Характеристики стартера: Технические характеристики стартеров

Технические характеристики стартеров

Параметры этих режимов являются контрольными и их значения задаются в технических условиях.
В таблице 1 приведены значения основных параметров некоторых типов отечественных стартеров, используемых в автомобильных системах пуска двигателей российских производителей.

Российские производители электрооборудования, а также производители стран ближнего зарубежья выпускают широкий спектр продукции для систем пуска автотракторных двигателей, в том числе — стартеров. Разнообразие применяемых на автомобильной, дорожно-строительной, сельскохозяйственной и другой моторизованной технике стартеров обосновано мощностью двигателей, на которых устанавливаются стартеры, а также условиями пуска и эксплуатации.
Перечень типов и моделей стартеров, наиболее часто встречающихся на отечественной технике, а также их основные характеристики, приведены в таблице 2 .

Таблица 2. Типы и модели стартеров, используемых на различных видах отечественной техники

Тип стартера

Тип привода и характеристики

Масса, кг

Производитель

Применение на двигателях

Применение на машинах

СТ Н2Т

Храповой механизм свободного хода.
24 В, 9,2 кВт

26

ОАО «БАТЭ»,
г. Борисов, Беларусь

ЯМЗ-236. ЯМЗ-238

Автомобили МАЗ

СТ 128

Роликовая муфта
12 В, 4,3 кВт

16,2

ООО «СЭПО-ЗЭМ»,
г. Саратов

ЗИЛ-0550, Д-550, Д-555

Грузовые автомобили

СТ 142Б1

Храповой механизм свободного хода.
24 В, 8,2 кВт

Не более 24.7

ОАО «БАТЭ»,
г. Борисов, Беларусь

КАМАЗ-740 и его модификации

Автомобили КамАЗ

СТ 142Б2

Храповой механизм свободного хода.
24 В, 8,2 кВт

Не более 24. 7

ОАО «БАТЭ»,
г. Борисов, Беларусь

КАМАЗ-740 и его модификации

Автомобили КамАЗ

СТ 142Д

Храповой механизм свободного хода.
24 В, 7,4 кВт

26

ОАО «БАТЭ»,
г. Борисов, Беларусь

ЯМЗ-236

Автомобили МАЗ

СТ 142Е

Храповой механизм свободного хода.
12 В, 3,5 кВт

18

ОАО «БАТЭ»,
г. Борисов, Беларусь

Д-240, Д-245, Д-260

Тракторы МТЗ (12В)

СТ 142К

Храповой механизм свободного хода.
24 В, 5,1 кВт

18

ОАО «БАТЭ»,
г. Борисов, Беларусь

Д-50, Д-240, Д-260Т

Тракторы МТЗ (24В)

СТ 142М

Храповой механизм свободного хода.
12 В, 3,5 кВт

18,6

ОАО «БАТЭ»,
г. Борисов, Беларусь

Д-243, Д-245, Д-260

Тракторы МТЗ (12 В)

СТ 142Н

Храповой механизм свободного хода.
24 В, 9 кВт

18,6

ОАО «БАТЭ»,
г. Борисов, Беларусь

Д-243, Д-245, Д,260

Тракторы МТЗ (24 В). Автомобили ЗИЛ («Бычок»)

СТ 142Т-10

Храповой механизм свободного хода.
24 В, 9,2 кВт

26

ОАО «БАТЭ»,
г. Борисов, Беларусь

ЯМЗ-236, ЯМЗ-238

Автомобили МАЗ

СТ 142-10

Храповой механизм свободного хода.
24 В, 8,2 кВт

Не более 24.7

ОАО «БАТЭ»,
г. Борисов, Беларусь

КАМАЗ-740 и его модификации

Автомобиль КамАЗ Евро-2

СТ 222А

Храповой механизм свободного хода.
12 В, 2,2 кВт

14,5

ОАО «ЗиТ»,
г. Самара

Д-21

Тракторы Т25А1,Т25А2, Т25АЗ,Т16М

СТ 230Р

Шестироликовый механизм свободного хода.
24 В, 4 кВт

12

ОАО «БАТЭ»,
г. Борисов, Беларусь

Д-243, Д-245, Д-246

Тракторы МТЗ, Автомобили ЗИЛ 5301, ГАЗ, ПАЗ,

СТ 362А

Роликовая муфта.
12 В, 0,67 кВт

4,25

ОАО «Электромаш»,
г. Херсон

П-350 П-10УД

Тракторы МТЗ-80, Т-70С

СТ 367А

Роликовая муфта.
12 В, 0,66 кВт

4,25

ОАО «Электромаш»,
г. Херсон

ПД-8, П-700, П-701

Тракторы Т-40,Т-130

СТ 370

Храповой «Позиторк».
Двухпроводная схема подключения.
24 В, 8,2 кВт

25

ОАО «Электромаш»,
г.

Херсон

Судовые ДВС: 6ЧН12/14, 6Ч12/14, 4Ч10,5/13

Судовые двигатели средней мощности

СТ 370А

Храповой «Позиторк».
Двухпроводная схема подключения.
24 В, 8,2 кВт

25

ОАО «Электромаш»,
г. Херсон

Судовые ДВС: 4ЧН12.8/14, 4Ч12/14

Судовые двигатели средней мощности

СТ 370Б

Храповой «Позиторк».
24 В, 8,2 кВт

25

ОАО «Электромаш»,
г. Херсон

Дизели семейства СМД-31

Комбайны и самоходные машины

СТ 370В

Храповой «Позиторк».
24 В, 8,2 кВт

25

ОАО «Электромаш»,
г. Херсон

Дизели семейства СМД-315, СМД-17, СМД-21, СМД-23, СМД-25

Тракторы

СТ 370Г

Храповой «Позиторк».
24 В, 8,2 кВт

25

ОАО «Электромаш»,
г. Херсон

Дизели семейства СМД-61, СМД-63, СМД-65, СМД-69

Тракторы Т-150, Т-150К, комбайны «Колос»

СТ 370Д

Храповой «Позиторк».
24 В, 8,2 кВт

25

ОАО «Электромаш»,
г. Херсон

Дизели семейства СМД-73, Д-6011

Тракторы и сельхозмашины

20.3708

Роликовая муфта свободного хода.
24 В, 5,9 кВт

19,5

ОАО «ЗиТ»,
г. Самара

Д-245 и др.

Тракторы МТЗ-80, МТЗ-100 МТЗ-142, ЛТЗ-145,

201.3708

Роликовая муфта свободного хода.
24 В, 5,9 кВт

19,5

ОАО «ЗиТ»,
г. Самара

Д-37, Д-144

Тракторы Т-40М

202.3708

Роликовая муфта свободного хода.
24 В, 5,9 кВт

19,5

ОАО «ЗиТ»,
г. Самара

Д-245 и др.

Тракторы Беларусь-611

24.3708

Роликовая муфта свободного хода.
12 В, 4 кВт

18

ОАО «ЗиТ»,
г. Самара

Д-245 и др.

Тракторы МТЗ-50, МТЗ-80, МТЗ-100,

241. 3708

Роликовая муфта свободного хода.
12 В, 4 кВт

18

ОАО «ЗиТ»,
г. Самара

Д-130

Тракторы ВТЗ

242.3708

Роликовая муфта свободного хода.
12 В, 4 кВт

18

ОАО «ЗиТ»,
г. Самара

Д-65, Д-242

Тракторы МТЗ-5МС, МТЗ-7МС, ЮМЗ

2501.3708-11

Храповой привод.
24 В, 4,8 кВт

22,25

ОАО «ЭЛТРА»,
г. Ржев

КАМАЗ-740 и его модификации

Автомобили КамАЗ

2501.3708-21

Храповой привод.
24 В, 4,8 кВт

28,2

ОАО «ЭЛТРА»,
г. Ржев

8424.10. 8481.10. ЯМЗ-236. ЯМЗ-238. ЯМЗ-240 и их модификации

Автомобили МАЗ, КрАЗ

2502.3708-31

Храповой привод.
24 В, 4,8 кВт

26,5

ОАО «ЭЛТРА»,
г. Ржев

КАМАЗ-740 исполнения Евро-2

Автомобили КамАЗ

2501.3708-40

Храповой привод.
24 В, 8,2 кВт

28,2

ОАО «ЭЛТРА»,
г. Ржев

ЯМЗ-236 ЯМЗ-238 ЯМЗ-240

Автомобили МАЗ, КрАЗ

2502.3708-50

Храповой привод.
24 В, 4,8 кВт

28,4

ОАО «ЭЛТРА»,
г. Ржев

ЯМЗ-8424. 10, ЯМЗ-8481.10, ЯМЗ-236, ЯМЗ-238, ЯМЗ-240 и их модификации

Автомобили МАЗ, КрАЗ, судоходный транспорт

251.3708

Храповой привод.
24 В, 8,2 кВт

29

ОАО «ЭЛТРА»,
г. Ржев

Д-160, А-11Т, А-11ТА

Трактор Т-170

255.3708

Храповой привод.
24 В, 12 кВт

29

ОАО «ЭЛТРА»,
г. Ржев

ЯМЗ-8401.10, ЯМЗ-846, ЯМЗ-847, ЯМЗ-850

Автомобили БелАЗ

2562.3708-30

Храповой привод.

30

ОАО «ЭЛТРА»,
г. Ржев

ЯМЗ-236, ЯМЗ-238 (герметичный)

МАЗ, Урал, КрАЗ, МоАЗ, БелАЗ

261. 3708

Роликовая муфта.
24 В, 9 кВт

4,53

ОАО «Электромаш»,
г. Херсон

МеМЗ-245

Автомобили ЗАЗ-1102

26101.3708

Роликовая муфта.
12 В, 1,13 кВт

4,53

ОАО «Электромаш»,
г. Херсон

Все модификации МеМЗ

Автомобили ЗАЗ-1102. «Венс». «Елавута». «Таврия-Нова». «Пикап». «Ланос»

263.3708

Роликовая муфта.
12 В, 1,13 кВт

4,53

ОАО «Электромаш»,
г. Херсон

ВАЗ

Автомобили ВАЗ-2102. ВАЗ-2107

264.3708

Роликовая муфта.
12 В, 1,13 кВт

4,53

ОАО «Электромаш»,
г. Херсон

ВАЗ 2108, ВАЗ 2111-80

Автомобили ВАЗ-2108, -2109

265.3708

Роликовая муфта.
12 В, 1,13 кВт

4,53

ОАО «Электромаш»,
г. Херсон

Все модификации МеМЗ

Автомобили ЗАЗ-1102, «Сенс», «Славута», «Таврия-Нова», «Пикап», «Ланос»

29.3708-01

Роликовая муфта.
12 В, 1,3 кВт

6

ОАО «ЗиТ»,
г. Самара

ВАЗ 2108, ВАЗ 2111-80

Автомобили ВАЗ-2108. ВАЗ-2109

3002.3708

Храповой привод.
24 В, 8,2 кВт

Не более 24

ОАО «БАТЭ»,
г. Борисов, Беларусь

Д260.5, Д260.7, Д265

Автомобили ГАЗ-3306. ГАЗ-3309. ГАЗ-66-41

34.3708

Роликовая муфта.
12 В, 0,6 кВт

ОАО «Электромаш»,
г. Херсон

ПД-15

Тракторы МТЗ-80В, МТЗ-82В, МТЗ-100Д МТЗ-103Л

35.3708-01

Роликовая муфта.
12 В, 1,37 кВт

7,5

ОАО «ЗиТ»,
г. Самара

ВАЗ

Автомобили ВАЗ-2101, ВАЗ-2107, ВАЗ-2121

391.3708

Роликовая муфта.
12 В, 1 кВт

4,45

ОАО «Электромаш»,
г. Херсон

ВАЗ-11113

Автомобили ВАЗ-1111

4216.3708-01

Роликовая муфта.
12 В, 1,82 кВт

7

ОАО «ЭЛТРА»,
г. Ржев

ЗМЗ-4021, УМЗ-4215.10, УМ3-4178. УМ3-4218

ГАЗ 2705, 3102, 3110, 3302, УАЗ 3151, 3303, 3741, 3909 ГАЗ 3302 УАЗ 3303, 3909,3741,3151

4216.3708-02

Роликовая муфта.
12 В, 1,8 кВт

7

ОАО «ЭЛТРА»,
г. Ржев

ВАЗ

ВАЗ 2101-2107, 2121 Иж2126, 2717

4216.3708-07

Роликовый привод.
12 В, 1,82 кВт

7

ОАО «ЭЛТРА»,
г. Ржев

ЗМЗ-406. 10

ГАЗ 3110, 3302, 2705, 2752

421.3708-01

Роликовая муфта.
12 В, 1,7 кВт

7,3

ОАО «БАТЭ»,
г. Борисов, Беларусь

УЗЛМ-331-10

Автомобили АЗЛК-21412

421.3708-02

Роликовая муфта.
12 В, 1,7 кВт

7,2

ОАО «ЭЛТРА»,
г. Ржев

ВАЗ

Автомобили ВАЗ-2101, ВАЗ-2107, ВАЗ-2121

421.3708-07

Роликовая муфта.
12 В, 1,7 кВт

7

ОАО «ЭЛТРА»,
г. Ржев

ЗМЗ-406.10

Автомобили ГАЗ-3110, ГАЗ-3104, ГАЗ-3103, ГАЗ-3302

46. 3708

Роликовая муфта.
12 В, 1,7 кВт

4,2

ОАО «ЭЛТРА»,
г. Ржев

УфМЗ

Автомобили АЗЛК-2142

4611.3708

Роликовая муфта.
12 В, 1,7 кВт

4,5

ОАО «ЭЛТРА»,
г. Ржев

ЗМЗ-406.10

Автомобили ГАЗ-3110, ГАЗ-3103, ГАЗ-3302 ГАЗ-3104

4621.3708

Роликовая муфта.
12 В, 1,7 кВт

4,5

ОАО «ЭЛТРА»,
г. Ржев

ВАЗ

Автомобили ВАЗ-2101-ВАЗ-2107, ВАЗ-2121

5302.3708

Роликовая муфта.
12 В, 1,13 кВт

4,6

ОАО «Электромаш»,
г. Херсон

М-408

Автомобили АЗЛК, Устройство АБВ, АСБ

57.3708

Роликовая муфта.
12 В, 1,55 кВт

3,95

ОАО «ЗиТ»,
г. Самара

ВАЗ

Автомобили ВАЗ-2110

571.3708

Роликовая муфта.
12 В, 1,55 кВт

3,95

ОАО «ЗиТ»,
г. Самара

ВАЗ-2108

Автомобили ВАЗ-2108, ВАЗ-2109

572.3708

Роликовая муфта.
12 В, 1,55 кВт

ОАО «ЗиТ»,
г. Самара

ВАЗ-2108

Автомобили ВАЗ-2123, ВАЗ-2121

60. 3708

Роликовая муфта.
12 В, 2 кВт

4,5

ОАО «ЗиТ»,
г. Самара

ЗМЗ

Автомобили ГАЗ.

