Формула лобового сопротивления – Лобовое сопротивление крыла

Лобовое сопротивление крыла

Сила лобового сопротивления независимо от величины угла атаки всегда направлена против движения крыла. Лобовое сопротивление крыла является суммой сил сопротивления, вызываемых различными причинами.

Рассмотрим крыло бесконечного размаха, когда влияние его концов исключено. В этом случае аэродинамические характеристики крыла являются характеристиками его профиля.

Профильное сопротивление крыла. Сопротивление крыла так называемого «бесконечного размаха» называется профильным сопротивлением . Профильное сопротивление вызвано совокупным действием сил давления по поверхности крыла и сил трения в пограничном слое.

Если бы трение отсутствовало, происходило бы так называемое теоретическое обтекание, при котором поток плавно бы расширялся к хвостовой части и восстанавливал давление, действующее на носовую часть. Крыло не испытывало бы разности давлений, а значит, и сопротивления (Рисунок 3.15-1,а).

Из-за наличия вязкости воздуха абсолютно плавного обтекания не может быть даже у хорошо обтекаемых тел, с самой гладкой поверхностью.

При расширении струек, обтекающих хвостовую часть профиля крыла, происходят местные отрывы пограничного слоя. В результате этого давление в хвостовой части полностью не восстанавливается, там образуется спутная струя и зона разрежения. Профиль испытывает действие не только сил трения, но и разности давления перед телом и за ним (см. Рисунок3.15-1,б).

Таким образом, профильное сопротивление складывается из сопротивления трения и давления:

.

Сопротивление давления – это сила разности давлений перед и за крылом.

На Рисунок 3.16 показано влияние формы профиля, его относительной толщины и кривизны на профильное сопротивление.

Рисунок 3.16 График зависимости профильного сопротивления от толщины профиля

Из графика видно, что чем больше относительная толщина профиля, тем больше повышается давление перед крылом и больше уменьшается за крылом. Увеличивается разность давлений и, как следствие, увеличивается сопротивление давления, так как обтекание сопровождается образованием вихрей в спутной струе. Сопротивление давлениятел вращения рассмотрено на Рисунок 3.9.

На углах атаки, близких к критическому, размеры завихренной спутной струи резко увеличиваются, сопротивление давления значительно возрастает.

Для крыла и других хорошо обтекаемых тел сопротивление давления при малых скоростях полета составляет незначительную долю всего сопротивления.

У тел с плохообтекаемой хвостовой частью, имеющих вихревой спектр, сопротивление давления может составлять основную часть всего сопротивления. К таким телам относится, как было показано выше, плоская пластина, поставленная перпендикулярно потоку (см. Рисунок 3.9).

Если к пластинке приставить обтекатель и конус, то характер обтекания значительно улучшится, сопротивление станет меньше (Рисунок3.16-1).

Рисунок3.16-1 Сопротивление давления тела вращения

Сопротивление трения – это часть профильного сопротивления крыла, которая возникает вследствие проявления вязкости воздуха в пограничном слое.

Величина сил трения зависит от вида течения пограничного слоя и от состояния обтекаемой поверхности крыла (его шероховатости).

В ламинарном пограничном слое воздуха сопротивление трения меньше, чем в турбулентном пограничном слое. Чем большую часть поверхности крыла занимает ламинарное течение пограничного слоя, тем меньше сопротивление трения.

На величину сопротивления трения влияют также: скорость потока, шероховатость поверхности, форма крыла. Чем больше скорость полета, с худшим качеством обработана поверхность крыла и толще профиль крыла, тем больше сопротивление трения.

Для снижения сопротивления трения при подготовке ЛА к полету необходимо следить за состоянием поверхности крыла и частей ЛА.

Изменение угла атаки на величину сопротивления трения практически не влияет.

Расчет профильного сопротивления производится по формуле:

,

где – коэффициент профильного сопротивления, состоящий из двух составляющих: коэффициентов трения и давления:

.

Коэффициент крыла зависит, в основном, от относительной толщины профиля крыла.

Величина коэффициента зависит от течения пограничного слоя.

Вывод: определяющими факторами, влияющими на профильное сопротивление, являются: для крыла:

-форма профиля,

-состояние и качество обработки его поверхности,

— скорость воздушного потока;

для тел вращения:

площадь Миделя тела т.е. наибольшая площадь поперечного сечения,

-форма тела.

Влияние угла атаки крыла на профильное сопротивление сравнительно невелико, поэтому на всех углах атаки его можно считать постоянным.

Индуктивное сопротивление крыла. Для крыла конечного размаха появляется новый вид сопротивления, величина которого существенно возрастает при увеличении угла атаки.

Индуктивное сопротивление — это прирост лобового сопротивления, связанный с образованием подъемной силы крыла.

При обтекании крыла воздушным потоком возникает разность давлений над крылом и под ним. В результате часть воздуха на концах крыла перетекает из зоны большего давления в зону меньшего давления (Рисунок 3.17).

Рисунок 3.17 Обтекание крыла конечного размаха

Поток воздуха перетекает с нижней поверхности крыла на верхнюю и накладывается на воздушный поток, набегающий на верхнюю часть крыла – образуется

вихревой жгут.

Рисунок 3.18 Отклонение воздушного потока вниз, вызванное вихревым жгутом

Вращающийся воздух в жгуте увлекает за собой окружающий воздух.

Такое движение воздушных масс сообщает воздушному потоку дополнительную скорость, направленную вниз. При этом воздух, обтекающий крыло со скоростью V, отклоняется вниз со скоростью U( Рисунок 3.18).

Угол , на который отклоняется поток воздуха, называется углом скоса потока. Величина его зависит от значения вертикальной скорости, индуцированной вихревым жгутом, и истинной скорости набегающего потока Vист:

Благодаря скосу потока истинный угол атаки ист крыла будет отличаться от геометрического угла атаки на величину  (Рисунок 3.19):

Рисунок 3.19 Образование индуктивного сопротивления

.

Поворот набегающего потока вызывает поворот назад на угол вектора истинной подъемной силы. Согласно теореме Н.Е. Жуковского, она должна быть перпендикулярна к истинной скорости потока.

Подъемной силой будет не вся сила Y’ а ее составляющая Y, направленная перпендикулярно набегающему потоку:

Вторая составляющая истинной подъемной силы равна:

Она действует в направлении невозмущенного потока в сторону, противоположную движению, и являетсясилой индуктивного сопротивления .

Следовательно, индуктивное сопротивление – это проекция истинной подъемной силы на направление движения крыла.

Чем больше угол скоса потока , тем сильнее отклоняется назад подъемная сила, и тем больше индуктивное сопротивление.

определяется по общим аэродинамическим формулам:

,

где C

xiкоэффициент индуктивного сопротивления.

Формула для его расчета выведена теоретическим путем:

.

Из формулы видно, что Схi пропорционален квадрату коэффициента подъемной силы и обратно пропорционален удлинению крыла. Коэффициент δ учитывает форму крыла в плане. Для прямоугольного крыла , для эллиптического.

Из формулы следует, что минимальным индуктивным сопротивлением обладают эллиптические крылья, максимальным – прямоугольные.

При увеличении углов атаки индуктивное сопротивление возрастает в квадрате. При увеличении удлинения индуктивное сопротивление снижается. Во многих случаях полета, особенно при полете с дозвуковой скоростью на больших высотах, индуктивное сопротивление составляет значительную часть сопротивления крыла. Поэтому самолеты, предназначенные для полетов на большие расстояния, имеют крылья большого удлинения. Индуктивное сопротивление снижается также за счет применения геометрической и аэродинамической крутки крыла.

Вывод: Разность давлений на поверхности крыла определяет величину подъемной силы, поэтому между подъемной силой и индуктивным сопротивлением имеется связь. Если нет подъемной силы, индуктивное сопротивление отсутствует.

Чем больше угол атаки, тем больше подъемная сила и, следовательно, индуктивное сопротивление увеличивается.

При угле атаки нулевой подъемной силы α0 концевых вихрей нет, поэтому . На углах атаки, отличающихся от α0, сопротивление крыла состоит из профильного сопротивления и индуктивного:

; ,

где СХi – коэффициент индуктивного сопротивления.

Переходя от сил к их коэффициентам, получим формулу коэффициента лобового сопротивления профиля крыла: .

Зависимость Cxот угла атаки является важной аэродинамической характеристикой крыла.

Зависимость коэффициента лобового сопротивления от угла атаки. Эта зависимость строится после продувок модели крыла в аэродинамической трубе (Рисунок 3.20) с помощью формулыСx =, где Сx — коэффициент лобового сопротивления профиля крыла;

X -сила лобового сопротивления модели крыла; — скоростной напор воздушного потока в аэродинамической трубе;S – площадь крыла модели.

Рисунок 3.20 Зависимость СХ =

График представляет собой квадратную параболу, каждая точка которой найдена суммированием двух коэффициентов – профильного сопротивления Сxр и индуктивного Сxi:

Сx = Сxр + Сxi.

График показывает, что коэффициент Сx на любом угле атаки не равен нулю, так как обтекание профиля без сопротивления невозможно.

На малых углах атаки коэффициент Сx имеет минимальное значение и соответствует профильному сопротивлению.

С увеличением углов атаки Сxр почти не изменяется, а индуктивное быстро растет (пропорционально Сy2). По мере приближения к критическому углу атаки рост Сx ускоряется из-за начинающегося срыва потока.

Графическая зависимость позволяет также определить влияниекривизны профиля. Для несимметричных профилей (кривая 2) график смещается влево. Это означает, что Сx у несимметричного профиля больше, чем у симметричного (кривая 1).

Вывод: Известно, что чем меньше углы атаки, тем больше скорость полета. Поэтому на больших скоростях полета наибольшая доля сопротивления приходится на профильное сопротивление. Поэтому на сопротивление основное влияние оказывают толщина и кривизна профиля, состояние поверхности крыла.

На малых скоростях полета и больших углах атаки основная доля в общем сопротивлении крыла – это индуктивное сопротивление. Поэтому основное внимание уделяется размерам площади и удлинения крыла.

studfiles.net

Лобовое сопротивление (аэродинамика) — это… Что такое Лобовое сопротивление (аэродинамика)?

Четыре силы, действующие на самолёт

Лобовое сопротивление — сила, препятствующая движению тел в жидкостях и газах. Лобовое сопротивления складывается из двух типов сил: сил касательного (тангенциального) трения, направленных вдоль поверхности тела, и сил давления, направленных по нормали к поверхности. Сила сопротивления является диссипативной силой и всегда направлена против вектора скорости тела в среде. Наряду с подъёмной силой является составляющей полной аэродинамической силы.

Сила лобового сопротивления обычно представляется в виде суммы двух составляющих: сопротивления при нулевой подъёмной силе и индуктивного сопротивления. Каждая составляющая характеризуется своим собственным безразмерным коэффициентом сопротивления и определённой зависимостью от скорости движения.

Лобовое сопротивление может способствовать как обледенению летательных аппаратов (при низких температурах воздуха), так и вызывать нагревание лобовых поверхностей ЛА при сверхзвуковых скоростях ударной ионизацией.

Поток и форма препятствияПрофильное сопротивлениеСопротивление обшивки
0%100%
~10%~90%
~90%~10%
100%0%
Траектории трёх объектов (угол запуска — 70°, Distance — расстояние, Height — высота). Чёрный объект не испытывает никакого сопротивления и движется по параболе, на голубой объект действует Закон Стокса, на зеленый объект — закон вязкости Ньютона

Сопротивление при нулевой подъёмной силе

Эта составляющая сопротивления не зависит от величины создаваемой подъёмной силы и складывается из профильного сопротивления крыла, сопротивления элементов конструкции самолёта, не вносящих вклад в подъёмную силу, и волнового сопротивления. Последнее является существенным при движении с около- и сверхзвуковой скоростью, и вызвано образованием ударной волны, уносящей значительную долю энергии движения. Волновое сопротивление возникает при достижении самолётом скорости, соответствующей критическому числу Маха, когда часть потока, обтекающего крыло самолёта, приобретает сверхзвуковую скорость. Критическое число М тем больше, чем больше угол стреловидности крыла, чем более заострена передняя кромка крыла и чем оно тоньше.

Сила сопротивления направлена против скорости движения, её величина пропорциональна характерной площади S, плотности среды ρ и квадрату скорости V:

Cx0 — безразмерный аэродинамический коэффициент сопротивления, получается из критериев подобия, например, чисел Рейнольдса и Фруда в аэродинамике.

Определение характерной площади зависит от формы тела:

  • в простейшем случае (шар) — площадь поперечного сечения;
  • для крыльев и оперения — площадь крыла/оперения в плане;
  • для пропеллеров и несущих винтов вертолётов — либо площадь лопастей, либо ометаемая площадь винта;
  • для продолговатых тел вращения ориентированных вдоль потока (фюзеляж, оболочка дирижабля) — приведённая волюметрическая площадь, равная V2/3, где V — объём тела.

Мощность, требуемая для преодоления данной составляющей силы лобового сопротивления, пропорциональна кубу скорости.

Индуктивное сопротивление

Индуктивное сопротивление (англ. lift-induced drag) — это следствие образования подъёмной силы на крыле конечного размаха. Несимметричное обтекание крыла приводит к тому, что поток воздуха сбегает с крыла под углом к набегающему на крыло потоку (т. н. скос потока). Таким образом, во время движения крыла происходит постоянное ускорение массы набегающего воздуха в направлении, перпендикулярном направлению полёта, и направленном вниз. Это ускорение во-первых сопровождается образованием подъёмной силы, а во-вторых — приводит к необходимости сообщать ускоряющемуся потоку кинетическую энергию. Количество кинетической энергии, необходимое для сообщения потоку скорости, перпендикулярной направлению полёта, и будет определять величину индуктивного сопротивления.

На величину индуктивного сопротивления оказывает влияние не только величина подъёмной силы, но и её распределение по размаху крыла. Минимальное значение индуктивного сопротивления достигается при эллиптическом распределении подъёмной силы по размаху. При проектировании крыла этого добиваются следующими методами:

  • выбором рациональной формы крыла в плане;
  • применением геометрической и аэродинамической крутки;
  • установкой вспомогательных поверхностей — вертикальных законцовок крыла.

Индуктивное сопротивление пропорционально квадрату подъёмной силы Y, и обратно пропорционально площади крыла S, его удлинению λ, плотности среды ρ и квадрату скорости V:

Таким образом, индуктивное сопротивление вносит существенный вклад при полёте на малой скорости (и, как следствие, на больших углах атаки). Оно также увеличивается при увеличении веса самолёта.

Суммарное сопротивление

Является суммой всех видов сил сопротивления:

X = X0 + Xi

Так как сопротивление при нулевой подъёмной силе X0 пропорционально квадрату скорости, а индуктивное Xi — обратно пропорционально квадрату скорости, то они вносят разный вклад при разных скоростях. С ростом скорости, X0 растёт, а Xi — падает, и график зависимости суммарного сопротивления X от скорости («кривая потребной тяги») имеет минимум в точке пересечения кривых X0 и Xi, при которой обе силы сопротивления равны по величине. При этой скорости самолёт обладает наименьшим сопротивлением при заданной подъёмной силе (равной весу), а значит наивысшим аэродинамическим качеством.

Мощность, требуемая для преодоления силы паразитного сопротивления, пропорциональна кубу скорости, а мощность, требуемая для преодоления индуктивного сопротивления, обратно-пропорциональна скорости, поэтому суммарная мощность тоже имеет нелинейную зависимость от скорости. При некоторой скорости мощность (а значит и расход топлива) становится минимальной — это скорость наибольшей продолжительности полёта (барражирования). Скорость, при которой достигается минимум отношения мощности (расхода топлива) к скорости полёта, является скоростью максимальной дальности полёта или крейсерской скоростью.

См. также

Ссылки

dic.academic.ru

Аэродинамическое сопротивление автомобиля

В процессе проектирования и создания конструкторами очень тщательно прорабатывается аэродинамика автомобиля, поскольку она оказывает значительное влияние на технические показатели модели.

При движении автомобиля большая часть мощности силовой установки уходит на преодоление сопротивления, создаваемого воздухом. И правильно созданная аэродинамика автомобиля позволяет уменьшить это сопротивление, а значит на борьбу с противодействием находящего воздушного потока потребуется затратить меньше мощности, и соответственно – топлива.

Измерение аэродинамики автомобиля проводится для изучения сил, создаваемых воздушным потоком и воздействующих на транспортное средство. И таких сил несколько – подъемные и боковые, а также лобовое сопротивление.

Лобовое сопротивление и коэффициент Сх

По большей части все работы с кузовом авто направлены на преодоление лобового сопротивления, поскольку именно эта сила самая значительная.

Движение потоков воздуха

За основу при расчетах берется сила сопротивления воздуха. Для вычисления результата используются такие данные как плотность воздуха, площадь поперечной проекции авто, коэффициент аэродинамического сопротивления (Сх)  — это важнейший показатель в аэродинамике автомобиля. При этом на силу сопротивления в значительной мере влияет также скорость движения. Так, увеличение скорости вдвое будет сопровождаться повышением сопротивлением в 4 раза. Скорость один из мощных факторов увеличения расхода.

Например, для хорошо обтекаемого авто с площадью проекции 2 ми коэффициентом 0,3 при движении на скорости 60 км/ч для преодоления сопротивления воздуха необходимо 2,4 л.с., а при скорости 120 км/ч уже 19,1 л.с. Разница расхода топлива при таких условиях достигает 30% на 100 км.

Если вам, в данный момент, требуется максимальная экономия топлива, необходимо придерживаться постоянной скорости около 60 км/ч. В этом режиме движения расход будет минимальным даже у авто с большим Cx.

Рассмотрим все по-простому. У воздуха есть своя плотность, причем немалая. При движении автомобилю приходится проходить через имеющиеся воздушные массы, при этом создается поток, который обтекает кузов. И чем легче авто будет «резать» воздушную массу, тем меньше он затратит на это энергии.

Но не все так просто. Во время движения перед авто создается область увеличенного давления (машина сжимает воздушную массу), то есть спереди образуется такой себе невидимый барьер, осложняющий «разрезание» воздушной массы.

Также после обтекания кузова происходит отрыв воздушного потока от поверхности, что становиться причиной появления завихрений и разрежения за авто. В сочетании с повышенным давлением возникающее разрежение еще больше увеличивает сопротивление.

Поскольку повлиять на плотность воздуха невозможно, то конструкторам остается только вносить коррективы в две другие расчетные составляющие – площадь авто и коэффициент аэродинамического сопротивления.

Но уменьшить проекцию авто не представляется особо возможным без ущерба для полезных пространств кузова (просто невозможно сделать авто меньше, чем он есть), поэтому остается только изменение коэффициента Сх.

Этот коэффициент устанавливается экспериментальным путем (в аэродинамической трубе) и характеризует он соотношение лобового сопротивления к скоростному напору и площади поперечного сечения кузова. Величина его безразмерная.

Аэродинамическая труба

Наименьший коэффициент аэродинамического сопротивления имеет каплевидное тело. При движении в воздушной массе такое тело плавно перед собой разводит поток, не создавая области повышенного давления, а имеющийся «хвост» позволяет за собой сомкнуть поток без обрывов и завихрений, то есть разрежение тоже отсутствует. Получается, что воздух просто обтекает тело, создавая минимальное сопротивление. Для такого тела коэффициент Сх составляет всего 0,05.

Конструкторам, работая с аэродинамикой автомобиля добиться, таких показателей пока не удается. И все потому, что при движении сопротивление создается несколькими факторами:

  • Формой кузова;
  • Трением потока о поверхности при обтекании;
  • Попаданием потока в подкапотное пространство и салон.

Поэтому для современных авто коэффициент аэродинамического сопротивления считается отличным, если его значение ниже 0,3. К примеру, у Peugeot 308 коэффициент составляет 0,29, у Audi A2 он равен 0,25, а у Toyota Prius – 0,26. Но стоит отметить, что это расчетные показатели в идеальных условиях. На практике же во время движения на авто воздействуют множество разнообразных факторов, которые негативным образом сказываются на сопротивлении кузова.

Примечательно, что на коэффициент оказывает наибольшее влияние не передок авто, а его задняя часть. И виной этому становится создание разрежения и завихрений в результате отрыва потока от кузова. Поэтому конструкторы по большей части занимаются приданием необходимой формы именно задней части.

Коэффициент сопротивления Volkswagen XL1 составляет всего 0,19

Снизить коэффициент Сх позволяет также уменьшение количества выступающих частей, причем везде на авто (бока, крыша, днище, передок), а тем элементам, которые не удается убрать с поверхности придается максимально возможная обтекаемая форма.

Подъемная и прижимная сила

В результате неравномерного обтекания потоком воздуха автомобиля с разных сторон возникает разница в скорости его движения.

Действующие подъемная и прижимная силы

Автомобиль движется и рассекает поток воздуха, при этом часть этого потока уходит под авто и проходит под днищем, то есть движется практически по прямой. А вот верхней части потока приходится повторять форму кузова, и ей приходится проходить большее расстояние. Из-за этого возникает разница в скорости воздуха – верхняя часть движется быстрее нижней, проходящей под авто. А поскольку увеличение скорости сопровождается снижением давления, то под днищем образуется зона повышенного давления, которая приподнимает машину.

Проблем добавляет и лобовое сопротивление. Область повышенного давления воздушной массы перед машиной прижимает передок к дороге, в то время как разрежение и завихрения позади наоборот – способствуют приподнятию кузова. Подъемная сила, как и лобовое сопротивление, возрастает при увеличении скорости движения.

Негативным фактором от воздействия такой силы является ухудшение устойчивости авто при увеличении скорости и повышение вероятности ухода в занос.

Но эта сила может оказывать и положительное действие. При внесении корректив в конструкцию авто возможно преобразование подъемной силы в прижимную, которая будет обеспечивать лучшее сцепление с дорогой, устойчивость авто, его управляемость на высоких скоростях.

При этом для получения прижимной силы не требуется каких-либо отдельных решений. Все разработки, направленные на снижение коэффициента Сх также сказываются и на прижиме. К примеру, оптимизация формы задней части приводит к уменьшению завихрений и разрежения, из-за чего подъемная сила тоже снижается, а прижимная — повышается. Установка заднего спойлера действует таким же образом.

Уменьшение завихрений при установке спойлера

Боковые же силы при установлении аэродинамики автомобиля, особо в расчет не берутся, в силу того, что они не постоянны, а также значительного влияния на показатели авто не оказывают.

Но это все теория аэродинамики автомобиля. На практике все можно пояснить одним предложением — чем хуже аэродинамика, тем выше расход топлива.

Что ещё влияет на аэродинамику?

Конечно, конструкторы стараются по максимуму снизить сопротивление авто при движении и повысить прижимную силу. Но особенности эксплуатации авто и свой взгляд автовладельцев на внешние особенности машины вносят свои коррективы, причем в некоторых случаях – значительны.

Аэродинамическое сопротивление разных автомобилей в зависимости от скорости

К примеру, установка багажника на крышу, даже с аэродинамической формой увеличивает поперечную проекцию авто и сильно влияет на обтекаемость, это сразу сказывается на потреблении топлива.

Также расход повышается от езды с открытыми окнами и люком, использование защитных и декоративных обвесов, перевозка негабаритных грузов, выступающих за авто, нарушение положения конструктивных элементов, расположенных под днищем, повышение клиренса.

Но автовладелец также может и внести коррективы, которые положительно повлияют на аэродинамику автомобиля. К ним относится использование аэродинамических обвесов, установка спойлера, уменьшение клиренса.

autoleek.ru

Определение коэффициента лобового сопротивления самолета.

Коэффициент лобового сопротивления компоновки самолета, симметричного относительно плоскости X0Z () при углах атакидля самолета с крылом малого удлинения,для самолета с крылом большого удлинения, определяется как сумма коэффициентов лобового сопротивления при нулевой подъемной силе —и индуктивного сопротивления: .

Коэффициент рассчитывается по формуле:

— коэффициенты лобового сопротивления с учетом интерференции фюзеляжа с крылом, горизонтальным и вертикальным оперениями;

-коэффициент, учитывающий дополнительное сопротивление, обусловленное технологическими неровностями поверхности (стыковочные узлы, люки, царапины) , = 0.003 …0.004 ;

К – поправочный коэффициент, уточняющий формулу на неучтенные факторы,

К =1.05 …1.1.

— коэффициент индуктивного сопротивления самолета,

где А – коэффициент отвала поляры,

— коэффициент подъемной силы самолета.

Определение коэффициента лобового сопротивления фюзеляжа при нулевой подъемной силе.

Коэффициент лобового сопротивления фюзеляжа самолета при нулевой подъемной силе отличается от соответствующего коэффициента изолированного фюзеляжаувеличением донного сопротивления в диапазоне чисел Маха, что учитывается при расчете коэффициента донного сопротивления фюзеляжа

Расчет коэффициента лобового сопротивления изолированного фюзеляжа при нулевой подъемной силе выполняется по соотношению:

где — коэффициент лобового сопротивления трения,

— коэффициент лобового сопротивления давления.

Коэффициент лобового сопротивления трения определяется по формуле:

где — коэффициент сопротивления трения плоской пластины в несжимаемом потоке для полностью турбулентного пограничного слоя,

— число Рейнольдса, рассчитанное по длине фюзеляжа ,

— коэффициент, учитывающий влияние сжимаемости (снимается с графика),

— коэффициент формы, учитывающий отличие фюзеляжа от плоской пластины (снимается с графика),

— площадь омываемой поверхности фюзеляжа (боковой, без площади поверхности донного среза),

— кинематический коэффициент вязкости, определяемый по таблице стандартной атмосферы в зависимости от высоты полета.

фюз

 

К

1,05

xt

0,5

64,45919807

Sбокнос

9,124755862

Sбокцил

47,10346945

Sбоккорм

8,230972752

M∞

0,6

0,7

0,8

1,6

1,8

2

Reф

6,93E+07

8,08E+07

9,24E+07

1,85E+08

2,08E+08

2,31E+08

V∞

179,7192

209,6724

239,6256

479,2512

539,1576

599,064

2Cf

0,003

0,0025

0,0024

0,0023

0,0022

0,0021

ημ

0,98

0,96

0,95

0,9

0,82

0,8

ηλ

1,08

 

 

 

 

 

Cxa0фтр

0,052861174

0,043152

0,04099438

0,037218582

0,032435904

0,030206

Коэффициент сопротивления давления определяется по формуле:

где — соответственно коэффициенты сопротивления носовой и кормовой частей, донного сопротивления.

Коэффициент сопротивления носовой частиопределяется по графикам в зависимости от числа Маха и.

Коэффициент сопротивления кормовой части фюзеляжа форма обводов кормовой части), определяется по графику Коэффициент сопротивления донного среза при неработающем двигателе определяется для всех значений числаМ по формуле:

,

где – площадь донного среза,— диаметр донного среза,– коэффициент донного давления.

При М< 0.8 ,

— коэффициент, учитывающий влияние удлинения и сужения кормовой части, — коэффициент трения плоской пластины, определяемый по числу.

При М>0.8 определяется по графикам в зависимости от числа Маха, коэффициенттакже снимается по графикам.

M∞

0,6

0,7

0,8

1,6

1,8

2

(M-1)/λнос

0,428668942

0,3826636

0,321501706

0,669259171

0,801966157

ё

(Cханос)при ϕ=1

0

0

0

0,104798949

0,074651306

0,068909

Cхакорм

0,045

0,045

0,06

0,075

0,065

0,051

Коэффициент сопротивления донного среза фюзеляжа:

M∞

0,6

0,7

0,8

1,6

1,8

2

1-ηкорм

0,21853068

 

 

 

 

 

0,18

0,18

0,18

0,42

0,5

0,55

Cр дон

-0,3233

-0,3542

-0,3615

-0,28

-0,27

-0,2

Cxдон

0,026020793

0,0285044

0,029092131

0,052573439

0,060352163

0,049176

Cxaфдавл

0,07102079

0,073504

0,08909213

0,23237239

0,20000347

0,16908

Cxa0ф

0,123881967

0,1166563

0,13008651

0,26959097

0,232439373

0,199291

Расчет коэффициента лобового сопротивления несущей поверхности (крыла, ГО, ВО) при нулевой подъемной силе.

Коэффициент лобового сопротивления изолированной несущей поверхности при нулевой подъемной силе определяется по формуле:

где — коэффициент профильного сопротивления, состоящий из сопротивления трения и сопротивления давления, обусловленного перераспределением давления из-за влияния вязкости;— коэффициент волнового сопротивления, обусловленный потерями полного давления (потерями энергии) в скачках уплотнения и перераспределением давления на сверхзвуковых скоростях.

Коэффициент профильного сопротивления:

(4.13)

где — коэффициент, учитывающий долю несущей поверхности= 2.

— коэффициент, учитывающий влияние на профильное сопротивление толщины профиля снимается с графика ,

— коэффициент, учитывающий влияние числа Маха берется с графика.

Коэффициент трения плоской пластины (верхняя и нижняя поверхность) определяется по графику .

Число Рейнольдса для рассматриваемой несущей поверхности ,— средняя аэродинамическая хорда консольной части несущей поверхности (крыла, ГО, ВО). Как и в случае расчета коэффициента сопротивления трения фюзеляжа, для несущей поверхности принимаем пограничный слой турбулентным. Некоторое завышение коэффициента сопротивления допускается, что определяет запас тяги двигателя.

Крыло

M∞

0,6

0,7

0,8

1,6

1,8

2

Reф

6,93E+07

8,08E+07

9,24E+07

1,85E+08

2,08E+08

2,31E+08

V∞

179,7192

209,6724

239,6256

479,2512

539,1576

599,064

Cf

0,0015

0,00125

0,0012

0,00115

0,0011

0,00105

Cхар

0,00304584

0,0025382

0,002436672

0,002335144

0,002233616

0,002132

Вертикальное оперение

M∞

0,6

0,7

0,8

1,6

1,8

2

Reф

6,93E+07

8,08E+07

9,24E+07

1,85E+08

2,08E+08

2,31E+08

V∞

179,7192

209,6724

239,6256

479,2512

539,1576

599,064

Cf

0,0015

0,0015

0,0015

0,0011

0,001

0,001

Cхар

0,003046

0,00304584

0,00304584

0,002233616

0,002031

0,002031

Горизонтальное оперение

M∞

0,6

0,7

0,8

1,6

1,8

2

Reф

6,93E+07

8,08E+07

9,24E+07

1,85E+08

2,08E+08

2,31E+08

V∞

179,7192

209,6724

239,6256

479,2512

539,1576

599,064

Cf

0,0015

0,0015

0,0015

0,0011

0,001

0,001

Cхар

0,003046

0,003046

0,003046

0,002234

0,002031

0,002031

Коэффициент волнового сопротивления несущей поверхности определяется по соотношению

где — коэффициент волнового сопротивления несущей поверхности с ромбовидным профилем. Зависимостипредставлены на графиках и позволяют определить коэффициент.

Коэффициенты, учитывающие влияние на волновое сопротивление формы профиля крыла бесконечного размаха –К,(так как форма профиля — синусоидальная), конечного размаха крыла — снимается с графика и зависит от .

Для ориентировочной оценки коэффициента волнового сопротивления крыла сложной формы в плане исходное крыло разбивают на 2 вспомогательных простых крыла с постоянной стреловидностью по передней кромкеи площадью в плане. Коэффициент волнового сопротивления рассчитывается по формуле

где — коэффициент волнового сопротивленияn-го вспомогательного простого крыла,

K -коэффициент, учитывающий влияние интерференции на волновое сопротивление крыла. В приближенных расчетах можно принять K = 1.15…1.2.

Коэффициент волнового сопротивления крыла:

 

1,6

1,8

2

Cxaвлромб

0,0297216

0,02575872

0,024343

Cxaвл

0,0297216

0,033057024

0,025804

Коэффициент волнового сопротивления ВО:

 

1,6

1,8

2

Cxaвлромб

0,022722812

0,016896

0,013983

Cxaвл

0,022874297

0,021402

0,018644

Коэффициент волнового сопротивления ГО:

 

1,6

1,8

2

Cxaвлромб

0,022723

0,016896

0,013983

Cxaвл

0,022874

0,021402

0,018644

Сха0

0,01704802

0,01583

0,01726748

0,03278182

0,02846074

0,02463

Определение коэффициента индуктивного сопротивления самолета

Коэффициент индуктивного сопротивления самолета определяется соотношением

где А — коэффициент отвала поляры первого рода,

— коэффициент подъемной силы самолета.

В пределах линейной зависимости коэффициент,

где — производная коэффициента подъемной силы по углу атаки.

Тогда ,

где при заданном значении произведение.

Отвал поляры при отсутствии подсасывающей силы для всех чисел Маха определяется:

, где

 

0,6

0,7

0,8

1,6

1,8

2

А

0,39808507

0,3763637

0,362863317

0,469079925

0,435848765

0,487484

Kmax

6,069390174

6,4776973

6,316608962

4,032088346

4,489303768

4,562783

 

M∞

0,6

0,7

0,8

1,6

1,8

2

α

Сxai

 

 

 

 

 

 

0

0

0

0

0

0

0

0

2

 

0,003060827

0,00323748

0,00335793

0,002598

0,002796

0,0025

4

 

0,012243309

0,012949918

0,013431721

0,01039

0,011182

0,009998

6

 

0,027547446

0,029137316

0,030221371

0,023378

0,025161

0,022496

8

 

0,048973238

0,051799673

0,053726883

0,041561

0,04473

0,039992

studfiles.net

Сопротивление воздуха (аэродинамическое)

Автор: Юлиюс Мацкерле (Julius Mackerle)
Источник: «Современный экономичный автомобиль» [1]
47849 5

На расход топлива, в особенности при больших скоростях движения, значительное влияние оказывает сопротивление воздуха (аэродинамическое сопротивление), сила аэродинамического сопротивления пропорциональна квадрату скорости и рассчитывается по формуле

Pv = cx·S·v2·ρ/2,

где S – площадь фронтальной проекции автомобиля, м2; v – скорость движения автомобиля относительно воздуха, м/с; ρ – плотность воздуха, кг/м3; cх – коэффициент аэродинамического сопротивления.

Аэродинамическое сопротивление не зависит от массы автомобиля [2]. Площадь фронтальной проекции автомобиля определяется формой кузова и требованиям по обеспечению комфортного расположения водителя и пассажиров на сиденьях. Например, автомобиль большого класса может быть ниже, чем малого, так как сиденья у него зачастую располагаются ниже. У автомобиля малого класса из-за его небольшой массы и длины сиденья расположены выше над полом, и поэтому расстояние между передними и задними сиденьями меньше. Более прямое расположение водителя и пассажиров в автомобиле малого класса требует его большей высоты, но меньшей длины. Площади фронтальных проекций обоих автомобилей при этом почти одинаковы, но низкий и длинный кузов автомобиля большого класса аэродинамически более выгоден.

Мощность двигателя, необходимая для преодоления аэродинамического сопротивления, пропорциональна, следовательно, кубу скорости:

Nv = Pv·v/3600 (кВт),

где v — относительная скорость движения автомобиля, км/ч.

Коэффициент аэродинамического сопротивления, как видно из таблицы, представленной ниже, изменяется в широком диапазоне в зависимости от формы кузова автомобиля.

Аэродинамическое сопротивление различных автомобилей
Кузов автомобиля Коэффициент сопротивления воздуха cx Мощность, необходимая для преодоления аэродинамического сопротивления (кВт), при площади фронтальной проекции 2 м2 и скорости
40 км/ч 80 км/ч 120 км/ч
Открытый четырёхместный 0,7 – 0,9 1,18 – 1,47 9,6 – 11,8 31,0 – 40,5
Закрытый, с наличием углов и граней 0,6 – 0,7 0,96 – 1,18 8,0 – 9,6 26,4 – 30,8
Закрытый, с закруглением углов и граней 0,5 – 0,6 0,80 – 0,96 6,6 – 8,0 22,0 – 26,4
Закрытый понтонообразный 0,4 – 0,5 0,66 – 0,80 5,2 – 6,6 17,6 – 22,0
Закрытый, хорошо обтекаемый 0,3 – 0,4 0,52 – 0,66 3,7 – 5,2 13,2 – 17,6
Закрытый, аэродинамически совершенный 0,20 – 0,25 0,33 – 0,44 2,6 – 3,3 9,8 – 11,0
Грузовой автомобиль 0,8 – 1,5
Автобус 0,6 – 0,7
Автобус с хорошо обтекаемым кузовом 0,3 – 0,4
Мотоцикл 0,6 – 0,7

Коэффициент аэродинамического сопротивления устанавливается продувкой автомобиля или его макета в аэродинамической трубе или приближенно в ходе эксплуатационных испытаний. При испытаниях в аэродинамической трубе на макетах получаются менее точные значения, чем при тех же испытаниях на реальных автомобилях. Это вызвано тем, что на изменение сопротивления воздуха оказывают влияние неточности изготовления некоторых узлов и деталей автомобиля: ручек дверей, днища кузова, бамперов, зеркал заднего вида и т. д. Кроме того, значительное влияние на величину сх оказывает воздух, проходящий в кузов для охлаждения и вентиляции.

При больших скоростях движения автомобиля аэродинамическое сопротивление является преобладающим.

На рисунке ниже показано изменение мощностей, необходимых для преодоления сопротивления качению Nf и аэродинамического сопротивления Nv в зависимости от скорости v для автомобиля среднего класса. При скорости 60 км/ч мощности, необходимые для преодоления сопротивления качению и сопротивления воздуха, равны, что характерно для данного вида автомобилей. По сумме потребляемых мощностей можно убедиться в важности сопротивления воздуха. При скорости 80 км/ч мощность, затрачиваемая на его преодоление, в 4 раза больше, чем при скорости 40 км/ч, а при скорости выше, чем 120 км/ч, общая мощность, необходимая для движения, растет почти пропорционально кубу скорости автомобиля.

Мощность, затрачиваемая на преодоление сопротивлений движению
Масса автомобиля 1350 кг, площадь фронтальной проекции S автомобиля 2 м2; коэффициент сопротивления качению f равен 0,015; коэффициент аэродинамического сопротивления сх равен 0,456.

При определении мощности двигателя, необходимой для достижения максимальной скорости, большей той, которую обеспечивает номинальная мощность установленного на автомобиле двигателя, можно использовать без значительной ошибки следующее соотношение:

N2 = N1·(v2/v1)3,

где N2 – требуемая мощность, кВт; N1 – достигнутая максимальная мощность, кВт; v2 – требуемая скорость, км/ч; v1 – достигнутая максимальная скорость, км/ч.

Через точку X – максимальная мощность N1 при максимальной скорости v1 – проведена кривая зависимости мощности от куба скорости. Разница между этой кривой и линией мощности, требуемой для движения при максимальной скорости, незначительна.

Показанная сумма мощностей сопротивления качению Nf и аэродинамического сопротивления Nv представляет собой мощность сопротивления равномерному движению автомобиля по горизонтальному участку дороги при безветрии.

Последнее обновление 02.03.2012
Опубликовано 16.03.2011

Читайте также

Сноски

  1. ↺ Мацкерле Ю. Современный экономичный автомобиль/Пер. с чешск. В. Б. Иванова; Под ред. А. Р. Бенедиктова. — М.: Машиностроение, 1987. — 320 с.: ил.//Стр. 110 — 114 (книга есть в библиотеке сайта). – Прим. icarbio.ru

Комментарии

icarbio.ru

Лобовое сопротивление — это… Что такое Лобовое сопротивление?

Четыре силы, действующие на самолёт

Лобовое сопротивление — сила, препятствующая движению тел в жидкостях и газах. Лобовое сопротивление складывается из двух типов сил: сил касательного (тангенциального) трения, направленных вдоль поверхности тела, и сил давления, направленных по нормали к поверхности. Сила сопротивления является диссипативной силой и всегда направлена против вектора скорости тела в среде. Наряду с подъёмной силой является составляющей полной аэродинамической силы.

Сила лобового сопротивления обычно представляется в виде суммы двух составляющих: сопротивления при нулевой подъёмной силе и индуктивного сопротивления. Каждая составляющая характеризуется своим собственным безразмерным коэффициентом сопротивления и определённой зависимостью от скорости движения.

Лобовое сопротивление может способствовать как обледенению летательных аппаратов (при низких температурах воздуха), так и вызывать нагревание лобовых поверхностей ЛА при сверхзвуковых скоростях ударной ионизацией.

Траектории трёх объектов (угол запуска — 70°, Distance — расстояние, Height — высота). Чёрный объект не испытывает никакого сопротивления и движется по параболе, на голубой объект действует Закон Стокса, на зелёный объект — закон вязкости Ньютона
Поток и форма
препятствия
Профильное
сопротивление
Сопротивление
обшивки
0 %100 %
~10 %~90 %
~90 %~10 %
100 %0 %

Сопротивление при нулевой подъёмной силе

Эта составляющая сопротивления не зависит от величины создаваемой подъёмной силы и складывается из профильного сопротивления крыла, сопротивления элементов конструкции самолёта, не вносящих вклад в подъёмную силу, и волнового сопротивления. Последнее является существенным при движении с около- и сверхзвуковой скоростью, и вызвано образованием ударной волны, уносящей значительную долю энергии движения. Волновое сопротивление возникает при достижении самолётом скорости, соответствующей критическому числу Маха, когда часть потока, обтекающего крыло самолёта, приобретает сверхзвуковую скорость. Критическое число М тем больше, чем больше угол стреловидности крыла, чем более заострена передняя кромка крыла и чем оно тоньше.

Сила сопротивления направлена против скорости движения, её величина пропорциональна характерной площади S, плотности среды ρ и квадрату скорости V:

 — безразмерный аэродинамический коэффициент сопротивления, получается из критериев подобия, например, чисел Рейнольдса и Фруда в аэродинамике.

Определение характерной площади зависит от формы тела:

  • в простейшем случае (шар) — площадь поперечного сечения;
  • для крыльев и оперения — площадь крыла/оперения в плане;
  • для пропеллеров и несущих винтов вертолётов — либо площадь лопастей, либо ометаемая площадь винта;
  • для продолговатых тел вращения ориентированных вдоль потока (фюзеляж, оболочка дирижабля) — приведённая волюметрическая площадь, равная V2/3, где V — объём тела.

Мощность, требуемая для преодоления данной составляющей силы лобового сопротивления, пропорциональна кубу скорости.

Индуктивное сопротивление в аэродинамике

Индуктивное сопротивление (англ. lift-induced drag) — это следствие образования подъёмной силы на крыле конечного размаха. Несимметричное обтекание крыла приводит к тому, что поток воздуха сбегает с крыла под углом к набегающему на крыло потоку (т. н. скос потока). Таким образом, во время движения крыла происходит постоянное ускорение массы набегающего воздуха в направлении, перпендикулярном направлению полёта, и направленном вниз. Это ускорение, во-первых, сопровождается образованием подъёмной силы, а во-вторых — приводит к необходимости сообщать ускоряющемуся потоку кинетическую энергию. Количество кинетической энергии, необходимое для сообщения потоку скорости, перпендикулярной направлению полёта, и будет определять величину индуктивного сопротивления.

На величину индуктивного сопротивления оказывает влияние не только величина подъёмной силы, но и её распределение по размаху крыла. Минимальное значение индуктивного сопротивления достигается при эллиптическом распределении подъёмной силы по размаху. При проектировании крыла этого добиваются следующими методами:

  • выбором рациональной формы крыла в плане;
  • применением геометрической и аэродинамической крутки;
  • установкой вспомогательных поверхностей — вертикальных законцовок крыла.

Индуктивное сопротивление пропорционально квадрату подъёмной силы Y, и обратно пропорционально площади крыла S, его удлинению , плотности среды ρ и квадрату скорости V:

Таким образом, индуктивное сопротивление вносит существенный вклад при полёте на малой скорости (и, как следствие, на больших углах атаки). Оно также увеличивается при увеличении веса самолёта.

Суммарное сопротивление

Является суммой всех видов сил сопротивления:

Так как сопротивление при нулевой подъёмной силе пропорционально квадрату скорости, а индуктивное  — обратно пропорционально квадрату скорости, то они вносят разный вклад при разных скоростях. С ростом скорости, растёт, а  — падает, и график зависимости суммарного сопротивления от скорости («кривая потребной тяги») имеет минимум в точке пересечения кривых и , при которой обе силы сопротивления равны по величине. При этой скорости самолёт обладает наименьшим сопротивлением при заданной подъёмной силе (равной весу), а значит наивысшим аэродинамическим качеством.

Мощность, требуемая для преодоления силы паразитного сопротивления, пропорциональна кубу скорости, а мощность, требуемая для преодоления индуктивного сопротивления, обратно-пропорциональна скорости, поэтому суммарная мощность тоже имеет нелинейную зависимость от скорости. При некоторой скорости мощность (а значит и расход топлива) становится минимальной — это скорость наибольшей продолжительности полёта (барражирования). Скорость, при которой достигается минимум отношения мощности (расхода топлива) к скорости полёта, является скоростью максимальной дальности полёта или крейсерской скоростью.

См. также

Ссылки

dic.academic.ru

ПОДЪЁМНАЯ СИЛА И ЛОБОВОЕ СОПРОТИВЛЕНИЕ — Мегаобучалка

Подъёмная сила возникает вследствие обтекания крыла и образования разности давлений под крылом и над крылом.

Лобовым сопротивлением крыла называется аэродинамическая сила, которая тормозит движение крыла в воздухе и направлена в сторону, противоположную движению.

Формулы этих сил одинаковы, разница только в коэффициентах.

Y= Cy S X= Cx S

 

Значения этих коэффициентов получают путём продувки крыла в аэродинамической трубе.

График примерной зависимости Cy от a имеет вид:

 

Как видно из графика Cy практически линейно растет с увеличением a, вплоть до aкр, то есть до срыва потока с крыла.

Значение Cy колеблется на большинстве самолётов от 0 до 2. По сути коэффициент Cy характеризует способность крыла преобразовывать скоростной напор в подъёмную силу. Существуют самолёты, оснащённые мощной механизацией крыла для уменьшения посадочной скорости и уменьшения взлётной дистанции, они имеют более высокие значения Cy. Однако более Cy = 6 человеку достичь не удалось, тогда как Cy большого орла при взлёте с добычей с земли достигает значения 14.

Коэффициент Cx, как, впрочем, и сила X, состоит в основном из 3-х составляющих. Волновая — 4-я составляющая появляется при числах M, близких к M критическому, около M = 0,8.

Cx тр (трения) — возникает из-за трения воздуха о ЛА.

Cx давления (или вихревое) — возникает из-за разности давлений перед крылом и за крылом.

Cxi (индуктивное) — возникает из-за так называемого скоса потока . Когда набегающий поток встречает наклонную, нижнюю, плоскость крыла, он изменяет направление движения параллельно плоскости, то есть несколько наклоняется вниз. Подъёмная сила отклоняется вместе с потоком на такой же угол назад, так как является производной от потока, изменившего направление. Появившаяся составляющая подъёмной силы на оси X и есть индуктивная составляющая.

Cxi возникает ещё и из-за перетекания воздуха через торцы крыла и из-за разности давлений под крылом и над крылом.

Cxi зависит от удлинения крыла l и угла атаки a.

Рис. 17.



 

Чем короче и шире крыло, тем интенсивнее происходит перетекание потока и больше индуктивное сопротивление.

Чем больше a, тем также интенсивнее происходит перетекание и увеличивается Xi. Вот почему у спортивных планеров такие узкие и длинные крылья — для снижения индуктивного сопротивления.

Cx трения и Cx давления в пределах эксплуатационных a практически не изменяются, а коэффициент Cxi в зависимости от a изменяется по параболическому закону.

 

 

13. ПОЛЯРА САМОЛЕТА (ПЛАНЕРА). АЭРОДИНАМИЧЕСКОЕ КАЧЕСТВО.

 

Полярой называется график зависимости Cx от Cy. Грамотный пилот, взглянув на поляру самолёта, сразу может представить, что из себя представляет ЛА в аэродинамическом отношении.

Рис. 19

 

 

На поляре можно определить несколько важных параметров.

1. aнв (наивыгоднейший) — он соответствует точке соприкосновения касательной из начала координат с полярой. aнв — это угол атаки, на котором крыло создаёт максимальную подъёмную силу с минимальным лобовым сопротивлением, он обычно соответствует vнв — наивыгоднейшей скорости, скорости, на которой ЛА выполняет полёт с минимальными энергетическими затратами.

2. Угол наклона касательной — φ. Чем сильнее наклонена касательная, тем меньше аэродинамическое качество ЛА.

Аэродинамическим качеством называется отношение подъёмной силы к лобовому сопротивлению. K = Y/X. Обычно, говоря о качестве ЛА, имеют в виду максимальное качество, которое соответствует отношению Y к X на aнв или наивыгоднейшей скорости. У спортивных планеров оно достигает 50, у большинства самолётов оно колеблется от 4 до 15.

3. Наивысшая точка поляры соответствует максимальному значению Cy и соответствует aкр.

 

 

megaobuchalka.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *