536

    v8-15426378

    v8-15726348

    v10-16510273849

    v12-112583106721149

    • VR-образный двигатель — обладает небольшим углом развала (порядка 15°), что позволяет уменьшить как продольный, так и поперечный размеры агрегата.
      Получили распространение компоновки VR5 и VR6.

    vr5-12453

    vr6-153624

    • Оппозитный двигатель имеет угол развала 180°, благодаря этому у него высота агрегата наименьшая среди всех компоновок. Противолежащие друг другу цилиндры располагаются горизонтально. Как правило, выпускаются 4-х и 6-и цилиндровые варианты оппозитных двигателей.

    f4-1234

    f4-1324

    f4-1423

    f4-1432

    f6-145236

    f6-162435

      • W-образный двигатель имеет два варианта компоновки — три ряда цилиндров с большим углом развала или как бы две VR-компоновки. Обеспечивает хорошую компактность даже при большом количестве цилиндров. В настоящее время серийно выпускают W8 и W12.

      w8-1-5-2-6-4-8-3-7

      w12-1-12-5-8-3-10-6-7-2-11-4-9

      w12-1-7-4-10-2-8-6-12-3-9-5-11

      w12-1-7-5-11-3-9-6-12-2-8-4-10

      w16-1-14-9-4-7-12-15-6-13-8-3-16-11-2-5-10

      • Тип привода ГРМ.
      • В современной мировой практике для уточнения типа клапанного механизма применяются следующие сокращения:
        OHV обозначает верхнее расположение клапанов в двигателе.
        OHC обозначает верхнее расположение распредвала.
        SOHC обозначает один распределительный вал верхнего расположения.
        DOHC обозначает конструкцию газораспределительного механизма с двумя распределительными валами расположенными сверху.
      • Степень сжатия двигателя, компрессия.
      • Понятие степени сжатия не следует путать с понятием «компрессия», которое указывает максимальное давление создаваемое поршнем в цилиндре при данной степени сжатия (например: степень сжатия для двигателя 10:1, значение «компрессии» при этом соответствует значению в 14 атмосфер.).
        • Степень сжатия ( ε ) — отношение полного объема цилиндра двигателя к объему камеры сгорания. Этот параметр показывает, во сколько раз уменьшается полный объем цилиндра при перемещении поршня из нижней мертвой точки в верхнюю мертвую точку. Для бензиновых двигателей степень сжатия определяет октановое число применяемого топлива. Для бензиновых двигателей значение степени сжатия определяется в пределах от 8:1 до 12:1, а для дизельных двигателей в пределах от 16:1 до 23:1. Общая мировая тенденция в двигателестроении это увеличение степени сжатия как у бензиновых так и у дизельных двигателей, вызванное ужесточением экологических норм.

        • Компрессия (давление в цилиндре в конце такта сжатия) ( p c ) является одним из показателей технического состояния (изношенности) цилиндропоршневой группы и клапанов. У двигателей с серьезным пробегом, как правило, уже имеется неравномерный износ гильзы цилиндра и поршневых колец, в связи, с чем поршневое кольцо не плотно прилегает к поверхности цилиндра. Также изнашивается клапанный механизм, а точнее стержень клапана и направляющая втулка клапана. Вследствие перечисленных причин возникают потери герметичности камеры сгорания. p c = p0 * ε n
          Где:
          p0 — это начальное давление в цилиндре в начале такта сжатия.
          ε— степень сжатия двигателя.
      • Мощность двигателя. ( P )
      • Мощность — это физическая величина, равная отношению произведенной работы или произошедшего изменения энергии к промежутку времени, в течение которого была произведена работа или происходило изменение энергии.
        Обычно мощность измеряется в Лошадиных силах ( Horse Power – англ).
        Значение 1 л.с.( HP) = 0,735 кВт) или в Киловаттах ( 1 кВт = 1,36 л.с.( (HP)). Максимальное значение мощности и максимальный крутящий момент достигаются при различных оборотах двигателя.

        P = M * ω = 2 * π * M * n

        Где:
        M – это крутящий момент ( Н * м ).
        ω — угловая скорость ( рад / сек ).
        n — частота вращения коленчатого вала двигателя. ( мин -1)

        Как правило, во всех справочных автомобильных источниках, а также технических документации на транспортное средство указывается эффективная мощность.
        Эффективная мощность двигателя – это мощность, снимаемая с коленчатого вала двигателя. Не путать с номинальной мощностью двигателя.

        P eff = VH * pe * n / K

        Где:
        VH – рабочий объем двигателя ( см 3).
        pe — среднее эффективное давление ( бар ).
        n — частота вращения коленчатого вала двигателя. ( мин -1)
        K — тактовый коэффициент. ( K=1 для двухтактного ; K= 2 для четырехтактного двигателя )

        Номинальная мощность двигателя это гарантируемая изготовителем мощность двигателя в режиме полного дросселя и заданной частоты вращения, то есть, при работе двигателя на номинальной частоте вращения при полной подаче топлива.

      Для оценки экономичности ДВС используется показатель “Удельный расход топлива” обозначающий расход единицы топлива на единицу мощности в час. Который измеряется в г/(кВт·ч) и составляет;

      250- 325 г/(кВт×ч) для бензиновых двигателей.

      200–270 г/(кВт×ч) для дизельных.

      Предлагаем услуги:

      Где Вы предпочитаете обслуживать двигатель?

      На специализированной СТО

      На фирменной СТО

      По рекомендации

      Где дешевле

      Несложные работы — сам

      Обслуживаю полностью сам

      КАМЕРА СГОРАНИЯ

      Камеры сгорания являются одними из основных узлов воздушно-реактивных и ракетных двигателей или газотурбинных установок, осуществляющих нагрев исходных компонентов (рабочего тела) от начальной температуры T 0 до заданной температуры T g за счет теплотворной способности сгоревшее топливо H u . В воздушно-реактивном двигателе теплота, подводимая к 1 кг воздуха в типовой камере сгорания при постоянном давлении и с учетом полноты сгорания и тепловых потерь ζ через стенки, определяется уравнением

      где С по и С пс — удельные теплоемкости исходного рабочего тела и продуктов сгорания соответственно; произведение αL 0 представляет собой отношение расхода рабочего тела к расходу топлива и зависит от окислительной среды, например воздуха. Теоретическое количество окислителя, необходимое для полного сгорания 1 кг топлива, составляет 0 л. α — коэффициент избытка (коэффициент, на который умножается стехиометрическая потребность в воздухе для учета избытка воздуха). Так, для сжигания углеводородного (нефтяного) топлива в воздухе требуется L 0 = 0,115C + 0,345H − 0,043O, где C, H и O — массовые доли углерода, водорода и кислорода в топливе соответственно. Например, L 0 = 14,9 для авиационного керосина (84-86% С, 14-16% Н). Для CH 4 и H 2 L 0 = 17,2 и 34,5 соответственно.

      Теплотворная способность, или низшая теплота сгорания топлива, определяется как количество теплоты в джоулях, которое выделяется в результате полного сгорания 1 кг топлива в воздухе при t O = 15°С и p = 0,1 МПа при охлаждении продуктов сгорания до 15°С. При этом не учитываются теплота конденсации и содержание водяного пара. Примерно оценивается:

      Например, H u = от 42 900 до 43 100 кДж/кг для авиакеросина и 49 500 и 116 700 для CH 4 и H 2 соответственно.

      Продукты сгорания углеводородного топлива: CO 2 и CO, NO и NO 2 , вода, углеводороды C x H y и т. д. Их состав влияет на камеру сгорания с экологической точки зрения. Ухудшение полноты сгорания, ζ < 1, увеличивает количество CO, C x H y и приводит к образованию сажи и дыма . Выброс оксидов азота NO x увеличивается с ростом температуры горения и увеличением времени нахождения продуктов горения в зоне горения. Допустимые уровни NO x , CO, C x H y и дым для большинства типов двигателей, таким образом, подлежат государственному контролю.

      Коэффициент избытка окислителя (воздуха) α = G a /G f представляет собой режим горения. Смесь, полученная в результате сгорания, имеет стехиометрических при α = 1; богатые при α < 1; и обедненной при α > 1. При избытке или недостатке окислителя температура продуктов сгорания Т g ниже максимально близкой к стехиометрической за счет расхода тепла избыточного топлива и окислителя. При значительном изменении α стационарное горение в камере прекращается. Их называют «богатые» и «бедные» погасание пламени соответственно.

      Камеры сгорания энергоблоков должны обеспечивать высокую полноту сгорания (в современных ГТД ζ = 0,995 и выше), низкие потери давления потока рабочего тела в камере (σ = p вых. в в ГТД составляет 0,94—0,96), высокая надежность и более длительный срок службы (в ГТД до 10 000 часов). Это может быть обеспечено отсутствием перегрева, нагара и т. д. Изменение коэффициентов ζ и σ в зависимости от расхода воздуха (или M комб.ч ) и значение предварительного нагрева T g /T 0 называются характеристиками камеры сгорания. С ростом М комб.ч и Т g 0 σ падает. Эффективность сгорания ζ увеличивается с увеличением T g /T 0 и достигает плоского оптимума при построении графика по сравнению с M comb.ch .

      Особое значение в газотурбинных двигателях имеет высокая однородность полей окружных температур газа на выходе из камеры сгорания (для надежной работы соплового аппарата) и профиля температуры в зависимости от радиуса (для надежности лопаток) при температуре уменьшается к верхнему и нижнему концам лопасти. Поля образуются за счет развития потоков окислителя (воздуха) и топлива в зонах горения и смешения.

      Воспламеняемость гомогенных углеводородных топливно-воздушных смесей находится в пределах 0,5 < α < 1,7. Скорости распространения фронта пламени невелики: 0,5-2,0 м/с для керосина и 210 м/с для водорода. Поэтому для обеспечения устойчивого горения при средних скоростях потока, значительно превышающих скорость распространения фронта пламени, может быть разработан стабилизатор горения с зоной обратного тока, обеспечивающий надежное воспламенение смеси в зоне горения на всех режимах работы топки. камера сгорания. На рис. 1 представлена ​​структура такого течения в зоне горения за стабилизатором горения. Добавление воздуха к продуктам горения в зоне смешения снижает средние значения температуры и повышает значения α. Например, характерные значения α для слабого гашения в камере сгорания воздушно-реактивного двигателя обычно колеблются от 20 до 50. В ракетных двигателях на стабилизацию фронта пламени, как правило, влияет система вихрей вблизи окислителя и топливные форсунки.

      Рисунок 1. Горение в присутствии стабилизатора пламени.

      Камеры сгорания классифицируют по типу двигателя (воздушно-реактивный, ракетный и др.), назначению, для которого она предназначена (основная камера сгорания или камера дожигания в воздушно-реактивном двигателе), характеру горения (дозвуковой или сверхзвуковой), давлению топлива ( высокого и низкого давления), тип форсунок и распыления топлива (центробежные, высокотурбулентные, испарительные), количество зон горения и конструкция (осевые, радиальные, противоточные, трубчатые, кольцевые и др.) .

      ССЫЛКИ

      Лефевр, А. Х. (1983) Газовая турбина сгорания , McGraw Hill, 1983.

      Ссылки
      1. Лефевр, А. Х. (1983) Газовая турбина сгорания , McGraw Hill, 1983.

      SCIRP Открытый доступ

      Издательство научных исследований

      Журналы от A до Z

      Журналы по темам

      • Биомедицинские и биологические науки.
      • Бизнес и экономика
      • Химия и материаловедение.
      • Информатика. и общ.
      • Науки о Земле и окружающей среде.
      • Машиностроение
      • Медицина и здравоохранение
      • Физика и математика
      • Социальные науки. и гуманитарные науки

      Журналы по теме  

      • Биомедицина и науки о жизни
      • Бизнес и экономика
      • Химия и материаловедение
      • Информатика и связь
      • Науки о Земле и окружающей среде
      • Машиностроение
      • Медицина и здравоохранение
      • Физика и математика
      • Социальные и гуманитарные науки

      Публикация у нас

      • Подача статьи
      • Информация для авторов
      • Ресурсы для экспертной оценки
      • Открытые специальные выпуски
      • Заявление об открытом доступе
      • Часто задаваемые вопросы

      Публикуйте у нас  

      • Представление статьи
      • Информация для авторов
      • Ресурсы для экспертной оценки
      • Открытые специальные выпуски
      • Заявление об открытом доступе
      • Часто задаваемые вопросы

      Подпишитесь на SCIRP

      Свяжитесь с нами

      клиент@scirp. org
      +86 18163351462 (WhatsApp)
      1655362766
      Публикация бумаги WeChat
      Недавно опубликованные статьи
      902:30
      Недавно опубликованные статьи

      Подпишитесь на SCIRP

      Свяжитесь с нами

      клиент@scirp.

      Добавить комментарий

      Ваш адрес email не будет опубликован. Обязательные поля помечены *