601.3708

Роликовая муфта.
12 В, 2 кВт

4,5

ОАО «ЗиТ»,
г. Самара

ЗМЗ

Автомобили ГАЗ-3104, ГАЗ-31029,ГАЗ-3302

62.3708

Роликовая муфта.
12 В, 1,3 кВт

6,3

ОАО «ЗиТ»,
г. Самара

УАЗ

Автомобили УАЗ

6401.3708-01

Роликовая муфта.
12 В, 3,3 кВт

7,8

ОАО «ЭЛТРА»,
г. Ржев

Д 120, Д 130, Д144,Д 130Т, Д 145Т

Тракторы ВТЗ

6421.3708

Роликовая муфта.
12 В, 3,3 кВт

7,8

ОАО «ЭЛТРА»,
г. Ржев

ЗИЛ-508

ЗИЛ-130

8802.3708

Роликовая муфта

8,8

ОАО «ЭЛТРА»,
г. Ржев

ЗМЗ-73. 511.10. 513.10. 5234.10

ГАЗ. ПАЗ

8812.3708

Роликовая муфта.
12 В, 1,95 кВт

8,7

ОАО «ЭЛТРА»,
г. Ржев

ЗИЛ 508

ЗИЛ-130

92. 3708

Роликовая муфта.
Встроенный планетарный редуктор.
Возбуждение от постоянных магнитов..
12 В, 1,7 кВт

3,5

ООО «Электром»,
г. Чебоксары

ВАЗ-2112 и их модификации

Автомобили ВАЗ-2110, ВАЗ-2111, ВАЗ-2112, ВАЗ-2118 («Калина»)

93.3708

Роликовая муфта.
Встроенный планетарный редуктор.
Возбуждение от постоянных магнитов.
12 В, 1,9 кВт

4

ООО «Электром»,
г. Чебоксары

ЗМЗ-405. ЗМЗ-406. ЗМЗ-409

Автомобили ГАЗ («Волга», «Газель», «Соболь») и УАЗ («Hunter», «Patriot»)

Характеристики стартера и системы пуска Great Wall Hover (Haval H5, h4 Ховер)

Стартер — четырехполюсный электродвигатель постоянного тока с возбуждением от постоянных магнитов, оборудованный приводом с планетарным редуктором и втягивающим реле.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ СТАРТЕРА

Обозначение QDY1257A, SMD172860
Номинальное напряжение, В 12
Мощность, кВт 1.2
Номинальный диаметр коллектора якоря, мм 29,4
Минимальный диаметр коллектора якоря, мм 28,4
Номинальное выступание ламелей коллектора над изолятором, мм 0,5
Минимально допустимое выступание ламелей коллектора над изолятором, мм 0,2
Номинальное радиальное биение коллектора якоря не более, мм 0,05
Максимально допустимое радиальное биение коллектора якоря не более, мм 0. 1

Пункт 4G1 4G6
Тип Со встроенным планетарным редуктором Со встроенным планетарным редуктором
Номинальная мощность кВт/В 1,2/12 1,4/12
Количество зубьев приводной шестерни 8 8

ДАННЫЕ ДЛЯ КОНТРОЛЯ И РЕГУЛИРОВКИ

Пункт Номинальноезначение Предельное допускаемое значение
Зазор по торцу приводной шестерни, мм 0,5-2,0
Радиальное биение коллектора, мм 0,05
Диаметр коллектора, мм 29. 4 28,8
Поднутрение изоляции, мм 0,5 0,2

Предохранитель и реле стартера (расположение)


Предохранитель Ef7 и реле Ег5 расположенны в блоке в моторном отсеке.

Примечание: расположение реле и предохрантеля стартера может отличаться в зависимоти от модификации автомобиля. Подробнее см. здесь.

Принцип работы системы пуска

При повороте ключа замка зажиганияв положение «START» (запуск) ток от аккумуляторной батареи поступает во втягивающую и удерживающие обмотки тягового реле. Якорь тягового реле втягивается внутрь реле, воздействуя при этом на приводной рычаг, который вводит приводную шестерню стартера в зацепление с зубчатым венцом маховика.

Схема системы запуска.

С противоположенной стороны подвижный контакт якоря замыкает контакты «В» и «М». После замыкания неподвижных контактов ток поступает к обмоткам электродвигателя стартера. После поворота ключа замка зажиганияв положение «ON» (зажигание) после запуска двигателя шестерня выводится из зацепления с зубчатым венцом маховика. Обгонная муфта соединяет приводную шестерню и вал якоря и служит для предохра нения якоря стартера от разноса.


Пускатели управления промышленными двигателями | Магнитный пускатель двигателя

Знакомство с пускателями двигателей

Пускатели двигателей являются одним из основных изобретений для управления двигателями. Как следует из названия, стартер — это электрическое устройство, которое регулирует электрическую мощность для запуска двигателя. Эти электрические устройства также используются для остановки, реверсирования и защиты электродвигателей. Ниже приведены два основных компонента стартера:

  1. Контактор: Основной функцией контактора является управление подачей электрического тока на двигатель. Контактор может включить или отключить питание в цепи.
  2. Реле перегрузки: Перегрев и потребление слишком большого тока могут привести к тому, что двигатель сгорит и станет практически бесполезным. Реле перегрузки предотвращают это и защищают двигатель от любой потенциальной опасности.

Пускатель представляет собой сборку этих двух компонентов, которая позволяет включать и выключать электродвигатель или электрическое оборудование, управляемое двигателем. Стартер также обеспечивает необходимую защиту цепи от перегрузки.

Типы пускателей двигателей

Существует несколько типов пускателей двигателей. Однако двумя основными типами этих электрических устройств являются:

Ручные пускатели

Ручные пускатели — это устройства, которые приводятся в действие вручную. Эти стартеры чрезвычайно просты и просты в эксплуатации и не требуют вмешательства специалиста. На пускателе есть кнопка (или поворотная ручка), которая позволяет пользователю включать и выключать подключенное оборудование. Кнопки имеют механические связи, которые размыкают или замыкают контакты, запуская или останавливая двигатель. Следующие особенности ручного стартера делают его предпочтительным по сравнению с другими типами:

  • Эти стартеры обеспечивают безопасную и экономичную работу.
  • Компактный размер этих устройств делает их пригодными для широкого спектра применений.
  • Обеспечивают защиту двигателя от перегрузок, защищая его от возможных повреждений.
  • Эти устройства поставляются с широким выбором корпусов.
  • Первоначальная стоимость ручного стартера низкая.

Магнитные пускатели двигателей

Это другой основной тип пускателей двигателей. Он управляется электромагнитным способом. Это означает, что нагрузка двигателя, подключенная к пускателю двигателя, обычно запускается и останавливается при более низком и более безопасном напряжении, чем напряжение двигателя. Как и другие пускатели двигателей, магнитный пускатель также имеет электрический контактор и реле перегрузки для защиты устройства от слишком большого тока или перегрева.

Схема пускателя двигателя и работа

В пускателе двигателя есть две цепи, а именно:

  1. Цепь питания: Цепь питания соединяет линию с двигателем. Он обеспечивает передачу электроэнергии через контакты пускателя, реле перегрузки и далее к двигателю. Ток двигателя проходит через силовые (главные) контакты контактора.
  2. Цепь управления: Это другая цепь пускателя двигателя, которая управляет контактором для его включения или выключения. Главные контакты контактора отвечают за разрешение или прерывание подачи тока на двигатель. Для этого контакты в цепи управления либо размыкаются, либо замыкаются. Цепь управления подает питание на катушку контактора, которая создает электромагнитное поле. Силовые контакты притягиваются этим электромагнитным полем в замкнутое положение. Это замыкает цепь между двигателем и линией. Таким образом, дистанционные операции становятся возможными благодаря схеме управления. Цепь управления может быть подключена двумя способами:
    1. Метод 1: Один из наиболее широко используемых методов подключения цепи управления называется «двухпроводным методом». Тип управляющего устройства с постоянным контактом, такой как датчик присутствия, термостат или поплавковый выключатель, используется в двухпроводном методе подключения цепи управления.
    2. Метод 2: В отличие от двухпроводного метода, «трехпроводной метод» подключения цепи управления использует контакт удерживающей цепи и пилотные устройства с мгновенным контактом.

Цепь управления может получать питание одним из следующих трех способов:

  • Общее управление: Этот тип управления используется, когда источник питания цепи управления такой же, как у двигателя.
  • Раздельное управление: Это самый популярный тип управления. Как следует из названия, в этой схеме схема управления получает питание от отдельного источника. Как правило, полученная мощность имеет более низкое напряжение по сравнению с источником питания двигателя.
  • Управление трансформатором: Как следует из названия, схема управления получает питание от трансформатора схемы управления. Как правило, полученная мощность имеет более низкое напряжение по сравнению с источником питания двигателя.

Типы магнитных пускателей двигателей

В зависимости от того, как они включены в цепь, существует много типов магнитных пускателей двигателей, таких как:

1. Прямой пускатель

Прямой Онлайн-стартер — простейшая форма пускателя двигателя, кроме ручного пускателя. Контроллер этого пускателя обычно представляет собой простую кнопку (но может быть селекторным переключателем, концевым выключателем, поплавковым выключателем и т. д.). Нажатие кнопки пуска замыкает контактор (путем подачи питания на катушку контактора), подключенный к основному источнику питания и двигателю. Это обеспечивает ток питания двигателя. Для выключения двигателя предусмотрена кнопка остановки. Для защиты от перегрузки по току цепь управления подключается через нормально замкнутый вспомогательный контакт реле перегрузки. При срабатывании реле перегрузки нормально замкнутый вспомогательный контакт размыкается и обесточивает катушку контактора, а главные контакты контактора размыкаются.

Преимущества использования пускателей двигателей прямого пуска:
  • Они имеют компактную конструкцию.
  • Они экономичны.
  • Простая конструкция.

2. Пускатель сопротивления ротора

В пускателе сопротивления ротора три сопротивления соединены последовательно с обмотками ротора. Это помогает значительно снизить ток ротора, а также увеличить крутящий момент двигателя.

Преимущества использования пускателей электродвигателей сопротивления ротора:
  • Они экономичны.
  • У них простой метод контроля скорости.
  • Они обеспечивают низкий пусковой ток, большой пусковой момент и большой пусковой момент.

3. Пускатель сопротивления статора

Пускатель сопротивления статора состоит из трех резисторов, которые соединены последовательно с каждой фазой обмоток статора. На каждом резисторе возникает падение напряжения, поэтому возникает необходимость подавать низкое напряжение на каждую фазу. Эти сопротивления устанавливаются в начальное или максимальное положение на этапе пуска двигателя. Пусковой ток в этом типе пускателя поддерживается на минимальном уровне. Кроме того, необходимо поддерживать пусковой момент двигателя.

Преимущества использования пускателей электродвигателей сопротивления статора:
  • Они подходят для использования в устройствах управления скоростью.
  • Обладают чрезвычайно гибкими пусковыми характеристиками.
  • Обеспечивают плавное ускорение.

4. Автотрансформаторный пускатель

В автотрансформаторном пускателе трансформатор подает определенный процент первичного напряжения на вторичную обмотку трансформатора. Автотрансформатор подключен по схеме звезда. В этом типе пускателя три вторичные катушки трансформатора с ответвлениями подключены к трем фазам двигателя. Это помогает снизить напряжение, подаваемое на клеммы двигателя.

Преимущества использования автотрансформаторных пускателей двигателей:
  • Их можно использовать для ручного управления скоростью, но с ограниченными возможностями.
  • Обладают чрезвычайно гибкими пусковыми характеристиками.
  • Имеют высокий выходной крутящий момент.

5.

Пускатель звезда-треугольник

По сравнению с другими типами пускателей, пускатель звезда-треугольник используется в больших масштабах. Как следует из названия, три обмотки соединены по схеме «звезда» в пускателях «звезда-треугольник». Определенное время задается таймером или любой другой схемой контроллера. По истечении этого времени обмотки соединяются треугольником. Фазное напряжение при соединении звездой снижается до 58 %, а общий потребляемый ток составляет 58 % от нормального тока. Это приводит к снижению крутящего момента.

Преимущества использования пускателей двигателей звезда-треугольник:
  • Они идеально подходят для длительного времени разгона.
  • Имеют меньший входной импульсный ток по сравнению с другими пускателями.
  • Имеют более простую конструкцию по сравнению с другими стартерами.

Характеристики пускателей двигателей

Сегодня пускатели двигателей широко используются благодаря перечню их полезных свойств. Ниже приведены некоторые особенности этих очень полезных электрических устройств:

  1. Облегчают запуск и останов двигателя.
  2. Пускатели рассчитаны по мощности (л.с., киловатт) и току (амперы).
  3. Обеспечивают необходимую защиту двигателя от перегрузки.
  4. Электрическое устройство обеспечивает дистанционное управление включением/выключением.
  5. Эти устройства позволяют быстро включать и отключать ток (подключение и толчковый режим).

Основные функции пускателей двигателей

Ниже перечислены основные функции, которые должен выполнять пускатель:

  1. Управление: Функция управления в основном выполняется контактором пускателя. Он контролирует размыкание и замыкание силовой электрической цепи. Переключение осуществляется главными контактами (полюсами) контактора. На электромагнитную катушку подается напряжение, которое размыкает или замыкает контакты. Эта электромагнитная катушка имеет номинальное управляющее напряжение и может быть напряжением переменного или постоянного тока.
  2. Защита от короткого замыкания: В промышленных применениях нормальный ток нагрузки может достигать тысяч ампер. В случае короткого замыкания ток короткого замыкания может превышать 100 000 ампер. Это может привести к серьезному повреждению оборудования. Защита от короткого замыкания отключает питание и предотвращает возможные повреждения безопасным образом. Защита от короткого замыкания обеспечивается предохранителями или автоматическими выключателями в комбинированном контроллере двигателя.
  3. Защита от перегрузки: Когда двигатель потребляет больше тока, чем он рассчитан, возникает состояние перегрузки. Основной задачей реле перегрузки является обнаружение избыточных токов. При обнаружении перегрузки вспомогательный контакт реле перегрузки размыкает цепь и предотвращает перегорание или перегрев двигателя. Электронные или электромеханические реле перегрузки используются в сочетании с контактором для обеспечения необходимой защиты от перегрузки.
  4. Отключение и прерывание: Во избежание непреднамеренного перезапуска необходимо отключить двигатель от основной цепи питания. Чтобы безопасно выполнять техническое обслуживание двигателя или пускателя, двигатель должен иметь возможность отключаться и быть изолированным от источника питания. Эту функцию выполняет выключатель цепи. Отключение и размыкание обеспечивается разъединителем или автоматическим выключателем в комбинированном контроллере двигателя (или может быть установлен удаленно от пускателя).

Стандарты и характеристики

На номинальные характеристики пускателя двигателя влияет множество факторов, таких как тепловой ток, постоянный ток, напряжение двигателя и мощность.

Тепловой ток зависит от теплопроводности (k), которая является свойством, указывающим на способность материала проводить тепло. Это означает, что тепловой ток прямо пропорционален теплопроводности.

Непрерывный ток, который также обычно называют непрерывным амперным номиналом, является мерой способности пускателя управления двигателем выдерживать ток в течение непрерывного времени.

Номинальная мощность пускателя двигателя зависит от типа используемого двигателя. Пускатели двигателей постоянного тока имеют рейтинг мощности постоянного тока в лошадиных силах. С другой стороны, пускатели двигателей переменного тока имеют номинальную мощность однофазной и трехфазной мощности.

Номинальные характеристики пускателя двигателя основаны на размере и типе нагрузки, для которой он был разработан. Стартеры соответствуют стандартам и рейтингам Underwriters Laboratories (UL), Канадской ассоциации стандартов (CSA), Международной электротехнической комиссии (IEC) и Национальной ассоциации производителей электрооборудования (NEMA).

Рейтинг NEMA

Рейтинг NEMA стартера во многом зависит от максимальной мощности, указанной в стандарте ISCS2 Национальной ассоциации производителей электрооборудования. Выбор пускателей NEMA осуществляется на основе их типоразмера NEMA, который варьируется от размера 00 до размера 9. и от приложений к приложениям для подключения и бега, которые более требовательны. При выборе подходящего пускателя двигателя NEMA необходимо знать напряжение и мощность двигателя. В случае значительного количества подключений и толчков, потребуется снижение номинальных характеристик устройства с рейтингом NEMA.

Рейтинг МЭК

Международная электротехническая комиссия (МЭК) определила рабочие и рабочие характеристики для устройств МЭК в публикации МЭК 60947. Стандартные размеры не указаны МЭК. Типичный рабочий цикл устройств IEC определяется категориями использования. Что касается обычных приложений для пуска двигателей, AC3 и AC4 являются наиболее распространенными категориями использования.

В отличие от размеров NEMA, они обычно оцениваются по максимальному рабочему току, тепловому току, номинальной мощности в л.с. и/или кВт.

Существуют и другие параметры, которые важно учитывать при выборе пускателя электродвигателя, такие как ускорение с ограничением по времени, ускорение линии тока, управляющее напряжение, количество полюсов и рабочая температура. Мы рассмотрим их в будущем техническом документе.

Мы надеемся, что этот краткий информационный документ дал вам хорошее базовое представление о пускателях двигателей. Ищите другие документы от c3controls на c3controls.com/blog.

Отказ от ответственности:
Содержимое, представленное в этом техническом документе, предназначено исключительно для общих информационных целей и предоставляется с пониманием того, что авторы и издатели не занимаются предоставлением инженерных или других профессиональных консультаций или услуг. Практика проектирования определяется конкретными обстоятельствами, уникальными для каждого проекта. Следовательно, любое использование этой информации должно осуществляться только после консультации с квалифицированным и лицензированным специалистом, который может учесть все соответствующие факторы и желаемые результаты. Информация в этом техническом документе была размещена с разумной тщательностью и вниманием. Однако некоторая информация в этих официальных документах может быть неполной, неверной или неприменимой к конкретным обстоятельствам или условиям. Мы не несем ответственности за прямые или косвенные убытки, возникшие в результате использования, доверия или действий на основании информации, содержащейся в этом техническом документе.

Универсальные возможности устройства плавного пуска

Содержание

Знаете ли вы об альтернативном способе запуска двигателей машины? Если да, то какое альтернативное решение вы знаете? Это возможно с помощью устройства плавного пуска . В этой статье мы обсудим устройство плавного пуска и принцип его работы. Основы устройства плавного пуска и его функции обсуждаются ниже для вашего понимания. Кроме того, вы также узнаете о частотно-регулируемом приводе и его отличиях от устройств плавного пуска.

Что такое устройство плавного пуска?

Обычно электродвигателю требуется большой ток или бросок мощности до номинальной рабочей скорости. Следовательно, устройство плавного пуска, тип пускателя двигателя , используется для ограничения пускового тока двигателя или значительного снижения броска тока. Это дополнительное устройство, используемое для различных способов пуска двигателей. Устройство добавляется к электродвигателю для снижения нагрузки на электродвигатель. Устройство плавного пуска двигателя достигает результатов постепенно, увеличивая напряжение, подаваемое на электродвигатель.

Постепенное приложение напряжения улучшает плавное увеличение мощности двигателя. Почему медленно и стабильно? Внезапное повышение напряжения может повредить двигатель и привести к скачку мощности. В результате машина может быть повреждена без использования.

Если вы сравните традиционный запуск с запуском с помощью устройства плавного пуска, вы увидите большую разницу. Да, типичные пуски позволяют электрическому току течь к двигателю быстро, в то время как в устройстве плавного пуска ток течет устойчиво и медленно.

Как работает устройство плавного пуска

Устройства плавного пуска пропускают к двигателю только минимальный или медленный ток. Как это становится возможным? Это становится возможным за счет снижения крутящего момента с помощью твердотельных устройств, используемых устройством плавного пуска. Устройства плавного пуска могут управлять от одной до трех фаз. Вы можете получить потрясающие результаты с функцией управления тремя фазами устройства плавного пуска.

Что используется устройством плавного пуска для управления потоком тока? Принцип работы устройства плавного пуска заключается в том, что в нем используются тиристоры для уменьшения тока, подаваемого на двигатель. Кроме того, в нем используются кремниевые выпрямители. Эти кремниевые выпрямители в устройстве плавного пуска снижают напряжение. Рабочий статус устройства меняется при выключенном и включенном состоянии. В состоянии ON текущий поток разрешен, а в состоянии OFF текущий поток не разрешен устройством.

Как устройства плавного пуска снижают пусковой ток?

Различные функции устройств плавного пуска, такие как остановка тока, энергосбережение и другие функциональные особенности, делают его уникальным устройством. Как правило, кратность пускового тока и кратность пускового момента являются двумя основными характеристиками асинхронных двигателей. Устройство плавного пуска снижает напряжение питания , воздействуя на пусковой момент и пусковой ток.

Ударный ток в значительной степени снижается благодаря устройству плавного пуска. Это электрическое устройство играет важную роль в контроле повышения температуры электродвигателя. Коэффициент повышения температуры ограничивается устройством плавного пуска до ядра. Следовательно, срок службы двигателя значительно повышается благодаря устройству плавного пуска.

В чем разница между устройством плавного пуска и ЧРП?

Мы уже подробно обсуждали устройство плавного пуска выше. Вам придется больше узнать о частотно-регулируемом приводе. ЧРП — это частотно-регулируемый привод, который является еще одним двигателем, таким как устройство плавного пуска. Устройство VFD управляет скоростью асинхронного двигателя переменного тока, а также защищает двигатель. Скорость двигателя поддерживается частотно-регулируемым приводом на протяжении всего рабочего цикла.

Устройство плавного пуска и ЧРП

Опция управления скоростью

Устройство плавного пуска является лучшим вариантом для вас, если регулирование скорости не имеет значения, даже если бросок тока на двигатель высок.

VFD — точный шанс контролировать скорость.

Цена устройства плавного пуска ниже, чем у устройства плавного пуска.

Размер ЧРП

обычно больше размера устройства плавного пуска.

Преимущества устройств плавного пуска

  1. Меньшее потребление энергии
  2. Использование скачков напряжения ограничено
  3. Время разгона скорректировано.
  4. Снижен риск перегрева
  5. Повышается эффективность работы
  6. Увеличивается срок службы.

Преимущества ЧРП

  1. Регулируемая скорость
  2. Отсутствие энергопотребления, когда он не используется
  3. удобство и универсальность для пользователя
  4. Автосвязь
  5. Защита от перегрузки
  6. Мощность управления крутящим моментом

Заключение

Приведенные выше обсуждения помогут вам выбрать устройство плавного пуска или частотно-регулируемый привод в зависимости от вашего выбора. Преимущества частотно-регулируемого привода и устройства плавного пуска помогут вам сделать правильный выбор. Если вы экономически сознательны, выбор устройства плавного пуска является лучшим вариантом для вас. Кроме того, устройство плавного пуска — лучший выбор для людей, которым не хватает места. Места с ограниченным пространством могут иметь устройства плавного пуска вместо частотно-регулируемого привода. Для работы устройства плавного пуска требуется минимальное пространство.

Вы должны решить, какой тип устройства использовать для ваших нужд. Использование частотно-регулируемого привода или устройства плавного пуска зависит от вашего применения. Когда вы сравниваете устройство плавного пуска с ЧРП, вам придется потратить больше денег и места на устройство ЧРП. Вы можете проанализировать и сравнить достоинства и недостатки устройств плавного пуска и частотно-регулируемого привода в соответствии с вашими требованиями и потребностями. Выберите лучшее устройство на основе функций и преимуществ.

Вы должны проконсультироваться со специалистом о своем решении выбрать правильное устройство, которое соответствует вашим ожиданиям. Эти детали дадут вам четкое представление об устройстве плавного пуска. Таким образом, вы сможете принять взвешенное решение о покупке устройства. Действительно, устройство плавного пуска удовлетворяет ваши основные потребности без каких-либо недостатков.

Рекомендуем к прочтению

Электрический низковольтный

Откройте для себя мощность: основы стартеров двигателей

Если ваш бизнес или работа связаны с двигателями, то вы, вероятно, знакомы с пускателями двигателей. Эти надежные устройства играют ключевую роль в защите как

, так и

Подробнее »

Электрический низковольтный

Полное руководство по электричеству низкого напряжения

Домовладельцам нужны средства автоматизации, интернет и освещение. Вот почему сегодня строители вынуждены устанавливать низковольтные электросети.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *