Вихревой поток воздуха – | |

Содержание

Вихревой поток — Большая Энциклопедия Нефти и Газа, статья, страница 3

Вихревой поток

Cтраница 3

При движении через вихревой поток от анода к катоду плазма ионизирует молекулы воды, образуя выходящую через отверстие в катоде струю, напоминающую факел пламени.  [31]

Интенсивное перемешивание, вихревые потоки, возникающие Овблизи очищаемых поверхностей, уменьшают толщину диффузионного слоя и увеличивают скорость очистки.  [32]

При этом возникают вихревые потоки газа, смешанного с туманом из капель рабочей жидкости, которые егко проникают в откачиваемую систему. При быстром снижении пускного давления насоса происходит бурное вскипание рабочей шдкости во всем объеме, что влечет ее разбрызгивание и рас-ыление. Струя пара становится пульсирующей, и создаются ус-овия для значительного выброса масляного тумана в сторону яускного отверстия. Струя на выходе из сопла также нестабильна период разогрева и охлаждения рабочей жидкости в кипятиль — е при включении и выключении насоса. Соответственно в эти иоды наблюдается повышенная интенсивность обратного по-1.  [34]

Акустическими течениями называют стационарные вихревые потоки, возникающие в жидкости под действием ультразвуковых колебаний. Различают три вида акустических течений [ 295, с. Первый — вихревые потоки, возникающие на границе раздела твердой и жидкой фаз. Эти потоки способны разрушать пограничный ламинарный слой жидкости у поверхности твердой фазы.  [35]

Обособление, отделение вихревых потоков от остального течения жидкости часто именуется как разрыв течений или даже разрыв слоя жидкости. При этом, однако, сплошность жидкости не нарушается, и понятие разрыва имеет лишь математический, но не физический смысл.  [36]

Изменяя интенсивность вращения

вихревого потока и меняя угол конфузора сопла камеры, можно заметно повлиять на структуру потока за срезом сопла камеры — ухудшить или улучшить распределение скорости и температуры в сечении потока, а также добиться максимальной струйное потока с высокой степенью концентрации тепла.  [37]

В уравнении для свободного вихревого потока ( МО) имеются три функции радиуса: v -, vz к е, связанные между собой только этим уравнением, а также общими свойствами цилиндрических потоков.  [38]

Для предотвращения образования вихревых потоков загрязненного воздуха в нижней части камеры и для обеспечения равномерности его удаления всасывающий воздуховод должен быть рассчитан как воздуховод равномерного всасывания. Подачу порошковых полимерных красок к рабочему оборудованию необходимо блокировать с включением необходимых средств защиты.  [39]

Этот интеграл в вихревом потоке строго положителен, так как он может обращаться в нуль только в случае, когда характеристика АС совпадает со звуковой линией.  [40]

Значит, в вихревом потоке постоянная уравнения Бернулли будет сохранять свое значение для каждой вихревой линии в отдельности, по, вообще говоря, будет различной для различных вихревых линий.  [41]

При введении детали в вихревой поток на начальных стадиях возникает воздушный клин 1 который препятствует контакту детали со стенками трубы.  [42]

Согласно описанию патента, вихревой поток воздуха вдоль стенок цилиндра, создаваемый при впуске и продолжающийся при сжатии, и впрыск топлива через форсунку, расположенную в камере сгорания, навстречу этому вихрю, создает зону обогащенной смеси в центре камеры — в районе запальной свечи.  [43]

Этим создан ( был вихревой поток пылевоздушной смеси, в результате чего сепарация пыли на под практически прекратилась.  [44]

Наиболее простым примером явления неравномерного вихревого потока, в котором свойства жидкости не имеют большого значения, является турбулентная диффузия затопленной струи умеренных размеров с умеренно высокой начальной скоростью Элементы результативного течения в их простейшем виде будут зависеть от положения частиц жидкости относительно сечения, проходящего через выпускное отверстие, размеров выпускного отверстия и скорости истечения.  [45]

Страницы:      1    2    3    4

www.ngpedia.ru

Образование — вихревой поток — Большая Энциклопедия Нефти и Газа, статья, страница 1

Образование — вихревой поток

Cтраница 1

Образование воздушных вихревых потоков при скоростном шлифовании служит причиной образования пыли из охлаждающей жидкости. Для устранения попадания ее на одежду рабочего необходимо станок оснастить специальным устройством.  [1]

Для предотвращения образования вихревых потоков загрязненного воздуха в нижней части камеры и для обеспечения равномерности его удаления всасывающий воздуховод должен быть рассчитан как воздуховод равномерного всасывания. Подачу порошковых полимерных красок к рабочему оборудованию необходимо блокировать с включением необходимых средств защиты.  [2]

Следует различать интенсивность и способы образования вихревых потоков. Если завихрение воздушного потока возникает в улитках до встречи с топливной струей ( рис. 14, б У), то при выходе из форсунки или регистра со значительной осевой скоростью линии воздушных потоков выравниваются и встречают струи топлива мало завихренными. В отдельных случаях смесеобразование оказывается менее интенсивным, чем в форсунках встречных потоков.  [3]

Термин перемешивание ( Agitation) характеризует состояние высокой степени турбулентности, образование вихревых потоков и бурное движение среды. Часто, применяя этот термин, авторы подразумевают все виды перемешивания.  [4]

Низкий уровень остаточной нефти в резервуаре в первое время заполнения не препятствует образованию вихревых потоков движения нефти внутри резервуара, что способствует увеличению испарения легких фракций. По мере роста взлива в резервуаре, поступление свежих порций нефти происходит по все возрастающий столб нефти и следовательно в зоне, где гидростатическое давление постоянно нарастает. Последнее обстоятельство препятствует свободному испарению легких фракций и выделение газовоздушной смеси, как это видно на графике ( рис. 2.3.5) заметно уменьшается.  [6]

Для предотвращения истирания труб золой необходимо избегать неровностей кладки в газоходах котла, которые могут вызвать образование местных вихревых потоков с повышенной концентрацией золы.  [7]

Но при открытой задвижке у проходного канала ( рис. 3.1.4) образуются большие боковые полости, вызывающие образование вихревых потоков, потерю напора и возможность отложения в них солей, парафина и песка. При этом уплотняющие поверхности у корпуса и клина интенсивно омываются потоками жидкости, отбираемой из скважины, что приводит к их усиленной коррозии и эрозии.  [9]

Фактическая производительность центрифуги меньше теоретической вследствие скольжения жидкости относительно стенок барабана ( до достижения ею скорости вращения барабана),

образования вихревых потоков, затрудняющих оседание мелких частиц, а также вследствие перемешивающего действия шнека ( в центрифугах с шнековой выгрузкой) и действия других факторов.  [10]

Турбулентно-вихревые форсунки создают потоки воздуха, обтекающие струю топлива в радиальном направлении, что обусловливает интенсивное смесеобразование. Однако следует отличать интенсивность и способ образования вихревых потоков. Если завихрение воздушного потока возникает до встречи с топливной струей, и при выходе из форсунки ( в том месте, где происходит встреча с топливной струей) линии воздушных потоков уже выравниваются, то завихрение окажется мало эффективным и смесеобразование может оказаться в ряде случаев менее интенсивным, чем в форсунках встречных потоков.  [11]

Следовательно, выбранные параметры реверсивного вращения обеспечивают лишь интенсивное ламинарное течение жидкости, исключая образование вихревых потоков. Очевидно, оптимизация принудительного перемешивания является непременным условием эффективного концентрирования или очистки при помощи управляемой кристаллизации.  [12]

Таким образом, при работе с этими веществами помещения должны быть оборудованы эффективной приточно-вытяжной вентиляцией. Скорость подачи свежего воздуха, поступающего в верхнюю зону помещения, должна быть небольшой, чтобы исключить образование вихревых потоков, способных поднять стеклянную пыль и удерживать ее в воздухе во взвешенном состоянии.  [13]

Однако такая схема является грубым приближением и не может объяснить механизм движения частиц, наблюдаемый в псевдоожиженных системах. Движение газа внутри слоя носит сложный характер, так как неоднородность скоростей газа в направлении истечения приводит к возникновению горизонтальной составляющей скорости газа, а следовательно, к

образованию вихревых потоков в слое.  [14]

Таким образом, декремент затухания вязкой сдвиговой волны ( определяющий логарифм отношения соседних амплитуд) не зависит от частоты и равен постоянном), весьма большому числу, показывающему, что сдвиговая волна в жидкости практически затухает на расстоянии, равном длине одной волны. Поэтому можно говорить лишь о вязких напряжениях, существующих вблизи поверхности тангенциально колеблющегося источник. Эти напряжения могут проявляться в реакции на источник, в передаче сдвиговой волны упругими телами через тонкий слой жидкости, в образовании вихревых потоков в пристеночном слое жидкости, в дополнительных потерях на отражение продольной волны в вязкой среде при наклонном падении волны на твердую границу 115 ] и в других подобных эффектах, когда возникновение вязких напряжений должно быть принято в расчет.  [15]

Страницы:      1    2

www.ngpedia.ru

вихревой поток воздуха — это… Что такое вихревой поток воздуха?


вихревой поток воздуха
adj

Универсальный русско-немецкий словарь. Академик.ру. 2011.

  • вихревой поток
  • вихревой поток с изменением скоростей по экспоненциальному закону

Смотреть что такое «вихревой поток воздуха» в других словарях:

  • двухступенчатое сжигание топлива с встречным вращением потока воздуха — (струи воздуха сначала разрушают ядро горения, а затем создают вихревой поток газов для интенсификации горения) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN ROFA [rotating opposed fire air]… …   Справочник технического переводчика

  • антициклон — ▲ вихрь ↑ который, опускаться, к (предмету), земная поверхность антициклон опускающийся региональный вихревой поток воздуха, давление повышенное; при сжатии воздух нагревается; характеризуется малооблачной и сухой погодой и слабыми ветрами; летом …   Идеографический словарь русского языка

  • АЭРОДИНАМИКА — раздел механики сплошных сред, в котором изучаются закономерности движения воздуха и других газов, а также характеристики тел, движущихся в воздухе. К аэродинамическим характеристикам тел относятся подъемная сила и сила сопротивления и их… …   Энциклопедия Кольера

  • несущий винт — Рис. 1. Шарнирный несущий винт вертолёта. несущий винт вертолёта — воздушный винт, предназначенный для создания аэродинамических сил, необходимых для осуществления полёта, а также для управления вертолётом. По характеру обеспечения… …   Энциклопедия «Авиация»

  • несущий винт — Рис. 1. Шарнирный несущий винт вертолёта. несущий винт вертолёта — воздушный винт, предназначенный для создания аэродинамических сил, необходимых для осуществления полёта, а также для управления вертолётом. По характеру обеспечения… …   Энциклопедия «Авиация»

  • несущий винт — Рис. 1. Шарнирный несущий винт вертолёта. несущий винт вертолёта — воздушный винт, предназначенный для создания аэродинамических сил, необходимых для осуществления полёта, а также для управления вертолётом. По характеру обеспечения… …   Энциклопедия «Авиация»

  • несущий винт — Рис. 1. Шарнирный несущий винт вертолёта. несущий винт вертолёта — воздушный винт, предназначенный для создания аэродинамических сил, необходимых для осуществления полёта, а также для управления вертолётом. По характеру обеспечения… …   Энциклопедия «Авиация»

  • Несущий винт вертолёта — воздушный винт, предназначенный для создания аэродинамических сил, необходимых для осуществления полёта, а также для управления вертолётом. По характеру обеспечения вращательного движения различают Н. в. с механическим приводом и с реактивным… …   Энциклопедия техники

  • Испарительный охладитель — Испарительный охладитель, сфотографированный в Колорадо, используемый для экономичного охлаждения на западе США …   Википедия

  • СВИСТКИ — газоструйные излучатели, преобразующие кинетич. энергию струи в энергию акустич. колебаний. В отличие от сирен, в С. нет движущихся деталей, поэтому они более просты по конструкции и удобны в эксплуатации. По типу рабочего тела и среды, для к рой …   Физическая энциклопедия

  • Тороидальный вихрь — Стиль этой статьи неэнциклопедичен или нарушает нормы русского языка. Статью следует исправить согласно стилистическим правилам Википедии …   Википедия

universal_ru_de.academic.ru

Вихревое движение | Perpetuum mobile: «свободная энергия» и вечные двигатели.

Вихревое движение жидкостей и газов


Вихревое движение идеального газа
   Поворот потока идеального газа
      Сжатие и расширение потока газа при повороте
      Разделение частиц потока по скоростям
   Завихрение идеального газа по 2 осям
Турбулентность и сложное вихревое движение

Вихревое движение идеального газа

Для начала постараемся не изобретать велосипед, а рассмотрим термодинамические эффекты вихревого движения с точки зрения классической термодинамики, прежде всего на примере знакомого со школы идеального газа, то есть такого газа, в котором взаимодействие его частиц — атомов или молекул — между собой хорошо описываются моделью их идеально упругих соударений, а прочие эффекты этого взаимодействия пренебрежимо малы по сравнению с их взаимодействием с стенками сосуда, в котором этот газ находится. На практике это означает прежде всего пренебрежение вязкостью газа и электрическими явлениями, возникающими при быстром движении потоков реальных газов.

Поворот потока идеального газа

Как известно, температура и давление идеального газа изменяются при изменении плотности и скорости его частиц, и наоборот. Посмотрим, что может произойти, если однородный поток такого газа, движущийся с достаточно большой скоростью, вдруг будет вынужден повернуть из-за плавно закругляющейся стенки сосуда. При этом попробуем оставаться на самых примитивных механистических позициях, соответствующих представлениям об идеальном газе как о множестве идеально упругих шариков, только очень маленьких и лёгких…

Предположим, что ламинарный (без завихрений) поток идеального газа подаётся на вход трубы прямоугольного (для простоты) сечения, которая представляет собой сегмент окружности (скажем, половину, т.е. плавно поворачивает на 180°).

Сжатие и расширение потока газа при повороте

В соответствии с механической моделью газа частицы-шарики должны стремиться продолжить начальное прямолинейное движение, однако на их пути оказывается плавно закругляющаяся внешняя стенка. В результате возле неё возрастает концентрация частиц, т.е. происходит некоторое уплотнение газа, что в соответствии с рассмотренным выше адиабатическим сжатием ведёт к повышению температуры и давления в этой области. У внутренней же стенки трубы, наоборот, возникает разрежение газа — это соответствует адиабатическому расширению и ведёт к уменьшению там давления и температуры. В отличие от металлических шариков, которые непременно скопились бы у внешней стенки трубы все сразу, в газе слишком много частиц, и каждая из них помимо направленного движения вместе с потоком имеет хаотическую тепловую компоненту движения. Поэтому в результате их взаимных столкновений многие из них так и не достигают внешней стенки, а меняют своё направление полёта намного раньше, ведь длина свободного пробега частиц воздуха при атмосферном давлении исчисляется сотыми долями микрометра. В результате весь газ не скапливается у внешней стенки, а у внутренней стенки не образуется абсолютного вакуума, однако разность давлений и температур тем выше, чем выше направленная скорость потока на входе трубы.


Схема изменения плотности потока газа при повороте в трубе. Плотность линий соответствует плотности газа (т.е. его давлению), а цвет — температуре.

Впрочем, следует отметить, что такое разделение имеет место только во время поворота потока. Если при выходе на прямой участок (или за пределы трубы) давление в обоих частях потока сравняется (в сжатой — уменьшится, в разреженной — увеличится), то разность температур, вызванная этим, пропадёт, даже когда потоки останутся отделёнными друг от друга. Однако, пока газ находится в трубе, можно снять тепло с её внешней стенки или холод — с середины трубы. Следует заметить, что речь идёт об изменении именно внутренней тепловой энергии самого газа, а не об отборе механической энергии, переданной газу нагнетателем при создании потока.

Разделение частиц потока по скоростям

Существует и второй аспект, приводящий к аналогичным результатам. По общепринятым термодинамическим представлениям, частицы газа и жидкости обладают существенной тепловой кинетической энергией, причиной которой является их хаотическое тепловое движение. Очевидно, что у некоторых из них эта тепловая скорость складывается с макроскопической скоростью потока, и в результате их скорость (а следовательно, и кинетическая энергия) относительно трубы возрастает, а у некоторых эти скорости вычитаются, в результате их скорость относительно трубы становится меньше, а то и вовсе направлена в противоположную сторону. Выбор трубы в качестве точки отсчёта здесь абсолютно однозначен — ведь она отклоняет поток от прямолинейной траектории, и, привязавшись к потоку, мы получим неинерциальную систему отсчёта, а неподвижной является именно направляющая труба. Даже интуитивно понятно, что «низкоскоростным» частицам завернуть легче, чем «высокоскоростным», в результате автоматически происходит их разделение — имеющие более высокую скорость (а стало быть, энергию и температуру) концентрируются у внешней стенки трубы, а обладающие более низкой скоростью и энергией остаются в её внутренней части. Благодаря этому также происходит разделение температур внутреннего и внешнего слоёв потока. Это наиболее очевидно в случае, когда длина свободного пробега частиц много больше внутренних размеров направляющей трубы (разреженный газ), однако эффект, хотя и в менее выраженной форме, будет иметь место и в случае, если свободный пробег существенно меньше этих размеров (газы при атмосферном давлении) и даже когда такой пробег практически отсутствует (различные жидкости) — за счёт передачи импульсов при взаимных столкновениях частиц.

Это разделение более устойчиво — оно в значительной степени сохраняет свои свойства и после выхода на прямой участок и выравнивания давлений «холодной» и «горячей» частей потока (при условии предотвращения их смешивания). Результатом такого эффекта, как и для предыдущего пункта, будет эффект Ранка.

Завихрение идеального газа по 2 осям

Говоря об эффекте Ранка, мы рассматривали вращение потока вокруг одной оси. Но если струя закрученного потока, в свою очередь, будет завиваться вокруг другой оси, перпендикулярной первой? А ведь именно так ведут себя практически все природные вихри — от разрушительного торнадо до безобидной воронки в ванной, из которой выпускают воду. Как правило, у всех у них основной вихрь состоит из закрученных потоков-струй, каждая из которых вращается вокруг своей оси. Возможно, это неслучайно, и сама природа подсказывает нам не ограничиваться вращением в одной плоскости?

Предположим, что нам каким-либо образом удалось создать статический тороидальный вихрь, то есть вихрь, имеющий форму трубки, замкнутой в кольцо, в котором рабочее тело (газ или жидкость) вращается вокруг оси этой трубки, но не вращается вокруг оси самого кольца.


Тороидальный статический вихрь. Цвет соответствует температуре. Разрез вихревой трубки A—A показан для двух случаев: вверху — с вращением, центрированным благодаря жёсткому сердечнику, внизу — из-за отсутствия жёсткого сердечника центр вращения смещён к периферии и температурные эффекты выражены слабее.

Если разбить такое кольцо на сектора, то станет очевидно, что сечение у внутренней стенки трубки (к центру кольца) меньше, чем у внешней (на периферии кольца). Соответственно, рабочее тело будет испытывать ближе к центру кольца сжатие и адиабатический нагрев, а у периферийной стенки — расширение и адиабатическое охлаждение, кроме того в соответствии с уравнением непрерывности у центральной стенки рабочее тело будет двигаться быстрее, а у периферийной — медленнее. Первый эффект более выражен для газов, второй — для жидкостей. И тот, и другой эффекты вызовут более высокую температуру у внутренней стенки вихревой трубки и более низкую — у периферийной. Каждый цикл вращения перенесёт лишь немного энергии, но он повторяется быстро и очень много раз, что в сумме может привести к вполне заметной разности температур. Впрочем, при отсутствии жёсткого сердечника внутри трубки центр вращения несколько сместится к периферии, что значительно снизит перенос тепла, да и без жёсткой внешней трубки такой вихрь долго не просуществует. Эффект Ранка здесь, конечно, также имеет место, однако в данном случае его влияние представляется непринципиальным, особенно при не слишком высоких скоростях вращения.

В случае, если подобный вихрь будет вращаться ещё и вокруг центра кольца, траектория движения отдельной частицы превратится в спираль, свитую более или менее туго в зависимости от соотношения скоростей вращения вокруг центра вихревой трубки и вокруг центра кольца. При этом перенос тепла возможен как от периферии кольца к его центру (при незначительной скорости вращения вокруг центра кольца), так и от центра кольца к его периферии вследствие эффекта Ранка (при незначительной скорости вращения вокруг центра трубки).

Турбулентность и сложное вихревое движение

Традиционная гидродинамика неявно исходит из того постулата, что естественной формой движения жидкостей и газов является ламинарное течение, а турбулентность рассматривается как его нарушение, вызванное тем или иным ограничением его «свободы». Однако, исходя из того факта, что течение, бывшее ламинарным в относительно узком канале, при удалении ограничивающих его стенок и сохранении прежней скорости начинает завихряться, логично заключить, что именно вихревое течение является «естественной» формой движения жидкостей и газов, а ламинарным оно становится вынужденно — как раз под воздействием внешних ограничений! Достаточно взглянуть на формулу числа Рейнольдса — общепризнанного критерия ламинарности или турбулентности потока, — при неизменной скорости потока оно растёт пропорционально диаметру трубы, а значит, течение становится более турбулентным. В узкой трубке мчащаяся с большой скоростью жидкость ламинарна, а в безбрежном океане даже медленные течения сопровождаются водоворотами и завихрениями — такими же медленными, малозаметными и безопасными, как и породивишие их потоки.


Вихрь вытекающей воды. Явно видна его чёткая структура.

Что из этого следует? Очень многое! Как известно, будучи предоставлено само себе, любое тело или вещество стремится принять наиболее энергетически выгодное состояние и перемещается по наиболее энергетически выгодной траектории. А значит, получается, что естественное турбулентное завихрённое течение энергетически более выгодно, чем прямолинейное ламинарное? Но ведь традиционная гидродинамика, да и реальная техническая практика утверждают: потери при ламинарном движении существенно меньше, чем при турбулентном, и потому инженеры всеми силами стараются предотвратить или хотя бы сократить образование турбулентностей! В чём же дело?

В массовом сознании турбулентное движение ассоциируется с беспорядочно зарождающимися и исчезающими вихрями среды, которые хаотично сталкиваются друг с другом, а также с ограничивающими поток стенками или с телом, движущимся в неограниченной среде, и тем самым отбирают и бесполезно растрачивают кинетическую энергию, превращая её в тепло. Да, иногда это выглядит именно так, однако происходит не очень часто и обычно в тех случаях, когда форма движущегося тела или стенок, ограничивающих поток, слишком неправильна, а жёсткость их поверхности мала. Следует заметить, что в быту и технике под «турбулентностью» часто имеется в виду именно такое хаотичное завихрение среды, однако в гидродинакмике как науке «турбулентным» называется любое течение, характер которого отличен от ламинарного, то есть с любыми завихрениями в теле потока — как хаотическими, так и упорядоченными — вплоть до квазистационарных.

Тем не менее, легко получить квазистационарную струю, которая хотя и имеет форму спирали (т.е. является турбулентной с точки зрения гидродинамики), но внешне выглядит практически неподвижной. Для этого достаточно под небольшим давлением (в пределах 0.1..0.5 атм) подать жидкость в небольшое отверстие (1..3 мм), желательно продолговатой формы. Это может быть не только вода из водопровода, — опыт можно провести за завтраком, наливая в чай или кофе молоко из молочного пакета. В результате при условии неизменного напора в воздухе можно будет наблюдать внешне неподвижную спирально закрученную монолитную струю длиной до 15–30 см (увеличению длины цельного участка способствуют как ровные края отверстия и повышение напора, так и уменьшение размеров отверстия — в разумных пределах, конечно, иначе получится пульверизатор). На большем расстоянии цельная струя разрушается под действием сопротивления воздуха и силы тяжести, разбиваясь на отдельные капли. Опыт легко доступен каждому, и весьма поучительно понаблюдать за поведением струи при небольших изменениях напора. Интересно, какой длины можно получить цельную струю в невесомости и при сильном разрежении?

Проведя такой опыт, можно наглядно убедиться, что турбулентное движение среды весьма упорядоченно, правда, эта упорядоченность динамическая, «живая», зависящая прежде всего от размеров потока (обтекаемого тела) и его скорости, но не только от них — важную роль может играть и изменение вязкости, и шероховатость поверхности, и многие другие факторы. При не очень большом изменении параметров точки наибольшего и наименьшего динамического сопротивления перемещаются по ограничивающей поток поверхности более чем заметно, в том числе и меняясь местами. Да и при неизменных параметрах из-за труднопредсказуемой динамической реакции среды жгуты струй могут двигаться, качаться, — их сложное вращательное движение порождает то нарастание, то уменьшение давления и сопротивления движению в одной и той же точке этой поверхности. В этом трудность детального приборного исследования турбулентных течений. В этом отличие турбулентного движения от достаточно «статического» и потому гораздо лучше изученного ламинарного движения, где при изменении скорости лишь соответственно изменяется давление и сопротивление, но точки минимумов и максимумов сопротивления остаются на своих местах до тех пор, пока сохраняется ламинарный режим. В этом и причина принятой в технике и обслуживающей её науке догмы о вреде турбулентности.

Действительно, если параметры канала не соответствуют «естественной» форме вихря для данных условий, энергетические потери могут превысить потери при ламинарном движении, а даже небольшое изменение условий течения приводит к существенному изменению геометрии оптимального канала. В жёстких каналах, характерных для технических устройств, оптимально подстроить их форму практически невозможно. Не удивительно, что предпочтение отдаётся предсказуемому и легко рассчитываемому ламинарному течению — «синице в руках». Казалось бы, мягкая оболочка канала должна сама подстроиться под оптимальный профиль, но и здесь всё не так просто. Общеизвестно, что как в воздухе, так и в воде мягкая оболочка (тканевая или резиновая) оказывает большее сопротивление движению, чем жёсткая металлическая — именно потому, что она «полощется» в потоке. Здесь дело в том, что она действительно пытается «подстроиться» под оптимальную форму, но изменение формы изменяет и условия обтекания — и новая форма снова оказывается неоптимальной, вызывая обратное движение. То есть, вместо того, чтобы предвосхищать события и заранее принять оптимальную форму, «тряпочная» оболочка стремится «ликвидировать последствия» и потому всегда опаздывает и проигрывает — находится в энергетически неоптимальном состоянии относительно потока, обтекающего её в данный момент.

Конечно, существует и другой вариант — оптимизировать параметры потока (прежде всего скорость) под жёсткий профиль трубы. Однако этот вариант, похоже, никем всерьёз не изучался и не просчитывался, особенно для длинных каналов и трубопроводов. Единственной заслуживающей внимания работой в этом плане являются эмпирические опыты гениального Виктора Шаубергера, однако научного развития и общепринятого теоретического обоснования они не получили, а без этого их инженерное применение невозможно — ведь инженерам нужен предсказуемый и заранее просчитанный результат, особенно в таких долговременных и дорогостоящих проектах, которыми являются трубопроводы и гидротехнические сооружения. Да и профиль труб Шаубергера гораздо сложнее, а потому менее технологичен, чем традиционные круглые трубы. Так зачем рисковать?

Наблюдая много лет за течениями, прежде всего естественным течением горных и равнинных рек и ручьёв и поведением их обитателей, Виктор Шаубергер пришёл к выводам, которые современная общепризнанная гидродинамика не то что отрицает, а просто не считает нужным рассматривать. Физическая суть их заключается в том, что должным образом организовав и направив турбулентное течение, можно не просто сократить потери, но и превратить часть внутренней (тепловой) энергии воды в механическую работу — то есть усилить течение за счёт охлаждения воды. Особое внимание он уделял горной форели, которая, используя особые свойства ледниковой воды и создав канал нужного профиля с помощью рта и жаберных крышек, может долго стоять в стремительном потоке горного ручья на одном месте, почти не работая плавниками и хвостом, а потом ещё и сделать рывок вперёд — против течения!

Более подробно его идеи и разработанные на их основе устройства рассмотрены на отдельных страницах, а здесь я лишь хочу подчеркнуть, что не всегда следует стремиться к подавлению турбулентности — есть ситуации, когда именно правильно организованное сложное турбулентное движение может дать энергетический выигрыш! ♦

khd2.narod.ru

Вихревые технологии древних инженеров — К чему стадам дары свободы… — Живой Журнал


Возьмите пример с Великим шёлковым путём

Великий шёлковый путь это не просто дорога от Китая в сторону Рима, а развитая сеть от Китая до Рима, из Индии в Самарканд и далее на север, вплоть до городов вдоль Итили (Волга), где цвела и развивалась Волжско-Камская Булгария. Какая-то часть Великого шёлкового пути огибала Каспий с севера и шла в крепость Дербент, а оттуда — в Причерноморье.

Вряд ли вызовет удивление факт обнаружения в древних документах или летописях упоминания о существовании «служб» ремонта и обслуживания объектов Великого торгового пути. Великий шёлковый путь, возраст которого превышал к тому времени тысячу лет, вобрал в себя всё самое наилучшее из существовавшей тогда инженерной практики.

И, может быть, главное — вызывающее восхищение умение с помощью простейших инженерно-строительных решений добывать воду из окружающей атмосферы в любом количестве и качестве. Ныне эти решения могут помочь и нам справиться с проблемой водоснабжения в любой точке нашей планеты.

Нет, автор данных строк не предлагает нечто экзотическое. Просто надо вернуться к опыту наших предков. Вот часть строки из Корана [3:113(117)] (в переводе И.Ю. Крачковского, 1963): «То, что они тратят… подобно вихрю, в котором холод: он поразил посев людей…». То есть, древний литературный памятник зафиксировал то, что за полторы тысячи лет до открытия французского инженера Ж. Ранка3 люди уже знали, что в центре вихревого потока температура газа может упасть до степени замораживания.

Одним из главных достоинств Великого шёлкового пути, величайшего в истории человечества инженерно-транспортного сооружения, были колодцы. В целях увеличения, выражаясь современным языком, полезной нагрузки караванов, инженеры сделали всё, чтобы вьючные животные не тащили на себе огромные запасы питьевой воды, кроме какого-то потребного на один переход минимума.

Вдоль пути на расстоянии в 12-15 км друг от друга были созданы колодцы, в каждом из которых имелось воды, в количествах достаточных, чтобы напоить караван в 150 — 200 верблюдов. Об этом свидетельствуют записки арабских путешественников, относящиеся к времени возникновения Халифата (VII в.).

Авторы записок создателями колодцев называют китайцев и их инженеров. Наверное, так оно и было: современный Китай, как и в древности, отдаёт предпочтение в отношениях с соседями разумной и прибыльной торговой экспансии, а не военно-политической.

Строительство дорог, хотя бы и не на своей земле, было частью такой разумной экспансии. Но не будем спешить с установлением авторства и отказывать в инженерных способностях другим древним народам.



Реконструкция колодцев Великого шёлкового пути.

На рис.1 и 2 представлены картинки реконструкции колодца в пустыне, произведённой автором данных строк по описаниям арабов. В таком колодце чистая (чистейшая!) вода добывалась непосредственно из атмосферного воздуха. Разумеется, процентное содержание водяных паров в пустынном воздухе крайне незначительно (меньше 0,01% удельного объёма).

Но, благодаря конструкции колодца, через его объём «прокачивался» пустынный воздух тысячами кубометров в сутки, и у каждого такого кубометра отнималась практически вся масса воды, содержащаяся в нём. Древние инженеры использовали вихревой эффект!

Сам колодец был наполовину своей высоты вкопан в грунт. Путешественники спускались за водой по лестницам — а таких спусков было несколько — на отмостки и черпали воду. В центре углубления для скопившейся воды возвышалась аккуратно выложенная высоким конусом груда камней (конденсатор?!).

Арабы свидетельствуют, что и скопившаяся вода, и воздух на уровне отмостков были на удивление холодными, хотя снаружи колодца стояла убийственная жара. Нижняя тыльная часть камней в груде была влажной, а на ощупь камни были холодными.



Накопление воды в колодце

К сожалению, скупость описания конусного или шатрового свода колодца не даёт чёткого представления о его конструктивных особенностях. Недостаточность информации приходится возмещать умозрительными построениями.

Стоит только обратить внимание на лёгкое удивление арабов: керамическая облицовка и в те времена была недешёвым материалом, но строители колодцев не считались с затратами, и каждый колодец имел такое перекрытие.

А ведь это делалось неспроста, поскольку материалу из глины можно было придать любую необходимую форму, затем отжечь и получить готовую деталь, способную работать в самых тяжёлых климатических условиях долгие годы.

В конусном или шатровом своде колодца (рис. 3) были выполнены радиальные каналы, прикрытые керамической облицовкой, или сама керамическая облицовка представляла собой набор деталей с уже готовыми сечениями радиальных каналов. Нагреваясь под лучами солнца, облицовка передавала часть тепловой энергии воздуху в канале. Возникало конвективное течение нагретого воздуха по каналу.

В центральную часть свода вбрасывались струи нагретого воздуха. Но как и почему появлялось вихревое движение внутри здания колодца?



Конструкция верхней части колодца

Самое первое предположение — ось каналов не совпадала с радиальным направлением. Имелся небольшой угол между осью канала и радиусом свода, то есть струи были тангенциальными. Причём строители использовали очень малые углы тангенциальности между радиусом и осью струи — не более 50.

Угловая величина в 50 довольно незначительна, невооружённым глазом её порой и не разглядеть. Вероятно, поэтому технологический секрет инженеров древности остаётся неразгаданным и по сей день.

Использование струй малой тангенциальности с доведением их числа чуть ли не до бесконечности открывает новые возможности вихревых технологий. Только не будем воображать себя первопроходцами. Инженеры в древности владели этой технологией в совершенстве.

Высота здания колодца, включая его вкопанную часть, составляла 6-8 м при диаметре здания в основании не более 6 м, но в колодце возникало и устойчиво работало вихревое образование. Охлаждающий эффект вихря использовался с очень высоким КПД. Конусная груда камней действительно исполняла роль конденсатора. Ниспадающий «холодный» осевой поток вихря отнимал тепло камней, охлаждал их.

Водяной пар, содержащийся в ничтожных количествах в каждом удельном объёме воздуха, конденсировался на поверхностях камней. Таким образом в углублении колодца шёл постоянный процесс накопления воды.

«Горячий» периферийный поток вихря выбрасывался наружу через входные проёмы лестничных спусков в колодец. Только этим можно объяснить наличие сразу нескольких спусков внутрь. Благодаря большой инерционности вращения вихревого образования, колодец работал круглосуточно.

Вода добывалась и днём, и ночью, при этом никаких видов энергии, кроме солнечной, не использовалось. Вполне возможно, что ночью колодец работал даже интенсивнее, чем днём, поскольку температура воздуха пустыни после захода солнца падает на 30-400С, что сказывается на его плотности и влажности.

Так почему бы ни воспользоваться опытом древних инженеров в условиях, когда территория пустынь общей площадью более 30 млн кв. км ежегодно расползается ещё на 210 тысяч кв. км?

Так Сахара ежегодно отнимает у людей 100 тысяч га пашни и выпасных угодий; пустыня Атакама движется со скоростью 2,5 км в год, пустыня Тар — 1 км в год. Естественно, движение пустынь вызывает рост миграционных людских потоков. За всё надо платить. В том числе, за антропогенное воздействие на чрезвычайно хрупкую экосистему пограничных с пустынями зон.

Как утверждал Л.Н. Гумилёв, 15 тысяч лет назад пустынь не было вовсе. Имея колоссальное преимущество перед технологическими возможностями древних строителей в виде обеспеченности лёгкими, прочными и сравнительно дешёвыми материалами, мы могли бы осуществить обратное антропогенное воздействие на пустыни и заставить их работать на нашу цивилизацию.

Широкое применение данная древняя вихревая технология может найти в конструкциях естественных вододобывающих станций, то есть такая станция будет работать, используя только даровую солнечную энергию.

Вододобывающая станция (ВДС) формируется из тонколистового металла и металлопроката, свод набирается из коробов. Опыта строительства таких конструкций нам не занимать — достаточно взять за основу всевозможные хранилища нефтепродуктов. Оптимальные размеры будут определены в ходе испытаний первых образцов.

Готовая станция на месте собирается и монтируется в считанные дни и потребует лишь небольшого объёма землеройных работ, включая прокладку водопровода к месту потребления или сбора воды. В качестве основного материала конденсатора могут быть использованы хорошо зарекомендовавшие себя кольца Рашига4.

ВДС выгодно строить и во многих южных и степных регионах России, в Приморье Дальнего Востока. Только работать они будут менее четверти года. В засушливый год — несколько дольше. По сути своей, одна такая станция будет равноценна лесной роще площадью в 2-3 га.

Известно утверждение В. Шаубергера5, проделавшего путь от австрийского лесника до блестящего инженера и физика, о том, что зрелый лес на равнинах умеренной широты способствует увлажнению воздуха и почвы благодаря множеству слабых вихревых воздушных потоков, рождающихся в нём. Родники, болота, ручейки, стекающиеся далее в речушки и реки, существуют только благодаря наличию зрелых лесных массивов.

Надо беречь пресную воду как долговременный капитал, не пуская его на распродажу. Надо спешно разрабатывать и торговать технологиями и оборудованием генерации воды. У нас имеется опыт предков, и этого вполне достаточно. Нам, как воздух, нужна разумная и прибыльная промышленная — в инновационном смысле — экспансия. Для начала хотя бы на юге, в Средней Азии, в пустынях наших бывших соседей по Союзу. Строительство каскада ВДС вдоль иссыхающих рек — не благотворительность, а изначально самоокупаемая и взаимовыгодная акция.

Данная древняя технология должна также привлечь внимание специалистов от архитектуры. Они стремятся строить здания с всё увеличивающимися площадями оконных проёмов. Стекла в конструкциях зданий всё больше и больше.

Но такие здания в жаркую солнечную погоду становятся парниками. Количество и мощность кондиционеров растёт, и в жару энергосети городов оказываются более перегруженными, нежели в 30-градусные морозы. А почему бы ни практиковать опыт инженеров древности?

Ведь использовать летом солнечную энергию для производства хорошо увлажнённого и холодного воздуха для кондиционирования зданий-«стекляшек» давно пора хотя бы из-за дороговизны электроэнергии. Надстроить на крыше здания лёгкую и сравнительно дешёвую конструкцию естественного кондиционера — что может быть проще?

В романе «Собор Парижской Богоматери» есть глава «Вот это убьёт то», в которой Виктор Гюго изумительно красиво и по-французски изящно излагает свой взгляд на архитектуру, зодчество, как на способ увековечить человеческую мысль в камне, в строении, в очертаниях здания. Если следовать ему, то стремление строителей Востока к округлым, цилиндрическим и сферическим формам, в отличие от строителей Запада, тяготевших к кубическим и прямоугольным, было далеко не случайным.

Не зря историки математики утверждают, что число π в гораздо большей степени было востребовано на Востоке, нежели на Западе. Строители знали о «холодящем» эффекте закрученного потока и очень широко использовали его, в том числе в строительстве зданий и дворцов. Ну, неужели кто-то всерьёз полагает, что спасением от убийственной жары были только тень и опахало! Комфорт внутри зданий восточные зодчие создавать умели. Неплохо было бы и нам использовать этот опыт.

В заключение не будет лишним процитировать высказывание В. Шаубергера: «Решив проблему генерации воды и сделав возможным получение любого объёма и любого качества воды в каком угодно месте, человек вновь освоит огромные пустынные земли и понизит тем самым как продажную цену продовольствия, так и продажную цену машинных мощностей до такого минимума, что отпадёт всякая выгода спекуляции этим.

Обилие продовольствия и экономичная производительность машин являются такими сокрушительными доводами, что общее представление о мире, а также всё мировоззрение претерпят изменения».

—————————

1 Гумилёв Лев Николаевич (1912-1992), российский историк, географ, доктор исторических (1961) и географических (1974) наук, академик РАЕН (1991). Создатель учения о человечестве и этносах как биосоциальных категориях; исследовал биоэнергетическую доминанту этногенеза (назвал её пассионарностью). Труды по истории тюркских, монгольских, славянских и других народов Евразии.

2 Яса — название уложения Чингисхана, которое он, по преданию, издал на великом всемонгольском курултае и которое постоянно подтверждалось его преемниками.

3 Эффект Ранка-Хилша, англ. Ranque-Hilsch Effect — эффект разделения газа или жидкости при закручивании в цилиндрической или конической камере на две фракции. На периферии образуется закрученный поток с большей температурой, а в центре — закрученный охлаждённый поток, причём вращение в центре происходит в другую сторону, чем на периферии. Впервые эффект открыт французским инженером Жозефом Ранком в конце 20-х гг. при измерении температуры в промышленном циклоне. В конце 1931 г. Ж. Ранк подаёт заявку на изобретенное устройство, названное им «вихревой трубой» (в литературе встречается как труба Ранка). Получить патент удаётся только в 1934 г. в Америке (Патент США No 1952281).

4 Рашиг Фридрих (1863-1928), немецкий химик-технолог и промышленник. Предложил (1890) способ фракционной дистилляции органических веществ в колоннах, заполненных керамическими кольцами (кольца Рашига).

5 Виктор Шаубергер (1885-1958) родился в Австрии. Первые упоминания о его деятельности относятся к началу 20-х гг., когда Шаубергер, работая егерем в лесозаготовительной компании, спроектировал и смонтировал водные желоба со спиральными насечками, подобными орудийным. Когда бревна падали в желоба, они вращались вокруг своей оси, что увеличивало их скорость перемещения. В 1930-м г. Шаубергер спроектировал электрогенератор, турбина которого принципиально отличалась от конструкции обычных водяных турбин.

Генератор был установлен вблизи лесопилки и успешно использовался в течение 3 лет, но конкретных сведений о его работе не сохранилось. В начале Второй мировой Виктор Шаубергер был интернирован в нацистский концентрационный лагерь, где был привлечён к работе над летающим «Диском Белонце», предложив для него оригинальный вихревой двигатель.

Хамзя Умяров

2008 г.

(Из журнала ТЕХНИКА-МОЛОДЕЖИ 2008 08).

***

ss69100.livejournal.com

Вихревой поток — Большая Энциклопедия Нефти и Газа, статья, страница 2

Вихревой поток

Cтраница 2

Создание вихревого потока воздуха, способного транспортировать необходимое количество топлива, достигается путем тангенциального ввода воздуха со скоростью при вступлении в камеру сгорания от 30 до 150 м / сск в зависимости от типа циклонной топки, сорта топлива и размеров ее частиц.  [16]

В вихревом потоке, образующемся в этом зазоре, частицы материала вращаются вокруг собственных осей с такими скоростями, что центробежные силы разрывают их.  [17]

В вихревом потоке газы проникают между изделиями внутрь садки ( при размещении ее внутри такого потока), что создает условия для интенсифицированного и равномерного нагрева всей поверхности садки.  [19]

В вихревом потоке, образующемся в этом зазоре, частицы материала вращаются вокруг собственных осей с такими скоростями, что центробежные силы разрывают их.  [20]

Турбулентным называется беспорядочный вихревой поток жидких частиц, движущихся, помимо главного продольного, также в поперечных направлениях.  [21]

Осевая сила вихревого потока по сравнению с силой, создаваемой механическими системами, не гасит осевых вибраций детали.  [23]

Интенсификация турбулентности вихревых потоков приводит к перемещению зоны максимальной температуры в периферийном вихре к завихрителю и увеличению холодильного эффекта, для чего на дросселе термотрансформатора ( см. рис. 6.1) устанавливают турбулизаторы в виде решеток, лопаток и проч. В результате увеличивается эффективность холодопроизводительности термотрансформатора. Вихревые термотрансформаторы с рециркуляцией горячего потока и вводом дополнительного потока исследованы на воздухе. Исследования на нефтяных или природных газах неизвестны.  [24]

Электромагнитный ( вихревых потоков) метод основан на регистрации изменения взаимодействия собственного магнитного поля катушки с электромагнитным полем, наводимым этой катушкой в детали с покрытием; он применим для измерения толщины электропроводных и неэлектропроводных покрытий, полученных на деталях из ферромагнитных и неферромагнитных металлов.  [25]

Двигаясь с вихревым потоком, легирующие добавки коагулируют на себя окисные и газовые включения, находящиеся в расплаве, образуя пористые шаровидные конгломераты, которые в процессе плавка постепенно увеличиваются, а плотность их снижается. При включенной печи эти конгломераты удерживаются в каналах центробежными и электромагнитными силами, а после отключения печи всплывают на поверхность расплава благодаря меньшей плотности.  [26]

Однако в вихревых потоках характеристика прибора очень неустойчива, и аномальные выбросы в показаниях прибора могут составлять больше 100 % от номинального значения расхода.  [27]

В горизонтальных циклонах вихревой поток совершает не больше одного оборота.  [29]

Страницы:      1    2    3    4

www.ngpedia.ru

Вихревой поток — Большая Энциклопедия Нефти и Газа, статья, страница 4

Вихревой поток

Cтраница 4


Смесеобразование осуществляется при помощи вихревых потоков воздуха, образующихся в камере во время процесса сжатия.  [47]

Дорожки в облаках создаются горизонтальными вихревыми потоками — рядами вихрей, оси вращения которых горизонтальны и ориентированы по направлению ветра. Там же, где циркуляция между двумя смежными вихрями направлена вниз, облака не возникают. Горизонтально дующий ветер растягивает эти вихри в горизонтальные потоки.  [48]

Аэродинамика и тепломассообмен Е ограниченных вихревых потоках.  [49]

В нижней части конического аппарата создаются вихревые потоки и промывная жидкость не протекает через слой кипящего материала, а смешивается с непрерывно разбавляемым раствором солей. В связи с этим значительно увеличивается расход воды на промывку. Он определяется в большой мере отношением Ж: Т во взвешенном слое материала.  [50]

В вихрекамерных дизелях улучшению смесеобразования способствуют вихревые потоки воздуха, создаваемые в процессе сжатия в вихревой камере.  [51]

Диск нагревается незначительно, так как вихревой поток воздуха, возникающий во время разрезания, охлаждает его.  [52]

Конструктивные формы разделенных камер п типы вихревых потоков в них могут быть различными. В автотракторных дизелях наиболее распространены вихревые камеры и предкамеры.  [53]

Следует различать интенсивность и способы образования вихревых потоков. Если завихрение воздушного потока возникает в улитках до встречи с топливной струей ( рис. 14, б У), то при выходе из форсунки или регистра со значительной осевой скоростью линии воздушных потоков выравниваются и встречают струи топлива мало завихренными. В отдельных случаях смесеобразование оказывается менее интенсивным, чем в форсунках встречных потоков.  [54]

Страницы:      1    2    3    4

www.ngpedia.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *