Бсз схема: Бесконтактная система зажигания (БСЗ)

Содержание

БЕСКОНТАКТНАЯ СИСТЕМА ЗАЖИГАНИЯ

Особенности устройства

На автомобилях может применяться два типа систем зажигания: бесконтактная (на карбюраторных двигателях) и система зажигания, входящая в комплекс системы впрыска топлива. В настоящей главе дана бесконтактная система зажигания, а другая описана в отдельном Руководстве по ремонту на систему распределенного впрыска топлива.

Рис. 7–19. Схема бесконтактной системы зажигания: 1 – катушка зажигания; 2 – датчик-распределитель зажигания; 3 – свечи зажигания;

4 – коммутатор; 5 – выключатель зажигания; А – к источникам питания

Бесконтактная система зажигания состоит из датчика-распределителя 2 (рис. 7–19) зажигания, коммутатора 4, катушки 1 зажигания, свечей 3 зажигания, выключателя 5 зажигания и проводов высокого напряжения. Цепь питания первичной обмотки катушки зажигания прерывается электронным коммутатором. Управляющие импульсы на коммутатор подаются от бесконтактного датчика, расположенного в датчике-распределителе 2 зажигания.

Датчик-распределитель зажигания – типа 40.3706 или 40.3706–01, четырехискровой, неэкранированный, с вакуумным и центробежным регуляторами опережения зажигания, со встроенным микроэлектронным датчиком управляющих импульсов.

Коммутатор – типа 3620.3734, или 76.3734, или RT1903, или PZE4022. Он преобразует управляющие импульсы датчика в импульсы тока в первичной обмотке катушки зажигания.

Катушка зажигания – типа 3122.3705 с замкнутым магнитопроводом, сухая или типа 8352.12 – маслонаполненная, герметизированная с разомкнутым магнитопроводом.

Свечи зажигания – типа FE65PR, или FE65CPR, или А17ДВР, или А17ДВРМ, или А17ДВРМ1 с помехоподавительными резисторами.

Выключатель зажигания – типа 2110–3704005 или KZ–881 с противоугонным запорным устройством, с блокировкой против повторного включения стартера без предварительного выключения зажигания, и с подсветкой гнезда.

ПРЕДУПРЕЖДЕНИЯ

На автомобиле применяется система зажигания высокой энергии с широким применением электроники. Поэтому, чтобы не получить травм и не вывести из строя электронные узлы, необходимо соблюдать следующие правила.

На работающем двигателе не касаться элементов системы зажигания (коммутатора, катушки, датчика-распределителя зажигания и высоковольтных проводов).

Не производить пуск двигателя с помощью искрового зазора и не проверять работоспособность системы зажигания «на искру» между наконечниками проводов свечей зажигания и массой.

Не прокладывать провода низкого напряжения системы зажигания в одном жгуте с проводами высокого напряжения.

Следить за надежностью соединения с массой коммутатора через винты крепления. Это влияет на его бесперебойную работу.

При включенном зажигании не отсоединять провода от клемм аккумуляторной батареи и не отсоединять от коммутатора штепсельный разъем, так как при этом на отдельных  элементах его схемы может возникнуть повышенное напряжение и он будет поврежден.

Установка момента зажигания

Величина угла опережения зажигания указана в приложении 3.

Рис. 7–20. Метки для установки момента зажигания: 1 – шкала; 2 – метка на маховике

Для проверки на автомобиле момента зажигания имеется шкала 1 (рис. 7–20) в люке картера сцепления и метка 2 на маховике. Одно деление шкалы соответствует 1о поворота коленчатого вала. При совмещении метки на маховике со средним (длинным) делением шкалы поршни первого и четвертого цилиндров находятся в в.м.т.

Проверить и установить момент зажигания можно с помощью стробоскопа, действуя в следующем порядке:

– соедините зажим «плюс» стробоскопа с клеммой «плюс» аккумуляторной батареи, зажим массы – с клеммой «минус» аккумуляторной батареи, а зажим датчика стробоскопа присоедините к проводу высокого напряжения 1-го цилиндра;

– запустите двигатель и направьте мигающий поток света стробоскопа в люк картера сцепления; если момент зажигания установлен правильно, то при холостом ходе двигателя метка на маховике должна находиться в положении, соответствующем данным приложения 3.

Для регулировки момента зажигания остановите двигатель, ослабьте гайки крепления датчика-распределителя зажигания и поверните его на необходимый угол. Для увеличения угла опережения зажигания корпус датчика-распределителя следует повернуть по часовой стрелке, а для уменьшения – против часовой стрелки (если смотреть со стороны крышки датчика-распределителя зажигания). Затяните гайки крепления и снова проверьте установку момента зажигания.

Рис. 2–21. Держатель заднего сальника коленчатого вала. Стрелками показаны выступы для центрирования держателя относительно фланца коленчатого вала

Для удобства регулировки момента зажигания на фланце датчика-распределителя зажигания имеются деления и знаки «+» и «–», а на корпусе вспомогательных агрегатов – установочный выступ (рис. 2–21). Одно деление на фланце соответствует восьми градусам поворота коленчатого вала.

Если имеется диагностический стенд с осциллоскопом, то с его помощью тоже можно легко проверить установку момента зажигания, руководствуясь инструкцией по эксплуатации стенда.

Проверка приборов зажигания на стенде

Датчик-распределитель зажигания

Проверка работы. Установите датчик-распределитель зажигания на контрольно-испытательный стенд для проверки электрических приборов и соедините его с электродвигателем, имеющим регулируемую частоту вращения.

Соедините выводы датчика-распределителя зажигания с катушкой зажигания, с коммутатором и с аккумуляторной батареей стенда аналогично схеме системы зажигания автомобиля. Четыре клеммы крышки соедините с искровыми разрядниками, зазор между электродами которых регулируется.

Установите зазор 5 мм между электродами разрядников, включите электродвигатель стенда и вращайте валик датчика-распределителя несколько минут по часовой стрелке с частотой 2000 мин-1. Затем увеличьте зазор между электродами до 10 мм и следите, нет ли внутренних разрядов в датчике-распределителе. Они выявляются по звуку или по ослаблению и перебою искрения на разряднике испытательного стенда.

Во время работы датчик-распределитель зажигания не должен производить шума при любой частоте вращения валика.

Рис. 7–22. Схема для снятия характеристик датчика-распределителя зажигания на стенде: 1 – коммутатор; 2 – датчик-распределитель зажигания; А – к клемме «плюс» стенда; В – к клемме «прерыватель» стенда

Снятие характеристик автоматического опережения зажигания.

Установите датчик-распределитель зажигания на стенд, соедините его выводы с выводами «3», «5» и «6» коммутатора 1 (рис. 7–22) стенда. Вывод «4» коммутатора соедините с клеммой «плюс» стенда, а вывод «1» – с клеммой «прерыватель» стенда. Установите зазор 7 мм между электродами разрядника.

Включите электродвигатель стенда и вращайте валик датчика-распределителя зажигания с частотой 500–600 мин-1. По градуированному диску стенда отметьте значение в градусах, при котором наблюдается одно из четырех искрений.

Рис. 7–23. Характеристика центробежного регулятора датчика-распределителя зажигания: А – угол опережения зажигания, град; n – частота вращения валика датчика-распределителя зажигания, мин –1

Повышая ступенчато частоту вращения на 200–300 мин-1, определяйте по диску число градусов опережения зажигания, соответствующее частоте вращения валика датчика-распределителя зажигания. Полученную характеристику центробежного регулятора опережения зажигания сопоставьте с характеристикой на

рис. 7–23.

Если характеристика отличается от приведенной на рисунке, то ее можно привести в норму подгибанием стоек пружин грузиков центробежного регулятора. До 1250 мин-1 – подгибайте стойку тонкой пружины, а свыше 1250 мин-1 – толстой. Для уменьшения угла увеличивайте натяжение пружин, а для увеличения – уменьшайте.

Для снятия характеристики вакуумного регулятора опережения зажигания соедините штуцер вакуумного регулятора с вакуумным насосом стенда.

Включите электродвигатель стенда и вращайте валик датчика-распредели-теля зажигания с частотой 1000 мин-1. По градуированному диску отметьте значение в градусах, при котором происходит одно из четырех искрений.

Рис. 7–24. Характеристика вакуумного регулятора датчика-распределителя зажигания:

А – угол опережения зажигания, град; Р – разрежение, гПа (мм рт. ст.)

Плавно увеличивая разрежение, через каждые 26,7 гПа (20 мм рт. ст.) отмечайте число градусов опережения зажигания относительно первоначального значения. Полученную характеристику сравните с характеристикой на рис. 7–24.

Обратите внимание на четкость возврата в исходное положение после снятия вакуума пластины, на которой закреплен бесконтактный датчик.

Проверка бесконтактного датчика. С выхода датчика снимается напряжение, если в его зазоре находится стальной экран. Если экрана в зазоре нет, то напряжение на выходе датчика близко к нулю.

Рис. 7–25. Схема для проверки бесконтактного датчика на снятом датчике-распределителе зажигания: 1 – датчик-распределитель зажигания; 2 – резистор 2 кОм; 3 – вольтметр с пределом шкалы не менее 15 В и внутренним сопротивлением не менее 100 кОм; 4 – штепсельный разъем, присоединяемый к датчику-распределителю зажигания

На снятом с двигателя датчике-распределителе зажигания датчик можно проверить по схеме, приведенной на рис. 7–25, при напряжении питания 8–14 В.

Медленно вращая валик датчика-распределителя зажигания, измерьте вольтметром напряжение на выходе датчика. Оно должно резко меняться от минимального (не более 0,4 В) до максимального, которое должно быть не более чем на 3 В меньше напряжения питания.

Рис. 7–26. Схема для проверки бесконтактного датчика на автомобиле: 1 – датчик-распределитель зажигания; 2 – переходный разъем с вольтметром, имеющим предел шкалы не менее 15 В и внутреннее сопротивление не менее 100 кОм; 3 – штепсельный разъем, присоединяемый к  датчику-распределителю зажигания; 4 – жгут проводов автомобиля

На автомобиле датчик можно проверить по схеме, приведенной на рис. 7–26. Между штепсельным разъемом датчика-распределителя зажигания и разъемом жгута проводов подключается переходной разъем 2 с вольтметром. Включите зажигание и, медленно поворачивая специальным ключом коленчатый вал, вольтметром проверьте напряжение на выходе датчика. Оно должно быть в указанных выше пределах.

Катушка зажигания

Проверьте сопротивление обмоток и сопротивление изоляции.

У катушки зажигания 3122.3705  сопротивление первичной обмотки при 25 С должно быть (0,43±0,04) Ом, а вторичной обмотки (4,08±0,4) кОм. У катушки зажигания 8352.12 соответственно – (0,42±0,05) Ом и (5±1) кОм.

Сопротивление изоляции на массу – не менее 50 МОм.

Коммутатор

Рис. 7–27. Схема для проверки коммутатора: 1 – разрядник; 2 – катушка зажигания; 3 – коммутатор; 4 – резистор 0,01 Ом ±1%, не менее 20 Вт; А – к генератору прямоугольных импульсов; В – к осциллографу

Коммутатор проверяется с помощью осциллографа и генератора прямоугольных импульсов по схеме, приведенной на рис. 7–27. Выходное сопротивление генератора должно быть 100–500 Ом. Осциллограф желательно применять двухканальный. 1-й канал – для импульсов генератора, а 2-й – для импульсов коммутатора.

Рис. 7–28. Форма импульсов на экране осциллографа: I – импульсы коммутатора; II – импульсы генератора; А – время накопления тока;

В – максимальная величина тока

На клеммы «3» и «6» коммутатора подаются прямоугольные импульсы, имитирующие импульсы датчика. Частота импульсов от 3,33 до 233 Гц, а скважность (отношение периода к длительности импульса Т/Ти) равна 3. Максимальное напряжение Umax – 10 В, а минимальное Umin – не более 0,4 В (рис. 7–28, II). У исправного коммутатора форма импульсов тока должна соответствовать осциллограмме I.

Для коммутаторов 3620.3734 и 76.3734 при напряжении питания (13,5±0,5) В величина силы тока (В) должна быть 7,5–8,5 А. Время накопления тока (А) не нормируется.

Для коммутатора RT1903 при напряжении питания (13,5±0,2) В и частоте импульсов 25 Гц сила тока составляет 7–8 А, а время накопления тока 5,5–11,5 мс.

Для коммутатора PZE4022 при напряжении питания (14±0,3) В и частоте 25 Гц величина силы тока составляет 7,3–7,7 А, а время накопления тока не нормируется.

Если форма импульсов коммутатора искажена, то могут быть перебои с искрообразованием или оно может происходить с запаздыванием. Двигатель будет перегреваться и не развивать номинальной мощности.

Свечи зажигания

Свечи зажигания с нагаром или загрязненные перед испытанием очистите на специальной установке струей песка и продуйте сжатым воздухом. Если нагар светло-коричневого цвета, то его можно  не удалять, так как он появляется на исправном двигателе и не нарушает работы системы зажигания.

После очистки осмотрите свечи и отрегулируйте зазор между электродами. Если на изоляторе свечи имеются сколы, трещины или повреждена приварка бокового электрода, то свечу замените.

Зазор (0,7–0,8 мм) между электродами свечи проверяйте круглым проволочным щупом. Проверять зазор плоским щупом нельзя, так как при этом не учитывается  выемка на боковом электроде, которая образуется при работе свечи. Зазор регулируйте подгибанием только бокового электрода свечи.

Испытание на герметичность. Вверните свечу в соответствующее гнездо на стенде и затяните динамометрическим ключом моментом 31,4–39,2 Н·м (3,2–4 кгс·м). Создайте в камере стенда давление 2 МПа (20 кгс/см2).

Накапайте из масленки на свечу несколько капель масла или керосина; если герметичность нарушена, то будут выходить пузырьки воздуха, обычно между изолятором и металлическим корпусом свечи.

Электрическое испытание. Вверните свечу в гнездо на стенде и затяните указанным выше моментом. Отрегулируйте зазор между электродами разрядника на 12 мм, что соответствует напряжению 18 кВ, а затем насосом создайте давление 0,6 МПа (6 кгс/см2).

Установите наконечник провода высокого напряжения на свечу и подайте на нее импульсы высокого напряжения.

Если в окуляре стенда наблюдается полноценная искра, то свеча считается отличной.

Если искрение происходит между электродами разрядника, то  следует понизить давление в приборе и проверить, при каком давлении наступает искрообразование между электродами свечи. Если оно начинается при давлении ниже 0,3 МПа (3 кгс/см2), то  свеча – дефектная.

Допускается несколько искрений на разряднике; если искрообразование отсутствует на свече и на разряднике, то надо полагать, что на изоляторе свечи имеются трещины и что разряд происходит внутри, между массой и электродами. Такая свеча выбраковывается.

Выключатель зажигания

Рис. 7–29. Схема соединений выключателя зажигания (при вставленном ключе). У выключателя зажигания KZ–881 вместо лампы накаливания применяется светодиод

У выключателя зажигания проверяется правильность замыкания контактов при различных положениях ключа (табл. 7–5), и работа противоугонного устройства. Напряжение от аккумуляторной батареи и генератора подводится к контакту «30» (рис. 7–29).

Таблица 7–5

Включаемые цепи при различных положениях ключа

Запорный стержень противоугонного устройства должен выдвигаться, если ключ установить в положение 0 (выключено) и вынуть из замка. Запорный стержень должен утапливаться после поворота ключа из положения 0 (выключено) в положение I (зажигание). Ключ должен выниматься из замка только в положении 0.

Блокировочное устройство против повторного включения стартера не должно допускать повторный поворот ключа из положения I (зажигание) в положение II (стартер). Такой поворот должен быть возможен только после предварительного возвращения ключа в положение 0 (выключено).

Контакты микровыключателя должны быть разомкнуты при извлеченном ключе в положении 0 (выключено) и замкнуты при вставленном ключе во всех положениях.

Проверка элементов для подавления радиопомех

К элементам для подавления радиопомех относятся:

– резистор в роторе датчика-распределителя зажигания. Величина сопротивления резистора 1 кОм;

– провода высокого напряжения с распределенным сопротивлением (2550±270) Ом/м;

– резисторы величиной 4–10 кОм в свечах зажигания;

– конденсатор емкостью 2,2 мкФ, расположенный в генераторе.

Исправность проводов и резисторов проверяется омметром. Проверка конденсатора описана в подразделе «Генератор».

Ремонт датчика-распределителя зажигания

Снятие.

Затормозите автомобиль стояночным тормозом и отсоедините провод от клеммы «минус» аккумуляторной батареи.

Выньте заглушку из смотрового люка картера сцепления. Вращая коленчатый вал за болт крепления шкива, поверните его до совмещения метки на маховике со средним делением шкалы (см. рис. 7–20).

Отсоедините от датчика-распределителя зажигания провода и вакуумный шланг. Отверните гайки крепления, снимите кронштейн крепления высоковольтных проводов и датчик-распределитель зажигания.

Установка.

Валик датчика-распределителя зажигания соединяется с хвостовиком распределительного вала только в одном положении. Поэтому перед установкой поверните валик датчика-распределителя зажигания в такое положение, чтобы кулачки муфты валика находились против пазов распределительного вала.

Рис. 7–21. Установка датчика-распределителя зажигания. Стрелкой показан установочный выступ на корпусе вспомогательных агрегатов

Смажьте моторным маслом и наденьте на фланец датчика-распределителя зажигания уплотнительное кольцо. Установите датчик-распределитель зажигания на корпус вспомогательных агрегатов в таком положении, чтобы среднее деление на фланце датчика-распределителя зажигания находилось против установочного выступа на корпусе вспомогательных агрегатов (см. рис. 7–21). Установите кронштейн крепления проводов высокого напряжения. Закрепите кронштейн и датчик-распределитель зажигания гайками.

Присоедините к датчику-распределителю зажигания провода и вакуумный шланг.

Проверьте и отрегулируйте момент зажигания.

Разборка. Для замены каких-либо деталей разборку производите в следующем порядке:

Рис. 7–30. Детали датчика-распределителя зажигания: 1 – муфта; 2 – корпус; 3 – вакуумный регулятор; 4 – центробежный регулятор; 5 – бесконтактный датчик; 6 – опорная пластина датчика с подшипником; 7 – держатель переднего подшипника валика; 8 – крышка; 9 – ротор; 10 – защитный экран; 11 – держатель переднего подшипника валика в сборе с опорной пластиной датчика; 12 – шайба крепления проводов; 13 – ведомая пластина  центробежного регулятора с экраном; 14 – валик с ведущей пластиной центробежного регулятора; 15 – грузики; 16 – сальник

– снимите крышку 8 (рис. 7–30), ротор 9 и защитный экран 10;

– отсоедините тягу вакуумного регулятора 3 от опорной пластины 6 датчика, отверните винты крепления и снимите вакуумный регулятор;

– отверните винты крепления и снимите опорную пластину 6 в сборе с датчиком 5 и держателем 7;

– снимите пружину с муфты 1, удалите штифт и снимите с валика муфту и регулировочные шайбы;

– выньте из корпуса 2 валик с центробежным регулятором 4 и шайбами.

Сборка -

производится в порядке, обратном разборке. При сборке необходимо обеспечить подбором регулировочных шайб осевой свободный ход валика не более 0,35 мм.

Бесконтактная система зажигания

Бесконтактная система зажигания появилась благодаря развитию контактно-транзисторной системы. Отличие бесконтактной системы зажигания состоит замене контактного прерывателя на бесконтактный датчик.

Преимущества бесконтактной системы зажигания

Использование бесконтактной системы зажигания на автомобиле позволило повысить мощность, добиться более качественного сгорания горючей смеси, что не только позволило снизить расход, но и уменьшить выброс вредных веществ в атмосферу.

Устройство бесконтактной системы зажигания

besskontakt1

1 - Свечи зажигания; 2 - датчик-распределитель; 3 – распределитель; 4 - датчик импульсов; 5 – коммутатор; 6 – катушка зажигания; 7 - монтажный блок; 8 - реле зажигания; 9 - выключатель зажигания; А - к клемме генератора.

Бесконтактная система состоит из следующих элементов:

  • источник питания;
  • выключатель зажигания;
  • датчик импульсов;
  • транзисторный коммутатор; 
  • катушка зажигания;
  • распределитель;
  • свечи зажигания.

Общее устройство бесконтактной системы зажигания напоминает строение контактной системы зажигания. Распределитель соединяется со свечами и катушкой зажигания при помощи высоковольтных проводов. Также в бесконтактной системе имеется датчик импульсов и транзисторный коммутатор.

Датчик импульсов служит для создания электро- импульсов низкого напряжения. Различают несколько датчиков импульсов: датчик Холла, индуктивный датчик и оптический.

В бесконтактной системе зажигания свое применение нашел датчик Холла (где под воздействием магнитного поля возникает поперечное напряжение в пластине проводника). Датчик Холла имеет не сложную конструкцию и состоит из постоянного магнита, полупроводниковой пластины, микросхемы и обтюратора (стального экрана).

В стальном экране имеется отверстие, через которое датчик пропускает магнитное поле, вследствие чего в полупроводниковой пластине возникает напряжение. Стальной экран, в свою очередь, не пропускает магнитное поле, и напряжение на полупроводниковой пластине не возникает. Такое своеобразное чередование прорезей в стальном экране содействует созданию импульсов низкого напряжения.

Датчик распределитель - это устройство, в котором объединены датчик импульсов с распределителем. Датчик-распределитель напоминает прерыватель-распределитель, и также как он приводится в действие от коленчатого вала.

Транзисторный коммутатор предназначен для прерывания тока в первичной обмотке катушки зажигания в моменты сигналов датчика импульсов. Прерывание тока происходит за счет срабатывания выходного транзистора.

Как работает бесконтактная система зажигания

Датчик-распределитель приводится в действие от вращения коленчатого вала, формируя импульсы низкого напряжения, которые передает на транзисторный коммутатор. Коммутатор, в свою очередь создает импульсы тока в первичной обмотке катушки зажигания. Когда ток прерывается, индуцируется ток высокого напряжения во вторичной обмотке катушки зажигания, после чего ток высокого напряжения подается на центральный контакт распределителя. В зависимости от порядка работы цилиндров двигателя ток высокого напряжения распределяется по проводам высокого напряжения на свечи зажигания. Свечи зажигания осуществляют воспламенение горючей смеси.

Когда число оборотов коленчатого вала растет, за регулировку угла опережения зажигания отвечает центробежный регулятор опережения зажигания. При изменении режимов работы двигателя регулирование угла опережения зажигания производится вакуумным регулятором опережения зажигания.

Принцип действия бесконтактной системы зажигания

принцип действия системы зажиганияРассмотрим принцип действия бесконтактной системы зажигания на примере системы зажигания автомобилей ВАЗ 2108, 2109, 21099. Определим, откуда берется искра для поджига топливной смеси в камере сгорания и почему она проскакивает своевременно для каждого цилиндра.



Бесконтактная система зажигания автомобилей ВАЗ 2108, 2109, 21099 включает в себя катушку зажигания, свечи зажигания, высоковольтные провода (бронепровода), трамблер с распределителем зажигания, датчиками-регуляторами опережения зажигания (центробежным и вакуумным) и датчиком Холла, также коммутатор и провода низкого напряжения.

Схема бесконтактной системы зажигания автомобилей ВАЗ 2108, 2109, 21099

схемаСхема бесконтактной системы зажигания автомобилей ВАЗ 2108, 2109, 21099

Откуда поступает ток в систему зажигания?

Электрический ток в систему зажигания поступает с вывода «30» генератора, через монтажный блок предохранителей и реле, замок зажигания, реле зажигания и далее на вывод «Б» катушки зажигания. Система запитывается после поворота ключа в замке зажигания.

Принцип действия бесконтактной системы зажигания

— При работе двигателя вращается вал распределителя зажигания (трамблера). В работу вступает датчик Холла. Стальной круглый экран с четырьмя прорезями на валу трамблера, вращаясь, проходит через зазор этого датчика. Когда проходит прорезь экрана, напряжение отдаваемое датчиком ниже бортового на 3 В или равно ему, когда зубец экрана, напряжение падает практически до нуля. Прохождение каждого из четырех зубцов соответствует такту сжатия и моменту зажигания в одном из цилиндров двигателя.

принцип действия центробежного регулятора

— Далее в работу вступает коммутатор. Свои прерывистые импульсы датчик Холла подает на вывод «6» коммутатора, а тот в свою очередь подает импульс на первичную обмотку катушки зажигания (вывод «К»).

— Теперь работает катушка зажигания. В момент прерывания электрического тока (зубец экрана проходит через зазор датчика Холла) магнитное поле в катушке зажигания резко сжимается и, пересекая витки обмотки, производит ЭДС порядка 22-25 кВ (ток высокого напряжения).

— Работа распределителя зажигания. Ток высокого напряжения по центральному бронепроводу поступает на центральный вывод крышки трамблера и далее на «бегунок»-распределитель зажигания, который вращаясь, раздает ток высокого напряжения по четырем клеммам крышки.

— Работа свечей зажигания. По высоковольтным проводам ток высокого напряжения поступает к свечам зажигания. Между их электродами проскакивает искра, воспламеняющая топливную смесь в цилиндрах двигателя.

Чтобы добиться от двигателя максимальной мощности необходимо воспламенять смесь искрой несколько раньше прихода поршня в верхнюю мертвую точку (ВМТ). Для этого регулируют угол опережения зажигания вращением трамблера в ту или иную сторону. При холостых оборотах двигателя 750-800 об/мин угол опережения зажигания, например для двигателя 21083 работающего на 92-м бензине должен составлять 4±1º (подробнее см. «Установка угла опережения зажигания на ВАЗ 2108, 2109, 21099»).

Примечания и дополнения

— При работе двигателя на высоких оборотах необходим еще более ранний угол опережения зажигания. Здесь помогает центробежный регулятор опережения зажигания, который за счет расхождения своих грузиков от центробежной силы при повышении оборотов вращения оси трамблера смещает пластину с экраном. Она раньше проходит через зазор в датчике Холла, импульс поступает на коммутатор с некоторым опережением и соответственно зажигание становится раньше (подробнее см. «Центробежный регулятор опережения зажигания»).

грузики расходятся при вращенииРабота центробежного регулятора опережения зажигания автомобилей ВАЗ 2108, 2109, 21099

— При движении с нагрузкой (например, в гору) помогает вакуумный регулятор опережения зажигания. Он работает по такому же принципу, как и центробежный регулятор. Смещает пластину с экраном для опережения угла, но за счет разрежения возникающего за дроссельной заслонкой после нажатия на педаль «газа» (подробнее см. «Вакуумный регулятор опережения зажигания»).

устройство вакуумного регулятораВакуумный регулятор опережения зажигания автомобилей ВАЗ 2108, 2109, 21099

Еще статьи по системе зажигания

— Пропала искра на свечах зажигания, причины

— Потеря мощности и приемистости карбюраторного двигателя (причины связанные с системой зажигания)

— Карбюраторный двигатель не запускается (причины связанные с системой зажигания)

— Схема бесконтактной системы зажигания автомобилей ВАЗ 2104, 2105, 2107

— Проверка датчика Холла

Бесконтактное электронное зажигание: схема подключения

Большая часть хозяев автомобилей производства Волжского автомобильного завода, сталкиваются с проблемами, обусловленными процессом «зажигания» транспортного средства. Необходимо отметить, что чаще всего данная проблема возникает в тех моделях авто, которые относятся к «классике». Несмотря на хорошо проработанную конструкцию таких автомобилей, они имеют и один «минус». Здесь идет речь, про группу прерывателя, имеющую одновременно несколько недостатков. Именно они способствуют тому, что в процессе зажигания возникают определенные проблемы. В том случае если вы являетесь владельцем «классического» ВАЗа и сталкиваетесь с вопросом регулярного ремонта системы зажигания на своем автомобиле, то рекомендуется задуматься над тем, чтобы установить в автомобиль бесконтактное электронное зажигание.

Стоит отметить, что установка бесконтактного зажигания на ВАЗ позволяет решить массу проблем.

В чем состоит преимущество установки бесконтактного зажигания

Необходимо отметить, что осуществить замену заводской системы на бесконтактную, можно за минимальное количество денег и времени. К тому же, водитель больше не будет сталкиваться с поломками данного характера и получит массу преимуществ. Прежде всего, в данном случае идет речь про хороший уровень динамичности авто, а также простоту запуска мотора, даже при сложных погодных условиях, к примеру, в зимний период времени.

Бесконтактное электронное зажигание для ВАЗБесконтактное электронное зажигание для ВАЗ

Чем отличие электронного зажигания на ВАЗ от «родного»

По сравнению с «родным», установка электронного зажигания имеет определенные отличия. Для обеспечения замыкания, а также размыкания цепи должно использоваться закрытие, а также открытие выходного транзистора. Подобная конструкция позволяет повысить уровень напряжения в свечах. Нельзя не сказать и про то, что подобная конструкция позволяет напряжению в автомобильных свечах не снижаться при низких оборотах мотора. Это положительно влияет на процесс запуска двигателя в условиях, которые являются неблагоприятными для его запуска.

Нельзя не сказать и про то, что несмотря на схожесть «родной» системы зажигания с электронным зажиганием ВАЗ, они имеют одинаковое количество проводов. Именно по этой причине, процедура подключения должна выполняться максимально верно. В противном случае может произойти ситуация, когда автомобиль просто-напросто «не заведется».

Система на «классике» состоит из пяти составляющих. К ним относится:

  1.  Трамблер.
  2.  Устройство, выполняющее роль коммутатора.
  3.  Катушка, которая относится к зажигательной системе.
  4.  Провода.
  5.  Система автомобильных свечей, которые предназначаются для искры.

Какие инструменты нужны для установки бесконтактного зажигания

Для того чтобы выполнить данную процедуру успешно, требуется использование определенных инструментов. Здесь идет речь про:

  1.  Гаечные ключи.
  2.  Отвертки крестового типа.
  3.  Дрель, а также сверло по металлу.
  4.  Саморезы.

Как установить электронное зажигание: алгоритм действий

В целом, если человеком будет подробно изучена схема подключения электронного зажигания, то каких-либо сложностей при выполнении работ не возникнет. Безусловно, в этом вопросе рекомендуется иметь опыт в вопросе ремонта и модернизации своего автомобиля.

Итак, установка производится только после того, как была выполнена процедура регулировки трамблера.

Схема бесконтактного электронного зажигания

Алгоритм действий следующий:

  1.  Изначально осуществляется демонтаж крышки трамблера.
  2.  Далее, мастеру нужно снять электропровода, которые размещены на крышке.
  3.  После этого выставляется направление резистора.
  4.  Далее выполняется отключение проводов, соединяющих трамблер и катушку. При помощи ключа выкручивается гайка фиксирующая трамблер и производятся работы по демонтажу.
  5.  После этого необходимо выполнить установку нового трамблера.
  6.  Как только он был установлен, его необходимо закрепить.
  7.  Далее выполняется подсоединение электрических проводов.
  8.  После выполняется замена катушек, так как «родные» не подходят к тем, которые используются на системе электрического типа.
  9.  На финальном этапе производится монтаж коммутатора и проверяется правильность подключения проводов.
  10.  Как только вы убедились в правильности выполнения работы, необходимо установить защитную крышку.

Как гарантированно выполнить процедуру верно

Нередко, у владельцев «классических» автомобилей ВАЗ, которые решили самостоятельно выполнить установку и регулировку бесконтактного зажигания, возникают определенные вопросы, которые касаются выполнения этой процедуры. Это объясняется нехваткой опыта в данном вопросе. Именно поэтому перед тем как осуществить процедуру демонтажа «родной» системы, а послу установку бесконтактной, следует изучить схему подключения бесконтактного зажигания. В том случае если пренебречь данной процедурой, то скорее всего, у вас возникнут сложности еще на этапе выполнения демонтажа старой системы. В худшей же ситуации, может произойти то, что определенные технические узлы просто-напросто будут повреждены и ремонт будет стоить достаточно дорого.

Именно поэтому, если вы не уверены в том, что установка и настройка бесконтактного зажигания может быть выполнена вами самостоятельно, рекомендуется обратиться за помощью к профессиональным мастерам, специализирующимся на этом вопросе. Стоит сказать, что на сегодняшний день услуги по установке подобных систем являются распространенными и, как правило, предоставляются в каждом сервисном центре. При этом в данном вопросе также необходимо быть предельно внимательным.

Стоит признать, что «классические» автомобили ВАЗ являются уже устаревшими и с вопросом установки системы зажигания обращаются все реже. Поэтому вы можете столкнуться с ситуацией, когда мастер длительное время работающий на СТО, никогда ранее не сталкивался с этой процедурой.

Отметим, что при поиске специалистов рекомендуется отдавать предпочтение в пользу тех которые имеют опыт работы и знают, как правильно выполнять процедуру, чтобы авто работало как нужно. При правильно выполненной работе, вы сразу же заметите, что автомобиль стал без проблем заводиться в холодное время года, а расход бензина в значительной степени сократился.

Установка бесконтактного зажигания – это максимально верное решение, которое позволит сделать работу транспортного средства лучше, а также поспособствовать в экономии денежных средств на приобретении топлива для авто.

Facebook

Twitter

Вконтакте

Google+

Бесконтактные системы зажигания. Ликбез | REAA

Я  всёже  завершу  про  применение  бесконтактных  контроллеров.  Основная  причина  выхода  их  из  строя  -  это неверное  включение , вибрационные  разрушения  и  проникновение  воды  внутрь.  Про  неверное  включение  -  всем  понятно  -  углубляться  не  буду.  Смотрите  схемы  маркируйте  провода  и  будьте  внимательны.  Про  вибрационные  разрушения.  Встречабтся  блоки  -  собранные  на  совесть  -  где  детали  приклеены  к  плате  и  вся  плата  обильно  облита  лаком  -  но  чаще  детальки  торчат  стоймя  как  на  макетной  сборке  в  кружке  юнных  пионеров....  Вот  тому  пример  :

131.3734

Подобный  блок  -  после  воздействия  вибрации  -
облетели  листья  с  тополей....  В  смысле  конденсаторы  с  платы 

Детали  нужно  клеить  на  эпоксидку  -  в  ряде  случаев  изменять  их  пространственное  положение - чтобы  приклеить  к  плате....  Желательно  привлечь  к  этому  какого  либо  радиолюбителя  -  если  не  хватает  собственного  опыта.  Места  установки  радиаторов  -  промазать  термопастой.  Крышку  -  вклеить  на  герметик.  Под  болтики  -  если  крепят  плату  -  поставить  шайбы  и  гроверы.  Если  крепят  железо  -  просто  гроверы.  Закрутить  всё  хорошенько.

Такими  болячками  могут  страдать  самые  разные  электронные  блоки  -  Коммутаторы  от  Бурана  например.

Далее  -  перейдём  к  системам  тиристорного  зажигания  с  накоплением  энергии  в  конденсаторе  -  многие  уже  заждались  этого  .

В  простейшем  виде  система  зажигания  CDI  ( capacitor  disharge  ignition  -  конденсаторное  разрядное  зажигание )  -  устроена  весьма  просто :

В  зарядной  обмотке ( 3 ) генератора ( А ) с  возбуждением  от  постоянных магнитов   вырабатывается  относительно  высокое  ( 60 -  300  )  вольт  напряжение.  Это  напряжение  выпрямляется  диодом  ( 5 )  и  заряжает  конденсатор  ( 7 ).  В  какойто  момент  (  согласованный  с  положением  порщня )  магнитный  замыкатель  проходит  мимо  индукционного  датчика  и  порождает  импульс  тока  -  напряжением  примерно  1 - 3 вольта.  Этот  импульс  через  диод  ( 5 )  попадает  на  управляющий  электрод  тиристора  ( 6 ) .  Тиристор  открывается  и  закорачивает  накопительный  конденсатор  ( 7 ).  При  этом  в  первичной  обмотке  катушки  зажигания  ( 8 )  протекает  ток  разряда  конденсатора  -  и  во  вторичной  обмотке  катушки  зажигания ( В ) возникает  высоковольтный  импульс  высокого  напряжения  -  порядка  нескольких  ( десятков ) киловольт.  Высокое  напряжение  пробивает  воздушный  зазор  в  свече  ( 11 ) -  и  там  проскакивает  искра  -  воспламеняющая  бензовоздушную  смесь.

В  сети  -  давно  гуляет  замечательная  анимашка  на  эту  тему  :

Собственно  примитивно  в  соответствии  с  вышеприведенной  схемой  работало  зажигание  мотороллера  ВП - 150 М  ( онже -  Вятка  Электрон ) :

Следующая  конструкция  зажигания  CDI  -  которая  попала  в  руки  советских  граждан  -  это  видимо  система  зажигания  лодочного  мотора -  она  к  тому же  была  на  2  цилиндра  и  даже  с  двумя  независимыми  каналами :

http://www.motolodka.ru/motors/domestic/veterok/vet_man.htm

Ещё  ода  схема  коммутатора  -  появилась  на  мотоцикле  Восход - 2 М.  Это  был  коммутатор  зажигания  КЭТ - 1 А.

Данная  конструкция  использовала  выпрямитель  с  умножением  напряжения ( VD 1  - C 1 )  ограничитель  напряжения  на  стабилитронах  VD 3  и  VD4  -  препятствовал  пробою  тиристора  на  высоких  оборотах.  Резистор  R 1  - защищал  оьмотки  зарядной  катушки  от  протекания  слишком  большого  тока  -  при  открытии  тиристора.  Резистор  R 2  -  позволял  немного  изменять  момент  зажигания  в  зависимости  от  оборотов.  Эта  конструкция  -  вобщем  неплоха  -  и  если  применить  современные  детали  рассчитанные  на  более  большие  напряжения  и  токи  -  может  и  сегодня  применяться  на  различных  конструкциях.  Конденсаторы  желательно  ставить  на  напряжение  не  менее  600  вольт.  Диоды  ныне  часто  применяют  1N4007  ( 1А 1000V )  Тиристоры  -  например  BT151-800R на 800 вольт  -  или  наши  КУ 240 Г1  или  например  Т 106 - 10 - 8 ....  Вместо  стабилитронов  -  ставят  1 или  2  стабилитрона  КС650А  ( они  на  150  вольт )  - соответственно  конденсатор  будет  заряжаться  до  150  или  300  вольт.  При  установке  стабилитронов  -  как  в  родной  схеме  -  к  массе  присоединён  Д 817В  а  к  нему  - Д 817Б  а  не  наоборот.  Стабилитроны  стоят  на  корпусе  -  причём  VD 3  изолирован  от  корпуса  слюдяными  шайбами.

Вид  внутреннего  устройства  КЭТ - 1 А  :

Установка  деталей  (  слева  самодельный  радиатор  из  самодельного  блока ).

Подробнее  прочитать  про  отечественные  системы  CDI  для  мотоциклов - можно  по  ссылкам  :

http://img-fotki.yandex.ru/get/3312/kvadrat67.1d/0_2335e_47c8913e_orig

http://img-fotki.yandex.ru/get/3311/kvadrat67.1d/0_2335f_5f461787_orig

лежит  в  этом  альбоме :
http://fotki.yandex.ru/users/kvadrat67/album/64787/?p=1

И  ещё :

http://img-fotki.yandex.ru/get/3309/kvadrat67.1d/0_2339b_bbaf4b43_orig

http://img-fotki.yandex.ru/get/3212/kvadrat67.21/0_25251_7f5dfe88_orig

Вобще  на  мотоцикле  Восход  -  на  роторе  генератора  закреплена  головка  с  достаточно  оригинально  сделанной  магнитной  системой.  А  на  статоре  стоит  датчик  в  виде  катушки  на  Ш  образном  железе....

http://img-fotki.yandex.ru/get/3307/kvadrat67.18/0_20a49_d0c053a2_orig
http://img-fotki.yandex.ru/get/3107/kvadrat67.18/0_20a4a_79fdde9e_orig
http://fotki.yandex.ru/users/kvadrat67/view/133705?page=10

Такое  устройство  обеспечивает  выраженное  изменение  напряжения  вырабатываемого  датчиком  -  в  зависимости  от  оборотов.  Это  позволяет  получить  изменение  угла  опережения  зажигания  -  примерно  на  12  градусов  -  в  зависимости  от  оборотов без  применения  какой  либо  сложной  электронной  схемы.  Это  так  называемое  параметрическое  регулирование  угла  опережения  зажигания  ( УОЗ ) в  зависимости  от  оборотов  вращения  двигателя.

К  сожалению  -  большинство  моторов  применяемых  на  СЛА  -  имеют  генератор  не  с  внутривращающемся  ротором -  а  с  ротором  маховичного  типа.  В  этом  случае  -  задача  изменения  УОЗ  оказывается  сложнее. 
Далее  я  постараюсь  рассказать  что  можно  сделать  в  таком  случае.

P.S.  Добавлю  -  что  применение  схемы  с  однаполупериодным  выпрямителем  -  может  быть  актуально  в  том  случае  -  когда  с  зарядных  катушек  выходит  один  провод  -  а  второй  конец  обмотки  присоединён   -    к  массе  где то  в  недрах  генератора  и  добраться  до  него  сложно.

Если  с  зарядной  обмотки  выходят 2 провода  -  тогда  есть  смысл  применить  коммутатор  с  мостовым  ( двухполупериодным )  выпрямителем.  В  простейшем  случае  -  это  может  быть  так  называемая  * схема  Войтенко *  (  собственно  -  КЭТ - 1 А  -  с  модернизированным  выпрямителем  )  :

Подобный  выпрямитель  применяется  и  в  штатной  схеме  от  снегохода  Буран  (  по  ссылке  один  из  вариантов  коммутатора  от  РМЗ - 640  )  :

http://fotki.yandex.ru/users/kvadrat67/view/109008/?page=0

там  чуть  сложнее  устроена  цепь  запуска  тиристора  -  но  об  этом  -  ниже.

Установка электронного или бесконтактного зажигания на ВАЗ 2106: подключение и настройка

Несмотря на то что «классика» ВАЗ 2106 давно снята с производства, на российских просторах эксплуатируется немалое количество этих машин. Поскольку их конструкция устарела, то желание владельцев шестой модели Жигулей усовершенствовать её любыми способами вполне понятно. Один из эффективных вариантов — поставить вместо штатной системы зажигания бесконтактную (сокращённо — БСЗ), где искрообразованием ведает электроника. Процедура замены довольно проста и доступна каждому, кто пожелает улучшить работу двигателя своей «шестёрки».

Что собой представляет БСЗ и как она работает?

Чтобы успешно установить и настроить бесконтактное зажигание, желательно понять принцип действия системы, состоящей из следующих элементов:

  1. Главный распределитель зажигания (иначе — трамблёр). Внутри него установлен фотоэлектрический датчик Холла, вакуумный привод корректировки угла опережения и так называемый бегунок с подвижным контактом.
  2. Катушка, создающая импульс высокого напряжения. Имеет 2 обмотки: первичную, состоящую из малого числа витков толстого провода, и вторичную, намотанную тонкой проволокой с большим количеством витков.
  3. Электронный блок — коммутатор, оборудованный алюминиевым радиатором охлаждения. Последний играет роль крепёжного элемента.
  4. Свечи зажигания, соединённые высоковольтными проводами с трамблёром.
  5. Провода для соединения элементов между собой.
Система зажигания ВАЗ 2106Система зажигания ВАЗ 2106

Так выглядит система зажигания классики Жигулей

Для справки. В штатных устаревших системах ВАЗ 2106 внутри распределителя вместо датчика Холла стояла контактная группа, а коммутатора не было вовсе.

Элементы электронного зажиганияЭлементы электронного зажигания

Схема работы БСЗ

Первый контакт катушки соединяется через реле замка зажигания с генератором, а второй — с блоком управления. Также от неё к трамблёру идёт высоковольтный провод большого сечения. Из распределителя выходит 2 пучка проводов, соединяющих его с коммутатором и свечами зажигания. Система функционирует по такому алгоритму:

  1. После включения зажигания поворотом ключа в замке на первичную обмотку катушки подаётся напряжение 12 В, отчего возникает электромагнитное поле.
  2. Когда происходит вращение коленчатого вала и один из поршней выходит в верхнюю мёртвую точку (ВМТ), фотоэлектрический датчик посылает сигнал коммутатору, а тот кратковременно разрывает связь катушки с источником напряжения — генератором либо аккумуляторной батареей.
  3. Во время разрыва цепи во вторичной обмотке катушки образуется импульс напряжением от 20 до 24 кВ, передаваемый по проводу большого сечения на бегунок трамблёра.
  4. Подвижный контакт бегунка направляет импульс к той свече зажигания, где поршень вышел в ВМТ. Между её контактами проскакивает мощная искра, воспламеняющая смесь топлива с воздухом в камере сгорания.
  5. Вал распределителя приводится в действие шестерёнчатой передачей, связанной с коленчатым валом. Когда очередной поршень движется к ВМТ, вал поворачивается и подвижный контакт соединяется с другой свечой, а датчик Холла посылает следующий сигнал и цикл искрообразования повторяется.

Справка. В старых системах разрыв цепи производился механическим способом с помощью кулачка на валу трамблёра, нажимающего на контактную группу.

Преимущества бесконтактных систем

Для несведущего автолюбителя главным аргументом в пользу БСЗ является тот факт, что на данный момент ни один производитель не выпускает автомобилей с контактно-кулачковой системой искрообразования. Зарубежные бренды отказались от неё в далёких 80-х годах прошлого столетия, а в Российской Федерации механическое зажигание продержалось вплоть до 90-х. Причины отказа вполне понятны:

  • на контактах постоянно проскакивала искра, отчего они подгорали и требовали частой зачистки;
  • контактная группа изнашивалась достаточно быстро, в среднем её хватало на 15—20 тыс. км пробега, после чего элемент приходилось менять;
  • давал о себе знать износ подшипника, на котором размещались контакты, что вызывало нестабильную работу силового агрегата;
  • растягивались пружины грузиков — балансиров.
Искрообразование в камере сгоранияИскрообразование в камере сгорания

Бесконтактное зажигание дает мощную искру, отчего топливо сгорает лучше

Все перечисленные неисправности проявлялись поочерёдно, не давая покоя хозяину «классики» Жигулей. Из-за несовершенной конструкции мощность искры на свечах постоянно снижалась, работа двигателя ухудшалась, а расход топлива увеличивался. Новые системы БСЗ лишены подобных недостатков, они отличаются долговечностью и стабильным искрообразованием. Повысилась и мощность искры, поскольку напряжение выходного импульса возросло от 16—18 кВ до 24 кВ, что способствует лучшему воспламенению топлива.

Примечание. В первое время слабым местом отечественных бесконтактных систем считался коммутатор, быстро выходящий из строя и не подлежащий ремонту. Но позже он был усовершенствован и надёжность работы БСЗ повысилась.

Выбор комплекта электронного зажигания

Поскольку «шестёрки» комплектовались тремя разновидностями двигателей (объёмом 1,3, 1,5 и 1,6 л.), то и комплекты БСЗ для них отличаются по конструкции трамблёра. В моторе 1,3 л. (модель ВАЗ 21063) стоит распределитель с укороченным валом, а в двигателях 1,5 и 1,6 л. (ВАЗ 21061 и 2106 соответственно) этот вал одинаково длинный. Состав комплекта электронного зажигания такой:

  • трамблёр с каталожным номером 38.3706–01 для силового агрегата объёмом 1,3 л. либо 38.37061 — для двигателей 1,5 и 1,6 л.;
  • катушка высокого напряжения с маркировкой 27.3705;
  • электронный блок управления, маркировка — 36.3734 или 3620.3734;
  • провода соединительные.

Внимание! Покупая бесконтактный комплект на «классику» Жигулей, не перепутайте его с изделиями, предназначенными для Нивы ВАЗ 2121, трамблёры внешне очень похожи. Но «нивовская» деталь отличается по техническим характеристикам и маркируется так: 3810.3706, 38.3706–10 или 038.3706–10. Ставить её на «шестёрку» категорически не рекомендуется.

Готовый комплект БСЗГотовый комплект БСЗ

Набор для установки бесконтактного зажигания

Из производителей, продающих свои комплекты зажигания на территории Российской Федерации, наибольшую популярность среди автомобилистов снискали запчасти от фирмы СОАТЭ из г. Старый Оскол. Стоит отметить, что новые свечи марки А-17ДВР, устанавливающиеся на классические ВАЗы с электроникой, в комплект поставки не входят, их придётся приобрести отдельно. Чтобы ощутить результаты замены в полной мере, также рекомендуется поставить новые высоковольтные провода, если вы не меняли их в недавнем прошлом.

Несмотря на то, что масляный насос является одним из самых надёжных узлов в автомобилях ВАЗ 2106-2107, иногда и он выходит из строя. Для того чтобы произвести его замену, рекомендуется изучить данный материал: https://vazweb.ru/desyatka/dvigatel/zamena-maslyanogo-nasosa-vaz-2107.html

Подготовка к замене БСЗ

Работа по снятию старого зажигания и монтажу нового не требует никаких специальных инструментов, приспособлений или приборов. Не нужна и смотровая канава, а всю операцию можно провести на улице при хорошем дневном освещении. Достаточно располагать таким инструментарием:

  • рожковый ключ размером 13 мм для откручивания гайки крепления распределителя;
  • с помощью ключей на 10 и 8 мм снимается катушка;
  • отвёртка плоская и крестообразная;
  • пассатижи;
  • дрель электрическая или ручная со сверлом под диаметры саморезов крепления коммутатора.

Совет. Для удобства выполнения работ возьмите напрокат или у знакомых накидной ключ с длинной рукояткой, надевающийся на гайку храповика и применяющийся для вращения коленчатого вала вручную.

Вращение коленвала вручнуюВращение коленвала вручную

Поворачивать коленвал таким ключом гораздо удобнее

Для начала выполните несколько этапов предварительной разборки:

  1. Откройте капот и отсоедините минусовую клемму аккумулятора.
  2. Снимите со свечей и крышки распределителя высоковольтные провода.
  3. Выкрутите свечи.
  4. Опустите отвёртку в свечное отверстие 1 цилиндра и поворачивайте коленвал до тех пор, пока поршень в нём не достигнет ВМТ. При этом метка на шкиве вала встанет напротив самой длинной риски, нанесённой на блоке цилиндров.
Откручивание клеммы АКБОткручивание клеммы АКБ

Первым делом надо отключить аккумулятор

Совет. Если ключа под гайку храповика у вас не нашлось, коленчатый вал можно поворачивать, вращая вывешенное заднее колесо автомобиля. Не забудьте зафиксировать машину противооткатными средствами, снять с ручного тормоза и включить 4 или 5 передачу.

Метки на блоке цилиндровМетки на блоке цилиндров

Когда 1-й поршень находится в ВМТ, метки на шкиве и блоке должны совпадать

Сопоставив метки и приготовив новые детали, можно приступать к основному этапу работ.

Подробности настройки системы зажигания на ВАЗ 2107 представлены здесь: https://vazweb.ru/desyatka/elektrooborudovanie/instruktsiya-po-nastroyke-sistemyi-zazhiganiya-vaz-2107-svoimi-rukami.html

Порядок установки электронного зажигания

Первым делом необходимо демонтировать старую систему, выполняя операции в такой последовательности:

  1. Отключите высоковольтный провод, идущий от катушки, снимите крышку трамблёра и запомните положение бегунка. Для удобства направление можно отметить мелом на клапанной крышке двигателя.
  2. Отсоедините от распределителя провода и вакуумную трубку, идущую от карбюратора. Открутите гайку крепления ключом на 13 мм и снимите элемент с блока цилиндров.
  3. Отверните гайки контактов высоковольтной катушки и снимите провода, запомнив, куда были подключены жилы от реле замка зажигания и тахометра.
  4. Демонтируйте катушку и уберите её в сторону.

Совет. Между трамблёром и посадочным местом блока цилиндров стоит прокладка, не потеряйте её при снятии детали с авто.

Подключение элементов БСЗПодключение элементов БСЗ

Схема подключения элементов электронного зажигания

Выполнив разборку, приступайте к монтажу БСЗ, соблюдая следующий порядок действий:

  1. Переставьте прокладку со старого распределителя на новый и снимите с него крышку. Повернув бегунок в нужном направлении, которое вы наметили мелом, вставьте вал трамблёра в гнездо и зафиксируйте его положение гайкой. Сильно её затягивать не стоит, поскольку ещё придётся регулировать зажигание и отпускать гайку снова.
  2. Вкрутите свечи зажигания, предварительно установив зазор между электродами 0,8—0,9 мм. Поставьте крышку распределителя на место и присоедините высоковольтные провода, соблюдая номера цилиндров (выбиты сверху на крышке).
  3. На место старой катушки закрепите новую. Если контакты на ней расположены наоборот, то сначала ослабьте крепёжный хомут, проверните корпус на 180° и установите деталь на авто.
  4. Прикрепите неподалёку от катушки коммутатор. Сняв бачок омывателя, предварительно просверлите в лонжероне кузова 2 отверстия и прикрутите блок саморезами. Обратите внимание: электронный элемент не должен стоять ниже бачка, чтоб его не залило водой в случае протечки.
  5. Возьмите соединительные провода и подключите электронный блок, трамблёр и катушку согласно схеме (прилагается к комплекту БСЗ). Разобраться в ней несложно: разъем от коммутатора подключается к колодке распределителя, а провода — к контактам «Б» и «К» высоковольтной катушки. Не забывайте о жилах, подключённых ранее к старой катушке (в том числе от тахометра), их нужно присоединить к новому элементу таким же образом.
  6. Наденьте на штуцер мембранного узла трамблёра вакуумную трубку, идущую от карбюратора. На этом установка бесконтактной системы закончена.

Справка. В моделях ВАЗ 2106 последних выпусков уже сделаны отверстия, рассчитанные на монтаж коммутатора. Посмотрите внимательно на лонжероне с левой стороны (по ходу движения машины).

Инструкция по монтажу в фотографиях

Видеоролик о монтаже электронной системы на «классику»

Запуск двигателя и настройка зажигания

Если в процессе замены элементов вы не сдвинули метки, а проводку подключили правильно, то «шестёрка» заведётся сразу же. Дайте ей прогреться минуту-другую, манипулируя педалью акселератора, после чего переходите к настройке зажигания. Её выполняют двумя способами:

  • наиболее распространённая методика – «на слух»;
  • с помощью специального прибора — стробоскопа.

Совет. Если двигатель автомобиля не завёлся и при вращении стартера не подаёт признаков жизни, то следует проверить правильность подключения высоковольтных проводов. Причина вторая: во время монтажа вы повернули крышку распределителя на 180°, отчего бегунок стал передавать импульс на 4-й цилиндр вместо первого и наоборот.

Регулировка зажиганияРегулировка зажигания

Угол опережения зажигания регулируется поворотом корпуса распределителя

Регулировка зажигания «на слух» производится так:

  1. При работающем двигателе ослабьте гайку крепления трамблёра.
  2. Потихоньку поворачивайте его за и против часовой стрелки, добиваясь наиболее стабильной работы силового агрегата. Угол поворота не должен превышать 15°.
  3. Уловив положение чёткой работы двигателя, окончательно затяните гайку распределителя.

С помощью стробоскопа угол опережения зажигания устанавливается не в пример точнее. Если вам удалось раздобыть этот прибор или взять где-то на время, то подключите его к клеммам аккумулятора и высоковольтному проводу первого цилиндра. Запустите мотор и аккуратно поднесите мигающую лампу к меткам на блоке. Стробоскоп поможет увидеть положение риски, выбитой на шкиве, при работающем двигателе. Теперь вы можете ослабить гайку трамблёра и поворотом корпуса добиться совмещения этой риски с последней, самой короткой меткой.

Произвести ремонт карбюратора не сложно, если знать все тонкости проведения процедуры: https://vazweb.ru/desyatka/dvigatel/remont-karbyuratora-vaz-2107.html

Прибор для настройки зажиганияПрибор для настройки зажигания

Так выглядит стробоскоп для регулировки угла опережения

После регулировки прогрейте машину до рабочей температуры и попробуйте проехать на ней в разных режимах. Если при резком нажатии на педаль газа слышен стук поршневых пальцев, то вы имеете дело с детонацией, вызванной слишком ранним зажиганием. Ослабьте крепление трамблёра и поверните его по часовой стрелке на 1—2°, не более. Стук должен исчезнуть.

Совет. После монтажа БСЗ нередко случается, что обороты двигателя на холостом ходу возрастают из-за лучшего искрообразования. Частота оборотов уменьшается до значения 850—900 об/мин винтом количества топлива. В карбюраторах типа «Озон» это винт больших размеров, находящийся справа (по ходу движения) в нижней части агрегата. В карбюраторах «Солекс» это пластиковая рукоятка, выглядывающая из задней части и упирающаяся в ось заслонки. Винт «качества» без знания дела трогать не допускается!

Видео о настройке бесконтактного зажигания

Если вы сняли распределитель и высоковольтные провода с крышкой без совмещения меток, то правильно выставить зажигание по новой вам поможет представленный видеоматериал:

Эксплуатация автомобиля с электронной системой разительно отличается от езды на старом зажигании. Двигатель работает гораздо ровнее и стабильнее, а очистка контактной группы уходит в прошлое. Но владельцу ВАЗ 2106 не помешает возить в запасе датчик Холла на случай поломки штатного. Эта деталь ремонту не поддаётся, хотя и ломается достаточно редко.

Оцените статью: Поделитесь с друзьями!
(интегральных микросхем) aduc831bsz-ID товара :: 605305309-russian.alibaba.com

New Gain Technology Co., Ltd

Rm 3222, nanguangjiejiabuilding, ShenNanRoad, Futian District. (Шэньчжэнь)

Rm1205,12 / F Tal Sang bank Badg, 130-132 Des Vieux Rd,

Central (Гонконг)

((0086) (50008) 75000427 Факс: (0086) 755-83275339

((0086) 15914063607

Skype: jim.xinrun

Веб: http: //newgainhk.en.alibaba.com/

www.newgaintech.com

9992

9000 (2000)

TT & Paypal и Western Union & Money Garm & Escrow

[ Гарантия ]

Весь продукт имеет 60 дней гарантии для всех наших клиентов.

[ Shipping ]

1.Мы отправим товар в течение 2 рабочих дней после подтверждения оплаты.

2. Мы можем отправить вам по почте FedEx / UPS / DHL / TNT / EMS / HK. Пожалуйста, свяжитесь с нами напрямую, и мы будем использовать ваши предпочтительные способы. Для стран и регионов, куда EMS не может доставить, пожалуйста, выберите другие способы доставки.

3. Мы не несем ответственности за несчастные случаи, задержки или другие проблемы, вызванные экспедитором.

4. Любые импортные пошлины или сборы на счет покупателя.

,
Что такое цепь серии RC? Диаграмма фазора и кривая мощности

Цепь с чистым сопротивлением RОм, соединенная последовательно с чистым конденсатором с емкостью С Фарад, известна как RC Series Circuit. Подается синусоидальное напряжение, и ток I течет через сопротивление (R) и емкость (C) цепи.

Схема серии RC показана на рисунке ниже:

R-C-SERIES-circuit Где

  • В R - напряжение на сопротивлении R
  • В C - напряжение на конденсаторе C
  • В - общее напряжение на цепи серии RC

Содержание:

Phasor Diagram RC серии Схема

Фазовая диаграмма цепей серии RC показана ниже:

PHASOR-DIAGRAM-OF-R-C-SERIES-CKT-compressor

Шаги для построения векторной диаграммы

Следующие шаги используются для построения векторной диаграммы цепи RC серии

  • Взять ток I (р.M.S., значение) в качестве опорного вектора
  • Падение напряжения в сопротивлении VR = IR берется в фазе с вектором тока
  • Падение напряжения в емкостном реактивном сопротивлении VC = IXC отводится на 90 градусов позади вектора тока, а токоподводы - на 90 градусов (в чистой емкостной цепи)
  • Сумма векторов двух падений напряжения равна приложенному напряжению V (значение r.m.s).

Сейчас

V R = I R и V C = IX C

, где X C = I / 2πfC

В прямоугольном треугольнике OAB,
RC-SERIES-CKT-EQ1

Где,
RC-SERIES-CKT-EQ2

Z - полное сопротивление, предлагаемое потоку переменного тока последовательной цепью RC, и называется сопротивлением схемы .Измеряется в омах (Ω).

Фазовый угол

Из приведенной выше векторной диаграммы ясно, что ток в цепи опережает приложенное напряжение на угол ϕ, и этот угол называется фазовым углом .

RC-SERIES-CKT-EQ3

Мощность в цепи RC серии

Если переменное напряжение, подаваемое на цепь, задается уравнением
RC-SERIES-CKT-EQ4

Затем
RC-SERIES-CKT-EQ5

Следовательно, мгновенная мощность определяется как p = vi

Помещение значения v и i из уравнения (1) и (2) в p = vi

RC-SERIES-CKT-EQ6

Средняя мощность, потребляемая в цепи за полный цикл, определяется как:

RC-SERIES-CKT-EQ7

Где cosϕ называется коэффициентом мощности схемы.

RC-SERIES-CKT-EQ8

С учетом значения V и cosϕ из уравнения (3) значение мощности будет

RC-SERIES-CKT-EQ9

Из уравнения (4) ясно, что мощность фактически потребляется только сопротивлением, и конденсатор не потребляет никакой энергии в цепи.

Форма волны и кривая мощности цепи серии RC

Форма волны и кривая мощности RC-цепи показаны ниже:
RC-SERIES-CIRCUIT-WAVEFORM Различные точки на кривой мощности получены из произведения мгновенного значения напряжения и тока.

Мощность отрицательна между углом (180 ° - ϕ) и 180 ° и между (360 ° - ϕ) и 360 °, а в остальной части цикла мощность является положительной. Поскольку площадь под положительными петлями больше, чем под отрицательными, то чистая мощность за полный цикл составляет положительных .

,
Программное обеспечение для совместной работы и коммуникации Unify
Программное обеспечение для совместной работы и коммуникации Unify

33

33

true

true

https://na.yourcircuit.com/login?region=us

/ register

/ unifyportalshop

/ unifyportalshop купить

/ unifyportalcontactus

/ regformonly

Circuit - это все, что нужно вашим командам для общения в одном приложении.Это голос, видео, общий доступ к экрану, чат и обмен файлами. Это сотрудничество стало проще.

Смотрите видео Get Circuit

Почему деловое сотрудничество лучше с Circuit

Один инструмент с одним видом

Circuit - это одно приложение. Одно виртуальное пространство для встреч со всеми возможностями, необходимыми для общения с вашими командами.

Социальное сотрудничество

Создание онлайн-сообществ и содействие сотрудничеству, взаимодействию, обмену мнениями и идеями.

Естественный пользовательский опыт

Используйте голос, видео или чат.Простота Circuit позволяет вам сотрудничать так же естественно, когда вы расстались, и когда вы вместе.


Мощный и контекстный поиск

С Circuit легко найти весь контент. Поиск и фильтрация по условиям поиска и людям и найти то, что вам нужно в течение нескольких секунд.

Хранение и история контента

Организовывайте работу с мгновенным доступом к файлам и информации, которой можно обмениваться с течением времени. Все остается в контексте. Держите весь свой контент вместе.

Используйте любое устройство

Наслаждайтесь одинаковыми впечатлениями от любого устройства. Получите доступ к своим разговорам, сообществам и документам - из веб-браузера Chrome, Internet Explorer или Firefox, iPhone®, iPad® или Android TM


Совместная работа в сети позволяет всем оставаться на одной странице. Если вы поделились текстом, изображениями или важными документами, Circuit хранит все это в одном месте.

Подробнее

Circuit HD-видео и естественная лента разговоров избавят вас от ощущения отстраненности или отсоединения от остальной команды.Начните и остановите разговор, как вы, естественно, и больше никогда не почувствуете неудобства для удаленной работы.

Circuit хранит все ваши файлы с разговорами, где они произошли. Все, что вы поделились, просмотрели или обсудили, может быть легко найдено. И если вам случится пропустить встречу, не беспокойтесь, вы найдете то, что упустили - в любое время, когда вам это нужно.


Цепь будет идти куда угодно, поэтому вы можете работать совместно и получать доступ к файлам из любой точки мира, в любое время и в любом месте.Подключайтесь со своего ПК, Mac, iPhone, iPad, Apple Watch или Android и перемещайте активные звонки с вами, пока вы находитесь в переходном режиме.

На рынке существует множество платформ для совместной работы, но ни одна из них не является такой же всеобъемлющей, как Circuit. За мои 28 лет работы в этой отрасли ни один другой продукт не оказал такого положительного влияния на бизнес, в котором я принимал участие.

Махмуд Чаудхри, Управляющий директор Datrix

Конференц-связь за то, как мы работаем

Расширение возможностей социальное сотрудничество с интегрированным решением для конференц-зала Circuit Meeting Room - это пространство для совместной работы цифрового рабочего места.

Смотрите видео.

Что такое чисто индуктивная цепь? - Phasor Diagram & Waveform

Цепь, которая содержит только индуктивность (L), а не любые другие величины, такие как сопротивление и емкость в цепи, называется Pure индуктивной цепью. В схеме этого типа ток отстает от напряжения на угол 90 градусов.

Содержание:

Катушка индуктивности - это тип катушки, которая запасает электрическую энергию в магнитном поле, когда через нее протекает ток.Индуктор состоит из провода, который намотан в виде катушки. Когда ток, протекающий через индуктор, изменяется, изменяющееся во времени магнитное поле вызывает ЭДС, которая препятствует протеканию тока. Индуктивность измеряется в Генри . Противостояние потока тока известно как индуктивное сопротивление .

Объяснение и вывод индуктивной схемы

Схема, содержащая чистую индуктивность, показана ниже:

pure-INDUCTIVE-circuit Схема

чистой индуктивной схемы

Пусть переменное напряжение, подаваемое на цепь, определяется уравнением:
PURE-INDUCTIVE-CIRCUIT-EQ1

В результате переменный ток i протекает через индуктивность, которая индуцирует в нем ЭДС.Уравнение показано ниже:
PURE-INDUCTIVE-CIRCUIT-EQ2

ЭДС, которая индуцируется в цепи, равна и противоположна приложенному напряжению. Следовательно, уравнение становится,
PURE-INDUCTIVE-CIRCUIT-EQ3

Положив значение е в уравнении (2), получим уравнение как
PURE-INDUCTIVE-CIRCUIT-EQ4

Интегрируя обе части уравнения (3), мы получим
PURE-INDUCTIVE-CIRCUIT-EQ5, где X L = ω L - сопротивление, предлагаемое потоку переменного тока чистой индуктивностью и называемое индуктивным реактивным сопротивлением.

Значение тока будет максимальным, когда sin (ωt - π / 2) = 1

Следовательно,
PURE-INDUCTIVE-CIRCUIT-EQ6

Подставляя это значение в I м из уравнения (5) и подставляя его в уравнение (4), мы получим PURE-INDUCTIVE-CIRCUIT-EQ7

Диаграмма вектора и кривая мощности индуктивной цепи

Ток в чистой индуктивной цепи переменного тока отстает от напряжения на 90 градусов. Форма волны, кривая мощности и фазовая диаграмма чисто индуктивного контура показаны ниже

INDUCTIVE-CIRCUIT-WAVEFORM

Диаграмма вектора и форма волны чистой индуктивной цепи

Форма волны напряжения, тока и мощности показана синим, красным и розовым цветами соответственно.Когда значения напряжения и тока находятся на своем пике в качестве положительного значения, мощность также является положительной, и аналогично, когда напряжение и ток дают отрицательный сигнал, мощность также станет отрицательной. Это из-за разности фаз между напряжением и током.

Когда напряжение падает, значение тока изменяется. Когда значение тока достигает своего максимального или максимального значения, напряжение в этот момент времени будет равно нулю, и, следовательно, напряжение и ток не совпадают по фазе друг с другом на угол 90 градусов.

Диаграмма вектора также показана на левой стороне формы сигнала, где текущее (I м ) запаздывающее напряжение (V м ) под углом π / 2.

Власть в чистой индуктивной цепи

Мгновенная мощность в индуктивной цепи задается
PURE-INDUCTIVE-CIRCUIT-EQ8

Следовательно, средняя мощность, потребляемая в чисто индуктивной цепи, равна нулю.

Средняя мощность в одном изменении, то есть в полупериоде, равна нулю, так как отрицательная и положительная петли находятся под кривой мощности, то же самое.

В чисто индуктивной цепи в течение первой четверти цикла мощность, подаваемая источником, сохраняется в магнитном поле, установленном вокруг катушки. В следующем цикле четверти магнитное поле уменьшается, и энергия, которая была сохранена в цикле первой четверти, возвращается источнику.

Этот процесс продолжается в каждом цикле, и, таким образом, в цепи не расходуется энергия.

,

Отправить ответ

avatar
  Подписаться  
Уведомление о