Какое давление создает тнвд: Технология COMMON RAIL DELPHI

Содержание

Технология COMMON RAIL DELPHI

Английский концерн DELPHI разработал свою версию дизельных систем с прямым впрыском одновременно с другими конкурентами и получил признание, как у европейских, так и у некоторых азиатских производителей. Системы очень экономичны и технологичны, недороги в производстве. Хотя отличаются повышенными требованиями к качеству топлива и ремонтной мастерской, поскольку компоненты чувствительны к малейшей грязи, даже невидимой человеческим глазом. По этой причине первые поколения ТНВД систем имели тенденцию к саморазрушению, но стали более надежны в последующем. 

Насосы Высокого Давления COMMON RAIL типа DELPHI
Тип DFP1

Система DELPHI DFP1 относится к первому поколению дизельных систем DELPHI, оборудованных аппаратурой типа COMMON RAIL. Конструкция насоса высокого давления с кулачковым механизмом, который приводит в работу радиально расположенные качающие элементы, повторяет архитектуру предыдущих поколений насосов для атмосферных двигателей роторного типа DPC и EPIC.

Насос приводится в действие с помощью ремня или цепи. Приводящий вал и кулачковый механизм роторного типа выполнены как одно целое, что стало причиной основной проблемы этого типа насосов — утечки через уплотнения. В целях плавности подачи топлива под давлением две зоны сжатия топлива разведены друг от друга под углом в 45 градусов. Распредвал с четырьмя кулачками конструктивно идентичен традиционному насосу от DELPHI. Но в отличие от него теперь насос не определяет время впрыска и уровень потока, поэтому фаза сжатия удлинена в целях уменьшения шумности и вибрации.

Насос состоит из Передающего насоса, чьей задачей является подача топлива в ТНВД из топливного бака через топливный фильтр под давлением 6 бар. Передающий насос также вращается под действием распредвала и состоит из вкладыша-эксцетрика, пластины с двумя продолговатыми отверстиями — одно для впуска топлива и второе для подачи топлива, четырех подпружиненных лопастей, которые расположены под углом в 90 градусов к друг другу.

Принцип работы Передающего насоса в том, что вращаясь против часовой стрелки лопасти захватывают топливо из открытого отверстия со стороны бака в полость между кольцом и валом. По мере вращения вала отверстие закрывается и полость полностью наполняется топливом, которое далее передается к открывающемуся отверстию в область высокого давления. И так далее по циклу. Топливо попадает из фильтра в Передающий насос под действием негативного давления и в самом насосе давление изменяется в сторону роста по мере скорости вращения вала ТНВД. Однако оно не может увеличиться более 6 бар, поскольку специальный механический клапан-регулятор (PLV — Pressure Limiter Valve) сливает лишнее топливо обратно на вход Передающего насоса.

Количество подаваемого в область высокого давления топлива регулируется клапаном контроля давления или IMV клапаном (Inlet Metering Valve). Клапан имеет две задачи: 1) Контроль давления, которое создаёт ТНВД, через регулирование объема подаваемого топлива. 2) Контроль температуры сливаемого в топливный бак топлива.

Клапан расположен на стороне контура низкого давления. Топлива подает в него через два отверстия на конце клапана, которые закрыты сетчатым фильтром. Идея сетчатого фильтра в защите как самого клапана, так и системы высокого давления от остатков неотфильтрованной грязи. Клапан открывается в соответствии с запросом ЭБУ (DCU) на определенный уровень давления. Чем больше уровень скважности, подаваемой блоком управления на клапан, тем меньше уровень высокого давления в рампе и наоборот. В выключенном состоянии клапан постоянно открыт под воздействием конической пружины, которая жестче, чем внутренняя пружина в задней части клапана. Под воздействием частотного сигнала с ЭБУ с уровнем тока до 1,1 Ампера клапан перекрывает проход в ТНВД, контролируя давление. Клапан располагается на задней части корпуса ТНВД.

Также на задней части ТНВД расположен температурный датчик (на некоторых моделях может отсутствовать, например Peugeot), который следит за температурой топлива в диапазоне от -30 до +85 градусов.

Отличительная особенность системы DELPHI — наличие трубки Вентури на линии обратного слива, который создает негативное давление в системе для устранения резких перепадов высокого давления топлива. Как правило, трубка Вентури находится на корпусе ТНВД, но может быть выведена отдельно вместе с температурным датчиком, как, например, на автомобиле Peugeot. Принцип работы в том, что внутри клапана имеется сужение канала, которое стабилизирует поток топлива.

Некоторые вариации этого типа ТНВД имеют дополнительную форсунку на корпусе, которая абсолютно независима от форсунок в головке блока цилиндров и применяется при необходимости подачи топлива и повышения температуры для регенерации сажевого фильтра.

Область насоса, которая сжимает топливо под высоким давлением, состоит из впускного и выпускного клапанов, поршней и роликов, которые подпруженены двумя пружинками. Под воздействием давления Передающего насоса впускной клапан открывается и топливо попадает внутрь между двумя плунжерами. Вращающиеся ролики нажимаются кулачками и поршни сдавливают топливо. В этот момент под действием гидравлического давления впускной клапан закрывается (как только давление внутри насоса станет выше, чем давление подачи топлива), а выпускной открывается, передавая поток топлива в рампу. Шариковый клапан открывается как только давление внутри насоса становится больше, чем давление в рампе, выпуская топливо.

Насосы смазываются и охлаждаются за счет дизельного топлива. Для нормальный работы насос должен пропускать через себя 50 литров топлива в час. За полтора оборота ТНВД должен создать давление 200 бар. В зависимости от производителя ТНВД может иметь 2,3 и 4 плунжера, и развивать максимальное давление до 1400 или до 1600 бар.

Тип DFP3


В отличие от DFP1 новое поколение системы DELPHI DFP3 имеет вал с эксцентриком, которые соединены с тягами. Вращаясь под воздействием приводного вала, эксцентрик воздействует на тяги, которые сдавливают топливо. Насос может иметь модификацию с двумя плунжерами, которые разведены под углом в 180 градусов или с тремя плунжерами, находящимися под углом в 120 градусов. Основные отличия системы DFP3 от предыдущего поколения в использовании эксцентрика, измененной формы передающего вала, количестве плунжеров, использовании роликовых подшипников вместо подшипников скольжения, большей производительности одного оборота, большей скоростью вращения вала, меньшими размерами, вариантами без Передающего насоса, большей мощностью и меньшим шумом. Передающий насос находится не внутри, а на внешней части корпуса насоса. При его наличии используется клапан контроля топлива, передающегося в область сжатия.

Принцип работы Передающего клапана такой же как и у насоса предыдущего поколения, внешне они схожи, но они не взаимозаменяемы, поскольку имеют разные калибровки и выпускаются разными производителями. Максимальный ток управления соленоида клапана — 1,3 Ампера. Задача температурного датчика такая же как и для DFP1. Механический клапан контроля давления PLV (Pressure Limiter Valve) регулирует давление на уровне 1850 — 2500 бар. В случае проблемы с IMV клапаном или появлением неисправности с подачей топлива через форсунки, клапан запускает топливо по кругу на вход насоса. На некоторых системах при наличии регулятора давления на рампе этот клапан в ТНВД отсутствует (например DFP3.4. — Mercedes). Клапан типа Вентури может быть расположен как внутри, так и снаружи ТНВД на стороне слива в магистраль обратки, и служит для устранения колебаний давления в рампе посредством негативного давления в линии обратки. Этот клапан отсутствует на системах с форсунками Прямого Действия. Форсунка для регенерации сажевого фильтра идентична предыдущему поколению.

Насос приводится в действие с помощью ремня, цепи или привода с крестовой муфтой, который вращает вал с эксцентриками, которые нажимают на плунжер и пружину, сжимая топливо, которое подаётся в область высокого давления через механический перепускной клапан. Впускной клапан открывается под воздействием разряжения, которое создается при движении плунжера вниз под действием возвратной пружины. Во время движения плунжера вверх топливо сжимается, закрывая впускной клапан и открывая выпускной для подачи сжатого топлива в рампу.

Различается несколько разновидностей системы DFP3 (3.1, 3.2, 3.3, 3.4), которые отличаются по форме, количеству плунжеров, приводу и подают давление от 1600 до 2000 бар.

Тип DFP4


Система DELHPI DFP4 разработана на основе DFP3 и предназначена для использования на двигателях коммерческих машин. Насос имеет два плунжера, разведенных под углом в 180 градусов. Отличие конструкции от предыдущей версии в наличии DLC покрытия на впускном клапане, использование керамического шарика в выпускном клапане, наличие эксцентрика с прорезями, охлаждение топливом передних и задних подшпников скольжения.

В архитектуре, где имеется клапан HPV (High Pressure Valve), который регулирует давление на рампе, механический клапан-ограничитель давления может отсутствовать на ТНВД за ненадобностью (например, двигатели для JCB). Также на системе DFP4 имеется трубка Вентури, которая может быть как внутри, так и снаружи насоса. Системы с сажевым фильтром имеют форсунку для подачи топлива под давлением в 6 бар в систему сажевого фильтра для регенерации.

Насосы типа DFP4.2 вращаются против часовой стрелки, а насосы типа DFP4.4 по часовой стрелки. ТНВД этого типа могут развивать максимальное давление до уровня 2000 бар.

 Тип DFP6

Насосы типа DELPHI DFP6 относятся к третьему поколению топливный систем DELPHI для COMMON RAIL. ТНВД этого типа унаследовали архитектуру предыдущего поколения с кулачками и роликами. Однако они меньше по размеру, легче по весу, менее шумные, более эффективные по производительности, создают более высокое давление. Основые технические отличия в наличии одного плунжера и двухтактной системы сжатия во время одного оборота вала, а также наличие комбинированного ролика и поршня. Также эти насосы не имеют температурного датчика, посольку он перенесен в область низкого давления. Кроме этого, насосы типа DFP6 не имеют Передающего насоса. Подача топлива к ТНВД осуществляется за счет погружного электрического насоса в баке, который доставляет топливо к ТНВД под давлением 6 (-\+1) бар. IMV клапан на насосе контролирует количество топлива, котрое подаётся для сжатия и одновременно регулирует температуру топлива.

DCU управляет клапаном с помощью скважности частотой 200-800 Гц и тока 1,3 Ампер. На автомобилях Peugeot, Citroen и Ford DW10F температурный датчик расположен между фильтром и ТНВД.

Еще одно отличие системы DFP6 в отсутствии механического клапана ограничителя давления в насосе. Эта функция выполняется или клапаном контроля давления (HPV) или механическим клапаном-ограничителем (PLV) на рампе. Трубка Вентури расположена на насосах для Volkswagen с отводом для форсунки сажевого фильтра.

На современных автомобилях ТНВД этого поколения могут приводиться в работу ремнем или шестерней. Вал вращает двойной эксцентрик по которому движется ролик, повторяя его форму. Ролик надавливает на плунжер, который возвращается обратно с помощью пружины. Плунжер сдавливает топливо по такому же принципу, как и в насосах предыдущего поколения. ТНВД DFP6.1 создают давление от 1800 до 2000бар, насосы DFP6.1E создают только давление в 2000 бар. 

Форсунки системы DELPHI (DFI)
Форсунки DFI1.
1 — DFI1.4


Топливные форсунки типа DELPHI DFI 1.1 — 1.4 имеют следующие элементы: 
— Распылитель форсунки и иглу; 
— Корпус форсунки с впускным отверстием и отверстием для слива в обратку; 
— Катушку клапана, интегрированную внутрь корпуса; 
— Фильтр на впуске топлива; 
— Адаптивная планка с контролирующей ёмкостью и калиброванными отверстиями для управления иглой; 
— Клапан в корпусе форсунки; 
— Уплотнительная шайба; 


Максимальное давление, которое используется в системе с форсунками DFI 1.1-1.4 до 1800 бар и сила, которая поднимает иглу форсунки очень велика. Это означает, что невозможно управлять иглой форсунки напрямую электромагнитным клапаном, поскольку это требует очень высокой силы тока. Время насыщения такой силы тока сравнительно велико, а игла должна управляться в гораздо более короткие промежутки времени. Кроме того, такая сила тока требует повышенной мощности DCU и может перегреть форсунку. Таким образом, игла внутри форсунки управляется с помощью клапана, который контролирует давление в емкости, расположенной прямо над иглой. В начале впрыска, когда игла должна подняться и открыть отверстия в нижней части распылителя, клапан открывается и содержимое ёмкости сливается в обратку. Для закрытия иглы клапан создаёт давление внутри емкости и опускает иглу вниз. Задача клапана в форсунке потреблять наименьшее количество энергии для своей работы. Поэтому у него небольшой вес и клапан двигается с минимальным усилием. В закрытом положении клапан должен находиться в гидравлическом равновесии. Этот баланс достигается с помощью идентичной геометрии ёмкости так, чтобы давление на клапан во всех местах было одинаковым. Таким образом для удержания клапана на месте можно использовать очень мягкую пружину, которую легко прижать, подав нагрузку на клапан, и так поднять иглу. Проблемы, связанные с грязным топливом, привели к изменению конструкции форсунки в целях контроля температуры и использовании углеродного покрытия (DLC — Diamond Like Carbon) на внутренних поверхностях клапана. Адаптивная втулка находится в месте крепления клапана. Она соединяет контрольную камеру с тремя жиклерами: подача на впрыск, обратка с контрольной камеры и входное отверстие для наполнения камеры топливом.

Распределение давления в форсунке можно разделить на несколько этапов: 

— Перед тем, как наполнить адаптивную втулку, топливо под большим давлением подаётся внутрь форсунки, наполняет сначала канал к контрольной камере, далее канал к топливной галереи форсунки, потом подаётся к каналу камеры клапана; 
— Под большим давлением топливо наполняет контрольную камеру, адаптивную втулку и спиральные канавки в игле. 

По достижении этого этапа топливо внутри форсунки становится сбалансированным, а сама форсунка закрыта. Давление топлива в выемках с двух сторон в корпусе клапана внутри форсунки находится на одном уровне в состоянии покоя. Когда блок DCU активирует катушку, клапан открывается. Если усилие клапана становится сильнее усилия пружины. Открытие клапана позволяет топливу слиться в обратку, понижая давление в камере клапана, потом в канале к топливной галерее и потом в канале к контрольной камере. Но сама игла находится на месте, потому что в самой контрольной камере давление не падает. Движение иглы начинается тогда, когда падение давления распространяется на контрольную камеру и на обоих концах клапана появляется дисбаланс давления. Поскольку на конце иглы давление становится выше, чем в контрольной камере, игла двигается вверх, открывая путь топливу через топливную галерею в камеру сгорания. При этом, проходя через жиклер в конце галереи давление падает по сравнению с давлением в рампе. На максимальном давлении в рампе, потеря давления после топливной галереи будет около 100 бар. Когда DCU снимает ток с катушки клапана, его сила становится слабее усилия пружины и она толкает клапан обратно, закрывая клапан. Давление внутри форсунки растет, но игла не закрывает форсунку, поскольку, чтобы ее закрыть, необходимо создать разницу давления на разных концах иглы. Эта разница создаётся путем потери давления в канале к топливной галерее по отношению к контрольной камере, где давление такое же, как в рампе. Как только в контрольной камере давление становится больше, чем на конце иглы, игла двигается вниз и закрывается.


Магистраль для слива топлива обратно в бак крепится к форсунке либо через резиновый ниппель с металлической трубкой, или через специальный пластиковый адаптер. Форсунки этого типа могут производить от двух до пяти индивидуальных открытий в течение одного цикла впрыска: Отдельный пилотный, Близкий пилотный, Предварительный, Основной, Близкий последующий впрыск, Пост впрыск, Дополнительный пост впрыск. Кроме того, инжекторы данного типа имеют такую особенность, как слив топлива в обратную магистраль в аварийном случае (кроме моделей с клапаном HPV). Это необходимо в случае резкого снятия ноги с педали газа или в случае возникновения кода ошибки, который требует резкого понижения давления в рампе. Для этого катушка форсунки получает импульс с DCU, которого достаточно для того, чтобы поднять клапан и соединить топливо в рампе с обратной магистралью, но которого недостаточно для того, чтобы поднять иглу и открыть доступ топлива в двигатель. Такой контроль возможен только в том случае, если точно известно время между началом движения клапана и началом открытия иглы. Это время зависит от физических свойств каждого конкретного инжектора и от степени его износа. Поэтому программе в блоке управления необходимо точно знать физическое состояние каждой форсунки. Это достигается путем калибровки форсунок на заводе и присвоении каждой форсунки индивидуального кода. Компания DELPHI использует два типа калибровки форсунок : 
-C2I (Correction Individual Injector). Использование шестнадцатиричного кода (16 символов). 


-C3I (Improved Induvidual Injector Correction). Более точная калибровка форсунок на производстве и использование буквенно-цифровой кода (20 знаков). 
Код вводится в память DCU при замене форсунки на новую или код со старых форсунок вводится в новый блок при замене DCU с помощью сканера. Опираясь на калибровочные данные, которые закодированы в коде, блок управления проводит коррекцию по каждой форсунке.  

Форсунки DFI1.5/1.5.2


Форсунки типа DELPHI DFI 1.5- были разработаны для выполнения следующих задач: 
— Поддержка стандарта Евро 5; 
— Повышение эффективности впрыска; 
— Поддержка до 7 открытий во время впрыска; 
— Лучшая защищенность от грязи;
— Повышенная стабильность потока во время впрыска;
Форсунки DFI 1.5 состоят из распылителя с иглой, корпуса форсунки с входящим отверстием с фильтром и выходом в обратку, электрического коннектора в верхней части форсунки, адаптивной пластины (CVA) с калиброванными отверстиями для управления иглой и комбинированного клапана, а также из крепежной шайбы. В зависимости от поколения, форсунка может работать под давлением в 2000 бар. Поскольку при таком давлении невозможно контролировать иглу напрямую электромагнитным активатором, поскольку прилагаемая сила была бы слишком мощной, что разогревало бы блок управления и саму форсунку, а время реакции было бы слишком медленным. Поэтому открытие иглы контролируется через контрольную камеру, где топливо сливается в обратку для открытия иглы и давление в камере восстанавливается если надо закрыть иглу. 


Основные отличия от первого поколения: Специальное лаковое покрытие иглы и ее седла, угол которого изменен до 60 градусов, уменьшенный угол между отверстиями в распылителе, увеличенный диаметр впускного канала, комбинированная адаптивная пластина с клапаном, увеличенная сила возврата пружины, новый тип коннекторов (унифицирован с DFI3), увеличенный диаметр от 17 до 19мм. Также на этом типе форсунок используется два типа коннекторов. Такой же, как и на старом поколении (Peugeot, Citroen, Ford), а также новый V образный с ассиметричными пинами. Система подключения обратки аналогична DFI 1.1, а для калибровки используется метод C3I.

Тип DELPHI DFI 1.5.2 разработан для поддержки стандарта Евро 6 и давления до 2200 бар. В нем используется более эффективная катушка, еще более мощная пружина для возврата клапана, улучшена конструкция блока CVA, сохранение давления внутри форсунки на уровне 3000 Ньютонов при закрутке колпачка. Для слива в обратку используется пластиковый адаптер. Калибруется форсунка методом C3I c 20-ти значным кодом.

Форсунки DFI1.20


Форсунки типа DELPHI DFI 1.20 были разработаны для поддержки экологического класса Евро 6 и работы под максимальным давлением в 2200 бар. Элементы конструкции форсунки идентичны предыдущим поколениям. Отличия в использовании нового электрического коннектора типа АК, нового коннектора для обратки с позитивным давлением в 6 бар, новой катушка улучшенного типа, более узкой иглы распылителя и измененной внутренней формы канала иглы, допусках на микронном уровне и усиленной пружине до 33 Нм и измененной конструкции CVA модуля. Поскольку в новой форсунке слив в обратку подаётся под давлением в 6 бар, наконечник сливного отверстия выполнен из металла и имеет резиновое кольцо. Принцип работы этой форсунки аналогичен предыдущим поколениям. В целях более точной калибровки форсунки, для этого применялся алгоритм кодирования C3I, а для автомобилей Volkswagen с двигателями 1600сс и 2000сс с конца 2014 года стала применяться новая более точная технология калибровки Improved C3I для того, чтобы блок управления понимал, как ведет себя форсунки под ультравысоким давлением 2000-2200 бар. При этом также используется 20-ти значный код и понять каким способом откалибрована форсунка визуально невозможно. Это можно определить только по каталожному номеру детали. В момент проведения процедуры калибрования сканер DELPHI DS150/DS350 или AUTOCOM могут определить тип калибровки по введенному номеру.

Форсунки DFI2.3


Форсунки типа DELPHI DFI 2.3 разработаны как версия 1.3, но с большим потоком топлива для работы на коммерческих двигателях и на агрегатах большого размера. Форсунка состоит из распылителя с иглой, основного корпуса с отверстиями для подачи топлива с сетчатым фильтром и для слива в обратку, интегрированной внутрь катушки, электрического коннектора, адаптивной втулкой с контрольной камерой и калиброванными отверстиями для управоления иглой, клапана и прокладки. В зависимости от поколения форсунка работает под максимальным давлением в 1600 бар. Поскольку это сравнительно высокое давление, невозможно управлять с помощью солениода иглой напрямую по причине необходимости очень высокого тока и невозможности достич синхронизации нескольких открытий очень быстро. Поэтому используется гидравлический метод управления такой же, как и предыдущих поколений форсунок с контрольной камерой. Форсунки широко применяются на двигателях грузовиков и строительной техники, например, JCB, c экологическим классом выше Евро 3. Сливной канал форсунки имеет специальный LP коннектор. Калибруются форсунки как методом C2I, так и методом C3I.

Форсунки DFI2.5 HPC


Форсунки типа DELPHI DFI 2.5/2.5 HPC стали дальнейшим продолжением развития технологии дизельных двигателей COMMON RAIL для коммерческой техники. Форсунка поколения 2.5 поддерживает работу при экологическом классе до Евро 5 при максимальном давлении в 2000 бар. Кроме это форсунка имеет улучшенные характеристики впрыска — IRCF (Injection Rate Coefficient Factor) с возможность проводить до 7 открытий во время одного цикла впрыска со специальной защитой от проникновения внутрь корпуса частиц грязи. В остальном форсунка имеет те же элементы, как и предыдущее поколение. В этом типе форсунок использовано специальное новое покрытие для иглы и ее седла, улучшающее динамику впрыска, угол седла иглы изменен до 60 градусов, а диаметр иглы увеличен. Угол между отверстиями распылителя уменьшен, а входные отверстия увеличены для пропуска большего объёма топлива. Нагрузка на возвратную пружину — 28 N. Диаметр самой форсунки увеличен с 17мм до 19мм.

Форсунка может комплектоваться двумя типами коннекторов. Например, на технике JCB и DAEDONG это аналогичный коннектор с DFI 1.1 -1.3, то на других марках форсунки могут иметь такие коннекторы, как у типа DFI3. Коннектор для обратного слива может быть металлическим с резиновым ниппелем или пластиковым. Принцип работы этого типа форсунок такой же как у типа 1.5, а калибровка на заводе проходит по принципу C3I с 20-ти значным кодом. Форсунки типа DFI 2.5 HPI предназначены для больших двигателей. Они работают на агрегатах для экологического класс выше Евро 4 и под максимальным давлением в 2000 бар. Они отличаются большим диаметром корпуса (26мм и 28мм), и большим диаметром входных отверстий. Еще одна особенность форсунки — особый коннектор. Поскольку форсунка находится глубоко в головке блока цилиндров, наружи выводится только провод, связанный со жгутом центральной проводки двигателя. Сам же коннектор проникает глубоко в двигатель и подключается к форсунке в середине ее корпуса, что очень необычно по сравнению с другими типами форсунок. Но это обусловлено применением данной форсунки на двигателях с большим физическим размером. Поэтому канал для обратного слива находится также в середине форсунки и связан с внутренними каналами в головке блока.

Форсунки DFI3

Форсунки DELPHI DFI 3Б отличаются от других поколений наличием пьезоэлемента прямого действия, когда эффект изменения своего размера кристалла под действием напряжения используется для прямого управления иглой вместо электро-гидравлического принципа. Эта технология позволяет открывать форсунку на время в 100 микросекунд, что позволяет добавиться 7 и более открытий во время полного цикла впрыска. Новое поколение форсунок не имеет слива в обратку, что позволяет не расходовать энергию форсунки на передачу топлива в бак. Другое достижение — возможность добиваться удивительной стабильности впрыска на всем протяжении времени эксплуатации двигателя несмотря. Кроме того у пьезо форсунки процесс атомизации смеси в камере сгорания проходит быстрее, а давление впрыска больше. Быстрое движение иглы позволяет управлять и экономить топливом, которое попадает в двигатель в момент движения иглы вверх или вниз, контролируя качество распыла как в начале, так и в конце впрыска. Такая технология позволила снизить выбросы сажи и NOX на 30%, дала возможность уменьшить сажевые фильтры и многократно снизить шумность двигателя. Для подключении форсунки к управляющему кабелю используется коннектор нового поколения.

Когда форсунка находится под давлением, все сжатое топливо подается внутрь нее. Под воздействием напряжения в 200 Вольт пьезоэлемент в сбалансированной системе находится в сжатом состоянии. Физическое сжатие уменьшает объём топлива внутри форсунки. Давление между поршнем и пружиной падает и нарушается внутренний баланс давления. Теперь давление у пружины ниже, чем в поршне. Это позволяет пружине подняться для начала впрыска до самого конца и в этот момент всё сжатое топливо поступает в камеру сгорания до тех пор, пока опять не будет прекращена подача напряжения в 200 Вольт. Коррекция инжектора проводится по 24-х значному коду. 


При работе с этим типом форсунок необходимо соблюдать осторожность: никогда не снимать электрический коннектор на работающем двигателе, поскольку мы не можем предугадать, в каком положении останется игла, а она может остаться в открытом состоянии. Также ни в коем случае нельзя менять полярность коннектора. Поскольку пиковое напряжение в цепи форсунки может превышать 250 вольт, необходимо соблюдать правила безопасности при работе с ними. Нельзя прикасаться руками к оголенным контактам форсунки после снятия коннектора, поскольку в ней может оставаться заряд электричества. Именно поэтому DELPHI предлагает набор колпачков YDT499, которые надеваются на форсунку сразу после снятия коннектора.

Топливные Рейки DELPHI COMMON RAIL

В задачу топливной рейки или рампы входит аккумулирование топлива под высоким давлением, которое поступает туда из ТНВД и дальнейшее распределение его по форсункам. Топливная рейка состоит из корпуса, датчика давления топлива, входного и выходных отверстий, активатора высокого давления HPV и клапана ограничения давления PLV. Рампы типа DELPHI могут иметь цилиндрическую форму, а могут иметь форму сферы, как, например, у Ford Lynx и Renault K9K. Преимущество такой конструкции в том, что рампа имеет небольшой объём, она легкая и недорогая в изготовлении, но все трубки имеют разную длину до форсунок. Поэтому этот тип можно применять только на небольших по размерам двигателях, поскольку трубку от рейки до форсунок не должны быть слишком длинными, так как это скажется на стабильности давления. Если у рампы меньший физический объём, то ее быстрее наполнить и поэтому можно быстро регулировать увеличение и уменьшение давления. Поэтому выбор типа рейки для конструкторов — это компромисс между быстрой управляемостью системой и гидравлической стабильностью внутри нее. 


На месте крепления выходных трубок к форсункам рейки имеют сужение канала, что дает возможность избежать колебаний давления и лучшей управляемости впрыска. На последних поколениях реек используют сужения канала не на конце патрубка в месте крепления топливной трубки, а на внутренней части канала, начиная от главной магистрали.


Датчик давления топлива

Традиционно датчик расположен на топливной рейке. Принцип его работы в деформации металлической пружины. В мембране находится пьезо элеимент, который меняет своё сопротивление в соответствии с деформацией мембраны. Уровень давления равен уровню деформации мембраны. Уровень сопротивления конвертируется в выходной сигнал на блок управления. Раннии версии датчиков имели прокладку между носиком клапана и корпусом рампы, но в последнее время применяется вариант, когда датчик касается рампы напрямую. При фиксации его резьба деформируется, поэтому, как правило, эти датчики не меняются отдельно от рампы. 

Клапан контроля давления в рейке (HPV)

Клапан контроля высокого давления находится в топливной рампе и вместе с клапаном контроля потока IMV управляет высоким давлением в системе. Задача клапана — понижать давление в рампе, сливая часть топлива в обратку в бак. Поэтому на системах с датчиком HPV не используется управление сливом в обратку с форсунки. Другая задача клпана — устранение колебания пикового давления. Еще одна роль — аварийная, или резкое понижение давления в системе по причине неисправности рейки или форсунки. ЭБУ двигателя управляет клапаном, когда надо быстро разогреть двигатель на старте в холодную погоду, без управления клапана IMV. Также он активно используется при выходе из строя клапана IMV. В случае его неисправности возникает код ошибки. При этом, в случае разрыва собственной электрической цепи, клапан должен создать нужное для запуска двигателя давление. 


Клапан состоит из поршня, который полностью открывается и закрывается пружиной, электрического коннектора, катушки клапана, которая управляется током, прикрепленного к поршню штока с шариковым механизмом, циллиндрическим сетчатым фильтром, с центральным входным отверстием и двумя выходными. При отсутствии давления клапан находится в постоянно открытом состоянии и закрывается для создания давления необходимого для холостого хода, а затем в соотвествии с заданной скважностью. Скважность сигнала зависит от скорости двигателя, необходимого давления в рампе, реального давления в рампе и температуры топлива. Он также используется для полной остановки двигателя. 

Механический ограничитель давления (PLV)

Механический ограничитель давления топлива используется опционально для систем DFP1 и DFP3. Клапан механически открывается на уровне давления 2450-2640 бар и сливает топливо в обратку в бак. Клапан может быть как на ТНВД, так и на рампе (всегда, если нет HPV клапана). Задача клапана — защищать систему в аварийных случаях. 

Датчик давления в цилиндре

На некоторых системах с топливным классом Евро 6 могут использоваться датчики давления в цилиндре. Они крепятся болтом к блоку цилиндров недалеко от каждой форсунки (Daimler) или интегрируются в свечи накаливания (VW). Задача датчика — дать информацию о реальном давлении в каждом цилиндре. Он играет роль термодинамического индикатора для мониторинга процесса сгорания и эффективного управления в закрытом цикле. Его сигнал влияет на управление впрыском и вращение двигателя. 

Список автомобилей, на которых используется система COMMON RAIL типа DELPHI: 
ALPHA ROMEO : 4C 
BMW : 3 СЕРИЯ GT 
CHEVROLET : CORVETTE STINGRAY 
CITROEN : C3 1.4 HDI, C3 PICASSO 
FERRARI : LA FERRARI 
FORD : TRANSIT, FOCUS 1.8 Tdci, MONDEO 2.0 TDCI, TRANSIT 2.4 EU3 
HYUNDAI : TERRACAN, TRAJET, I20, I30 
INFINITI : Q50 
JOHN-DEERE : 6125 H 
KIA : CARNIVAL, BONGO 
LAND ROVER : FREELANDER td5
MERCEDES BENZ : CLA, E CLASS 
NISSAN : NOTE 
OPEL : ZAFIRA 
PEUGEOT : 2008 
PORSCHE : 911 GT 
RENAULT : CLIO, CAPTUR, KANGOO, SCENIC 
ROLLS-ROYCE : WRAITH 
SSANYONG : REXTON/KYRON/ACTYON/RODIUS/STAVIC CRDI
SEAT : LEON SC 
SKODA : OCTAVIA 
VOLVO : V60 
VOLVO\DAF : F105
VOLVO TRUCK :Fh22 420HP /460HP, V60 

о том, как диагностировать ТНВД по науке и почему так часто это вообще не нужно

Вскоре после публикации материала «Жадность сгубила, или Зачем СТО отремонтировала то, что ремонтировать не нужно? История читателя» в viber «постучался» директор ЧП «Экспрессдизель» Олег Мухля: «Мне кажется, назрел момент углубиться в понятие «проверка компонента на стенде» (ТНВД, форсунки, насос-форсунки) и формирование полного отчета о результатах проверки». Что же, давайте углубляться! 

Вообще в той истории ни сам Олег, ни его организация никак не замешаны, и это вообще не продолжение тех разборок — просто нашего постоянного технического консультанта зацепила фотография, на которой изображен отчет о диагностике ТНВД. 

— Разве это можно считать полноценным отчетом? Разве приведенных параметров в таком виде достаточно, чтобы делать какие-то выводы? — удивляется наш собеседник. — Поэтому я решил поделиться с вами и вашими читателями информацией о том, как проходит диагностика топливного насоса, да и в принципе любого компонента дизельной топливной системы, какие аспекты обязательно нужно учитывать. Чтобы человек, который пришел на сервис и требует результат проверки, хотя бы понимал, какие параметры должны быть отражены в отчете и что кроется за полученными цифрами. 

А точно виноват насос?

На самом деле «больных» насосов мало — говорим про Common Rail, так как сегодня это наиболее распространенный тип топливных систем. Чаще всего «приговаривают» рабочие насосы. Часто проблема в клапане ZME, регуляторе (DRV, PCV…) высокого давления. А вот сами насосы «приговаривают» безосновательно. Вот вам своеобразная статистика: из 100 насосов, принесенных в проверку, 50 оказываются в хорошем рабочем состоянии, у них все параметры «в идеале». 

30 насосов будут в принципе хорошими, но где-то не будут вписываться в какие-то параметры. Например, нулевая подача — 0-2 литра в час, а он показал 2,2. Либо по производительности на определенном токе (ШИМ-е) ZME показывает 175 и 225 литров в час, а должен 180 и 220 соответственно в определенных режимах. То есть насос немного выходит за параметры, но это не повод его забраковывать или вскрывать и ремонтировать. Да нормально он будет работать! Проблема, из-за которой его снимали, — в другом. Я не считаю нужным наказывать человека деньгами по формальному признаку. 

Наконец, только 20 процентов насосов будут иметь проблемы, из-за чего потребуется ремонт или замена. В основном вопросы идут с другой стороны — регулятор высокого давления, повышенные утечки в обратку форсунок. То есть просто неправильно диагностируют источник проблем. Подключили компьютер, выявили низкое давление или ошибку по нему. Какой узел за это отвечает? Насос! Пусть клиент платит за его проверку. 

Проблема качественной диагностики до сих пор актуальна: если с двигателем что-то не так, досконально никто не разбирается. Это даже не желание заработать на клиенте: очень мало мастеров понимает устройство насоса, всей топливной системы. 

А без понимания принципов работы Common Rail толка не будет. И мелочей здесь не бывает. Скажем, забилась сетка-заборник в баке или вышел из строя насос (эжектор), перекачивающий топливо из одной половинки бака в другую. ТНВД в этих случаях просто не получает в достаточном количестве топливо, а «приговаривают» к замене его или форсунки, даже не думая перед этим проверить нужные параметры. А сколько случаев было, когда источником затрудненного запуска банально оказывалось недостаточное количество солярки в баке! Поэтому, если автомобиль не заводится либо двигатель плохо работает, глохнет, а заказчик говорит, что у него 10 литров топлива в баке, я сначала отправляю его на заправку. 

Как правило, насосом надо заниматься только после проверки форсунок, потому что проблема создания недостаточного давления или недостаточной производительности может быть косвенно связана и с увеличенными обратками по форсункам и на регуляторе давления топлива. Бывает, что после ряда срабатываний подвисает в открытом положении аварийный клапан в рейке, страхующий систему, если «сбоит» дозировочный блок. Что в итоге получается? Мы имеем недостаточное давление в системе, но виноват в этом не насос, а, например, регулятор давления или аварийный клапан. Как правило, истинную причину можно установить без снятия насоса с автомобиля — достаточно правильно проанализировать те или иные параметры.

При диагностике топливной системы мы сразу делим ее на две условные части: вот здесь у нас насос и выходящая из него топливная трубка, а здесь рейка, форсунки и все остальное, грубо говоря, «потребители». Убираем трубку, ставим манометр высокого давления, стартуем и смотрим, создает ли в принципе ТНВД давление. 

Можем подключиться к самому насосу — для этого у нас есть специально отрегулированные на определенное давление форсунки. Допустим, форсунка отрегулирована на 300 бар. Мы знаем, что на холостых в среднем 220-260 бар. И если наша форсунка открывается, значит, насос априори создает необходимое для старта давление свыше 300 бар. Мы его не трогаем, идем в область рейки, форсунок и так далее. Если же давление не создается, значит, в первую очередь обращаем внимание на насос. 

Понятно, что проблема может быть комплексная: и по насосу есть вопросы, и по регулятору, и форсунка одна подтравливает. Но тут важно правильно определить, где и в чем именно проблема, как она влияет на общую работу двигателя. 

Бывает, что насос труднодоступен или нет возможности для установки между ним и рейкой манометра. Тогда идем по другому пути: смотрим форсунки, регуляторы, датчики — и по пути исключения все равно приходим к насосу. 

Но даже если мы видим, что насос не качает, мы еще должны убедиться в том, что он получает топливо, а также все необходимые сигналы на управление. 

Нет давления — снимаем обратку с насоса. Если насос со своей внутренней подкачкой, топливо вытекает хорошей струей, нет пены, воздуха — с большой долей вероятности можно считать, что там все нормально. Однако надо учитывать: подкачка может быть шестеренчатого или лопаточного типа и размещаться внутри насоса, а может быть электрической и размешаться снаружи. В последнем случае необходимо с помощью манометра проверять создаваемое давление. Если подвисает дренажный клапан (при заглушенном двигателе он перекрывает канал подачи и сдерживает солярку в насосе, чтобы она не вытекала обратно в бак), не создается нормального наполнения под плунжер. 

Важно учитывать и следующий нюанс: мы можем полноценно проверить насос для режима запуска двигателя, но как насчет других режимов? Вроде давление создается, обратка есть, но вот мы под горку пошли — мотор глохнет. То есть насос качает, а производительности под нагрузкой почему-то нет. 

Итак, мы проверили давление в насосе, обратку, убедились, что пены нет, солярка в баке есть, заборник не забит, — в противном случае будет пена, насос давления не создаст. Но ведь, как правило, на насосах Common Rail есть регулятор, а на некоторых, например в системах Siemens, и два. На регулятор также идет управление, причем это довольно сильный сигнал. Тут важно понимать, что, например, 12 вольт мы увидим, но это еще ни о чем не говорит — куда информативнее смотреть силу тока. Так что амперметр здесь не помешает.

Итак, мы проверили топливоподачу, давление, сигналы на регуляторы. Мы видим, что к насосу все приходит и — что немаловажно! — насос крутится. Бывает, что не крутится! У нас было немало примеров с автомобилями Renault Traffic/Opel Vivaro/Nissan Primastar с мотором 1.9 dCi, где применен насос CP3 с подкачкой. По зиме вода из бака попадает в подкачку насоса и замерзает. А там вал с небольшим хвостовичком, отвечающим за привод подкачки, — его и обламывает (на фото целый кончик хорошо виден). Вот и получается: и насос вроде крутится, и ток нормальный, а топлива с обратки нет, потому что подкачка не работает. 

На стенд!

Первичная диагностика показала, что источником проблем с топливной системой все же является насос. Или нам принесли его для проверки заказчики или клиенты. Проверка будет производиться на стенде, который позволяет проводить диагностику как насоса, так и форсунок. 

Измерение высокого давления осуществляется следующим образом. Все, что насос выдает, идет в рейку, а из нее через радиатор охлаждения поступает на измерительное оборудование стенда. Обратка насоса проверяется через отдельную магистраль, по которой топливо также попадает в измерительную систему. Поскольку оборудование очень чувствительное, все калибровочное масло идет только через фильтры. Стенды работают на калибровочной жидкости. По сути, это специальное очищенное масло, приближенное по своим качествам к солярке, но обладающее очистительными и консервационными свойствами.

Редко, но бывает: приходит явно нерабочий насос, но пока мы его погоняли на калибровке, помыли, он начинает работать. И как его отдавать? Вроде заработал, но клиент его принес как проблемный. В таком случае объясняем, как все было, оставляем насос на два дня. Если каждое утро старт-тест проходит хорошо, можно попробовать поставить обратно на машину — в 90 процентах случаев клиенты уже не возвращаются с проблемой. Если возникают вопросы, разбираемся дальше. 

Диагностика насосов проходит по тест-плану — специальному циклу испытаний, пошагово проверяющих различные параметры работы насоса в различных режимах. 

Первый этап — визуальная проверка (visual check). Выставляем 2000 оборотов в минуту — это обороты вала насоса, а не коленвала двигателя, давление 300 бар (будет создаваться автоматически через управление регулятором давления топлива) и визуально оцениваем состояние насоса. На клапане ZME сделаем 1 ампер и частоту 180 герц, то есть откроем клапан на примерно 30 процентов. Скважность на данном этапе не регулируется. 

В этом тесте мы осматриваем насос на предмет подтеканий. Насос еще холодный, а течет всегда «на холодную». Смотрим под резинки, стыки, шайбы. Проверяем на низком давлении: если, скажем, имеется трещина в корпусе, а мы сразу сделаем 1600 бар, то будем иметь проблемы. Поэтому надо убедиться в том, что на этапе стартового давления у нас все сухо, ничего не течет. После ремонта то же самое: надо убедиться в том, что все собрано хорошо, нигде ничего не подтекает. Этот тест основан на работе оператора, который принимает решение о соответствии или несоответствии насоса требованиям проверки. 

Следующий тест — kenn 1. На этом этапе тест-плана мы делаем единичную проверку работу клапана ZME при частоте вращения вала 3500 оборотов в минуту, силе тока 0,4 ампера, то есть он и так открыт, и частоте 180 герц — и подаем скважность до того момента, пока у нас не создастся давление 500 бар. Этот тест показывает, попадает ли у нас производительность насоса в заданный диапазон при нормально открытом дозировочном блоке. 

Также проверяем обратку, подключив вторую магистраль измерительного оборудования. В данном случае измеряем производительность шестеренчатой подкачки и смотрим, справляется ли она с диапазоном 24-56 литров в час. Скажем, выходит всего 5-10 литров в час. Разбираем подкачку, а там шестеренка о стенку потерлась, между ними зазор и утечка топлива. Машина будет заводиться и ехать, но при нагрузке под горку или на разгоне производительности подкачки не хватит, чтобы обеспечить топливом секцию высокого давления.

Анализируя данные теста, можно делать какие-то предположения. Если ушли оба параметра, можно догадаться о том, что это подкачка. Если по обратке все нормально, а по подаче плохо, можно задуматься о том, что или дозировочный клапан ZME некорректно работает, или проблема по плунжерной части. 

Даем насосу немного отдохнуть и переходим к следующему этапу тест-плана — нулевой подаче (zero delivery). Полностью закрываем дозировочный блок, тем самым не пускаем топливо в насос. Нулевая подача должна быть до двух литров в час: мы закрыли подачу — и насос ничего не качает. Если показатель значительно выше (2,2 литра — это еще погрешность измерения, а вот 10 литров — уже результат), то это значит, что топливо поступает мимо закрытых окошек, через трещину в передней алюминиевой крышке или порванные уплотнители. Это значит, что в переходных режимах, когда прекращается подача топлива, оно все равно будет поступать. В этом случае будут подергивания, неадекватная реакция автомобиля на действия педалью «газа».

Следующий этап проверки — эффективность (efficiency). Здесь дозировочный блок нас не интересует, мы его не трогаем, оставляя символические 0,4 ампера. Делаем 1000 оборотов в минуту и задаем 1350 бар. Заданный параметр — 32 литра в час. Ждем дальше: высокое давление будет нагревать насос и способствовать чему-то нестандартному — если есть проблема, она под нагрузкой вылезет. 

В таком режиме проверяем насос несколько минут. Конечно, в реальной жизни такого не бывает, что ты три минуты едешь под такой большой нагрузкой и тебе все это время нужно давление 1350 бар. Но мы-то при проверке должны усложнить условия. Соответственно ждем. Если насос чуть просел от нагрузки, скажем, до 28-29 литров в час, это нормально: в целом производительность сильно не снизилась. 

А если производительность ушла на треть или на две трети? Значит, один или два плунжера из трех не держат. То есть пока давление не было высоким, производительность насоса была нормальной. Но как только дали нагрузку — все, производительность недостаточная. Теоретически одного плунжера для запуска двигателя и работы на холостом ходу может хватить, но нормально мотор работать не будет. На двух рабочих плунжерах поедешь, но под нагрузкой будут проблемы. 

Вот перед нами насос, в котором уже все пошло вразнос: тут вам и стружка, и что угодно. Здесь конец и плунжерам, и клапанам. 

Остается крайний тест — это запуск двигателя (start test). Скажем, с горки, с буксира, двигатель заводится, а со стартера — нет, потому что «с толкача» частота вращения больше, чем со стартера. Когда утечки по форсунке или регулятору, что в первую очередь пробуешь? Пробуешь увеличить частоту. Производительность насоса увеличивается — она больше, чем утечка, поэтому двигатель заводится. 

На самом деле мы стартовый тест делаем первым. Потому что очень часто насос приносят с жалобой «не заводится». И мы сразу ставим стартовый тест, имитируя ситуацию как в реальной жизни: вот насос еще холодный, мы в него еще не накачали солярку. И мы отрабатываем в первую очередь по жалобе заказчика. 

В данном насосе мы дозировочный блок не трогаем, оставляем его максимально открытым, задаем 180 оборотов. Вот тут мы обращаем внимание на скважность. Делаем 200 бар и смотрим, что получается. Но вообще по практике мы обороты всегда занижаем, делаем поправку на состояние стартера, разряженный аккумулятор. Исправный насос будет вписываться в параметр даже при меньших оборотах. Так вот, делаем под 150 оборотов в минуту, а давление 300-350 бар — сознательно ухудшаем условия, стараясь приблизиться к реальной ситуации. Запускаем и смотрим — прозрачные шланги еще до измерений позволяют видеть, что куда идет. Пошло создаваться давление, хоть какое, поплавок в ротаметре стенда болтается, значит, что-то уже есть. Смотрим на подачу и давление. Все, двигатель будет заводиться! И вот уже дальше мы проводим тест-план по всем этапам. 

Вот так и должна выглядеть диагностика насоса. Мы все проверили и понимаем: с таким насосом заводиться двигатель будет, при нажатии «газ» в пол не захлебнется и не заглохнет, переходные режимы будет выполнять, потому что подкачки хватает, зависаний клапанов нет. Мы еще можем проверить внутреннее давление насоса через переходник и манометр вместо дозировочного блока. Это уже дополнительно к тест-плану для нашего спокойствия. 

Для проверки дозировочного блока используется отдельный тест-план, который состоит из двух этапов. Первый — дозировочный блок мы «разрабатываем»: воздействуем на него с частотой 50 герц — получается, что шток перемещается медленнее, зато меньше вероятность, что он будет зависать из-за маслянистых отложений. К тому же калибровочное масло, на котором мы тестируем, обладает очищающими свойствами. 

Гоняя поршень с малой частотой из крайнего открытого в крайнее закрытое положение, «промывая» его очищающим маслом, тем самым мы снимаем смолистые отложения, чтобы не «приговаривать» к замене исправный дозировочный блок из-за загрязнений. Далее воздействуем на клапан с разной силой тока — 0,2, 0,4, 0,7, 1,5 ампера. Прогнали по четырем тестам тест-плана и смотрим. Если параметры не выдерживаются, разбираем клапан и смотрим. Как правило, если и есть проблема, то это задир на поршне. Но часто клапан просто загрязнен смолистыми отложениями. 

Именно за счет такого подхода к проверке мы точно знаем, исправен насос, его раздаточный блок или нет. После такой проверки я готов идти в любой суд, объяснить всю методику проверки, ответить за каждый параметр, почему сделано так, а не иначе. Ведь мы изначально с момента установки насоса на стенд и до этапа проверки и выдачи заключения несем ответственность за свои действия и вынесенный вердикт. 

Схожие подходы используются и при проверке топливных форсунок. Однако там достаточно своих нюансов и достойно отдельного разговора. Но по части диагностики ТНВД тема, я думаю, раскрыта. 

Иван КРИШКЕВИЧ
Фото автора и из архива Олега МУХЛИ
ABW.BY

Более 39.000 объявлений о продаже запчастей к легковым автомобилям в нашей базе объявлений 

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ СИСТЕМЫ COMMON RAIL. Статьи компании «ООО «ТД Техлайф»»

После получения технологии прямого впрыска дизельного двигателя с системой COMMON RAIL компании ROBERT BOSCH Gmbh удалось с успехом разработать эффективную схему контроля впрыска, которая получила наибольшее распространение и в мире, благодаря своей простоте и надежности. Системы COMMON RAIL от BOSCH классифицируются по типам насоса высокого давления и могут иметь несколько разновидностей в зависимости от задач двигателя. Системы управления топливоподачей BOSCH могут быть трех типов: с регулированием давления в рампе на стороне высокого давления, регулирование потока топлива на стороне высокого давления при выходе топлива из ТНВД и так называемый «двойной контроль», когда регулировка происходит с помощью датчика контроля потока в ТНВД и посредством регулятора давления на топливной рампе с помощью дозирующего клапана на линии низкого давления на входе в ТНВД.

Система Bosch CP1

Насосы Bosch первого поколения типа CP1 приводятся в работу с помощью вала, соединенного с распредвалом двигателя. Они могут иметь модификации CP1K — компактный дизайн и CP1S — стандартный дизайн, но с регулятором давления на корпусе насоса. Система характеризуется наличием погружного электрического топливного насоса, который подает топливо к ТНВД под давлением 2,6 бар и с производительностью 160 л/час (может меняться в зависимости от модели автомобиля). Электрический топливный насос постоянно активирован при работающем двигателе. Лишнее топливо отводится через предохранительный клапан на блоке топливного фильтра в топливный бак. Блок топливного насоса и указателя уровня топлива оснащен еще одним предохранительным клапаном. При заблокированном топливопроводе предохранительный клапан открывается и подаваемое топливо снова возвращается напрямую в топливный бак. Это позволяет избежать повреждений топливной системы.

ТНВД системы СР1 имеет три плунжера, расположенных радиально к друг другу под углом в 120 градусов. В центре корпуса топливного насоса установлен приводной вал. Привод плунжерных пар осуществляется посредством эксцентрикового кулачка напрямую от выпускного распределительного вала через соединительный элемент. Передаточное число привода топливного насоса соответствует передаточному числу коленчатого вала относительно распределительного вала 2 : 1. ТНВД СР1 не имеет клапана дозирования топлива. Давление в топливной рампе регулируется исключительно посредством регулятора давления топлива (DRV). ТНВД должен создавать минимальное давление в рампе на уровне 170-200 бар на холостом ходе и 1350 бар на максимальных оборотах. После входного штуцера на линии низкого давления в ТНВД имеется специальный клапан, который переводит часть топлива для смазки внутренних поверхностей насоса. Пружина клапана настроена так, что если давление в магистрали ниже 0,8 бар, то топливо направляется на смазку и охлаждение насоса и затем сливается в линиию обратки. Если давление выше 0,8 бар, то пружина сжимается и большая часть топлива подаётся к плунжерам для сжатия. По мере вращения приводного вала, эксцентрик нажимает на трехгранную втулку, а она надавливает на поршень плунжера. Когда эксцентрик не давит на поршень плунжера, поршень под действием возвратной пружины двигатется к центру насоса, создавая разряжение в камере, которое открывает впускной клапан и топливо попадает в камеру. После нажима эксцентрика на поршень, тот двигается вверх, сжимая топливо и высокое давление в камере перекрывает впускной клапан (как только давление станет около 1 бара), одновременно выдвигая шарик контрольного клапан на впуске и выпуская топливо из камеры уже под высоким давлением. После этого движение поршня вниз снова создает разряжение и шарик перекрывает выпускное отверстие и впускной клапан открывается снова. Такт повторяется. Некоторые варианты насоса могут иметь клапан деактивации одного из плунжеров. Причина его использования — снижение нагрузки на ТНВД на малых оборотах, а также быстрое понижение давления в системе при переходе блока управления в аварийный режим. Клапан деактивации состоит из электромагнита и штока, который перекрывает подачу топлива для сжатия. После подачи сигнала с ЭБУ на клапан, соленоид прижимает шток с золотником клапана к впускному отверстию.

Регулятор давления топлива является частью топливной рампы или расположен на корпусе ТНВД. Клапан на насосе располагается после выпускного штуцера подачи топлива в рампу и отводит часть топлива в линию обратки. Клапан состоит из соленоида и подпружиненного штока, который упирается в шарик для перекрытия сливного канала. Открытие форсунок и работа плунжеров приводят к сильным гидравлическим колебаниям топлива. Шарик в клапане призван гасить эти колебания. Если давление в клапане больше 100 бар, то пружина сжимается и топливо утекает в магистраль обратки. Под управлением сигнала частоты с ЭБУ соленоид двигает шток вперед и он перекрывает слив в обратку, повышая давление в линии. Если ЭБУ не управляет клапаном, то давление находится на уровне 100 бар. Если клапан на рампе, то он находится на линии слива топлива в магистраль обратки и регулирует топливо по сигналу частотной модуляции с блока управления двигателем. Также на рампе устанавливается датчик измерения давления. Он с высокой точностью и за соответственно короткое время измеряет мгновенное давление топлива в рампе и передает в ЭБУ сигнал напряжения, соответствующий имеющемуся давлению. Датчик функционирует вместе с регулятором давления топлива в замкнутом контуре регулирования. Также в рампе может располагаться датчик температуры топлива. Его сопротивление при температуре 25 градсов — 2400 Ом, при температуре 80 градусов — 270 Ом.

Обычно в двигателях с системой Bosch СР1 используются форсунки электромагнитного типа. Принцип работы в следующем: 
Топливо из рампы под выскоим давлением через трубку направляется к форсунке и далее по топливной галерее в форкамеру распылителя, а также через впускной дроссель в управляющую камеру клапана. Управляющая камера клапана соединена с линией возврата топлива в бак через выпускной дроссель, который может открываться электромагнитным клапаном. В закрытом состоянии (электромагнитный клапан обесточен) выпускной дроссель закрыт шариком клапана, поэтому топливо не может выйти из управляющей камеры клапана. В этом положении в форкамере распылителя и в управляющей камере клапана устанавливается одинаковое давление (баланс давления). На иглу распылителя действует дополнительно усилие собственной пружины, поэтому игла распылителя остается закрытой (гидравлическое давление и усилие пружины иглы распылителя). Топливо не попадает в камеру сгорания. При активации электромагнитного клапана открывается выпускной дроссель. За счет этого возрастает давление в управляющей камере клапана, а также гидравлическое усилие, действующее на управляющий золотник клапана. Как только гидравлическая сила в управляющей камере клапана станет меньше гидравлической силы в форкамере распылителя и пружины иглы распылителя, игла распылителя открывается. Топливо через отверстия распылителя впрыскивается в камеру сгорания. Спустя заданное программой время подача электропитания к электромагнитному клапану прерывается. После этого выпускной дроссель снова закрывается. С закрытием выпускного дросселя в управляющей камере клапана через впускной дроссель восстанавливается давление из топливной рампы. Это повышенное давление с большим усилием воздействует на управляющий золотник клапана. Эта сила и сила упругости пружины иглы распылителя теперь превосходят силу в форкамере распылителя и игла распылителя закрывается. Скорость закрывания иглы распылителя определяется расходом впускного дросселя. Впрыск прекращается, как только игла распылителя достигает своего нижнего упора. Косвенное приведение в действие иглы распылителя посредством системы гидравлического сервопривода применяется, когда усилие, необходимое для быстрого открывания иглы распылителя с помощью электромагнитного клапана, не может быть создано напрямую. Для этого дополнительно к объему впрыскиваемого топлива в возврат топлива через дроссели управляющей камеры подается требуемый «управляющий объем». Дополнительное к управляющему объему имеются объемы утечек на перемещение иглы распылителя и управляющего золотника клапана. Электромагнитные форсунки калибруются во время производства и имееют несколько вариантов кодировки. Ранние версии разделены на классы (например, Х, Y, Z у Hyundai) и в случае замены классы форсунок необходимо комбинировать по определенному принципу. В более поздних системах используется код : 8-значный (ЕВРО IV) или 9-значный (ЕВРО V), который представляет собой поправочный коэффициент для коррекции топлива и выгравирован на поверхности головки топливной форсунки. В случае замены форсунок в память ЭБУ необходимо вводить новый код. Также необходимо вводить коды форсунок при замене ЭБУ на новый в память нового блока.

Система Bosch CP1Н

Система Bosch CP1H относится к второму поколению и стала применяться с 2001 года. В отличие от насосов CP1 в СР1Н на стороне подачи топлива в рампу расположен соленоидный клапан контроля количества топлива, подаваемого из насоса в рампу. Эта конструкция впервые была применена на типе СР3, но добавлена к СР1 для увеличения производительности насоса. Это позволяет увеличить эффективность насоса, понизив температуру топлива, нагрузку и повысив создаваемое давление. Привод топливного насоса осуществляется напрямую от выпускного распределительного вала через соединительный элемент. Передаточное число привода соответствует передаточному числу коленчатого вала относительно распределительного вала 2 : 1. Топливный насос может вырабатывать максимальное давление топлива от 1600 до 1800 бар. Еще одна особенность системы СР1Н — использование деактиватора одного из плунжеров в случае, если нет необходимости развивать максимальное давление в рампе.

В случае, если в системе не используется погружной электрический насос, ТНВД может быть оборудован подкачивающим насосом шестеренного типа. Основные конструктивные детали – две находящихся в зацеплении шестерни, вращающиеся друг навстречу другу и подающие топливо, защемленное во впадинах между зубьями, из полости всасывания в полость нагнетания. Контактная линия шестерен между полостью всасывания и полостью нагнетания уплотнена, что исключает возможность обратного перетекания топлива. Подача насоса примерно пропорциональна частоте вращения двигателя. В этой связи требуется регулирование подачи / переходного давления. Величина переходного давления, нагнетаемого зубчатыми колесами, зависит от дросселирующих отверстий и их проходного сечения в перепускном дроссельном клапане. Перепускной дроссельный клапан интегрирован в контур низкого давления топливного насоса. Создание высокого давления (до 1800 бар) вызывает высокую температурную нагрузку на отдельные детали топливного насоса. Поэтому для обеспечения выносливости механические детали топливного насоса должны обильно смазываться. Перепускной дроссельный клапан спроектирован так, чтобы при любом режиме эксплуатации обеспечить оптимальное смазывание и, соответственно, охлаждение. При низкой частоте вращения топливного насоса (низкое давление подкачивающего насоса) управляющий золотник лишь немного смещается со своего седла. Потребность в смазке/охлаждении, соответственно, мала. Открывается малая подача топлива через дроссель на конце управляющего золотника для смазки/охлаждения насоса. Некоторые ТНВД могут быть снабжены автоматической вентиляцией (Форд). Через дроссель отводится воздух, который может находиться в топливном насосе. С ростом частоты вращения топливного насоса (ростом давления подкачивающего насоса) управляющий золотник сильнее поджимает нажимную пружину. При растущей частоте вращения топливного насоса требуется усиленное охлаждение топливного насоса. При заданном давлении открывается байпасное охлаждение топливного насоса и расход топливного насоса увеличивается. При высокой частоте вращения топливного насоса (высоком давлении подкачивающего насоса) управляющий золотник сильнее поджимает нажимную пружину. Теперь байпасное охлаждение топливного насоса полностью открыто (максимальное охлаждение). Избыток топлива через байпас обратного потока возвращается в полость всасывания подкачивающего насоса. Таким образом внутреннее давление топливного насоса СР1Н (как и СР1) ограничивается значением 6 бар.

Привод топливного насоса осуществляется от приводного вала, а конструкция, в целом, аналогична CP1. На приводном валу жестко смонтирован эксцентрик, который перемещает три плунжера насоса возвратно-поступательно в соответствии с профилем кулачка эксцентрика. На впускной клапан подается давление топлива от подкачивающего насоса. Если переходное давление превышает внутреннее давление камеры высокого давления (плунжер превышает положение TDC (верхняя мертвая точка)), то впускной клапан открывается. Заполнение камеры высокого давления функционирует комбинировано: С одной стороны, топливо под воздействием переходного давления нагнетается в камеру высокого давления. Давление при этом зависит от проходного сечения клапана дозирования топлива. С другой стороны, топливо при движении плунжера вниз засасывается в камеру высокого давления. Если пройдена BDC (нижняя мертвая точка) плунжера, то впускной клапан закрывается вследствие возросшего давления в камере высокого давления. Топливо больше не может проходить в камеру высокого давления. Как только давление в камере высокого давления превысит давление в топливной рампе, открывается выпускной клапан, и топливо через подсоединение высокого давления нагнетается в топливную рампу (ход подачи). Плунжер насоса подает топливо до тех пор, пока не будет достигнута TDC. Затем давление падает, и выпускной клапан закрывается. Оставшееся топливо более не находится под давлением; плунжер насоса движется вниз. Если давление в камере высокого давления ниже переходного давления, впускной клапан снова открывается, и процесс начинается сначала.

Линия подачи топлива под высоким давлением в рампу имеет ответвление, которое проходит через Клапан регулировки давления для слива лишнего топлива в бак. Клапан установлен или сбоку или позади ТНВД в зависимости от конструкции.

Система Bosch CP3

Система BOSCH CP3 появилась в 2003 году и стала третьим поколением систем BOSCH для прямого впрыска дилеьного топлива. Базовый дизайн насоса CP3 идентичен СР1 и СР1Н. Но в этом типе применена новая технология контроля давления не в линии высокого давления, в на стороне подачи топлива в ТНВД. Для этого применен новый элемент — клапан контроля количества подаваемого в насос топлива (IMV). Корпус имеет новую форму моноблока со сниженным уровнем трения. Другая отличительная особенность — не прямое воздействие эксцентрика на плунжер, а передача усилия через толкатель, что позволяет увеличить нагрузку и добиться максимального давления в 1800 бар. Эти насосы используются как на легковых, так и на коммерческих автомобилях. Версии СР3.1 ~ СР3.4 отличаются размером и уровнем давления в зависимости от выполняемой автомобилем задачи. Версия СР3.4 используется только на грузовиках и автобусах.

Одна из отличительных особеннгостей системы — использование механического передающего насоса, расположенного в задней части ТНВД на линии низкого давления. Насос может быть шестеренчатого типа, как у CP1H, а может быть роторный роликового типа. Такой тип насоса включает в себя эксцентрично расположенную камеру с установленным в ней ротором и роликами, которые могут перемещаться в прорезях ротора. Вращение ротора вместе с создаваемым давлением топлива заставляют ролики перемещаться на периферию прорези, прижимаясь к рабочим поверхностям. В результате ролики действуют как вращающиеся уплотнители, посредством чего между роликами соседних прорезей и внутренней, рабочей поверхностью корпуса насоса, образуется камера. Создание давления определяется тем, что при закрытии входной серпообразной полости объем камеры постоянно уменьшается, и когда выходное отверстие открывается, топливо течет через электромотор и выходит из штуцера в крышке на нагнетательной стороне насоса.

Система Bosch CP4

Система Bosch CPN2

Насосы типа CPN2 используются только в коммерческих автомобилях. Их отличие — два вертикально расположенных в линию качающих плунжера. В некоторых редких случаях применялись насосы с четырьмя качающими элементами.

Сравнительная Таблица Насосов Высокого давления Bosch

Тип ТНВД

Максимальное давление в рампе (Бар)

Тип смазки

CP1

1350

Диз. Топливо

CP1+

1350

Диз. Топливо

CP1H

1600 / 1800

Диз. Топливо

CP1H+OWH

1100

Диз. Топливо

CP3.2

1600

Диз. Топливо

CP3.2+

1100

Диз. Топливо

CP3.3

1600

Диз. Топливо

CP3.4

1600 / 1800

Масло

CP3.4+

1600

Диз.Топливо

CP2

1400

Масло

CP2.2

1600

Масло

CP2.2+

1600

Масло

CP2.4

1600

Масло

CP4.1

1800 / 2000

Диз. Топливо

CP4.2

1100 / 2000

Диз. Топливо

Список автомобилей, на которых используется система COMMON RAIL типа BOSCH:

IVECO 190 E40=EUROTECH CURSOR 10
IVECO 380/400/410 T42
IVECO 180E24,E27,190224, 190E27,190E31,190E35,260E24,260E27 
IVECO CURSOR 8 
IVECO STRALIS
SCANIA DSC
MERCEDES ACTROS
SCANIA R420/R500/R580
SCANIA R380/480 
MERCEDES ACTROS 
MERCEDES ACTROS/TRAVEGO
VOLVO Fh22 / BOSCH 
VOLVO FH 12 / EURO I-II (BOSCH — MARK2 PUMP)
VOLVO Fh22 EURO II / BOSCH EQUIP. 
MERCEDES ATEGO,CITARO 
MERCEDES ACTROS 
MERCEDES CITARO/AXOR/TRAVEGO
IVECO 180=190 E38 EUROSTAR=400/440 E38 EUROSTAR 
RENAULT MAGNUM 400/440/480 E-TECH=DAF=KHD
AUDI A4/A6=SKODA SUPERB=VW PASSAT 1.9TDI 
AUDI A3=SEAT LEON/TOLEDO=VW BORA/PASSAT/GOLF 1.9 TDI 
AUDI A2/A4/A6 1.4/1.9 TDI=SEAT AROSA 1.4 TDI=VW LUPO
AUDIA3/A4=VW PASSAT/POLO/BORA=SKODA FABIA/SUPERB 1.9TDI
VW 1.9 TD ENGINE AXR 
VW VAN 
BMW 330D/XD/530D/730D/X5 3.0D 
LAND ROVER FREELANDER I 2.0 TD4
CHRYSLER VOYAGER 2.5/2.8 CRD 
RENAULT KERAX/PREMIUM 370 Dci with pump CP2
OPEL MOVANO+RENAULT MASTER 2.5 Dci 16v.
TOYOTA SR 
VW LT 28/35/46 2.8 Tdi+CHEVY BLAZER 2.8 DE+NISSAN FRONTIER 2.8 
ISUZU 
FIAT=OPEL ASTRA/VECTRA/ZAFIRA 1.9 Cdti 
HYUNDAI ACCENT II/MATRIX/i30 1.5 CRDi, TUSCAN/SANTA FE’/TRAJET 2.0 CRDi, h2/STAREX/PORTER/IX35/IX55
RENAULT KERAX/PREMIUM 370/420 Dci with pump CP2 
KIA 2.0 CRDi-VGT 
FIAT DOBLO’/IDEA/PANDA/G.PUNTO+LANCIA MUSA/Y 1.3 MULTIJET 
ALFA MITO+FIAT 500/PANDA/QUBO+OPEL CORSA 1.3 
MERCEDES C/E/S/ 200/220/270/280/320 CDI
MERCEDES VITO 108/110/112/E/ML/S/V/CLK 200/220/320/370 CDI
MERCEDES G 270 CDI/E/ML/S 400 CDI/SPRINTER 
KIA SORENTO 2.5 CRDI ALLA156P1265+ 
MERCEDES C30 CDI AMG/C30 CDI AMG 
HYUNDAI LIBERO/STAREX+KIA SORENTO 2.5 CRDI 
MERCEDES SPRITER 208/308/408 CDI 2.2cc
BMW 320D/330D/530D/730D/740D 
DODGE RAM 2500/3500 
IVECO DAILY/DUCATO 2.8/ RENAULT MASTER 2.8 
IVECO DAILY 29L 10/L12/35C10/C12/35S10/S12//RENAULT MASTER
VOLVO 
RENAULT/MACK TRUCKS 
RENAULT ESPACE IV+LAGUNA II+MASTER+MEGANE+SCENIC 1.9 DCI
REMAULT MEGANE/ LAGUNA 1.9 DCI
FIAT ULYSSE/DUCATO 2.0 JTD ENGINE PSA 
CITROEN XANTIA+PEUGEOT 406 2.0 HDI
FIAT ULYSSE 2.0 JTD (MOTORE PEUGEOT) 
IVECO 100 E 17/65+CUMMINS 
VW CONTELLATION+VOLKSBUS+13.180/15.190 ELECTRONIC 
ALFA ROMEO 147/156/166(1.9/2.4 JTD) 
CITROEN 2.0 HDI/PEUGEOT 2.0 HDI 
FIAT PUNTO JTD 
OPEL MOVANO/VIVANO+RENAULT MASTER+TRAFIC 2.5 DCI 
ALFA ROMEO 166+FIAT BRAVO/BRAVA+MULTIPLA+LANCIA 1.9/2.4 JTD
BMW 530D+730D ENGINE E39 
TOYOTA HILUX VIGO 3.0 TD 
OPEL MOVANO 2.2 DTI 
PEUGEOT 206.307 1.4 HDI=CITROEN XSARA 1.4 HD
MERCEDES CDI VARIE CC./SPRINTER VARIE 
MERCEDES 316CDI SPRINTER/VITO 108/110/112 CDI/V200/220 CDI 
MERCEDES E 200 CDI / E 220 CDI / E 270 CDI
MERCEDES CLASSE A 160/170 CDI 
MERCEDES C/E/VITO/SPINTER 220/270 CDI 
MERCEDES CLASSE A 160/170 CDI

Топливный насос высокого давления КАМАЗ-740

Библиографическое описание:

Топливный насос высокого давления КАМАЗ-740 / А. А. Савочкин, И. С. Костин, Ю. В. Еноктаев [и др.]. — Текст : непосредственный // Молодой ученый. — 2020. — № 12 (302). — С. 47-49. — URL: https://moluch.ru/archive/302/68256/ (дата обращения: 21.05.2021).



В статье авторы разбираются в устройстве впрыскивающего насоса КАМАЗ 740, принципе работы, а также возможных неисправностях и способах их устранения.

Ключевые слова: принцип работы, топливный насос КАМАЗ 740, причины поломки.

Топливную аппаратуру автомобиля КАМАЗ можно сравнить с сердцем, которое подает топливо в двигатель, который приводит машину в движение.

Эффективность работы самого двигателя зависит от того, каким будет давление в топливной системе. Поэтому очень важно знать, как устроен этот агрегат, какие нарушения могут возникнуть и как их устранить.

Устройство и основные принципы работы

Если говорить в двух словах, то топливный насос автомобиля КАМАЗ-740 работает по следующему принципу:

  1. Топливо забирается с помощью насоса низкого давления через фильтр грубой очистки из топливного бака и топливопроводов низкого давления в управляемом фильтре тонкой очистки. Далее очищенное топливо поступает в плунжерные пары, каждая из которых несет его в определенный цилиндр двигателя под высоким давлением, а он в свою очередь распыляет форсунки на очень мелкие частицы и поступает непосредственно в камеру сгорания.
  2. В камере сгорания топливовоздушная смесь оказывает эффект микровзрыва, и поршень двигателя перемещается на дно. Каждый поршень цилиндра двигателя передает мощность на коленчатый вал в определенном порядке.
  3. Избыток топлива из форсунок и нагнетательного насоса проходит через систему возврата низкого давления в топливный бак.

Кажется, что в этой схеме нет ничего сложного. На самом деле сама топливная система (инжекционный насос) представляет собой очень сложное устройство, основные части которого изготавливаются поршневыми парами по специальной технологии с очень высокой точностью. Сам пар представляет собой цилиндр, в котором движется поршень, он создает высокое давление в топливопроводе. [2]

Рис. 1. Насос высокого давления КАМАЗ 740

Нагнетательный насос КАМАЗ-740 имеет V-образную форму и состоит из двух секций, каждая из которых имеет четыре поршневые пары.

В нижней части насоса расположен распределительный вал, который получает вращательное движение от коленчатого вала двигателя через зубчатую систему. Кулачки, в свою очередь, придают поступательное движение поршням каждой пары в определенном порядке, который синхронизируется с движением поршней двигателя с помощью пружинных ползунков.

Сам поршень имеет целую систему впускных и выпускных каналов, а также канавки для слива избыточного топлива. Направление потока топлива контролируется встроенными клапанными механизмами, которые работают в автоматическом режиме.

Возможные нарушения и их устранение.

Высокое давление топлива создается в инжекционном насосе автомобиля КАМАЗ-740 за счет узкой регулировки поршня к цилиндру в поршневой паре. Если эта плотность нарушается, то давление в топливопроводе снижается и двигатель автомобиля теряет мощность и часто просто не заводится. [3]

Поэтому более длительная работа топливного насоса без существенных помех возможна только при использовании высококачественных дизельных топлив. Это, пожалуй, самая важная предпосылка для успешной работы дизельных двигателей. Особое внимание необходимо уделить обзорам качества дизельного топлива на отдельных АЗС.

Важным элементом предотвращения безаварийной работы впрыскивающего насоса является своевременное техническое обслуживание двигателя, при этом особое внимание уделяется замене топливных фильтров. Они должны быть приобретены в авторизованных сервисных центрах или у официальных дилеров авторитетных производителей.

Поскольку в этом мире нет ничего вечного, насос высокого давления может со временем развить свой собственный ресурс, даже если он работает правильно. Конструкторы топливного насоса для КАМАЗа-740 разработали ремонтопригодное устройство. Его функциональность может быть восстановлена путем замены изношенных деталей. Но это не значит, что такой ремонт возможен при любых условиях и сам по себе. [3]

Качественный ремонт можно проводить только в авторизованных мастерских со специальным испытательным столом, на котором можно проверить все параметры, показывающие тот или иной дефектный компонент, и заменить его. После ремонта насос подвергается тщательному испытанию на стенде и контролю совместно с форсунками.

Признаки неисправности инжекционного насоса

Хотя насосы высокого давления относятся к разным типам, признаки частичного отказа являются типичными и в значительной степени общими для всех. Итак, симптомы неисправности инжекционного насоса включают в себя:

– повышенный расход топлива во всех режимах работы двигателя;

– нестабильная работа двигателя, особенно на низких оборотах;

– трудный запуск двигателя, часто в холодное время года;

– Снижение мощности двигателя и динамических характеристик машины в целом;

– Повышение дымности выхлопных газов двигателя;

– утечка топлива из насоса высокого давления;

– появление эмульсии моторного масла в охлаждающей жидкости;

– Увеличение шума двигателя. [1]

Основными причинами поломки инжекционного насоса могут быть следующие:

  1. Наличие воды в топливной системе. Причин для этого может быть несколько. Это в основном неисправность топливного фильтра, чрезмерное присутствие воды в топливе, интенсивная конденсация в топливопроводах из-за нарушения их герметичности.
  2. Наличие различных механических примесей в топливе обусловлено плохим фильтром грубой и тонкой очистки. Это также приводит к преждевременной профилактической очистке топливных баков от парафиновых образований и других грубых примесей.
  3. Низкая смазывающая способность дизельного топлива обусловлена его низким качеством, либо несанкционированным применением различных несертифицированных присадок для повышения производительности двигателя. Кстати, это самый распространенный перерыв, как результат назойливой рекламы.
  4. Нарушение герметичности топливопровода, что приводит к отсосу воздуха, что увеличивает трение между частями поршневой системы. [1]

Окончательный вывод

Несмотря на то, что ТНВД КамАЗ-740 является достаточно надежным устройством, его длительная эксплуатация возможна только при условии соблюдения всех рекомендаций производителя.

Литература:

  1. Барун В. Н., Азаматов Р. А., Машков Е. А. и др. Автомобили КамАЗ: Техническое обслуживание и ремонт. — 2-е изд., перераб. и доп. — М.: Транспорт, 1988. — 325 с., ил., табл.
  2. Устройство, техническое обслуживание и ремонт автомобилей: Учеб./Ю. И. Боровских, Ю. В. Буралев, К. А. Морозов, В. М. Никифоров, А. И. Фешенко — М.: Высшая школа; Издательский центр «Академия», 1997.-528 с.: ил.
  3. Топливные системы и экономичность дизелей / И. В. Астахов [и др.]. — М.: Машиностроение, 1990. — С. 93–98.

Основные термины (генерируются автоматически): высокое давление, инжекционный насос, топливный насос, дизельное топливо, камера сгорания, нагнетательный насос, особое внимание, тонкая очистка, топливная система, топливный бак.

Описание компонентов системы подачи топлива в двигатель 4HK1 ISUZU

Предоставляем по запросу консультации и осуществляем бесплатную техническую поддержку и консультации

пишите [email protected]

звоните 8 929 5051717

             8 926 5051717

 

Описание компонентов системы подачи топлива

 

Форсунка

Условные обозначения
1. Разъем
2. Штуцер отвода топлива
3. Уплотнительное кольцо
4. Штуцер подачи топлива
5. Маркировка форсунки
6. Табличка идентификационных кодов форсунки

 

Используется электронное управление форсункой через блок управления двигателем. В отличие от традиционно используемых форсунок в данной конструкции добавлены поршень, электромагнит­ный клапан и др. элементы.

Идентификационные коды (ID) наносятся лазерной маркировкой на специальную пластинку и отражают различные характеристики форсунки. Всего сущест­вуют 30 буквенно-цифровых кодов, из которых используются 24. Эта информация (коды) использу­ется системой управления для оптимизации управ­ления количеством впрыска. При установке на автомобиль новой форсунки идентификационные коды необходимо загрузить в блок управления дви­гателем ЕСМ.

Система кодов инерционности QR или идентифика­ционных кодов (ID) топливных форсунок была раз­работана для повышения точности количества впрыскиваемого топлива. Применение этого метода делает возможным управление распылением во всем диапазоне давлений, что способствует повы­шению эффективности процесса сгорания и сниже­нию токсичности отработавших газов.

1) Перед впрыском
Двухходовой клапан (TWV) закрывает выходное отверстие за счет усилия пружины, ток от блока управления ЕСМ на соленоид не подается. При этом давление топлива, приложенное к игле со стороны ее направляющего конца, компенсируется давлением на поршень со стороны подачи топлива. Т. к. в этом состоянии давление на поршень в сумме с усилием пружины превышает давление на иглу, игла прижимается вниз, перекрывая отверстия впрыска.


2) Начало впрыска
Двухходовой клапан поднимается вверх и открывает отверстие для отвода топлива, позволяя топливу вытекать через него. Для этого на соленоид подается ток от блока управления. В результате этого игла вместе с поршнем за счет давления, приложенного со стороны направляющего конца, поднимается, открывая отверстия впрыска топлива.


3) Окончание впрыска
Двухходовой клапан перекрывает отверстие для отвода топлива за счет прекращения подачи напряжения от ЕСМ на соленоид. Топливо при этом не может выходить через отводное отверстие, давление на поршень резко возрастает, за счет чего поршень с иглой опускаются, перекрываются отверстия впрыска и впрыск прекращается.

 

Топливный насос высокого давления (ТНВД)

ТНВД является главным элементом системы впрыска топлива с общей топливораспределительной магистралью и электронным управлением. Он установлен в том же месте, где обычно устанавливается насос системы впрыска и приводится в движение от карданного вала с передаточным числом привода 1:1. В состав ТНВД включены также датчики давления в топливораспределительной магистрали и температуры топлива.
Топливо из топливного бака подается в ТНВД за счет работы топливного насоса низкого давления трохоидного типа, являющегося частью топливного насоса высокого давления. Насос низкого давления подает топливо в две поршневые камеры топливного насоса высокого давления. Поток топлива, протекающий через эти две камеры, зависит только от регулятора давления в топливнораспределительной магистрали (FRP), управляемого током от блока ЕСМ. Максимальный ток обеспечивает максимальный поток топлива, и наоборот, при отсутствии тока поток топлива перекрыт. Два плунжера за счет вращения вала двигателя создают высокое давление в топливораспределительной магистрали. Т. к. блок управления ЕСМ регулирует поток топлива через камеры с поршнями, он регулирует количество и давление топлива, поступающего в магистраль. Это позволяет оптимизировать мощность, экономичность двигателя и снизить содержание в отработавших газах окислов азота.

 

Общая топливораспределительная магистраль

Условные обозначения
1. Клапан регулировки давления
2. Датчик давления топлива

 

Наряду с электронной системой управления, топли­вораспределительная магистраль, являющаяся аккумулятором топлива, обеспечивает подачу топ­лива под давлением от ТНВД к топливным форсун­кам. На ней установлены датчик давления и клапан регулировки давления. Датчик давления измеряет давление в топливораспределительной магистрали и передает сигнал на блок управления ЕСМ. На основании этих данных ЕСМ регулирует давление в топливораспределительной магистрали с помощью регулятора давления, установленного в ТНВД. Кла­пан регулировки давления открывается механи­чески для сброса давления, когда давление топлива в топливораспределительной чрезмерно велико.

 

Датчик давления топлива

Датчик давления топлива установлен на общей топ­ливораспределительной магистрали. Он передает на блок ЕСМ сигнал, напряжение которого зависит от давления топлива. Блок управления следит за сигналом датчика давления. Чем давление в магис­трали выше, тем больше напряжение сигнала. Блок управления определяет по напряжению сигнала давление в магистрали и использует эти данные для управления впрыском и другими параметрами.

 

Клапан регулировки давления

Условные обозначения
1. Клапан
2. Корпус клапана
3. Направляющая клапана
4. Пружина
5. Корпус
6. Топливораспределительная магистраль
7. Возвратный топливопровопровод

 

Клапан регулировки давления открывается для сброса давления, когда давление топлива в топливораспределительной чрезмерно велико. Давление открытия этого клапана приблизительно 220 МПа, а закрывается он при падении давления приблизительно до 50 МПа. Топливо, сбрасываемое через клапан регулировки давления, поступает обратно в топливный бак.

 

Регулятор давления в топливораспределительной магистрали

Условные обозначения
1. Датчик температуры топлива
2. Регулятор давления в общей топливораспределительной магистрали

 

Блок ЕСМ управляет скважностью импульсов, открывающих регулятор давления в общей топли­вораспределительной магистрали (время, в тече­ние которого ток поступает на регулятор), и таким образом изменяет количество топлива, поступаю­щего в камеры с поршнями ТНВД. Так как подается только то количество топлива, которое необходимо для обеспечения требуемого давления, нагрузка на привод ТНВД снижается. Когда импульсы тока опре­деленной скважности поступают на регулятор дав­ления, соленоид сдвигает плунжер регулятора вправо, изменяя тем самым проходное сечение и регулируя количество протекающего через него топ­лива. При отсутствии тока на регуляторе пружина полностью открывает проход для топлива к порш­ням ТНВД (происходит полное всасывание и полное выталкивание). При подаче переменного сигнала количество подаваемого к поршням топлива зави­сит от скважности этого сигнала.

 

Предоставляем по запросу консультации и осуществляем бесплатную техническую поддержку и консультации

пишите [email protected]

звоните 8 929 5051717

             8 926 5051717

 

 

 

 

 

 

ТНВД Common-Rail

Цены на наши услуги:

  CP1 CP2 CP3 легковые CP3 грузовые
Проверка ТНВД на стенде 2000 3500 2000 3500
Дефектация ТНВД 1500 2500 1500 2500
Частичный ремонт До 4000 До 5000 До 3000 До 5000
Регулировка ТНВД 2500
Ремонт ТНВД 6000 8000 4000 8000

ТНВД Common-Rail

Контур высокого давления аккумуляторной системы Common Rail делится на три части: создания давления, его аккумулирования и дозировки топлива. Топливный насос высокого давления снабжен клапаном регулирования давлеия и клапаном отключения плунжерной секции. С помощью ТНВД высокое давление аккумулируется в специальной камере — аккумуляторе давления, оснащенном датчиком давления, клапаном ограничения давления (перепускным клапаном) и ограничителем пропускной способности. Форсунки служат для своевременной подачи топлива в нужном количестве. Магистрали высокого давления связывают все эти части друг с другом.

  • Датчик массового расхода воздуха
  • Блок управления работой дизеля
  • ТНВД
  • Аккумулятор высокого давления (Rail)
  • Форсунка
  • Датчик частоты вра-щения коленчатого вала
  • Датчик температуры охлаждающей жидкости
  • Топливный фильтр
  • Датчик положения

Назначение

Основной функцией любого ТНВД является обеспечение подачи топлива к форсункам под необходимым давлением, на любых режимах работы двигатели и к течение всего срока эксплуатации транспортного средства. Система Common Rail отличается тем, что в ней ТНВД лишен распределительных функций и необходим лишь для создания резерва топлива и быстрого повышения давления в топливном аккумуляторе. ТНВД создает постоянное давление величиной до 1600 бар для аккумулятора высокого давления (Rail). Предварительно сжатое топливо по сравнению с обычными системами впрыска не сжимается в процессе впрыскивания.

Устройство

В аккумуляторных системах легковых автомобилей используется радиальный плунжерный ТНВД, который создает высокое давление топлива независимо от величины цикловой подачи.

  • ТНВД
  • Клапан огкпючения плунжерной секции
  • Клапан регулирования давления
  • Магистраль высокого давления
  • Аккумулятор высокого давления
  • Датчик давления топлива в аккумуляторе
  • Клапан ограниче ния давления (перепускной клапан)
  • Ограничитель пропускной способности
  • Форсунка
  • Блок управления работой дизеля

Другие услуги

Насос топливный дв. 51432 высокого давления Евро-4 ЗМЗ ТНВД



Увеличить

Внимание! Фотография носит исключительно ознакомительный характер и может отличатся от товара, фактически имеющегося на складе.

Номенклаторный номер: 51432.1111001

Основной функцией любого топливного насоса высокого давления (ТНВД) является обеспечение подачи топлива к форсункам под требуемым давлением, на любых режимах работы двигателя и в течение всего срока эксплуатации транспортного средства.
В системе Common Rail дизельного двигателя ЗМЗ-51432 CRS топливный насос высокого давления BOSCH CP1H 0 445 010 330 необходим лишь для создания резерва топлива и быстрого повышения давления в топливном аккумуляторе (топливной рампе). ТНВД создает постоянное давление величиной до 1450 бар для аккумулятора высокого давления.

В системе Common Rail дизельного двигателя ЗМЗ-51432 CRS используется радиальный плунжерный ТНВД CP1H 0 445 010 330 фирмы BOSCH, который создает высокое давление топлива независимо от величины цикловой подачи.
ТНВД крепиться на общем с генератором кронштейне с левой стороны двигателя. Приводится в действие с помощью шкива коленчатого вала поликлиновым ремнем 6РК1600, а частота вращения вала ТНВД не превышает 3360 оборотов в минуту.
Топливный насос высокого давления BOSCH CP1H смазывается и охлаждается проходящим через него топливом. Клапан регулирования давления топлива установлен непосредственно на ТНВД. Три плунжера с гильзой, радиально расположенные по окружности через 120 градусов, сжимают топливо внутри ТНВД. Три рабочих хода каждого плунжера за один оборот вала ТНВД позволяют обеспечить незначительную и равномерную нагрузку на вал привода с эксцентриковыми кулачками.

Крутящий момент, достигающий величины 25 Нм, составляет около 1/9 от амплитуды момента, необходимого для привода распределительного ТНВД VE. Таким образом, система Common Rail функционирует с меньшими затратами на привод. Необходимая для привода ТНВД мощность возрастает пропорционально частоте вращения вала насоса и давлению в топливном аккумуляторе высокого давления.
Топливоподкачивающий насос подает топливо к ТНВД через фильтр с сепаратором воды. Пройдя через дроссельное отверстие защитного клапана, топливо, используемое также для смазки и охлаждения деталей ТНВД, движется к плунжерам по системе каналов. Вал привода с эксцентриковыми кулачками одновременно заставляет поступательно двигаться все три плунжера.
Топливоподкачивающий насос создает давление подачи, превышающее величину, на которую рассчитан защитный клапан, от 0.5 до 1.5 бар. Последний открывает перепускной канал низкого давления, по которому топливо через впускной клапан поступает в камеру над плунжером, движущимся вниз, то есть совершающим впуск.
Когда нижняя мертвая точка плунжера пройдена, впускной клапан закрывается. Топливо в надплунжерном пространстве сжимается плунжером, идущим вверх. Когда возрастающее давление достигнет уровня, соответствующего тому, что поддерживается в аккумуляторе высокого давления, открывается выпускной клапан. Сжатое топливо поступает в контур высокого давления.

Дизельные топливные насосы — Топливный насос

Фото 2/5 | Дизельные нагнетательные насосы, боковой угол

Топливный насос высокого давления — это сердце дизельного двигателя. Точно поданное топливо поддерживает ритм или синхронизацию, которые обеспечивают бесперебойную работу двигателя. Одновременно насос также регулирует количество топлива, необходимое для получения желаемой мощности. ТНВД выполняет работу как дроссельной заслонки, так и системы зажигания, необходимых в бензиновых двигателях.При устранении неисправностей бензинового двигателя вы проверяете компрессию, топливо и искру. У дизеля нет системы зажигания, поэтому с ним на одну ошибку меньше. Основные успехи в разработке дизельного двигателя являются прямым результатом улучшенного впрыска топлива. Вот как работает ТНВД.

Насосы с линейным впрыском (рывками)
Первые насосы, в которых для подачи дозированного топлива в камеру сгорания использовались плунжеры, были разработаны еще в 1890-х годах. На это ушло почти сорок лет, но в 1927 году Bosch представила серийный линейный насос с спиральным управлением.Эти первые насосы очень похожи на Bosch P7100 (P-pump) на двигателях Dodge Ram 5.9L Cummins ’94 — ’98. Иногда их называют толчковыми насосами. Они состоят из отдельных насосов и плунжеров, соединенных в линию, по одному на цилиндр. Они активируются кулачком, который механически связан с двигателем. Тем не менее, насос может изменять время, хотя и не до такой степени, как система с электронным управлением. Рядные ТНВД похожи на рядные мини-двигатели. Первые рядные ТНВД обеспечивали давление впрыска от 3000 до 5000 фунтов на квадратный дюйм, в то время как более новый Bosch P7100, установленный на двигателях Cummins от ’94 до ‘981/2, обеспечивает давление 18000 фунтов на квадратный дюйм.

Распределительные (роторные) впрыскивающие насосы
Эти типы насосов имеют только один дозатор топлива. Вращающийся ротор обеспечивает гидравлическое соединение с различными портами на распределительной головке, что отчасти похоже на то, как распределитель работает на бензиновом двигателе. Преимущества роторного насоса только с одним плунжером в том, что все порции топлива абсолютно одинаковы, и это позволяет уменьшить габаритные размеры. Кроме того, насосы распределительного типа имеют меньше движущихся частей по сравнению с линейными насосами.Двумя примерами механических ротационных насосов являются Stanadyne DB2 и Bosch VE. Stanadyne DB2 создает давление 6700 фунтов на квадратный дюйм, а Bosch VE — 17000 фунтов на квадратный дюйм.

Примером электронного роторного насоса является Bosch VP44, который способен создавать давление 23 000 фунтов на квадратный дюйм. Это самый умный насос с максимальной ответственностью — даже по сравнению с новыми насосами Common Rail CP3. Это так, потому что все, что нужно сделать CP3, — это создать давление. Помимо создания давления, VP44 необходимо электронно контролировать время и количество топлива, подаваемого в двигатель.

Система впрыска Common-Rail
При системе впрыска Common-Rail сам насос потерял большую часть своих полномочий решать, когда и в каком количестве подавать топливо под давлением. Например, насос CP3 получает топливо из топливного бака. Затем он использует радиально-поршневую конструкцию для значительного увеличения давления. Топливо под высоким давлением отправляется в общую топливную рампу, которая по сути является аккумулятором для форсунок. Форсунки вступят во владение оттуда.

Насос-форсунки
Линии, соединяющие ТНВД с топливной форсункой, вызвали проблемы у первых инженеров-дизелей.Поэтому в 1905 году Карл Вайдман избавился от них, соединив впрыскивающий насос и инжектор. Насос-форсунка представляет собой компактную конструкцию с впрыском топлива, в которой плунжер насоса создает высокое давление за счет механической силы, прилагаемой двигателем. Плунжер и форсунка сливаются в одно целое, задача которого — подавать топливную струю в камеру сгорания. Чаще всего насос-форсунки используются в двигателях Volkswagen и больших дизельных двигателях. ДП

Интересные факты о впрыске топлива
* Первые дизельные двигатели использовали сжатый воздух для подачи топлива в камеру сгорания.Это была технология, оставшаяся после экспериментов с угольной пылью.

* Компания Atlas Imperial Diesel Company из Окленда, Калифорния, разработала свою первую топливную систему Common Rail еще в 1919 году.

* Основной проблемой для систем впрыска топлива является отсутствие подтекания в конце впрыска. Даже небольшая дополнительная капля нарушит цикл сгорания.

* В современных дизельных двигателях топливо выходит из форсунки под давлением 30 000 фунтов на квадратный дюйм. Для сравнения, это число укладывается в диапазон давлений, в которых работают гидроабразивы.Watejets использует высокое давление h30 для резки многих различных материалов, включая пластик, дерево, сталь и алюминий.

* Cummins и Scania объединились для создания системы впрыска Common-Rail высокого давления XPI, которая способна поддерживать высокое давление топлива при любой работе двигателя.

* Первые ТНВД имели масляные щупы.

Что такое электронный впрыск топлива | Знай свои запчасти

Топливный насос объединен с блоком определения уровня топлива и поплавком в «модуле топливного насоса в сборе», который вставляется внутрь бака через отверстие в верхней части бака.Узел топливного насоса удерживается на месте крепежными деталями или стопорным кольцом и уплотняется прокладкой или уплотнительным кольцом. Для замены модуля насоса обычно требуется уронить топливный бак.

Электропроводка и соединения топливопровода находятся снаружи бака. Коррозия и вибрация могут вызвать проблемы с электричеством в соединении жгута проводов, что приведет к остановке работы насоса. В замене насоса нет необходимости, потому что проблема в подаче напряжения. Неисправное реле топливного насоса, перегоревший предохранитель, неисправность проводки или проблема с противоугонной системой также могут привести к прекращению работы электрического топливного насоса.Перед установкой нового топливного насоса важно исключить все эти возможности, чтобы избежать ненужных возвратов. Если недавно установленный топливный насос не работает, проблема была не в насосе, а в электрической части.

Топливный фильтр и впускной патрубок топливного насоса также должны быть заменены при установке нового топливного насоса. В безвозвратных системах EFI нет встроенного топливного фильтра. Фильтр и регулятор являются частью узла насосного модуля.

Электрические топливные насосы также используются для других целей — например, для перекачки топлива из одного бака в другой в пикапах с двухтопливными баками.В некоторых приложениях есть два насоса: один для «подъема» топлива из топливного бака, а второй насос высокого давления для подачи в топливные форсунки.

Универсальные электрические топливные насосы низкого давления также могут использоваться для замены механических топливных насосов на старых автомобилях с карбюраторами. Механические топливные насосы обычно приводятся в действие от распределительного вала и используют подпружиненную диафрагму и пару клапанов для перемещения топлива по топливопроводу к карбюратору. Механические насосы работают при низком давлении (от 2 до 7 фунтов на квадратный дюйм) и подвержены утечкам, выходу из строя диафрагмы и поломке.Замена механического насоса универсальным электронасосом низкого давления может повысить надежность и снизить риск образования паровой пробки в жаркую погоду за счет поддержания давления в трубопроводе топлива. Твердотельные электронные насосы не имеют подшипников, электрических контактов или диафрагм, которые могут изнашиваться или выходить из строя, что делает их более долговечными, чем другие типы электрических насосов. Для установки требуется только подключение к источнику питания.

Другие детали, которые могут потребоваться при замене или установке топливного насоса, включают топливный шланг, хомуты и топливный фильтр.Также следует рекомендовать очиститель топливной системы для поддержания чистоты топливной системы и форсунок. Грязный корпус дроссельной заслонки можно очистить баллончиком с аэрозольным очистителем корпуса дроссельной заслонки.

Продолжайте движение: базовый анализ топливной системы

Топливные форсунки находятся в конце линии в любой системе EFI. Вся топливная система и каждый из ее компонентов существуют для обеспечения надлежащего расхода потока форсунок через форсунки форсунок в цилиндры двигателя. Помня об этом, всегда следует выполнять базовую диагностику топливной системы.Диагностика основных проблем топливной системы требует понимания компонентов, конструкции топливной системы, теории давления и расхода, а также методов диагностики. Начнем с компонентов топливной системы, начиная с последнего компонента, чтобы объяснить, как рассчитывается расход форсунки.

Топливные форсунки спроектированы и рассчитаны на количество топлива, которое может протекать через них при заданном давлении топлива и рабочем цикле на среднем уровне моря. Количество топлива, которое может подать форсунка, измеряется в фунтах в час.В целях оценки большинство производителей указывают стандартное рабочее давление 43,5 фунта на квадратный дюйм. Единственным исключением является Ford, который оценивает свои форсунки на 39,5 фунтов на квадратный дюйм как стандартное давление.

Расчетные параметры расхода инжектора измеряются в статическом состоянии, что означает, что они постоянно остаются открытыми. Это называется 100% -ным рабочим циклом. Однако, как только форсунки будут установлены в двигателе, они будут пульсировать с различным рабочим циклом (в зависимости от требований к нагрузке двигателя), измеряемым с шагом в миллисекунды.Работа форсунок при 100% рабочем цикле приведет к чрезмерному нагреву обмоток форсунок, что приведет к преждевременному выходу из строя. Таким образом, в типичных применениях оригинального оборудования форсунки никогда не работают в рабочем режиме, превышающем 80–85%.

Номинальный расход форсунок учитывается, когда производитель оригинального оборудования проектирует топливную систему для двигателя определенного размера. Рассчитываются ожидаемые удельное давление и расход, а также динамическая топливная карта, основанная на оборотах и ​​нагрузке конкретного двигателя. Эта топливная карта является основным фактором контроля рабочего цикла форсунок.Однако топливная карта предполагает, что проектные характеристики системы обеспечат ожидаемое давление и объем топлива для подачи в форсунки.

После установки в двигатель выходной поток форсунки зависит от трех факторов: количества топлива, поступающего в форсунку (объем), силы за объемом топлива, поступающего в форсунку (давление), и рабочего цикла форсунки или от- команда времени от PCM (ширина импульса).

Если расчетное давление или расход изменится из-за неисправности механического компонента топливной системы, или если рабочий цикл форсунки изменен PCM из-за неправильного входа датчика, скорость потока форсунки также изменится, что в конечном итоге повлияет на цель топливной системы, которая состоит в том, чтобы обеспечить требуемый выходной поток форсунки в зависимости от оборотов двигателя и нагрузки.

Топливные фильтры улавливают вредные загрязнения и являются пассивными компонентами, которые при ограничении могут вызвать немедленные проблемы в системе из-за уменьшения расхода топлива. Проблемы с системой с задержкой также возникнут, если фильтр больше не может улавливать загрязняющие частицы, которые затем будут перемещаться дальше по линии и влиять на другие компоненты системы (обычно топливные форсунки).

Регуляторы давления топлива ограничивают возврат топлива в бак откалиброванным количеством, чтобы поддерживать желаемое давление в топливной рампе.Если откалиброванное давление в топливной рампе будет превышено, избыток топлива сможет вернуться в бак.

Регуляторы обычно выходят из строя из-за разрыва диафрагмы, что приводит к разрежению двигателя, всасывающему сырое топливо непосредственно во впускной коллектор, неправильной установке регулятора давления топлива, что приводит к утечке топлива на обратную сторону или отсутствию обратного потока в бак вообще, когда регулятор заедает .

Чтобы дать практический пример того, как расход форсунки может быть изменен множеством факторов, давайте предположим увеличение давления в топливной рампе на холостом ходу из-за заедания регулятора давления.Повышение давления приведет к увеличению выходного объема форсунки. PCM не контролирует объем топлива, перекачиваемый в систему, и не может контролировать давление в топливной рампе. Так как же PCM мог попытаться предотвратить переполнение цилиндров двигателя? Рабочий цикл. Столкнувшись с этим сценарием, PCM (в замкнутом контуре) может уменьшить расход инжектора за счет уменьшения ширины импульса инжектора.

В обычных системах EFI используется погружной топливный насос с электродвигателем на постоянных магнитах, гаситель колебаний и предохранительный клапан для предотвращения повреждения системы из-за избыточного давления.Топливо поступает во впускную трубку насоса, проходя через фильтр в виде носок, и проталкивается через насос к выпускному отверстию двигателем.

Обычные системы EFI также полагаются на регулятор давления топлива, а не на сам насос, чтобы контролировать давление в топливной рампе. Любое топливо, которое не требуется двигателю, отводится обратно в топливный бак через регулятор давления. Поэтому важно помнить, что сами топливные насосы подают только объем топлива; они не создают давления в топливных магистралях.

Анализ тока топливного насоса — это метод, который используется для выявления изношенного или неисправного топливного насоса. В нем используется зонд с низкой силой тока, чтобы сначала рассчитать ток, потребляемый электродвигателем топливного насоса, а затем передать эту информацию на форму волны лабораторного осциллографа (рис. 1 выше) для визуального анализа. Этот метод может позволить вам решить, является ли сила тока, потребляемая цепью, типичной. Это нормально, когда начальное потребление тока насосом выше, когда насос впервые приводится в действие после полной остановки.Когда насос начинает вращаться и проталкивать топливо через систему, сила тока должна упасть и выровняться.

Изучение токовых «горбов» в форме волны, создаваемой планками коммутатора двигателя насоса, даст вам точное представление о том, как двигатель насоса выглядит внутри. Любые несоответствия в визуальных представлениях, которые вы видите в форме волны, для получения зеркального отображения того, как будет выглядеть якорь, потребовались всего миллисекунды, если бы вы потратили время на снятие и разборку насоса. Даже одна слегка изношенная переключающая планка, которая не обязательно является проблемой, будет отображаться на осциллограмме.

Вы можете рассчитать частоту вращения насоса, просто выбрав повторяющийся «подпись» ID этой одной переключающей планки. Если образец повторяется каждую девятую полосу, то вы знаете, что насос имеет восемь переключающих полос, что, в свою очередь, позволяет вам измерять время (в миллисекундах), необходимое для одного оборота насоса. Затем разделите 60 000 (1 минута времени в миллисекундах) на время одного оборота двигателя, и вы рассчитаете скорость вращения насоса. Обороты сильно изношенного электродвигателя насоса рассчитаны на рис.2.

Несмотря на преимущество этого метода, заключающееся в быстром и легком доступе к «правлению» изнашивающегося или неисправного топливного насоса, вы всегда должны помнить, что единственными достоверными точными данными в форме волны являются потребляемая сила тока, частота вращения и визуальная характеристика насоса. арматура. Типичные автомобильные топливные насосы потребляют от 3 до 6 ампер при 5000-6000 об / мин.

К сожалению, это среднее значение, и если вы не знакомы с типичной потребляемой силой тока и частотой вращения конкретного насоса, который вы фактически тестируете, эти средние характеристики могут ввести вас в заблуждение.Тот факт, что топливный насос имеет «средние» обороты, «среднее» потребление тока и одинаковые по внешнему виду стержни переключателя, не гарантирует, что насос может подавать объем топлива, для которого была разработана система. Самым большим неизвестным в анализе тока топливного насоса является то, что вы не можете фактически измерить объем производства насоса с помощью тока. Это однозначно отрицательный результат, и вы должны быть осторожны, принимая текущий анализ в качестве единственного теста.

Электронные безвозвратные топливные системы (ERFS) Ford работают без обратной магистрали в топливный бак.Поскольку обратная линия отсутствует, регулятор давления, прикрепленный к топливной рампе, не нужен. Несмотря на отсутствие обычного регулятора, ERFS действительно использует регулирование давления для управления объемом инжектора.

Теоретически PCM выбирает и устанавливает рабочее давление в топливной системе. PCM выдает команду рабочего цикла от 5% до 51% в модуль привода топливного насоса (FPDM) ​​для управления давлением в системе, используя датчик давления в топливной рампе (FRP) для обратной связи. FPDM удваивает команду топливного насоса от PCM и выводит собственную команду рабочего цикла для управления насосом.Управляя включением насоса путем переключения напряжения питания, система может поддерживать любое рабочее давление в топливной системе, требуемое PCM (рис. 3 на стр. 34). FPDM также генерирует диагностический сигнал, который передается обратно в PCM в цепи монитора топливного насоса (FPM), чтобы указать, есть ли какие-либо неисправности. Любой связанный с ERFS DTC, который может быть установлен PCM, является прямым результатом рабочего цикла диагностического сигнала, возвращаемого ему FPDM.

Во время работы топливо перекачивается из модуля подачи топлива внутри топливного бака через обратный клапан и топливный фильтр, датчик давления, топливную рампу и, наконец, через топливные форсунки.Топливный насос перекачивает только то количество топлива, которое необходимо для поддержания в топливной рампе желаемого или установленного рабочего давления.

Понимание того, как рассчитывается FRP PID, имеет решающее значение для понимания стратегии системы. Если PCM требует давления 40 фунтов на квадратный дюйм, 40 фунтов на квадратный дюйм — это целевое давление, которое он устанавливает для форсунок форсунок, а не для топливной рампы! Важно отметить, что FRP PID на диагностическом приборе не отражает фактическое давление в трубопроводе, которое вы видите с помощью манометра.

Датчик FRP отвечает не только за расчет давления в топливной рампе; используя короткий вакуумный шланг, прикрепленный к впускной камере, он также действует как датчик вакуума.Используя вакуум в коллекторе для экстраполяции перепада давления на форсунках, FRP отправляет расчет обратной связи в PCM. Отрицательный фунт на квадратный дюйм можно рассчитать, уменьшив вдвое вакуумное давление, измеряемое в дюймах ртутного столба (1 дюйм рт. Ст. 0,5 фунта на квадратный дюйм). При измерении вакуума в коллекторе текущее отрицательное давление на выходах форсунок (форсунок) в камере повышенного давления рассчитывается FRP и добавляется к положительному давлению в топливной рампе на входах форсунок.

Например, 30 фунтов на квадратный дюйм давления топлива в рампе добавляются к 20 дюймам.Вакуум в коллекторе, измеренный Hg (10 фунтов на квадратный дюйм), приведет к показанию FRP PID 40 фунтов на квадратный дюйм. То есть 30 фунтов на квадратный дюйм в верхней части форсунок, добавленные к давлению в 10 фунтов на квадратный дюйм, присутствующему на форсунках форсунок, равны 40 фунтам на квадратный дюйм давления на выходе из форсунок.

Что произойдет, если дроссельная заслонка будет переведена из полностью закрытого положения в полностью открытое положение? Падение вакуума в коллекторе до 0 дюймов рт. Ст. Будет рассматриваться FRP как 0 фунтов на квадратный дюйм на форсунках форсунок, в то время как в топливной рампе присутствует только 30 фунтов на квадратный дюйм. В этой ситуации PCM вычислит, что для поддержания целевого давления системы в 40 фунтов на квадратный дюйм на форсунках инжектора потребуется повышенное давление в топливной рампе.PCM немедленно отправит команду FPDM на увеличение рабочего цикла топливного насоса, чтобы поднять фактическое давление в рампе.

Проверка расхода или тока электронных безвозвратных топливных систем требует, чтобы насос работал непрерывно. Вы можете подавать команду на непрерывное включение насоса с помощью диагностического прибора и отправлять команду рабочего цикла 50%.

Помните, то, что у вас «хорошее» давление и вы удовлетворены текущим анализом топливного насоса, не означает, что насос подает объем топлива, необходимый для форсунок во всех рабочих условиях.Давайте обсудим разницу между давлением, объемом и расходом топлива.

Давление топлива = Энергия / Объем

Продолжительное проворачивание двигателя перед запуском может указывать на потерю остаточного давления топлива, которое должно оставаться постоянным даже после выключения двигателя на несколько часов. Давление на стороне подачи системы может быть потеряно из-за неисправного обратного клапана топливного насоса или утечки в линии подачи. С другой стороны, в обычной топливной системе он также может быть потерян из-за плохо установленного регулятора давления топлива на обратной стороне системы.

Чтобы отследить потерю остаточного давления, выполните цикл KOEO для повышения давления в топливной системе, затем перекрывайте линии подачи и возврата по одной, чтобы определить, где происходит потеря давления. Если давление все еще падает после изолирования как подающей, так и обратной секций по отдельности, потеря давления может быть связана с негерметичными топливными форсунками.

Давление топлива — это просто величина силы (давления), измеренная в фунтах на квадратный дюйм (psi), приложенная к доступному объему топлива.Большинство технических специалистов хорошо знакомы с измерением давления топлива с помощью манометра, подключенного к клапану Шредера, расположенному на топливной рампе. Вы можете не осознавать, что давление — это улица с односторонним движением. Его всегда можно уменьшить, но нельзя увеличить, если нет достаточной громкости для его поддержания. Использование давления топлива в качестве единственного метода проверки топливной системы означает, что вы смотрите только на часть общей картины.

Расход топлива = Объем / Время

Объем и расход не являются давлением.В закрытом кране есть давление в системе, но нет потока. Слишком часто технические специалисты полагаются на показания давления топлива, не понимая, что через систему действительно проходит очень небольшой объем топлива. Ключевым моментом является понимание того, что давление топлива является мерой силы, а объем топлива — количественным измерением. Расход топлива — это объем топлива, который система может доставить за определенный период времени. Также важно отметить, что максимальная пропускная способность любой топливной системы определяется конструкцией системы и не может быть увеличена.

По аналогии, водопровод в вашем доме — это система с фиксированной производительностью. По водопроводным трубам может протекать только определенное количество воды, потому что вся сантехника от водопровода до светильников в вашем доме имеет фиксированный диаметр. Вот почему, если вы принимаете душ, вы сразу заметите уменьшение потока воды к насадке для душа, когда кто-то смывает воду из унитаза в той же комнате. Некоторая часть доступного объема воды, поступающей в душевую лейку, была отведена для утечки в унитаз.

Поскольку максимальная пропускная способность топливной системы также фиксирована, неисправный регулятор давления в системе обратного типа может отводить поток топлива, необходимый для форсунок (насадки для душа), обратно в топливный бак (унитаз). Неэффективный топливный насос или ограниченный топливный фильтр также могут уменьшить поток топливной системы к форсункам. Независимо от причины, уменьшение потока в системе приведет к уменьшению потока в инжекторе.

Пониженный расход не может быть исправлен повышенным давлением. Вот еще один пример взаимосвязи между давлением, объемом и расходом.Предположим, у вас хороший запас топлива в топливном баке и насос в хорошем рабочем состоянии. Разделение линии подачи, выходящей из топливного насоса, приведет к точно такому же количеству топлива, перемещаемому насосом, но только половине потока в каждой из двух линий. Теперь давайте добавим подкачивающий насос в линию подачи после исходного насоса, но до разделения. Второй насос не может перекачивать больше топлива, чем подает ему первый насос.

В старых системах обычно использовалась комбинация насосов, установленных на резервуаре, и внешних встроенных насосов.Внешний насос должен был повышать давление. Это никак не повлияло на увеличение расхода топлива. Повышенное давление в системе не восстановит потерянный поток.

Расход топлива в системе зависит от четырех факторов: доступный объем топлива на входе насоса, емкость (размер) линии подачи, способность насоса перекачивать достаточный объем линии подачи и давление в системе.

Но низкий расход может возникнуть при кажущемся нормальном давлении в топливной рампе. Вот пример. Напряжение питания насоса напрямую влияет на расход топлива.Если присутствует низкое напряжение системы зарядки или высокое сопротивление в цепи питания или заземления электрического топливного насоса, падает напряжение питания, способность насоса по подаче топлива также падает.

Напряжение на двигателе топливного насоса можно сравнить с работой топливной форсунки. Меньшее напряжение на двигателе топливного насоса будет означать меньший выходной объем, точно так же, как меньшее давление топлива в форсунке будет означать меньший объем ее форсунки. Более низкое напряжение на клеммах насоса снижает крутящий момент двигателя, что приводит к уменьшению объемной емкости при заданном давлении.

Я использовал Mazda Protegé 1998 года выпуска с двигателем объемом 1,5 л для проверки давления и расхода топлива. На рис. 4 на стр. 34 расходомер, способный измерять давление топлива, а также общий поток системы (включая поток топлива, возвращаемого в бак), был подключен к топливной рампе. Измеренное напряжение подачи на насос составляло 15 вольт при давлении в системе чуть более 38 фунтов на квадратный дюйм и общем потоке в системе 0,53 галлона в минуту (галлонов в минуту).

На рис. 5 напряжение питания насоса упало до 11+ вольт.Это привело к падению расхода топлива на 47% без значительного снижения давления топлива. Не позволяйте подобному сценарию обжечь вас. Часто напряжение будет доходить до самого разъема, входящего в топливный бак. Обрыв проводки мог быть внутри бака между разъемом бака и насосом. Плохое заземление насоса или старый неисправный насос, потребляющий слишком большую силу тока, могут повредить проводку. Если цепь не будет тщательно проверена, у вас может произойти падение напряжения на новом насосе после установки, что снизит его способность обеспечивать двигатель достаточным объемом топлива.Помятый стальной топливопровод или ограниченный топливный фильтр также могут уменьшить доступный объем топлива без значительного влияния на давление.

Будьте осторожны, используя давление топлива в качестве единственной проверки. Обжатие возвратного топливного шланга может показать допустимое давление насоса, но объем топлива, подаваемого при нормальном рабочем давлении, — это то, что вам действительно нужно знать. Если вы еще этого не сделали, вы в конечном итоге столкнетесь с транспортными средствами с одним из вышеупомянутых ограничений потока, которые эффективно уменьшат доступный объем топлива, практически не влияя или не влияя на измеренное давление в топливной рампе.Компоненты, работающие неэффективно, но еще не полностью вышедшие из строя, такие как частично ограниченный топливный фильтр, неисправный регулятор давления или изношенный топливный насос, легче определить путем одновременного измерения расхода и давления.

Давление топлива, измеренное на рампе, а также требуемый расход форсунки на холостом ходу могут находиться в пределах спецификации. Но нам нужно знать общую пропускную способность системы при максимальных условиях эксплуатации двигателя, когда почти весь доступный поток будет использоваться для поддержания требований к потоку форсунок.Технические характеристики топливной системы автомобиля обычно включают давление топлива, но не указывают характеристики расхода топлива. В зависимости от объема двигателя, типичная пропускная способность топливной системы будет варьироваться от 0,4 до 0,8 галлона в минуту. Однако требования к расходу топлива можно легко установить для всех двигателей.

Расчет требований к потоку для любой топливной системы зависит только от двух факторов — размера двигателя, поставляемого системой, и диапазона оборотов, при котором двигатель работает. Чтобы проиллюстрировать этот момент, обратитесь к Рис.6 на стр. 36. Двигатель рабочим объемом 383 куб. дюйма (или 6,3 литра общего объема камеры сгорания), работающая на холостом ходу 750 об / мин, вытеснит расчетное количество воздуха в минуту. На этих оборотах топливная система двигателя должна была бы подавать только 0,07 галлона в минуту, чтобы двигатель нормально работал на холостом ходу.

А теперь предположим, что вы едете на этой машине и проезжаете грузовик на проселочной дороге с двумя полосами движения. Тот же 383-кубовый двигатель, работающий при 5500 об / мин, потребует более полугаллона топлива в минуту (рис.7). Меньше — и двигатель будет недогружен.

В нормальных условиях эксплуатации двигателю почти никогда не потребуется полная пропускная способность системы подачи топлива на выходе. Исключение составляет широко открытая дроссельная заслонка (WOT) на красной линии. Таким образом, если измеренная пропускная способность топливной системы соответствует или превышает расчетный объем потока, необходимый при максимальных оборотах в минуту, потока топлива всегда будет достаточно, при любых оборотах двигателя и любой нагрузке.

С другой стороны, если испытанный максимальный расход топлива двигателя даже немного не соответствует этим требованиям, двигатель не сможет подавать топливо в форсунки в достаточном количестве во всех рабочих условиях.Этот двигатель может отлично работать на более низких оборотах, но когда линия спроса и фактической подачи пересекается, в форсунках (и двигателе) буквально заканчивается газ. Вот почему так важно измерять расход топлива.

Так как вы будете измерять расход топлива? Ваши методы оценки расхода в топливной системе должны быть такими же точными, как при использовании динамометрического ключа для болтов с головкой или микрометра для тормозных роторов. Перетекание бензина из топливопровода без давления в градуированный контейнер с измерением времени по секундомеру не является точным способом измерения пропускной способности системы в галлонах в минуту.Это также очевидный риск для безопасности. Изношенный насос может обеспечивать достаточный поток до тех пор, пока он не должен создавать достаточный крутящий момент для преодоления нормального рабочего давления в системе. Анализатор топливной системы, показанный на рис. 4 и 5 объединяет расходомер топлива, манометр топлива, вакуумметр коллектора и датчик давления выхлопных газов в одном блоке. Все критические измерения объединены, кроме того, можно визуально проверить источник топлива на предмет загрязнения или кавитации.

Используйте свое базовое понимание стратегии системы, которую вы пытаетесь диагностировать.Используйте основные методы линейного изменения тока топливного насоса, чтобы исключить, но не исключить неисправности системы. Самое главное, что понимание основных теорий давления, объема и расхода топлива может быть самым ценным инструментом из всех.

Скачать PDF

Подъемный насос

Назначение — Diesel World

В современных дизельных двигателях используются сложные топливные системы сверхвысокого давления для повышения производительности и эффективности, а также улучшения контроля выбросов и снижения уровня шума. Последний CP4.2 инжекторных насоса и форсунки пьезо-типа могут работать под давлением более 30 000 фунтов на квадратный дюйм и чрезвычайно чувствительны к получению только максимально качественного дизельного топлива со сверхнизким содержанием серы. Но независимо от того, ведете ли вы новенькую модель 2018 года или 20-летний грузовик с дизельным двигателем с большим пробегом, лучшая защита топливной системы — это всегда неплохо. Мельчайшие частицы или обломки в топливной системе могут создать препятствие, закупорить порты или даже образовать рубец и повредить внутренние детали насоса или инжектора, поэтому фильтрация и достаточная подача являются ключевыми факторами.

В топливной системе Fuelab Velocity 200GPH используется легкий бесщеточный двигатель постоянного тока с высоким расходом для обеспечения длительного срока службы насоса, особенно при использовании современных дизельных топлив со сверхнизким содержанием серы. Конструкция «мокрого двигателя» означает отсутствие износа уплотнений, а внутреннее регулирование скорости с помощью сигнала с широтно-импульсной модуляцией означает, что объем и давление могут быть точно установлены в соответствии с требованиями каждого приложения.

Очевидно, производители оригинального оборудования не собираются упускать из виду хорошую фильтрацию, и их инженеры потратили бесчисленные часы на то, чтобы топливо могло быть правильно отфильтровано и любая вода могла быть отделена от него до того, как она попадет в систему впрыска, но это не означает, что ее нет нет места для улучшения.В большинстве случаев, будь то серийный грузовик или сильно модифицированный автомобиль для соревнований, правильная высокопроизводительная система подъемного насоса может предложить множество преимуществ. Насосы Velocity от Fuelab — одна из таких систем, которые не только добавляют дополнительную фильтрацию и водоотделение, но и удаляют весь захваченный воздух из системы перед подачей топлива в топливный насос и форсунки. Удаление воздуха может сделать двигатель более тихим, повысить его эффективность и продлить срок службы мелких деталей в насосах и форсунках.Подъемный насос также может подавать положительное давление топлива в большем объеме в топливный насос высокого давления, поэтому для автомобилей без заводского подъемного насоса можно ожидать увеличения срока службы топливного насоса высокого давления за счет снятия части нагрузки.

Большинство комплектов подъемных насосов для вторичного рынка допускают установку прямо внутри направляющей рамы или снаружи рамы под станиной. Комплект Velocity устанавливается прямо перед топливным баком на простой в установке кронштейн, не требующий сверления. Насосы установлены достаточно высоко, так что основание фильтра едва видно, что защищает его от дорожного мусора.

За прошедшие годы мы провели множество испытаний транспортных средств, эксплуатируемых с подъемными насосными системами и без них. В каждом случае добавление хорошего подъемного насоса дает некоторое душевное спокойствие и дополнительную поддержку для большего потенциала мощности. Несколько лет назад во время динамометрических испытаний грузовика LB7 Duramax легкой конструкции мы наблюдали за давлением в топливной рампе при жесткой нагрузке. При умеренной настройке производительности (470 об / ч) давление в рампе будет стабильно около 22000 фунтов на квадратный дюйм, что соответствует значениям, требуемым при программировании. Однако в настройках с максимальной производительностью мы наблюдали падение давления в рампе до 17000 фунтов на квадратный дюйм, а значения на динамометре упали до менее 450 л.с.Платформа Duramax 2002 года не была спроектирована с заводским подъемным насосом, а впрыскивающий насос CP3 просто не мог выполнять такую ​​большую работу сам по себе. Мощность должна была быть увеличена по сравнению с предыдущей «меньшей» настройкой, но при попытке вытащить топливо из бака и поднять в нем давление до 22 000 фунтов на квадратный дюйм, он просто не мог этого сделать при таком большом спросе. Все это исправило добавление комплекта подъемного насоса на 150 галлонов в час. Двигатель не только работал тише, но и набирал значительную мощность на большой скорости (554 об / ч). Давление поддерживалось на постоянном уровне 22K, и двигатель вернулся к нормальной работе на полную мощность.

Большинство насосов обеспечивают постоянный поток топлива при постоянном давлении в двигатель. При низкой потребности не все топливо может быть использовано двигателем, поэтому необходимо установить возврат в бак. Неиспользованное топливо направляется по небольшому шлангу обратно в заправочную горловину грузовика, где оно рециркулируется в баке.

FAQ — Топливные насосы EFI

1.) Я ищу топливный насос Aeromotive EFI для моего нового двигателя, но мне нужно 60 фунтов на квадратный дюйм, и в вашем каталоге (или на вашем веб-сайте) указано, что он выдает только 43 фунта на квадратный дюйм, у вас есть насос с большим давлением?

Люди часто заблуждаются, полагая, что конкретный топливный насос «создает» определенное давление.Хотя некоторые насосы имеют ограниченное давление, что мы вскоре объясним, на самом деле никакой насос не «нагнетает» давление. Что делает насос, так это гасит поток. И что ему нужно сделать, так это произвести необходимый поток, когда он будет доведен до требуемого давления для конкретного применения.

Все электронасосы имеют кривую расхода, которая изменяется в зависимости от давления. Не все компании рекламируют или предоставляют эти кривые расхода, что может сделать практически невозможным оценку топливного насоса для конкретного применения.В Aeromotive мы понимаем, что кривая расхода насоса в диапазоне давлений показывает важные рабочие характеристики любого насоса, поэтому, когда мы указываем расход, мы всегда указываем испытательное давление и напряжение. Когда вы читаете, сколько A1000 течет при 43 фунтах на квадратный дюйм, вы получаете важную информацию, которая находится в надлежащем контексте; сколько потока при каком давлении. Это не означает, что насос «нагнетает» 43 фунта на квадратный дюйм.

В основном используются два типа насосов в автомобильных топливных системах: те, которые ограничены по давлению, для использования со статическим (не байпасным) регулятором, и те, которые не ограничены по давлению, и которые должны использоваться с динамическим (байпасным) ) регулятор.Насосы с ограничением давления почти все предназначены для использования с карбюраторными двигателями, а регуляторы карбюратора статического типа разработаны для давления от 3 до 12 фунтов на квадратный дюйм. Что происходит с таким насосом, так это то, что когда поток блокируется регулятором, чтобы предотвратить переполнение карбюратора высоким давлением, в насосе открывается байпас, чтобы предотвратить слишком высокое давление в насосе.

Некоторые насосы с ограничением давления имеют внутренний байпас (обычно нижний поток, уличный / полосовой), который открывается примерно на 15 фунтов на квадратный дюйм и позволяет потоку из выпускного порта проходить через внутренний проход в насосе обратно к входному отверстию.Насосы с более высоким расходом, предназначенные для гонок, часто имеют внешний байпас, настроенный на 18-24 фунт / кв. Здесь обратная линия проходит от топливного насоса обратно к верхней части топливного бака, так что при достижении максимального давления избыточный поток возвращается в бак. В любом случае эти насосы не предназначены для использования в системах EFI высокого давления, даже если байпас заблокирован для повышения давления.

Многие насосы Aeromotive относятся к типу «без ограничения давления», в том числе, например, A1000. Этот тип насоса не может использоваться со статическим (не байпасным) регулятором, потому что полное прекращение потока, исходящего из насоса, приведет к увеличению давления топлива до 100 фунтов на квадратный дюйм или выше, что приведет к чрезмерному потреблению тока и нагреву и потенциально повредит насос навсегда. .Насосы без ограничения давления могут работать как в системах с низким (карбюраторным), так и с высоким (EFI) давлением, если используется соответствующий байпасный регулятор.

Регулируемые байпасные регуляторы

Aeromotive доступны для использования с насосами без ограничения давления, которые могут управлять потоком от малых до больших насосов, и которые могут создавать и поддерживать давление от карбюратора до уровней EFI. Большинство регуляторов EFI регулируются от 30 до 70 фунтов на квадратный дюйм, поэтому те, кто хочет 43 фунта на квадратный дюйм для топливной рампы, смогут использовать ту же комбинацию насоса и регулятора, что и те, кто хочет 60 фунтов на квадратный дюйм.Просто убедитесь, что насос обеспечивает необходимый поток при нужном вам давлении.

2.) Я собираю новую комбинацию EFI, какой топливный насос мне нужен?

Выбор подходящего топливного насоса может показаться сложным и запутанным, но это не обязательно. Aeromotive — инжиниринговая компания, которая подходит к доставке топлива изощренно, но на удивление практично. В Aeromotive мы придерживаемся «насос-ориентированного» подхода к доставке топлива. Это означает, что мы оцениваем потребности наших клиентов в расходе топлива, включая его объем и давление.После того, как мы установили, что нам нужно, отправной точкой является разработка топливного насоса, который сможет удовлетворить эти требования к расходу и давлению.

Разработка нового насоса сама по себе является изнурительным процессом, который включает в себя создание прототипа и тестирование, затем еще одно прототипирование и тестирование, но как только мы узнаем, что можем поставить насос, который будет соответствовать поставленной цели и может быть переведен на долговечность и полевые испытания, мы начинаем параллельные усилия. разработать вспомогательные компоненты, необходимые для создания полной топливной системы вокруг этого насоса.Учитывается все, от предварительных и постфильтров до размеров портов и их фитингов. Мы также проектируем и разрабатываем специальный регулятор, который максимизирует эффективность этого насоса, позволяя покупателю извлекать все возможные унции доступного потока, поддерживая желаемое давление. В результате получается полная топливная система с особыми возможностями.

Что это значит для вас? Чтобы выбрать правильную систему подачи топлива, нужно гадать, и ЭТО значительно облегчит вашу жизнь.Все, что вам нужно сделать, это определить, какой насос будет соответствовать вашим требованиям. Отсюда система определяется и доступна либо под одним номером детали, либо с указанием отдельных компонентов, которые вам нужны, в нашем простом в использовании «Планировщике мощности Aeromotive». «Power Planner» доступен в нашем каталоге и на нашем веб-сайте www.aeromotiveinc.com. Вверху любой страницы просто нажмите ссылку «Power Planner» и еще одним щелчком выберите EFI Power Planner.

«Планировщик мощности» описывает топливные системы по очереди, начиная с самых низких комбинаций мощности и, при прокрутке вниз, охватывая приложения, способные увеличивать мощность в лошадиных силах.Вам нужно ответить на два основных вопроса: «Какова будет пиковая мощность двигателя?» И «Что потребуется топливной системе для давления топлива?», Включая базовое давление и опорное давление наддува, если это необходимо. Если вы не уверены в том, какую мощность ваш двигатель будет обеспечивать, существует множество журналов и интернет-форумов, где вы можете исследовать комбинации, похожие на те, которые вы создаете, которые уже были протестированы на динамометрическом стенде, чтобы прочно обосноваться приблизительный.

Хорошая идея быть в некотором роде оптимистичной при оценке мощности или, если вы предпочитаете, надстроить небольшое пространство для головы, просто чтобы убедиться, что вы полностью покрываете базы.Имейте в виду, что все рейтинги, предоставленные Aeromotive, основаны на мощности на маховике. Мощность на шине должна быть скорректирована до лошадиных сил на маховике. Можно допустить 15% потерь в трансмиссии, поэтому вы можете разделить заявленные значения мощности на колесах на 0,85, чтобы получить оценку маховика. Например, 500 WHP, разделенные на 0,85, равняются 588 FWHP.

Каждый топливный насос Aeromotive рассчитан на мощность в лошадиных силах на странице конкретного продукта в нашем каталоге и на нашем веб-сайте. Вы увидите несколько значений мощности в лошадиных силах, которые применимы к различным комбинациям двигателей, от безнаддувных до принудительных, а также к карбюраторным двигателям и двигателям с впрыском топлива, где данный насос способен поддерживать поток и давление для обоих.

Для получения более подробной информации о том, как точно рассчитать подачу топлива для поддержания мощности, см. Технический бюллетень Aeromotive TB-501 на сайте www.aeromotiveinc.com в разделе «Техническая помощь», раздел «Технический бюллетень».

3.) Примерно через 30 минут вождения давление топлива начинает падать, затем топливный насос становится громче и / или кажется, что он вообще перестает работать. Что случилось, у меня помпа не работает?

Возможно, у вас возникла паровая пробка EFI. Несмотря на то, что топливо рециркулирует через автомобиль, устраняя локальные горячие точки, переработанное топливо по-прежнему подвергается нагреву под капотом двигателя.Топливо в байпасной системе EFI медленно нагревается по мере его рециркуляции через шасси, топливную рампу, моторный отсек и, наконец, обратно в бак. Чем дольше работает двигатель EFI, тем выше может стать температура топливного бака. В отличие от более распространенной паровой пробки карбюратора, где топливо нагревается до кипения в поплавковом (ых) резервуаре (ах) или в топливопроводе (ах) под капотом, паровая пробка EFI часто возникает из-за горячего топлива в баке.

Чрезмерный шум насоса вместе с колебаниями или падением давления топлива часто указывает на то, что температура топлива достаточно высока, чтобы вызвать проблемы с обращением с горячим топливом.Сочетание высокой температуры топлива и низкого давления может привести к кавитации, при которой жидкое топливо превращается в пар. В топливной системе EFI обратного типа наиболее вероятным местом, где эти условия могут существовать в одном и том же месте в одно и то же время, является впускной канал топливного насоса. Как только начинается кавитация, она питается сама собой. Когда пар попадает в насос, он вытесняет жидкое топливо, необходимое для смазки механизма, позволяя металлу соприкасаться с металлом, создавая еще большее трение и нагрев. Как только насос начинает перегреваться, образуется полная паровая пробка.

Для предотвращения кавитации и паровой пробки крайне важны правильная конструкция и установка топливной системы. Убедитесь, что линии подачи и входные фильтры соответствуют требованиям к высокому потоку, низким ограничениям и содержатся в чистоте. В жаркие дни держите резервуар полным. Уменьшите скорость топливного насоса и скорость рециркуляции с помощью регулятора скорости топливного насоса в условиях низкой нагрузки, холостого хода и крейсерского режима. Тщательно проложите топливопроводы и спланируйте размещение компонентов, чтобы избежать перегрева выхлопных газов. Не упускайте из виду надлежащую вентиляцию бака, если вентиляционная линия или выпускной клапан не позволяют воздуху свободно перемещаться в обоих направлениях, проблемы с подачей топлива никогда не решатся полностью.Необходимо устранить любые условия, ограничивающие доступ насоса к топливу в баке.

Для получения более подробной информации о проблемах установки, которые могут привести к преждевременной кавитации, проблемам с горячим топливом и паровой пробке, см. Технические бюллетени Aeromotive TB-101, TB-102 и TB-802, которые можно найти на сайте www. aeromotiveinc.com в разделе «Техническая помощь», «Технический бюллетень».

4.) Мой бензонасос становится все громче и громче, теперь он вроде включается и выключается, или перегорает предохранитель бензонасоса, почему?

Первое, что нужно проверить в этой ситуации, — это пост-топливный фильтр.Убедитесь, что это подходящий фильтр Aeromotive и что он не забит. Постфильтр следует заменять не реже одного раза в год весной, незадолго до начала сезона эксплуатации. Также возможно, что в вашем топливном насосе наблюдается значительная кавитация, вызванная условиями, описанными в предыдущих разделах часто задаваемых вопросов., Или он был поврежден мусором. Если обычные шаги по обеспечению правильной установки не решают проблему, обратитесь в службу технической поддержки Aeromotive за помощью в диагностике проблемы и при необходимости обслуживания.Если ваша помпа нуждается в обслуживании или ремонте, потребуется RGA, поэтому обязательно позвоните перед отправкой.

Для получения более подробной информации о важности чистого, свободно протекающего выходного фильтра см. Технический бюллетень Aeromotive TB-102 на сайте www.aeromotiveinc.com в разделе «Техническая помощь», раздел «Технический бюллетень».

5.) Почему топливные насосы Aeromotive рассчитаны на большую мощность для двигателя без наддува, чем для двигателя с принудительным впуском?

Два фактора влияют на номинальную способность электрического топливного насоса поддерживать мощность в лошадиных силах: один — это максимальное давление, которое должен создать топливный насос, и два — это количество лошадиных сил, потребляемых любыми дополнительными устройствами двигателя перед маховиком.Более высокое давление топлива, создаваемое топливными системами «наддува», обычными для двигателей EFI с принудительной индукцией, заставляет электрические насосы замедляться при возрастающей нагрузке, уменьшая доступный объем топливного насоса. Двигатель с принудительным впуском также требует больше топлива для поддержки HP, развиваемой в цилиндре, но теряемой из-за работы, необходимой для приведения в действие компрессора, помогающего создавать дополнительную мощность.

Например, двигатели с наддувом потребляют л.с. для привода турбины через ремень. Турбонагнетатели улавливают тепло и поток выхлопных газов для привода компрессора, создавая так называемые «насосные потери», вызванные противодавлением выхлопных газов, воздействующим на поршень на такте выпуска.

Любой электрический топливный насос необходимо снизить для принудительной индукции, поскольку он будет поддерживать меньшую мощность маховика. Интересно отметить, что вещи не всегда такие, какими кажутся; если вы добавите обратно потерянное в компрессоре HP, насос фактически поддерживает ту же HP цилиндра для принудительной индукции, что и безнаддувный, только меньшее из того, что вырабатывается в цилиндре, остается измерять на маховике.

Для получения дополнительной информации о том, как точно компенсировать расход топлива с принудительной индукцией, см. Технический бюллетень Aeromotive TB-501 на сайте www.aeromotiveinc.com в разделе «Техническая помощь», «Технический бюллетень».

6.) Мне нужна топливная система, которая может работать при высоком базовом давлении топлива в диапазоне 70-120 фунтов на квадратный дюйм непрерывно. Какой электрический топливный насос и регулятор Aeromotive я могу использовать?

Это вопрос, который возникает время от времени, и первый ответ -; Ни один электрический топливный насос Aeromotive в настоящее время не подходит для непрерывной работы при давлении выше 70 фунтов на квадратный дюйм. Обратите внимание, я сказал, что «одиночный» топливный насос не подходит, мы подробнее остановимся на этом чуть позже.Существует несколько регуляторов байпаса Aeromotive EFI, которые будут поддерживать регулировку базового давления топлива в этом диапазоне, включая P / N 13113 для базового значения 50-90 PSI, а также P / N 13132, 13133 и 13134 с установленной пружиной 75-130 PSI. .

Реальный вопрос заключается в том, какой топливный насос может надежно поддерживать этот высокий диапазон рабочего давления при сохранении значительного расхода топлива. За исключением P / N 13134, все регуляторы, упомянутые выше, разработаны для использования с механическими топливными насосами Aeromotive (с ременным или шестигранным приводом).Когда такое высокое рабочее давление требуется для специального применения, механический топливный насос — безусловно, лучший выбор.

Недостаток привода насоса с электродвигателем заключается в том, что при повышении давления рабочая нагрузка увеличивается, а двигатель замедляется. По мере того, как двигатель замедляется, насос замедляется вместе с ним, что приводит к все меньшему и меньшему потоку, поскольку давление становится все выше и выше. Хотя можно построить электродвигатель, который при низком напряжении (12-16 вольт — ничто в мире электричества) способен поддерживать высокие обороты при высоком давлении, размер и вес, не говоря уже о чрезмерном потреблении тока двигателем. таким образом, сделайте идею в лучшем случае непрактичной.

Механический насос приводится в движение самим двигателем, он остается небольшим, легким и потребляет нулевой ток. На двигатель возлагается небольшая нагрузка, чтобы насос работал под высоким давлением, но при мощности 2–3 лошадиных сил это вряд ли существенно по сравнению с имеющейся мощностью двигателя. Конечно, двигатель не будет замедляться насосом при увеличении давления, поэтому топливный насос с механическим приводом может поддерживать высокие обороты при высоком давлении, что делает его чрезвычайно хорошим для создания и поддержания высокого потока.

Хорошо, лучше всего подходят механические насосы, но можно ли использовать электронасосы при сильно повышенном давлении? Да, , но , только если речь идет о насосах (множественное число). Это специальное приложение, требующее, чтобы два насоса с одинаковой пропускной способностью были подключены к системе определенным образом. Такой подход называют «последовательным» подключением. Из двух способов объединить несколько насосов в единую систему, использование насосов «последовательно» означает, что один насос питает другой, причем первый насос извлекает из резервуара и питает вход второго насоса.Другой подход к подключению нескольких насосов называется «параллельным», когда каждый насос имеет свою собственную подачу из бака, а выпускные отверстия объединяются в одну линию, которая затем питает двигатель.

Использование сантехнических насосов «последовательно» отличается от того, что они подключаются «параллельно». Сантехнические насосы «параллельно» создают систему, которая может обеспечивать комбинированный поток обоих насосов при любом давлении, но не забывайте, что при очень высоком давлении, которое может не иметь большого значения… При конечном давлении ноль умножить на два все равно ноль.Параллельный водопровод может быть очень ценным в системе, требующей значительного потока, но при нормальном давлении.

Если два насоса соединены последовательно, получается система, которая может обеспечивать такой же поток, как один насос, но при их комбинированном давлении. Другими словами, два идентичных насоса «последовательно» могут перекачивать объем, равный одному насосу, но при вдвое большем давлении. Сантехнические насосы «последовательно» — это средство сохранения потока при высоком давлении, работающее, чтобы компенсировать нормальное сокращение потока из-за высокого давления, замедляющего работу двигателя.Это имеет ограниченное значение в системах, работающих при нормальном давлении, но может оказаться очень полезным в ситуациях экстремального высокого давления.

Технический аспект этого включает знание того, как выбрать два насоса, которые вместе будут выполнять задачу обеспечения необходимого потока при требуемом давлении. Начнем с того, какой поток потребуется для поддержки двигателя и при каком давлении. Затем нам нужно проконсультироваться с кривыми расхода для различных насосов, которые могут быть объединены «последовательно», и выбрать насосы, которые будут совместимы.Наконец, мы должны знать, как предсказать, какие выбранные насосы могут работать при желаемом давлении. Следующий метод может предсказать приблизительный расход, доступный от двух последовательно включенных насосов при определенном давлении:

Чтобы найти объем потока, доступный от двух насосов, подключенных «последовательно», при желаемом давлении, найдите точку на кривой потока каждого насоса, где их объем равен. Обратите внимание на давление, при котором это происходит для каждого насоса. Сложите два давления вместе, сумма представляет собой давление, при котором объем потока, общий для обоих насосов, доступен, когда они объединены и «включены последовательно».

Желательно объединение двух насосов равного размера «последовательно», так как это упрощает расчет производительности. Например, возьмем два топливных насоса A1000 «последовательно», вы знаете, что у них одинаковая кривая потока (поток одинаков при любом давлении). Все, что нам нужно сделать, это просто разделить желаемое давление пополам и затем проверить кривую потока A1000. Например, если нам нужно 120 фунтов на квадратный дюйм, разделите на два, чтобы получить 60 фунтов на квадратный дюйм. Кривая расхода A1000 показывает 700 фунтов / час при 60 фунтах на квадратный дюйм. Для двигателя с принудительной индукцией возьмите BSFC равным 0.65, разделите расход 700 фунтов / час на 0,65, чтобы увидеть возможную мощность на маховике в 1077 л.с. (FWHP). Можно с уверенностью ожидать, что один A1000 будет поддерживать 1000 FWHP при 60 фунтах на квадратный дюйм, а два A1000, подключенные «последовательно», будут поддерживать 1000 FWHP при 120 фунтах на квадратный дюйм.

ПРЕДУПРЕЖДЕНИЕ. Объединение насосов «последовательно», которые имеют существенно разные кривые потока, не является хорошей идеей и, вероятно, создаст больше проблем, чем решит. Например, попытка заправить A1000 со штатным топливным насосом в баке приведет к голоданию и повреждению A1000.Хорошее практическое правило, позволяющее избежать проблем, — комбинировать насосы с перепадом расхода не более 10-20%.

Что такое топливоподкачивающий насос?

Обычно используется термин «подъемный насос», но большинство новичков не понимают, что он означает. Кому следует использовать подъемный насос? Когда он мне понадобится? В этой статье мы собираемся дать вам все важные детали, которые вам нужно знать о подъемном насосе, не становясь автомехаником .

Что такое подъемный насос?

Подъемный насос можно определить как насос низкого давления, основные функции которого заключаются в подаче топлива в насос высокого давления.В старых двигателях давление топлива направляется в топливный насос, где более высокое давление нагнетает его через форсунку. Для новых двигателей с электронным управлением ситуация немного отличается. Насос высокого давления создает соответствующее давление, которое затем передается на одну топливную рампу высокого давления. Здесь форсунки используются для регулирования событий впрыска.

В обоих сценариях насос высокого давления играет решающую роль в определении производительности двигателя.

Когда вам нужен подъемный насос?

В дизельном двигателе значительное падение давления топлива в насосе высокого давления может привести к серьезным проблемам.Самый очевидный из них — это массовая потеря мощности. Из-за потери мощности ТНВД не работает должным образом.

Бывают случаи, когда вам нужно получить больше мощности от вашего двигателя. Заводской топливный насос, фильтры и трубопроводы могут не справиться с этой задачей. Топливный насос может решить такую ​​проблему, поскольку он предоставляет альтернативный способ увеличения мощности двигателя без необходимости решать все проблемы двигателя отдельно.

Бесперебойная подача давления и эффективная технология отделения воды — вот некоторые из причин, по которым лифтовые компании защищают свою продукцию.Однако это может быть оспорено тем фактом, что некоторые подъемные насосы, особенно те, которые имеют высокое давление, также могут обеспечивать более высокую мощность.

Типы подъемных насосов

Существует два основных типа подъемных насосов; механические и электрические насосы. Механические насосы используются в старых приложениях OEM и имеют фиксированные давление и объем топлива. С другой стороны, давление и объем электронасосов можно регулировать. Вы можете регулировать насос для увеличения или уменьшения давления.

Что касается производительности, большинство покупателей выбирают подъемные насосы, предназначенные для работы с определенным бензином. Подъемные насосы для конкретных продуктов производят более высокое давление и удобны в использовании.

Модернизация подъемного насоса

Если вы хотите добиться лучших результатов от двигателя, вы можете обновить свой подъемный насос. Единственная проблема, которая может возникнуть у вас, — это выбрать размер подъемного насоса. Стоит ли покупать подъемный насос на 100 или 150 галлонов в час? Типичный грузовик с выхлопной системой, инжектором и даже с турбонаддувом может хорошо работать с подъемным насосом на 150 галлонов в час.Те, у кого есть форсунки большего размера, должны использовать подъемные насосы со скоростью более 150 галлонов в час.

Какой подъемный насос выбрать?

Выбор подъемного насоса — не сложный процесс. Это связано с тем, что большинство из них рассчитаны на бензин и могут работать с дизельным топливом. Перед покупкой помпы также следует проконсультироваться с производителем. Не стесняйтесь позвонить нам, если вам нужны наши рекомендации.

Насос прямого впрыска бензина

— Spectra Premium

Промышленное покрытие

В 2017 году 40% продаж новых автомобилей были представлены с использованием топливных насосов GDI Technology и GDI (прогнозируемые 6).7 миллионов новых автомобилей.

Аналитики прогнозируют, что эта доля увеличится: ожидается, что 49% новых автомобилей в 2020 году будут иметь бензиновый топливный насос с непосредственным впрыском.

Другие условия производителя для насосов GDI

Прямой впрыск бензина был впервые разработан в начале 20 века для истребителей, пока компания Mitsubishi не представила первый современный автомобильный GDI в 1996 году. С низкого уровня в 2,3 процента новых автомобилей в 2008 году использование насосов GDI быстро выросло и составляет более 40 процентов текущего рынка.

Spectra Premium предлагает лучшее послепродажное обслуживание топливных насосов высокого давления, хотя технология может иметь другое название в зависимости от исходного производителя:

Производитель Особые термины для бензиновых насосов прямого впрыска топлива
Тойота D4 с прямым впрыском
Фольксваген Стратифицированный впрыск топлива (FSI) / Стратифицированный впрыск топлива с турбонаддувом (TFSI)
Форд SCi (впрыск Smart Charge) / GTDI (прямой впрыск бензина с турбонаддувом)
BMW HPI (высокоточный впрыск) / CGI (впрыск заряженного бензина)
GM SIDI (Прямой впрыск искрового зажигания)
Mazda DISI (Искровое зажигание с прямым впрыском)

Распространенные симптомы отказа насоса GDI

  • Отсутствие обслуживания
  • Неправильное масло
  • Датчики давления и температуры
  • Низкое давление от неисправного соленоида
  • Утечки

Если не заменить поврежденный или неисправный топливный насос высокого давления, это может сократить общий срок службы двигателя и снизить экономию топлива.Кроме того, поскольку время впрыска будет некорректным, следует ожидать увеличения вредных выбросов, что может привести к выходу из строя каталитического нейтрализатора, если не принять меры вовремя.

Как это работает

Топливный насос высокого давления подает топливо под высоким давлением в системы прямого впрыска бензина (GDI). Насос с механическим приводом от кулачка распределительного вала обеспечивает рабочее давление от 30 до 250 бар или от 100 до 2900 фунтов на квадратный дюйм. Подробнее.

Важность замены

Если не заменить поврежденный или неисправный топливный насос высокого давления, это может сократить общий срок службы двигателя и снизить экономию топлива.Кроме того, поскольку время впрыска будет некорректным, следует ожидать увеличения вредных выбросов, что может привести к выходу из строя каталитического нейтрализатора, если не принять меры вовремя.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *