Нейтрализатор отработавших газов – Нейтрализатор отработанных газов. Устройство и принцип действия

Содержание

Нейтрализатор отработанных газов. Устройство и принцип действия

Назначение

Нейтрализатор отработанных газов предназначен для нейтрализации вредных веществ, находящихся в отработанных газах выпускной системы.

Принцип работы

Постоянные усилия разработчиков по улучшению процессов сгорания, оптимизации управления системами двигателя достигли определённой точки, при которой требовались новые методы и способы для уменьшения выбросов вредных веществ в атмосферу многочисленными автомобилями. Разработаны и применяются т.н. нейтрализаторы отработанных газов, которые устанавливаются в выпускной системе. В настоящее время используются нейтрализаторы нескольких типов:

  • каталитические;
  • термические;
  • накопительные;
  • и др.

В каталитических процесс нейтрализации интенсифицируется за счёт применения катализаторов, а в термических — за счёт высокой температуры с добавлением воздуха к отработанным газам.

Каталитические нейтрализаторы

Каталитические нейтрализаторы называют окислительными, т.к. они предназначены для окисления СО и СН, находящихся в отработанных газах. За короткое время, пока газы проходят через нейтрализатор, все реакции должны завершиться при температуре 250 — 800 град.

При температуре менее 250 град, эффективность нейтрализатора мала, а при температуре выше 1 000 гр. происходит «спекание» мелких кристаллов платины и разрушение активной поверхности, т.е. дезактивация нейтрализатора.

Рис. Окислительный нейтрализатор

На рисунке представлена конструкция каталитического нейтрализатора. 1 — керамическая пористая основа с нанесённым покрытием из платины и родия, 2 — изоляционные и теплоотводящие компоненты, 3 — датчик содержания кислорода в отработанных газах. Дезактивация катализатора особенно велика в первые 20 тыс.км. Особенно быстро дезактивация наступает при использовании этилированного бензина. Повторим, что рабочая температура в нейтрализаторе 400-700 гр., поэтому для быстрого прогрева и эффективной работы нейтрализатор располагают ближе к выпускному коллектору. Такое расположение является положительным фактором при холодном пуске и прогреве двигателя — нейтрализатор быстрее начинает работать, но при этом повышается его эксплуатационная температура, а это может способствовать дезактивации катализатора.

Блок-носитель каталитического нейтрализатора делают из керамики сотовой структуры, гофрированной фольги из нержавеющей стали или в виде сферических гранул из оксида алюминия, которые укладывают в металлический цилиндр, закрытый по торцам сетками. На поверхность носителя наносится каталитический материал и помещают внутрь корпуса из нержавеющей жаропрочной стали. Между блоком-носителем и корпусом ставится терморасширяющаяся прокладка. Для уменьшения вибрационных нагрузок нейтрализатор присоединяется шарнирными соединениями или компенсаторами колебаний.

Рис. Эффективная зона работы нейтрализатора

На рисунке показана зона эффективной работы нейтрализатора. Заштрихованная область — зона «стехиометрической» смеси, по оси абсцисс (В) отображено отношение «воздух-топливо», по оси ординат (А)-эффективность работы нейтрализатора.

В зоне «богатых» смесей — от 10 до 14,6 преобладают высокие концентрации оксида азота(NОх) и низкие СО и СН. Нейтрализаторы, преобразующие СО, СН, N0, называют трёхкомпонентными или бифункциональными. Для нейтрализации смеси оксида азота, получающегося в процессе сгорания смеси, используются реакции его восстановления до азота N2 и аммиака Nh4. В материалах, служащих катализатором при нейтрализации вредных веществ, используются платина, палладий, родий и др.

Трёхкомпонентные нейтрализаторы являются окислительными и восстановительными. В связи с тем, что состав вредных веществ резко меняется в зависимости от «обогащения» или «обеднения» топливовоздушной смеси, необходимо поддерживать работу двигателя в районе «стехиометрической» смеси.

Для выполнения такой задачи используется электронное управление работой двигателя с системой обратной связи (замкнутая система). Датчики, обеспечивающие работу обратной связи, называются: лямбда зондами (отношение «воздух-топливо») и устанавливаются до и после нейтрализатора, а также термометры газов в зоне процессов нейтрализации и окисления вредных веществ.

Термические нейтрализаторы

Термические нейтрализаторы представляют собой камеру, в которой при высокой температуре окисляются СО и СН. При работе двигателя на обогащенной смеси, требуется подача воздуха перед нейтрализатором. При работе на обеднённой смеси температура будет не высокой и требуется дополнительный прогрев нейтрализатора. Термический нейтрализатор начинает работать при температуре 600 гр, что существенно выше, чем у каталитических нейтрализаторов. Кроме этих требований, нужны более прочные и жаростойкие материалы, стойкость к высокой коррозионной агрессивности. Не получили широкого распространения.

Ранее отмечалось, что нейтрализатор не работает на режимах прогрева двигателя, т.к. температура в нём не достаточно высока, кроме того, двигатель в это время работает на обогащенных смесях и в отработанных газах нет достаточного количества кислорода, необходимого для окисления СН в нейтрализаторе.

Для ускоренного прогрева нейтрализатора уменьшается угол опережения зажиганием, или электрическим подогревом нейтрализатора путём сжигания перед ним топлива в горелке, или подачи воздуха в, поток отработанных газов с помощью специального насоса.

Рис. Методы подогрева нейтрализатора: 1 — топливная форсунка, 2 — нейтрализатор, 3 — свеча для поджигания смеси, 4 — воздушный насос

В некоторых системах используют «стартовый» нейтрализатор, который устанавливается перед или параллельно основному При параллельном расположении весь поток отработанных газов направляется в стартовый нейтрализатор, который быстро прогревается и начинает эффективно работать.

После прогрева двигателя поворотом заслонки поток газов направляется в основной нейтрализатор. На рисунке приведена одна из схем построения системы с параллельным и основным нейтрализаторами.

Рис. Система со стартовым нейтрализатором: 1 — двигатель, 2 — стартовый нейтрализатор, 3 — глушитель, 4 — основной нейтрализатор, 5 — кислородный датчик (лямбда-зонд), 6 — заслонка

При очистке отработанных газах дизельных двигателей внимание уделяется сокращению содержания твёрдых частиц и оксидов азота (NOx). Приведём краткое описание некоторых способов очистки ОГ, применяемых в дизельных двигателях.

Фильтр твёрдых частиц используется для сбора и их дальнейшей регенерации. Используется с окислительным нейтрализатором. Перед и после нейтрализатора и фильтра твёрдых частиц устанавливаются датчики давления и температуры, по которым косвенным способом определяется загрязнение элементов. Далее ЭБУ двигателем переводит работу двигателя на разные режимы для запуска системы регенерации твёрдых частиц.

Накопительный нейтрализатор NOx

Накопительный нейтрализатор NOx собирает на своей поверхности оксиды азота, а затем конвертирует их в азот (N2). При холодном пуске отработанные газы нагреваются для сокращения количества NOx. ЭБУ двигателем периодически обогащает, а затем обедняет рабочую смесь и, тем самым, создаёт условия для разложения оксидов азота.

Расположение

После выпускного коллектора сразу в подкапотном пространстве или под днищем автомобиля. Обычно снизу дополнительно защищен металлической сетчатой пластиной.

Неисправности

Засоряется от некачественных (или несгоревших) топлив и масел. Разрушается при уларах. Обычно двигатель не запускается при правильности всех параметров, т.к. отработанным газам некуда выходить — выпускная система забита.

Методика проверки

Если возникли подозрения на неисправность нейтрализатора, необходимо проверить давление газов перед нейтрализатором. Холостой ход — не более 0,9 bar и режим нагрузок (примерно 3000 оборотов) не более 2,5 bar. Если нет измерительного манометра — просто выкрутить кислородный датчик для выпуска отработанных газов. Если двигатель запустился, значит нейтрализатор «забит». Признаком неисправности нейтрализатора служат раскалённые газы, идущие из выпускной системы; перегрев двигателя и «хлопки» во впускной коллектор.

Ремонт

Нейтрализатор отработанных газов ремонту не подлежит. Пробивать отверстие в нейтрализаторе нельзя, можно разрезать и удалить все внутренности, что не приветствуется по причине нарушения экологических норм выброса отравляющих веществ. Лучше заменить на новый, как обычный сменный элемент со своим сроком службы (примерно 150 тыс.км.).

ustroistvo-avtomobilya.ru

Системы нейтрализации выхлопных газов

При современном уровне развития техники наиболее эффективным способом снижения токсичности выхлопа является нейтрализация токсичных компонентов отработавших газов с использованием химических реакций окисления и (или) восстановления. С этой целью в выпускную систему двигателя устанавливают специальный термический реактор (каталитический нейтрализатор). Постоянное повышение экологических требований к выбросам вредных веществ заставляет автопроизводителей совершенствовать системы нейтрализации.

Как работает каталитический нейтрализатор

Содержание статьи

Системы нейтрализации бензиновых двигателей

Еще при введении норм Евро-3 в методику испытаний добавили режим холодного пуска: измерения производятся сразу же после запуска двигателя при температуре -7 градусов. При отрицательных температурах смесь нужно сильно обогащать – количество СО и СН при этом в выхлопных газах резко возрастает. А не успевший прогреться до рабочей температуры каталитический нейтрализатор практически бездействует.

Для решения этой проблемы было найдено несколько способов. Первый, сравнительно простой – расположить нейтрализатор не под днищем автомобиля, а поближе к выпускному коллектору. Так появились

катколлекторы, в которых два узла объединены в один. Для более быстрого прогрева их изготавливают не из чугуна, а из тонкой стали. Чтобы уменьшить потери тепла предусматривается теплоизоляция.

Ускорить прогрев нейтрализатора можно и другим способом – добавить в выхлопные газы воздуха с одновременным обогащением топлива. Таким образом «лишняя» горючая смесь, догорая вне цилиндра, повышает температуру отработанных газов, а они, в свою очередь, быстрее нагревают нейтрализатор. В двигателях с непосредственным впрыском того же эффекта добиваются подачей дополнительной порции бензина во время рабочего хода. Есть и третий способ – разогрев нейтрализатора электрическим термоэлементом.

Повысить точность работы системы нейтрализации удалось добавлением второго датчика кислорода. Первый предназначен для контроля качества смеси – богатая она или бедная. А по показаниям второго контроллер более точно корректирует работу системы топливоподачи. Еще более совершенными являются широкополосные датчики – они способны определять, насколько соотношение воздуха и бензина отличается от стехиометрического.

Произошли изменения и в материале изготовления сот нейтрализатора. Мы привыкли к тому, что их изготавливают из керамики. Но она имеет ряд недостатков – в силу своей хрупкости не переносит тряски и ударов, быстро разрушается некачественным топливом или в случае нарушений в работе ЭСУД. В настоящее время все больше применяются соты из металлической проволоки. Они медленнее прогреваются и имеют меньшую рабочую поверхность, зато легко переносят механические воздействия и высокие температуры. Очень важно также то, что металлические соты создают намного меньшее сопротивление потоку выхлопных газов.

Еще одну проблему пришлось решать для современных двигателей с непосредственным впрыском, которые способны работать на бедных смесях. При этом достигается заметная экономия топлива, однако количество оксидов азота в выхлопных газов также значительно возрастает. Обычный нейтрализатор не в состоянии с ними справиться. Поэтому в выпускную систему дополнительно вводится NO-накопитель. Конструктивно он практически не отличается от обычного нейтрализатора, за исключением веществ, которыми покрываются его соты. Оксиды калия, стронция, циркония, кальция, лантана, бария задерживают оксиды азота. Периодически рабочая смесь обогащается, и накопленные вредные вещества выжигаются, разлагаясь при этом на азот и углекислый газ. Располагается накопитель после нейтрализатора, так как для его работы нужна более низкая температура (около 400 градусов).

Системы нейтрализации дизельных двигателей

Другой подход нужен к дизелям. Здесь приходится бороться с углеводородами, оксидами азота и сажей (твердыми частицами). Сажевые фильтры придуманы давно. В первых конструкциях накопившуюся сажу периодически выжигали при температуре около 600 градусов, кратковременно обогащая смесь. Но при этом увеличивался выброс других вредных веществ. Поэтому в современных конструкциях сажевый фильтр объединили с окислительным нейтрализатором. Одно устройство и оксиды азота разлагает, и сажу сжигает, причем при более низкой температуре (около 250 градусов).

Для очистки выхлопа грузовиков дополнительно применяется технология SCR (Selective Catalitic Reduction). Ее суть – периодический впрыск в нейтрализатор раствора мочевины (AdBlue). Там она превращается в аммиак и вступает в реакцию с оксидами азота. В результате образуются безвредные азот и вода.

Однако возможности ученых и изобретателей не безграничны. Нормы Евро-6, по всей видимости, – предел, достижимый современными ДВС. А дальше придется искать другие экологически чистые источники энергии.

Практические рекомендации

Во время и после работы двигателя корпус нейтрализатора имеет достаточно высокую температуру. В связи с этим, во избежание пожара, не следует парковать автомобиль над легко воспламеняющимися предметами, например сухими листьями, травой, бумагой и т.д.

Следует соблюдать основные правила, направленные на предупреждение ситуации, когда в нейтрализатор может попасть значительное количество несгоревшего топлива. В этом случае возможная вспышка может привести к его разрушению.

Наиболее общие рекомендации таковы:

  • не следует бесполезно крутить двигатель стартером длительное время;
  • нельзя пускать двигатель путем буксировки. Следует использовать метод “прикуривания” от другого автомобиля;
  • запрещается проверять работу цилиндров, отключая свечи зажигания.
  • при перебоях в работе системы зажигания не допускайте работы двигателя с высокой частотой вращения коленвала до устранения неисправности;
  • не заливайте моторное масло сверх максимального уровня. Излишки масла, попав в каталитический нейтрализатор, могут повредить покрытие или полностью разрушить его.

avtonov.info

Каталитическая нейтрализация отработавших газов | Системы снижения токсичности автомобиля

Каталитическое действие нейтрализаторов основано на беспламенном поверхностном окислении токсичных веществ в присутствии катализатора, ускоряющего химическую реакцию. Процесс окисления происходит во время прохождения отработавших газов через слой носителя с нанесенным на него катализатором, причем скорость реакции сгорания зависит oт температуры носителя. Применение каталитических нейтрализаторов позволяет дожигать продукты неполного сгорания СН и СО и разлагать оксиды азота.

В качестве активных компонентов каталитических нейтрализаторов для СИ и СО применяют благородные металлы (до 1-2 г палладия, платины) а также оксиды переходных металлов (меди, кобальта, никеля, ванадия, хромата железа, марганца). Для нейтрализации могут применяться, кроме выше названных элементов, катализаторы на основе меди с добавкой ванадиевого ангидрида и оксида хрома, на основе оксида железа или алюминия, на основе металлических сплавов (нержавеющая сталь, бронза, латунь, легированные стали с хромоникелем).

Общая схема системы очистки отработавших газов бензинового двигателя показана на рисунке:

Рис. Общая схема системы очистки отработавших газов бензинового двигателя

В систему очистки отработавших газов современного двигателя входят:

  • трехкомпонентный каталитический нейтрализатор 1
  • входной 2 и выходной 9 датчики кислорода (лямда зонды)
  • блок управления двигателем 3
  • кабель шины CAN 4
  • блок управления датчиком NOx 5
  • датчик (датчики) оксидов азота NOx 6
  • накопительный нейтрализатор NOx 7
  • датчик температуры 8
  • датчик кислорода 9
  • двигатель 10

Каталитический нейтрализатор представляет собой металлический корпус 6 из жаропрочной нержавеющей стали толщиной около 1,5 мм, внутри которого находится керамический носитель 5. Наибольшее распространение получили гранулированные и блочные (монолитные) носители, которые пронизаны многочисленными мелкими сотами, созда­ющими максимальную поверхность контакта с отработавшими газами. Чтобы обеспечить необходимый массоперенос между отработавшими газами и каталитической поверхностью, площадь последней увеличивают путем нанесения на нее гамма-оксида алюминия с пористой структурой, в виде сферических гранул, которые укладываются в металлический цилиндр 2, закрытый по торцам сетками. Гранулы из оксида алюминия покрываются непосредственно каталитическим материалом. Поверх фольги или гранул алюминия нанесен тонкий слой катализаторов – платины и родия. Задача этих редких металлов – ускорять окисление углеводородов и окиси углерода до угле­кислого газа, а токсичные оксиды азота восстанавливать до азота. Между блоком-носителем и корпусом ставится специальная терморасширяющаяся прокладка.

Рис. Каталитический трехкомпонентный нейтрализатор отработавших газов:
1 – кислородный датчик; 2 –цилиндр; 3 – терморасширительная прокладка; 4 – катализатор; 5 – керамический носитель; 6 – металлический корпус

Недостатком нейтрализаторов является их достаточно большая стоимость из-за применения дорогостоящих редких металлов. В целях их экономии в конструкции нейтрализаторов начали применять нано технологии. Исследования фирмы «Мазда» показали, что частицы редких металлов крупнее 10 нм, напыленные на керамическую основу, дер­жатся на ней не слишком проч­но. При нагреве они начинают скользить по поверхности керамических зерен и сливаются, подобно капелькам ртути в агломераты все боль­ших размеров. При этом неиз­бежно уменьшается площадь поверхности, контактирующая с газами, и эффективность их обезвреживания падает. Однако, если уменьшить размер частиц металла до 5 нм и менее, они прочно застревают в нанопорах керамики и уже не могут срываются. Кроме того, применяя наночастицы пла­тины, удалось уменьшить ее общее количество в нейтрали­заторе на 70…90%.

Альтернативой керамическому моно­литному блоку является металлический каталитический нейтрализатор. Он из­готавливается из гофрированной ме­таллической фольги толщиной 0,05 мм, намотка и пайка которой твердым при­поем осуществляется при высокой тем­пературе. Поверхность фольги покры­вается эффективно действующим ката­лизатором. Благодаря тонким стенкам фольги в тех же габаритах, что и у кера­мического нейтрализатора, может быть размещено большее число каналов. Это приводит к меньшему сопротивлению прохождения отработавших газов.

Нейтрализатор вступает в работу после разогрева до 300°С. Оптимальный рабочий диапазон температур от 400 до 800°С. Чем ближе нейтрализатор к двигателю, тем быстрее разогревается до рабочей темпе­ратуры. Поэтому на смену нейтрализаторам под днищем кузова пришли нейтрализаторы, совмещен­ные с приемной трубой.

В целях уменьшения вибрационных нагрузок со стороны двигателя нейтрализатор присоединяется к выпускному трубопроводу или к приемной трубе через шарнирное соединение или через компенсатор колебаний.

Для работы системы с каталитическим окислительным нейтрализатором при использовании в двигателе обогащенных смесей необходимо к отработавшим газам добавлять воздух. Для этого используются специальные воздушные насосы ими специальные клапанные устройства (виброклапаны или пульсаторы), функционирующие под действием волн разрежения, возникающих в системе выпуска.

Наилучшую очистку отработавших газов дают двухсекционные катали­тические нейтрализаторы, позволяющие после прохождения первой секции уменьшать содержание NOx, а после ввода во вторую секцию дополнительного воздуха – содержание СО и СН.

В последнее время наибольшее распространение нашли трехкомпонентные каталитические нейтрализаторы, оборудованные системой обратной связи, позволяющие одновременно при восстановлении NOx окис­лять СО и СН.

ustroistvo-avtomobilya.ru

Нейтрализаторы отработавших газов автомобильных двигателей.


Нейтрализаторы отработавших газов




Нейтрализаторы служат для снижения концентрации в отработавших газах токсичных компонентов. Основными токсичными веществами в отработавших газах являются оксид углерода (СО), группа оксидов азота (NOx, основной из них NO2) и углеводороды (CmHn).

Различают термические и каталитические нейтрализаторы.

В термических нейтрализаторах происходит полное восстановление СО в СО2 и догорании СН. Оксид углерода (СО) обладает значительной теплотой сгорания, но горит при температуре выше 700 ˚С.
Для сжигания оксида углерода отработавшие газы подогревают (при необходимости) в термоизолированной камере и подают в нее дополнительную порцию воздуха. Применение дополнительной подачи топлива для подогрева газов и нагнетание воздуха приводят к увеличению расхода топлива до 15 %.

Наиболее распространены каталитические нейтрализаторы. Их действие основано на понижении энергии, выделяющейся при химических процессах окисления токсических веществ, путем применения катализаторов (платины, палладия, родия).

Каталитические нейтрализаторы делятся по типу на окислительные (переводят СО в СО2) и восстановительные (расщепляют NOx на свободный азот и кислород), а также трехкомпонентные (нейтрализуют все три токсина – СО, СН и NOx, т. е. являются окислительно-восстановительными).

Каталитические нейтрализаторы могут быть однокамерными и двухкамерными. Носитель может быть керамический или металлический.

Чаще всего применяют трехкомпонентные нейтрализаторы. Наиболее эффективно они работают в сочетании с λ-зондами, однако и без них способны снизить выбросы токсинов на 50 %.
λ-зонд представляет собой датчик определения количества свободного кислорода в отработавших газах. По полученным от датчика данным электронный микропроцессор определяет коэффициент избытка воздуха α, корректируя после этого количество подаваемого в цилиндры топлива.

Эффективная работа каталитического нейтрализатора соответствует очень узкому диапазону значений коэффициента избытка воздуха (0,98≤α≤1). При отклонении состава горючей смеси от указанных значений эффективность действия катализатора резко падает.
Использование микропроцессора совместно с λ-зондом позволяет поддерживать состав смеси с точностью ±1 %.



Устройство каталитического нейтрализатора

Каталитический нейтрализатор состоит из металлического корпуса (Рис. 7), в котором находится носитель 2, покрытый активным каталитическим слоем.
Носитель может быть насыпной или монолитный, керамический или металлический. Чаще применяют монолитные нейтрализаторы из термостойкой керамики. В их корпусе выполнены каналы квадратного сечения. Поверхности каналов покрыты тонкой пленкой катализатора – платиной, палладием, родием (в соотношении 1:16:1). На один нейтрализатор требуется 1,5…3 г благородных металлов. Платина способствует окислительным процессам, родий – восстановительным.
Слоем благородных металлов покрывают предварительно нанесенный на керамику слой оксида алюминия, который увеличивает активную поверхность катализатора и стимулирует ускорение реакций.

Чтобы повысить сопротивление керамики ударным нагрузкам и компенсировать термическое расширение металлических деталей, между корпусом и перегородками помещают набивку из высоколегированной проволоки. Нормальная работа каталитических нейтрализаторов протекает при температуре 250 ˚С, т. е. после значительного прогрева двигателя. Наиболее эффективно они работают при температуре 400…800 ˚С, т. е. в оптимальном тепловом режиме двигателя. При более высокой температуре происходит спекание промежуточного слоя с катализатором, эффективность работы нейтрализатора снижается, и он преждевременно теряет работоспособность.

Причины выхода из строя катализаторов

В нормальных условиях автомобильный катализатор может выйти из строя после сгорания каталитического слоя — из-за уменьшения его площади катализатор не в состоянии дожигать до конца выхлопные газы и поэтому количество вредных веществ на выходе из глушителя увеличивается.

Наиболее часто катализаторы приходят в негодность из-за неисправности системы смесеобразования или системы зажигания. В этом случае соты забиваются и не дают возможности катализатору окислять смесь.
Повреждение автомобильного катализатора может произойти и из-за плохого качества бензина, в составе которого для искусственного увеличения октанового числа содержится большое количество тетраэтилсвинца. Тетраэтилсвинец покрывает часть каталитического слоя и не дает устройству полноценно выполнять свои функции.
Кроме того, причиной выхода катализатора из строя может быть попадание в камеру сгорания масла или антифриза, либо попадание воды на катализатор. Вредное влияние на долговечность катализаторов оказывает длительная работа двигателя на холостом ходу.

***

Токсичность отработавших газов двигателя



k-a-t.ru

Катализатор подробно — Энциклопедия журнала «За рулем»

КАТАЛИТИЧЕСКИЙ НЕЙТРАЛИЗАТОР ВЫХЛОПНЫХ ГАЗОВ


Об­щие све­де­ния

Тре­бо­ва­ния по ог­ра­ни­че­нию то­к­сич­но­сти от­ра­бо­тав­ших га­зов дви­га­те­лей вну­т­рен­не­го сго­ра­ния по­я­ви­лись в 70-х го­дах про­шло­го сто­ле­тия в США и Япо­нии, а за­тем и в дру­гих стра­нах. В свя­зи с уве­ли­че­ни­ем ко­ли­че­ст­ва ав­то­мо­би­лей и их от­ри­ца­тель­ным воз­дей­ст­ви­ем на ок­ру­жа­ю­щую сре­ду эти тре­бо­ва­ния по­сто­ян­но уже­сто­ча­ют­ся. На про­тя­же­нии трех де­ся­ти­ле­тий ве­дет­ся ра­бо­та, на­пра­в­лен­ная на ре­ше­ние этой про­б­ле­мы. Все из­вест­ные спо­со­бы сни­зить ко­ли­че­ст­во вред­ных вы­бро­сов за счет ре­гу­ли­ро­вок или из­ме­не­ния кон­ст­рук­ции дви­га­те­ля не да­ли ожи­да­е­мо­го эф­фе­к­та. Кро­ме то­го, их ис­поль­зо­ва­ние при­во­дит к уве­ли­че­нию рас­хо­да то­п­ли­ва и су­ще­ст­вен­но­му сни­же­нию мощ­но­сти.
Не­пол­но­та сго­ра­ния в порш­не­вых бен­зи­но­вых дви­га­те­лях не по­з­во­ля­ет умень­шить ко­ли­че­ст­во ок­си­да уг­ле­ро­да, уг­ле­во­до­ро­дов и оки­слов азо­та в от­ра­бо­тав­ших га­зах до тре­бу­е­мо­го уров­ня1.
Нейт­ра­ли­за­ция то­к­сич­ных ком­по­нен­тов от­ра­бо­тав­ших га­зов с ис­поль­зо­ва­ни­ем хи­ми­че­ских ре­ак­ций окис­ле­ния и (или) вос­ста­но­в­ле­ния яв­ля­ет­ся наи­бо­лее эф­фе­к­тив­ным спо­со­бом сни­же­ния то­к­сич­но­сти вы­хло­па при со­в­ре­мен­ном уров­не раз­ви­тия тех­ни­ки. С этой це­лью в вы­пу­ск­ную си­с­те­му дви­га­те­ля ус­та­на­в­ли­ва­ют спе­ци­аль­ный тер­ми­че­ский ре­а­к­тор (ней­т­ра­ли­за­тор).
В от­сут­ст­вие ка­та­ли­за­то­ров пол­ное пре­об­ра­зо­ва­ние ок­си­да уг­ле­ро­да и не­сго­рев­ших уг­ле­во­до­ро­дов про­ис­хо­дит в ди­а­па­зо­не тем­пе­ра­тур от 700 до 850°С при ус­ло­вии из­быт­ка ки­с­ло­ро­да. Нейт­ра­ли­зо­вать окис­лы азо­та при этом не­воз­мож­но, так как обя­за­тель­ным ус­ло­ви­ем их вос­ста­но­в­ле­ния яв­ля­ет­ся не­до­с­та­ток сво­бод­но­го ки­с­ло­ро­да.
В при­сут­ст­вии ка­та­ли­за­то­ров — ве­ществ, ак­ти­ви­зи­ру­ю­щих хи­ми­че­ские ре­ак­ции, тем­пе­ра­ту­ра ней­т­ра­ли­за­ции сни­жа­ет­ся и обес­пе­чи­ва­ет­ся воз­мож­ность пре­об­ра­зо­ва­ния всех то­к­сич­ных ком­по­нен­тов.
Ка­та­ли­ти­че­ские ней­т­ра­ли­за­то­ры ос­но­ва­ны на ис­поль­зо­ва­нии “бла­го­род­ных” ме­тал­лов, что свя­за­но с вы­со­кой хи­ми­че­ской аг­рес­сив­но­стью от­ра­бо­тав­ших га­зов. При­ме­не­ние со­от­вет­ст­ву­ю­щих ка­та­ли­за­то­ров обес­пе­чи­ва­ет воз­мож­ность од­но­вре­мен­но окис­лять ок­сид уг­ле­ро­да и уг­ле­во­до­ро­ды, а так­же вос­ста­на­в­ли­вать окис­лы азо­та. Та­кие ней­т­ра­ли­за­то­ры до­с­та­точ­но дол­го­веч­ны, их при­ме­не­ние не при­во­дит к су­ще­ст­вен­но­му уве­ли­че­нию рас­хо­да то­п­ли­ва и сни­же­нию мощ­но­сти дви­га­те­ля. При оп­ти­маль­ном уп­ра­в­ле­нии про­цес­сом сго­ра­ния и ре­цир­ку­ля­ци­ей от­ра­бо­тав­ших га­зов мо­гут быть вы­пол­не­ны са­мые же­ст­кие эко­ло­ги­че­ские тре­бо­ва­ния, предъ­я­в­ля­е­мые к ав­то­мо­би­лям.

Ус­т­рой­ст­во ней­т­ра­ли­за­то­ра

В штам­по­ван­ном кор­пу­се, из­го­то­в­лен­ном из не­ржа­ве­ю­щей ста­ли, рас­по­ло­жен ка­та­ли­ти­че­ский но­си­тель и эла­стич­ная тер­мо­изо­ля­ци­он­ная про­клад­ка (рис.1).
Устройство автомобильного нейтрализатора выхлопных газов:
1 — штампованный корпус из нержавеющей стали;
2 — каталитический носитель;
3 — эластичная термоизоляционная прокладка. а — керамический носитель; б — металлический носитель из гофрированной фольги.

Ке­ра­ми­че­ский но­си­тель (рис. “а”) про­ни­зан про­доль­ны­ми по­ра­ми-со­та­ми, на по­верх­ность ко­то­рых на­не­сен ак­тив­ный ка­та­ли­ти­че­ский слой. По­ры об­ра­зу­ют мно­же­ст­во тон­ких ка­на­лов для про­пу­с­ка от­ра­бо­тав­ших га­зов. Бла­го­да­ря спе­ци­аль­ной под­лож­ке тол­щи­ной 20—60 ми­к­рон с раз­ви­тым ми­к­ро­рель­е­фом об­щая пло­щадь по­верх­но­сти это­го слоя мо­жет до­хо­дить до 20000 м2. Мас­са ка­та­ли­за­то­ров, на­не­сен­ных на эту ог­ром­ную пло­щадь, со­ста­в­ля­ет все­го 2—3 грам­ма.
Для умень­ше­ния га­ба­ри­тов ке­ра­ми­че­ской де­та­ли и сни­же­ния тер­ми­че­ских на­пря­же­ний в ней но­си­тель из та­ко­го ма­те­ри­а­ла ча­с­то из­го­та­в­ли­ва­ет­ся со­став­ным.
Ме­тал­ли­че­ский но­си­тель (рис. “б”) пред­ста­в­ля­ет со­бой тон­чай­шие со­ты, из­го­то­в­лен­ные из гоф­ри­ро­ван­ной фоль­ги. Это по­з­во­ля­ет уве­ли­чить пло­щадь ра­бо­чей по­верх­но­сти по срав­не­нию с ке­ра­ми­че­ским но­си­те­лем, сни­зить со­про­ти­в­ле­ние дви­же­нию га­зов и ус­ко­рить ра­зо­грев бло­ка до ра­бо­чей тем­пе­ра­ту­ры.

Эла­стич­ная тер­мо­изо­ля­ци­он­ная про­клад­ка слу­жит для ком­пен­са­ции раз­ли­чия тер­ми­че­ско­го рас­ши­ре­ния кор­пу­са и но­си­те­ля. Она так­же пред­на­зна­че­на для за­щи­ты от ви­б­ра­ции, уда­ров, дру­гих ме­ха­ни­че­ских воз­дей­ст­вий и мо­жет из­го­та­в­ли­вать­ся:
— в ви­де про­во­лоч­ной сет­ки из не­ржа­ве­ю­щей тер­мо­стой­кой ста­ли;
— как по­душ­ка из во­ло­кон си­ли­ка­та алю­ми­ния с до­бав­кой слю­ды.

Нейт­ра­ли­за­то­ры для бен­зи­но­вых дви­га­те­лей

Окис­ли­тель­ные ка­та­ли­ти­че­ские ней­т­ра­ли­за­то­ры до­жи­га­ют в при­сут­ст­вии пла­ти­ны и из­быт­ке ки­с­ло­ро­да ок­сид уг­ле­ро­да и уг­ле­во­до­ро­ды.
Не­до­ста­ток за­клю­ча­ет­ся в том, что в этих ус­ло­ви­ях не­воз­мож­но ней­т­ра­ли­зо­вать окис­лы азо­та.

Двух­сту­пен­ча­тые ней­т­ра­ли­за­то­ры при­ме­ня­ют для пре­об­ра­зо­ва­ния всех трех то­к­сич­ных ком­по­нен­тов. Они со­сто­ят из двух ча­с­тей, ус­та­но­в­лен­ных по­с­ле­до­ва­тель­но. Пер­вая сту­пень вос­ста­на­в­ли­ва­ет окис­лы азо­та при де­фи­ци­те ки­с­ло­ро­да, а вто­рая окис­ля­ет ок­сид уг­ле­ро­да и уг­ле­во­до­ро­ды при при­ну­ди­тель­ной по­да­че в нее воз­ду­ха.
Двух­сек­ци­он­ные ней­т­ра­ли­за­то­ры име­ют от­но­си­тель­но слож­ную кон­ст­рук­цию. Ис­поль­зо­ва­ние сме­сей с из­быт­ком то­п­ли­ва, что не­об­хо­ди­мо для вос­ста­но­в­ле­ния оки­слов азо­та, при­во­дит к по­вы­шен­но­му рас­хо­ду то­п­ли­ва.

Трех­ком­по­нент­ные ней­т­ра­ли­за­то­ры спо­соб­ны од­но­вре­мен­но под­дер­жи­вать ре­ак­ции окис­ле­ния и вос­ста­но­в­ле­ния то­к­сич­ных ком­по­нен­тов, со­дер­жа­щих­ся в вы­хлоп­ных га­зах. В ка­че­ст­ве ка­та­ли­за­то­ров для пре­об­ра­зо­ва­ния оки­слов азо­та в азот при­ме­ня­ют пла­ти­ну и ро­дий. Для сни­же­ния тем­пе­ра­ту­ры до­жи­га­ния ок­си­да уг­ле­ро­да и уг­ле­во­до­ро­дов, кро­ме пла­ти­ны, ино­гда ис­поль­зу­ют ру­те­ний. Ре­ак­ции ней­т­ра­ли­за­ции в при­сут­ст­вии ка­та­ли­за­то­ров на­чи­на­ют­ся при тем­пе­ра­ту­ре 250°С. Пре­об­ра­зо­ва­ние наи­бо­лее эф­фе­к­тив­но в ди­а­па­зо­не тем­пе­ра­тур от 400 до 800°С.
Для обес­пе­че­ния ра­бо­ты трех­ком­по­нент­но­го ней­т­ра­ли­за­то­ра не­об­хо­дим сте­хио­мет­ри­че­ский со­став то­п­ли­во-воз­душ­ной сме­си. При этом на 1кг то­п­ли­ва долж­но по­да­вать­ся 14,7—14,9кг воз­ду­ха, что обес­пе­чи­ва­ет наи­бо­лее пол­ное сго­ра­ние.
Си­с­те­ма по­да­чи то­п­ли­ва с элек­трон­ным бло­ком уп­ра­в­ле­ния обес­пе­чи­ва­ет сте­хио­мет­ри­че­ский со­став го­рю­чей сме­си на всех ре­жи­мах ра­бо­ты дви­га­те­ля. Уп­ра­в­ле­ние осу­ще­ст­в­ля­ет­ся с ис­поль­зо­ва­ни­ем сиг­на­ла, ге­не­ри­ру­е­мо­го спе­ци­аль­ным дат­чи­ком ки­с­ло­ро­да (рис.5), ус­та­но­в­лен­ным в си­с­те­ме вы­пу­с­ка.

Лямбда-Зонд (Дат­чик ки­с­ло­ро­да) вы­да­ет элек­т­ри­че­ский им­пульс в за­ви­си­мо­сти от на­ли­чия или от­сут­ст­вия ки­с­ло­ро­да в от­ра­бо­тав­ших га­зах. Ес­ли ки­с­ло­род по­я­вил­ся, смесь со­дер­жит из­бы­ток воз­ду­ха (обед­не­на), ес­ли ки­с­ло­род ис­чез, смесь со­дер­жит из­бы­ток то­п­ли­ва (обо­га­ще­на). По сиг­на­лу дат­чи­ка элек­трон­ная си­с­те­ма уп­ра­в­ле­ния дви­га­те­лем по­сто­ян­но под­дер­жи­ва­ет смесь сте­хио­мет­ри­че­ско­го со­ста­ва.

Нейт­ра­ли­за­то­ры для ди­зе­лей

Срав­ни­тель­но не­боль­шое со­дер­жа­ние вред­ных ком­по­нен­тов в от­ра­бо­тав­ших га­зах ди­зе­лей не тре­бо­ва­ло в про­шлом ус­та­нов­ки спе­ци­аль­ных уст­ройств. Од­на­ко уже­сто­че­ние норм то­к­сич­но­сти кос­ну­лось и их. По­я­ви­лись си­с­те­мы сни­же­ния то­к­сич­но­сти вы­хло­па, вклю­ча­ю­щие ре­цир­ку­ля­цию от­ра­бо­тав­ших га­зов, ка­та­ли­ти­че­ский ней­т­ра­ли­за­тор и спе­ци­аль­ный са­же­вый фильтр. Са­жа, со­дер­жа­ща­я­ся в вы­хло­пе, не­то­к­сич­на, но она ад­сор­би­ру­ет на по­верх­но­сти сво­их ча­с­тиц кан­це­ро­ген­ные по­ли­ци­к­ли­че­ские уг­ле­во­до­ро­ды, в том чис­ле бенз-а-пи­рен. Ка­та­ли­ти­че­ские ней­т­ра­ли­за­то­ры в этом слу­чае не тре­бу­ют по­да­чи до­пол­ни­тель­но­го воз­ду­ха, по­сколь­ку ди­зе­ли ра­бо­та­ют на очень бед­ных сме­сях и в вы­хлоп­ных га­зах все­гда при­сут­ст­ву­ет сво­бод­ный ки­с­ло­род. Кон­цен­т­ра­ция про­ду­к­тов не­пол­но­го сго­ра­ния в от­ра­бо­тав­ших га­зах зна­чи­тель­но ни­же, чем в бен­зи­но­вом дви­га­те­ле.
Са­же­вые фильт­ры из­го­та­в­ли­ва­ют в ви­де по­ри­с­то­го фильт­ру­ю­ще­го ма­те­ри­а­ла из кар­би­да крем­ния. Пе­ри­о­ди­че­ски фильт­ры очи­ща­ют от­ра­бо­тав­ши­ми га­за­ми, тем­пе­ра­ту­ру ко­то­рых для это­го по­вы­ша­ют пу­тем впры­ска то­п­ли­ва в ци­лин­д­ры с за­по­зда­ни­ем. Для сни­же­ния тем­пе­ра­ту­ры ре­ге­не­ра­ции при­ме­ня­ет­ся спе­ци­аль­ная при­сад­ка к то­п­ли­ву. Очи­ст­ка фильт­ра про­ис­хо­дит по ко­ман­де бло­ка уп­ра­в­ле­ния по­с­ле ка­ж­дых 400—500 км про­бе­га ав­то­мо­би­ля.

Ре­ко­мен­да­ции

Для обес­пе­че­ния эф­фе­к­тив­ной ра­бо­ты ней­т­ра­ли­за­то­ра не­об­хо­ди­мо ис­поль­зо­вать толь­ко ка­че­ст­вен­ное не­эти­ли­ро­ван­ное то­п­ли­во, так как со­дер­жа­щий­ся в бен­зи­не те­т­ра­этил­сви­нец (ТЭС) не­об­ра­ти­мо “от­ра­в­ля­ет” ка­та­ли­ти­че­скую по­верх­ность.
Во вре­мя и по­с­ле ра­бо­ты дви­га­те­ля кор­пус ней­т­ра­ли­за­то­ра име­ет до­с­та­точ­но вы­со­кую тем­пе­ра­ту­ру. В свя­зи с этим, во из­бе­жа­ние по­жа­ра, не сле­ду­ет пар­ко­вать ав­то­мо­биль над лег­ко вос­пла­ме­ня­ю­щи­ми­ся пред­ме­та­ми, на­при­мер су­хи­ми ли­сть­я­ми, тра­вой, бу­ма­гой и т.д.
Сле­ду­ет со­блю­дать ос­нов­ные пра­ви­ла, при­ве­ден­ные в ин­ст­рук­ции по экс­плу­а­та­ции ав­то­мо­би­лей. Они на­пра­в­ле­ны на пре­ду­пре­ж­де­ние си­ту­а­ции, ко­гда в ней­т­ра­ли­за­тор мо­жет по­пасть зна­чи­тель­ное ко­ли­че­ст­во не­сго­рев­ше­го то­п­ли­ва. В этом слу­чае воз­мож­ная вспыш­ка мо­жет при­ве­с­ти к его раз­ру­ше­нию. На­и­бо­лее об­щие ре­ко­мен­да­ции мож­но из­ло­жить сле­ду­ю­щим об­ра­зом:
· не сле­ду­ет бес­по­лез­но кру­тить дви­га­тель стар­те­ром дли­тель­ное вре­мя;
· в хо­лод­ное вре­мя го­да, ес­ли дви­га­тель не за­пу­с­тил­ся с пер­вой по­пыт­ки, не­об­хо­ди­мо из­бе­гать по­втор­ных вклю­че­ний стар­те­ра че­рез ко­рот­кие про­ме­жут­ки вре­ме­ни;
· нель­зя пу­с­кать дви­га­тель пу­тем бу­к­си­ров­ки;
· за­пре­ща­ет­ся про­ве­рять ра­бо­ту ци­лин­д­ров, от­клю­чая све­чи за­жи­га­ния.

1Основным источником образования несгоревших остатков является гашение пламени в пристеночных зонах, в зазоре между поршнем и цилиндром, между поршневыми кольцами и канавками в поршне и т.д. Другая причина — неравномерность состава смеси по объему цилиндра, особенно у непрогретого двигателя и на переходных режимах.

wiki.zr.ru

Каталитический нейтрализатор — принцип работы и неисправности

Работа выхлопной системы автомобиля обеспечивается не одним устройством, а несколькими. Одним из них является каталитический нейтрализатор. В этой статье речь пойдет о том, что такое нейтрализатор и какова его роль в системе выхлопа автомобиля?

Назначение и устройство каталитического нейтрализатора

 

Нейтрализатор устанавливается в выхлопной системе автомобиля и применяется для максимального снижения токсичности выхлопного газа. Применение данного устройства осуществляется как на дизельных, так и на бензиновых двигателях и является обязательным для всех автомобилей, оснащенных двигателем внутреннего сгорания.

Современная конструкция нейтрализатора представляет собой специальный блок-носитель, корпус устройства и теплоизоляция. Основным элементом является блок-носитель, который изготавливается из специальной огнеупорной керамики. Внутри блока располагается большое количество сот (или, по-другому, ячеек). Такая конструкция позволяет значительно повысить площадь соприкосновения рабочих частей нейтрализатора с отработанными газами. Поверхность ячеек покрывается специальным слоем каталитического вещества. В качестве нейтрализатора может применяться родий, платина или палладий.

Суть действия катализатора заключается в следующем. Двигатель автомобиля не может обеспечить полное сгорание топлива и отправляет большое количество вредных газов в выхлопную систему автомобиля. Попадая в каталитический нейтрализатор, вредные газы контактируют с каталитическим слоем и окисляются. В процессе прохождения выхлопного газа по всему блоку-носителю, вредные вещества окисляются до конца, и на выходе получается самый обычный углекислый газ.

 

Применение трех металлов обеспечивает полное окисление трех разных веществ. Помимо углевода и оксида углерода, в отработавших газах может содержаться оксид азота, который также подвергается полному окислению и превращается в обычный безвредный азот. Таким образом, выхлопной газ становится менее вредным и оказывает меньшее отрицательное воздействие на окружающую среду.

Сам блок-носитель, обычно, размещен в металлическом корпусе, который предохраняет нейтрализатор от механических воздействий, например, ударов о неровности дорожного покрытия. Между блоком и корпусом прокладывается слой теплоизоляции, чтобы исключить передачу тепла на корпус. Применение теплоизоляции связано с особенностями работы нейтрализатора. Дело в том, что для успешного окисления вредных веществ необходима большая температура. Самая минимальная температура для успешного дожигания отработанных газов должна быть в пределах 300 градусов Цельсия. Для спортивных автомобилей этот параметр может достигать 1500-3000 градусов Цельсия. Теплоизоляция позволяет поддерживать температуру в заданных пределах и обеспечивает нормальную работу каталитического нейтрализатора.

Внутри блока устанавливается датчик кислорода. Это электрическое устройство сообщает водителю о том моменте, когда катализатор необходимо заменить. Если соты забиваются или керамический слой становится меньше, датчик срабатывает и посылает сигнал на электронный блок управления двигателем, который переводит работу мотора в аварийный режим и сигнализирует лампой на панели приборов, что необходимо выполнить проверку исправности систем. Часто, чтобы избавить от преждевременного и случайного срабатывания датчика, создают специальную обманку нейтрализатора, которая говорит датчику о том, что катализатор по-прежнему в норме. Это связано с тем, что замена каталитического нейтрализатора стоит очень дорого, и не каждый водитель может позволить себе такой ремонт. Так что, большинство водителей просто докатывают старую деталь до полного изнеможения и меняют нейтрализатор позже.

Помимо теплоизоляции, регулировать температуру работы нейтрализатор можно не только с помощью теплоизоляции. На температуру нейтрализатора может влиять и место установки. Так, например, для повышения температуры катализатора, его размещают прямо за выпускным коллектором, так как последний имеет высокую скорость и температуру нагрева.

Другое условие успешной работы нейтрализатора является повышенное обогащение топливовоздушной смеси.

Видео — Что убивает нейтрализатор газов?

Нейтрализатор на дизельном двигателе

 

Применение нейтрализаторов в дизельных двигателях стало не целесообразным. Дело в том, что температура работы дизеля ниже, чем у бензинового ДВС, а это значит, что катализатор не сможет справиться с поставленной задачей. Автомобильные эксперты разработали устройство, которое впрыскивает мочевину в систему выхлопа до того, как отработавшие газы достигнут катализатора. Такой подход позволяет ускорить процесс окисления и максимально возможно очистить выхлоп автомобиля. В конечном итоге, из трубы в большем количестве выходит водяного пара, чем продуктов сгорания.

Подведем итоги. Каталитический нейтрализатор является главной частью выхлопной системы и предназначен для очистки вредных выхлопных газов. Эксплуатация автомобиля без этого устройства запрещена и противоречит законам об экологии. 

vipwash.ru

Каталитический нейтрализатор отработавших газов | Автомобильный справочник

 

Законодательство в области ограничения ток­сичности отработавших газов устанавливает пре­делы содержания в них токсичных веществ. Для выполнения этих требований меры, связанные с совершенствованием конструкции двигателей, оказываются недостаточными. В дополнение к снижению количества неочищенных выбросов большое внимание уделяется каталитической очистке отработавших газов, с целью преоб­разования токсичных веществ. Вот о том как происходит каталитическая очистка отработавших газов, мы и поговорим в этой статье.

 

Содержание

 

 

Каталитические нейтрализаторы преобразуют загрязняющие вещества, образующиеся в процессе сгорания топлива, в безвредные компоненты.

Трехкомпонентный каталитический нейтрализатор отработавших газов

 

Современные технологии очистки отрабо­тавших газов для двигателей, работающих при стехиометрическом составе смеси, пред­ставляет трехкомпонентный каталитический нейтрализатор. Его задачей является преоб­разование токсичных веществ — НС (углеводо­родов), СО (оксида углерода) и NOх (оксидов азота), образующихся в процессе сгорания топлива, в безвредные составляющие. Ко­нечными продуктами являются Н2О (водяной пар), С02 (диоксид углерода) и N2 (азот).

Конструкция и принцип действия каталитического нейтрализатора

 

Каталитический нейтрализатор состоит из кон­тейнера из листовой стали, подложки, покрытия из пористого оксида и активного каталитиче­ского металлического покрытия. Подложка обычно представляет собой керамический монолит, хотя для специальных применений также используются металлические монолиты. На монолит наносится слой подложки, который увеличивает эффективную площадь каталити­ческого нейтрализатора примерно в 7000 раз. Каталитический слой поверх подложки содер­жит благородные металлы, такие как платина или палладий и родий. Платина и палладий уско­ряют окисление НС и СО, в то время как родий несет ответственность за восстановление NО.

Окисление СО и НС происходит в соответ­ствии со следующими реакциями:

2 СО + О2 —> 2 СО2,

2 С2Н6 + 7 O2 —> 4 С02 + 6 Н2O

Восстановление оксидов азота происходит в соответствии со следующей реакцией:

2 NO + 2 СО — N2+ 2 СO2

Кислород, требующийся для процесса окисле­ния, либо присутствует в отработавших газах (в результате неполного сгорания топлива), либо забирается из оксидов азота NОX, кото­рые в то же время восстанавливаются.

Концентрация токсичных веществ в отрабо­тавших газах (перед каталитическим нейтра­лизатором) зависит от коэффициента избытка воздуха λ (см. рис. а, «Эффективность каталитического нейтрализатора в функции коэффициента избытка воздуха λ» ). Для как можно более полного преобразования трехкомпонентным каталитическим нейтрализатором всех трех ток­сичных составляющих требуется стехиометриче­ский состав топливно-воздушной смеси (λ = 1, см. рис. Ь, «Эффективность каталитического нейтрализатора в функции коэффициента избытка воздуха λ» ). При λ = 1 имеет место состояние равновесия между реакциями окисления и вос­становления, что способствует полному окисле­нию НС и СО с одновременным восстановлением NО, При этом НС и СО действуют в качестве восстановителей для NO. «Окно» (диапазон регулирования λ), в пределах которого должно находиться среднее значение λ, очень невелико Отсюда следует, что смесеобразование должно корректироваться с использованием замкнутой системы регулирования λ с применением в ка­честве устройства, вырабатывающего сигнал об­ратной связи, кислородного датчика λ (см. рис. с, «Эффективность каталитического нейтрализатора в функции коэффициента избытка воздуха λ» ) (см. «Регулирование λ»).

 

 

Каталитический нейтрализатор кислород­ного типа

 

Точность регулирования λ в динамическом диапазоне, как правило, составляет 5 %, т.е. отклонения от значения λ = 1 являются не­избежными. Каталитический нейтрализатор способен сам компенсировать небольшие колебания состава смеси. Он обладает спо­собностью запасать избыточный кислород во время работы двигателя на бедной смеси и освобождать его при обогащении смеси. Слой подложки содержит цероксид, который может запасать и освобождать кислород в соответ­ствии со следующей обратимой реакцией:

Се2Оз + О2 <-> 4 СеO2

Следовательно, задача системы управления двигателем представляется вполне ясной. Усредненное по времени значение λ перед ката­литическим нейтрализатором должно поддер­живаться очень точно (допустимое отклонение составляет несколько тысячных долей). Откло­нения, переведенные в количество запасаемого и освобождаемого кислорода, не должны пре­вышать количества кислорода, которое может удерживать каталитический нейтрализатор. Типичные значения этого количества лежат в диапазоне от 100 мг до 1 г; в процессе старения каталитического нейтрализатора эти значения Уменьшаются. Все обычные методы диагно­стики каталитического нейтрализатора осно­ваны на прямом или косвенном определении его способности к накоплению кислорода.

При нормальной рабочей температуре каталитического нейтрализатора степень преобразования ограниченного количества токсичных веществ достигает 99%.

Каталитический нейтрализатор NOx аккуму­ляторного типа

 

Во время работы двигателя на бедной смеси трехкомпонентный каталитический нейтрализатор не способен преобразовывать оксиды азота, произведенные в процессе сгорания то­плива. СО и НС окисляются остаточным кисло­родом, содержащимся в отработавших газах, и, следовательно, не могут служить в качестве восстановителей оксидов азота.

Каталитический слой каталитического ней­трализатора NОx, аккумуляторного типа со­держит вещества, способные накапливать NОx, например, оксид бария. Все обычные покры­тия, накапливающие NОx, также обладают свой­ствами трехкомпонентного каталитического нейтрализатора, в результате чего каталитиче­ский нейтрализатор NОx аккумуляторного типа при λ = 1 работает таким же образом, как трех­компонентный каталитический нейтрализатор.

При работе двигателя на бедной смеси в режиме послойного распределения заряда NОx преобразуются в три этапа. Вовремя накопле­ния NОx сначала окисляются до диоксида азота NO2, который затем реагирует со специальными оксидами на поверхности каталитического ней­трализатора и кислородом (O2) с образованием нитратов, например, нитрата бария.

По мере того как количество накопленных NОx (нагрузка) возрастает, способность ней­трализатора связывать NОx понижается. При определенной нагрузке аккумулятор NОx должен быть регенерирован, т.е. связанные в нем оксиды азота должны быть снова освобождены и пре­образованы. С этой целью двигатель кратковре­менно переводится в режим работы на богатой однородной смеси (λ < 0,8) для восстановления NО до N2 без выработки в ходе процесса СО и НС.

Время окончания фазы хранения и начала фазы освобождения либо вычисляется с ис­пользованием модели, либо определяется при помощи кислородного датчика λ после каталитического нейтрализатора.

 

 

Десульфатация

 

Содержащаяся в топливе сера также вступает в реакцию с аккумуляторным материалом в каталитическом слое. В результате с течением времени количество материала, имеющегося в наличии для накопления NОх, уменьшается. Это приводит к образованию сульфатов, на­пример, сульфата бария, которые обладают очень высокой тепловой стойкостью и не вос­станавливаются во время регенерации NОх. Для десульфатации каталитический нейтрализатор необходимо нагреть до 600-650 °С, а затем в течение нескольких минут двигатель должен попеременно работать на богатой (λ = 0,95) и бедной (λ = 1,05) смеси. В ходе этого процесса количество сульфатов уменьшается.

Используя различные методы нагрева ка­талитического нейтрализатора NOx аккумуля­торного типа, расположенного под днищем автомобиля, следует соблюдать осторож­ность, чтобы не допустить перегрева первич­ного каталитического нейтрализатора.

Рабочая температура каталитического нейтрализатора

 

Каталитические нейтрализаторы не могут начать преобразование до тех пор, пока не достигнут определенной рабочей температуры (темпера­туры запуска). Для трехкомпонентного ката­литического нейтрализатора эта температура составляет приблизительно 300 °С. Идеальные условия для преобразования достигаются при температуре от 400 до 800 °С. Для каталитиче­ского нейтрализатора NОх, аккумуляторного типа благоприятный диапазон температур ниже: он достигает максимальной накопительной спо­собности при температуре от 300 до 400 °С.

Температуры от 800 °С до 1000 °С вызы­вают ускоренное тепловое старение катали­тического нейтрализатора. Это старение вы­зывается спеканием благородных металлов и слоя подложки, в результате которого умень­шается активная поверхность катализатора. При температурах свыше 1000 °С тепловое старение происходит настолько быстро, что каталитический нейтрализатор вообще пере­стает оказывать какой-либо эффект.

 

 

Конфигурации каталитических нейтрализаторов

 

Требуемая рабочая температура трехкомпо­нентного каталитического нейтрализатора ограничивает варианты его установки. При установке каталитического нейтрализатора вблизи двигателя он быстро достигает ра­бочей температуры, но затем может испыты­вать очень высокие тепловые нагрузки.

 

 

Широко используется конфигурация трех­компонентного каталитического нейтрализа­тора с разделенным на две части первичным нейтрализатором и главным каталитическим нейтрализатором, устанавливаемым под дни­щем автомобиля. Первичный каталитический нейтрализатор оптимизирован в отношении высокотемпературной стабильности, а глав­ный нейтрализатор — в отношении низкой тем­пературы активации. Различные возможные конфигурации первичного и главного (уста­навливаемого под днищем) каталитических нейтрализаторов показаны на рис. «Конфигурация установки каталитических нейтрализаторов» . В связи с их более низкими максимально допустимыми рабочими температурами каталитические ней­трализаторы NОх, аккумуляторного типа всегда устанавливаются под днищем автомобиля.

Нагрев каталитического нейтрализатора отработавших газов

 

Количество выбросов НС и СО особенно ве­лико, когда двигатель холодный, поскольку при этом топливо конденсируется на холод­ных стенках цилиндров, а затем выходит из камеры сгорания несгоревшим. Проблему усугубляет тот факт, что для эффективной ра­боты каталитический нейтрализатор должен достичь минимальной рабочей температуры. Поэтому крайне важно снизить количество не­обработанных отработавших газов во время прогрева двигателя, пока каталитический ней­трализатор не достиг рабочей температуры. Отсюда следует необходимость принятия мер к быстрому нагреву каталитического нейтра­лизатора до рабочей температуры. Требуемое для этого тепло может быть обеспечено за счет повышения температуры отработавших газов и увеличения их массового расхода. Это может быть сделано следующим образом.

Регулирование момента зажигания

 

Основным способом повышения температуры от­работавших газов является сдвиг момента зажи­гания в сторону запаздывания. При этом сгорание смеси происходит во время такта расширения. К окончанию такта расширения отработавшие газы имеют относительно высокую температуру. Позднее сгорание топлива оказывает неблаго­приятное влияние на к.п.д. двигателя.

Увеличение оборотов холостого хода

 

Дополнительной мерой является увеличение оборотов холостого хода и, соответственно, мас­сового расхода отработавших газов. Повышение оборотов позволяет еще больше сдвинуть мо­мент зажигания в сторону запаздывания. Тем не менее, в целях обеспечения устойчивой работы двигателя запаздывание зажигания ограничи­вается диапазоном от 10 до 15° после ВМТ. Дополнительного тепла, полученного выше­указанными способами, не всегда оказывается достаточно для надлежащего снижения содер­жания токсичных веществ в отработавших газах.

 

 

Регулирование фаз газораспределения

 

При необходимости, можно использовать еще один способ увеличения теплового по­тока, заключающийся в регулировании фаз газораспределения. При как можно более раннем открытии выпускных клапанов про­исходит раннее прерывание процесса за­держанного сгорания топлива, и количество произведенной механической работы умень­шается. Соответствующее количество энер­гии становится доступно в виде тепла для по­вышения температуры отработавших газов.

Разделение впрыска

 

Системы прямого впрыска бензина в принципе предоставляют возможность многократного впрыска топлива. Это позволяет быстро нагреть каталитический нейтрализатор до рабочей тем­пературы без использования каких-либо допол­нительных компонентов. Режим «разделения» заключается в первоначальном создании одно­родной бедной смеси посредством впрыска топлива во время такта впуска. Последующий впрыск топлива во время такта сжатия с перехо­дом в режим послойного распределения заряда топлива позволяет сдвинуть момент зажигания в сторону запаздывания и повысить температуру отработавших газов. При этом достижимые тепловые потоки отработавших газов сравнимы с потоками, которые могут быть получены по­средством нагнетания вторичного воздуха.

Система подачи дополнительных порций воздуха

 

Тепловое дожигания несгоревшего топлива по­вышает температуру в системе выпуска отрабо­тавших газов. С этой целью состав топливно-воздушной смеси регулируется в пределах от λ = 0,9 (богатая смесь) до λ = 0,6 (очень богатая смесь). Насос вторичного воздуха подает кисло­род в систему выпуска отработавших газов (см. рис. «Система подачи вторичного воздуха» ) в целях обеднения состава отработавших газов. Если базовая смесь очень богатая (λ = 0,6), несгоревшие составляющие топлива окисляются перед поступлением в каталитический нейтра­лизатор с выделением тепла (экзотермическая реакция) и подъемом температуры выше опреде­ленного порогового значения. Для достижения этой температуры необходимо: с одной сто­роны — сдвинуть момент зажигания в сторону запаздывания, а с другой стороны — подать вто­ричный воздух как можно ближе к выпускным клапанам. Экзотермическая реакция в системе выпуска отработавших газов увеличивает тепло­вой поток в направлении каталитического нейтра­лизатора и, следовательно, сокращает период его нагрева. НС и СО восстанавливаются в основном до поступления в каталитический нейтрализатор.

Если базовая смесь умеренно богатая (λ = 0,9), существенной реакции перед катали­тическим нейтрализатором не происходит. Несгоревшие составляющие топлива окисляются в каталитическом нейтрализаторе, что вызы­вает его нагрев изнутри. Однако для этого сна­чала необходимо довести температуру катали­тического нейтрализатора до уровня «запуска» посредством обычных мер, например, сдвига момента зажигания в сторону запаздывания.

Как правило, используется умеренно богатая базовая смесь, поскольку в случае очень богатой смеси экзотермическая реакция перед каталити­ческим нейтрализатором может стабильно проте­кать только при стабильных граничных условиях.

Нагнетание вторичного воздуха осуществля­ется электрическим насосом, который включает реле при увеличении требуемой эффективной мощности двигателя. Поскольку клапан в си­стеме вторичного воздуха предотвращает об­ратный поток отработавших газов в насос, когда насос выключен он должен быть закрыт. В каче­стве такого клапана может использоваться пас­сивный обратный клапан, электромагнитный клапан или (как показано на рис. «Система подачи вторичного воздуха» ) пневмати­ческий клапан с электромагнитным управляю­щим клапаном. При включении управляющего клапана — клапан подачи вторичного воздуха открывается под действием разрежения во впускном трубопроводе. Управление системой подачи вторичного воздуха осуществляется электронным блоком управления двигателем.

Альтернативные концепции активного нагрева

 

В некоторых случаях для быстрого нагрева каталитического нейтрализатора приме­няется электрообогрев. Нейтрализаторы с электрообогревом были ранее использованы в отдельных мелкосерийных проектах.

 

 

λ-регулирование

 

Для обеспечения как можно более высокой скорости преобразования НС, СО и NО, трех­компонентным каталитическим нейтрализа­тором компоненты реакции должны присут­ствовать в стехиометрическом соотношении. Для этого требуется поддержание значения λ = 1,0; т.е. стехиометрического соотношения воздух/топливо с очень высокой точностью.

Для этого управление процессом смесеобразо­вания должно осуществляться при помощи зам­кнутой системы регулирования, поскольку требу­емая точность не может быть достигнута только посредством управления дозированием топлива при использовании замкнутой системы регули­рования λ отклонения от заданного значения соотношения воздух/топливо могут быть обнару­жены и скорректированы посредством изменения количества впрыскиваемого топлива. В качестве показателя состава топливно-воздушной смеси используется остаточное содержание кислорода в отработавших газах, измеряемое при помощи кислородных датчиков (см. двухступенчатые и широкополосные кислородные датчики).

Двухступенчатое регулирование λ

 

Система двухступенчатого регулирования λ слу­жит для поддержания стехиометрического со­става смеси с λ = 1. Преобразованная переменная величина, включающая скачки и участки линей­ного изменения напряжения, изменяет свое на­правление при каждом скачке выходного напря­жения двухступенчатого кислородного датчика. Это означает переход от богатой смеси к бедной или наоборот (см. рис. «График изменения преобразованной переменной с регулируемым сдвигом в режиме разомкнутого регулирования» ). Типичная амплитуда колебаний этой преобразованной переменной должна быть в пределах 2-3 % от ее среднего значения. Результатом является ограничение ди­намики контроллера, которое в основном опре­деляется суммой значений времени реакции (обусловленных предварительным накоплением топлива во впускном трубопроводе, четырехтакт­ным принципом действия двигателя внутреннего сгорания и временем прохождения газов).

 

 

Асимметричная форма кривой преобразован­ной переменной позволяет скомпенсировать ти­пичную недостоверность сигнала двухступенча­того датчика, вызванную колебаниями состава топливно-воздушной смеси. При этом предпо­чтительным методом является задержка линей­ного возрастания преобразованной переменной в течение регулируемого времени выдержки tv после скачка выходного напряжения датчика.

Непрерывное регулирование λ

 

Динамическая характеристика системы двух­ступенчатого регулирования может быть улуч­шена только в том случае, если может быть измерено фактическое отклонение от значения λ = 1. Для непрерывного регулирования с под­держанием λ = 1 с очень низкой амплитудой колебаний в сочетании с высокими динамиче­скими характеристиками может быть исполь­зован широкополосный кислородный датчик. Параметры регулирования вычисляются и адап­тируются в соответствии с рабочими режимами двигателя. Кроме того, при такой системе регу­лирования λ компенсация неизбежного смеще­ния характеристики системы регулирования как в стационарном, так и нестационарном режиме осуществляется значительно быстрее.

Широкополосный кислородный датчик также позволяет регулировать состав смеси в случае его отклонения от λ = 1. Это позволяет осущест­влять контролируемое обогащение смеси (λ < 1), например, для защиты компонентов, или контро­лируемое обеднение (λ > 1), например, во время прогрева каталитического нейтрализатора.

Система регулирования λ с использованием двух кислородных датчиков

 

Когда кислородный датчик находится перед каталитическим нейтрализатором, он испы­тывает высокие тепловые нагрузки и под­вергается воздействию необработанных от­работавших газов, что ограничивает точность измерения. Изменения состава отработавших тазов могут вызывать сдвиг точки скачка вы­ходного напряжения двухступенчатого кис­лородного датчика или характеристической кривой широкополосного кислородного датчика. Кислородный датчик, расположен­ный после каталитического нейтрализатора, подвергается этим воздействиям в значи­тельно меньшей степени. Однако, система регулирования λ с использованием только кислородного датчика, расположенного поcле каталитического нейтрализатора, демон­стрирует ухудшение динамической характе­ристики, обусловленное конечным временем прохождения газов, и замедленной реакцией на изменения состава смеси.

Более высокая точность может быть достиг­нута в системе, включающей два датчика. Здесь контур двухступенчатого или непре­рывного регулирования λ дополняется более медленным корректирующим контуром, со­держащим дополнительный двухступенчатый кислородный датчик (см. рис. а, «Места установки кислородных датчиков» ). С этой це­лью выходное напряжения двухступенчатого кислородного датчика после каталитического нейтрализатора сравнивается со значением установки (например, 600 мВ). В зависимости от величины отклонения, система регулиро­вания соответствующим образом ступенчато изменяет установку состава смеси в сторону обогащения или обеднения для первого кон­тура регулирования, или значение установки для контура непрерывного регулирования.

Система регулирования λ с использованием трех кислородных датчиков

 

Установка третьего кислородного датчика по­сле главного каталитического нейтрализатора рекомендуется для облегчения диагностики каталитических нейтрализаторов и обеспечения повышенной стабильности состава отработав­ших газов для автомобилей категории SULEV (Автомобили со сверхнизким выбросом вредных веществ). Система регулирования с двумя кисло­родными датчиками (первый каскад) дополнена контуром регулирования с очень низким быстро­действием с использованием третьего кислород­ного датчика, установленного после главного каталитического нейтрализатора (см. рис. Ь, «Места установки кислородных датчиков» ).

Поскольку требования, предъявляемые к ка­тегории SULEV, относятся к величине пробега 150 000 миль, старение первичного каталити­ческого нейтрализатора может привести к сни­жению точности измерения двухступенчатого кислородного датчика после первичного катали­тического нейтрализатора. Этот эффект компен­сируется посредством установки дополнитель­ного двухступенчатого кислородного датчика после главного каталитического нейтрализатора.

В следующей статье я расскажу о системе впрыска топлива Common Rail.

 

Рекомендую еще почитать:

press.ocenin.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *