Двигатель схема: Принцип работы и устройство двигателя

Содержание

Схемы автомобильных двигателей

Рядные..

ДВИГАТЕЛИ, у которых цилиндры расположены друг за другом в одной плоскости, обозначаются литерой “R”.

Рядные моторы – самые простые и недорогие, поскольку по сравнению с другими схемами состоят из минимального количества деталей. Неудивительно, что на заре автомобилизма подавляющее большинство машин оснащалось именно такими двигателями. Причем некоторые фирмы (например, “Voisin”) строили опытные образцы 12-цилиндровых монстров!

Но сегодня делать большой моторный отсек – непозволительная роскошь, ведь при этом останется мало места на пассажирский салон. Тем более что большинство современных моделей – переднеприводные. Мотор у них обычно расположен поперечно, то есть громоздкие рядные “восьмерки” и иные многоцилиндровые агрегаты разместить под капотом практически невозможно. Кроме того, длинный коленвал очень непросто сделать прочным. Он может не выдержать огромных нагрузок, свойственных нынешним высокофорсированным двигателям. Конечно, дорогостоящие материалы и технологии позволяют решить проблему, но это неизбежно увеличит стоимость производства.

Однако рядные моторы с четным количеством цилиндров достаточно неплохо уравновешены. Конечно, в любом двигателе движущиеся детали создают множество паразитных сил и моментов, порождающих вибрации и шум. Но в данном случае дополнительных мер для их снижения конструкторам применять не надо.

В частности, рядная “шестерка” изначально полностью сбалансирована, поэтому ее до сих пор применяют на некоторых дорогих и престижных машина х вроде моделей BMW. Но баварские автомобили заднеприводные, и инженеры могли поставить мотор продольно, избежав проблем с его размещением.

А вот компания “Volvo” на модели “S80” умудрилась установить такой двигатель поперек (!) моторного отсека (ранее это удалось лишь в 70-х годах прошлого века англичанам из фирмы “Austin”). Но заодно шведам пришлось потратиться и на разработку сверхкомпактной коробки передач…

Четырехцилиндровые рядные моторы уступают “шестеркам” по сбалансированности, зато они намного компактнее. Поэтому “четверки” сегодня являются самыми популярными двигателями из разряда “до 2,5 л рабочего объема”. (Правда, у некоторых четырехцилиндровых дизелей объем превышает 3 л.) Они повсеместно применяются на моделях компактного и “семейного” классов, а также на недорогих спортивных автомобилях и внедорожниках.

Уравновешенность моторов с нечетным количеством цилиндров оставляет желать лучшего, поэтому они встречаются достаточно редко. Например, на некоторых малолитражка х вроде “Chevrolet Spark” используются трехцилиндровые двигатели. Рядные “пятерки” популярнее. Они присутствуют в гамме таких производителей, как “General Motors”, “Volvo”, “Ford”…

 

 

V-образные..

ЭТО ОБОЗНАЧЕНИЕ родилось благодаря расположению цилиндров в двух плоскостях, как бы образующих собой латинскую букву “V” (по сути, это два рядных двигателя с общим коленвалом). Угол между ними называется “углом развала”. Обычно он составляет 60° или 90°. Первая величина оптимальна для V6. А прямой угол – идеальный вариант для V8.

По сравнению с рядными V-образные моторы почти в два раза короче (при одинаковом количестве цилиндров), чуть ниже, но несколько шире. В целом последние компактнее, поэтому большинство современных многоцилиндровых двигателей построено по такой компоновке.

Но “V-образники” сложнее и дороже – ведь два ряда цилиндров означают удвоение количества головок блока, распредвалов, ремней или цепей, коллекторов и прочих деталей. Кроме того, такие двигатели страдают повышенной вибронагруженностью. Особенно этим грешит популярный V6, ведь каждая его “половинка” – трясучая “трешка”. А известная в 60-70-х года х прошлого века по отечественному “Запорожцу” и некоторым моделям “Ford” и “Saab” конфигурация V4 вообще исчезла из-под капотов автомобилей именно по причине своей неуравновешенности…

Чтобы уменьшить влияние врожденных недостатков, конструкторам приходится применять различные технические ухищрения вроде балансирных валов или специальных подушек крепления двигателя, что еще больше усложняет автомобиль и делает его дороже.

 

 

Оппозитные..

ЭТО V-ОБРАЗНЫЕ двигатели с углом развала 180°. Цилиндры в таких мотора х лежат в одной плоскости параллельно земле, но расположены напротив друг друга. Такую компоновку принято обозначать литерой “B” (“Boxer”).

Плоский двигатель обладает всеми преимуществами V-образного собрата, но при этом неплохо уравновешен и помогает значительно понизить центр тяжести машины, улучшая тем самым ее управляемость и устойчивость.

Однако “Вoxer” трудоемок и дорог как в изготовлении, так и в обслуживании. Кроме того, он занимает много места по ширине, ограничивает размер колесных арок и соответственно уменьшает угол поворота управляемых колес. Причем на некоторых моделях моторный отсек настолько плотно “упакован”, что для замены свечей зажигания необходимо частично разбирать двигатель или снимать его с подушек крепления.

Поэтому, несмотря на то, что первые “оппозиты” появились практически одновременно с рождением самого автомобиля, сегодня их применяют только две фирмы: “Porsche” и “Subaru”.

Причем в наше время “боксеры” обычно не делают с количеством цилиндров больше шести. Раньше встречались и 12-цилиндровые “оппозиты”, а фирма “Porsche” экспериментировала с мотором “B16”, но так и не решилась применить его даже на гоночных моделях.

 

 

“VR”…

ПИОНЕРОМ этой компоновки стала компания “Lancia”, в 20-60-х годах прошлого столетия выпускавшая семейство V-образных четырех- и шестицилиндровых двигателей с очень маленьким углом развала: 10°-20°.

Такие моторы компактнее обычных рядных, но проще и дешевле V-образных, так как имеют только одну головку блока. Однако из-за чрезмерной вибронагруженности подобная схема не получила широкого распространения.

Лишь шестнадцать лет назад концерн “Volkswagen” возродил эту компоновку. Семейство двигателей с углом развала 10,6°-15° фольксвагеновцы назвали “VR” (то есть V-образно-рядные), и с тех пор это обозначение в автомобилестроении стало официальным.

“Volkswagen” был необходим компактный шестицилиндровый мотор для установки на переднеприводные модели VW, “Audi” и “Seat” (традиционный “V6” оказался для них очень широким). Поэтому инженерам пришлось серьезно поработать над уравновешиванием строптивого двигателя (сказалось асимметричное расположение его цилиндров). Зато этот опыт пригодился в 1997 году, когда понадобилось сбалансировать еще более вибронагруженный “VR5”.

 

 

W-образные…

В ОТЛИЧИЕ от предыдущей компоновки эта схема полностью обязана своим появлением концерну “Volkswagen” (прежде она встречалась лишь в авиации). Инженеры из Вольфсбурга получили ее, соединив одним коленвалом два двигателя типа “VR”.

Получившийся инженерный шедевр позволил намного уменьшить габариты 8- и 12-цилиндровых моторов. Фольксвагеновские “W-образники” значительно компактнее конкурентов с тем же числом цилиндров. Сегодня двигатели подобной компоновки можно встретить под капотом наиболее престижных моделей концерна: к примеру, на “Volkswagen Phaeton” и “Bentley Continental GT”.

Но немецкие инженеры на этом не остановились и создали, пожалуй, наиболее сложные двигатели в мире – “W16” и “W18”. Они разрабатывались специально для перспективных автомобилей “Bugatti”. Причем “W16” все-таки пошел в мелкосерийное производство и ныне устанавливается на суперкар “Bugatti Veyron 16.4”.

 

 

Автор
Юрий УРЮКОВ
Издание
Клаксон №7 2007 год
Фото
фото фирм-производителей

Двигатели. Рядный? V-образный? «Оппозит»? — ДРАЙВ

В начале XX века, когда конструкторская мысль бушевала вовсю, двигатель рабочим объёмом 10 л мог быть как одноцилиндровым, так, к примеру, и рядной «восьмёркой». Тогда никого особо не удивляли установленная на автомобиле рядная «шестёрка» объёмом 23 л или семицилиндровый звездообразный мотор с аэроплана…

Однако рост мощностей, оборотов и ожесточенная борьба за снижение себестоимости всё расставили по местам. Простейший одноцилиндровый мотор для автомобилестроителей остался в далёком прошлом. Средний объём цилиндра двигателя обычного автомобиля сейчас — от трёхсот до шестисот кубических сантиметров. Литровая мощность — от 35 л.с./л для безнаддувного дизеля до 100 л.с./л для форсированного бензинового «атмосферника». Для серийных двигателей это оптимум, выходить за рамки которого просто невыгодно.

Очень маленькие цилиндры часто встречаются на японских микролитражках: например, объём рядной «четвёрки» у Subaru R1 — всего 658 см³. Из «европейцев» отличился трёхцилиндровый дизельный Smart — 799 «кубиков». Есть цилиндры-напёрстки и у «корейцев»: трехцилиндровый Matiz — это 796 «кубиков», а четырёхцилиндровый — 995. «Четвёркой» объёмом 1086 см³ оснащаются Hyundai i10 и Kia Picanto. На другом полюсе — конечно же «американцы». Объём V-образной «восьмёрки» купе Chevrolet Corvette Z06 составляет 7011 см³. Хотя японцы, например, оснащали внедорожник Nissan Patrol предыдущего поколения рядной «шестёркой» TB48DE объёмом 4758 «кубиков».

Сегодня двигатель мощностью 100 л.с. в большинстве случаев окажется четырёхцилиндровым, у 200-сильного будет четыре, пять или шесть цилиндров, у 300-сильного — восемь. .. Но как эти цилиндры расположить? Иными словами — по какой схеме строить многоцилиндровый двигатель?

Простота хуже компактности

О чём болит голова у конструктора? Во-первых, о том, как упростить конструкцию двигателя, чтобы он был дешевле в производстве и легче в обслуживании. Самый простой двигатель — рядный (мы будем обозначать такие моторы индексами R2, R3, R4 и т. д.). Располагаем в ряд нужное количество цилиндров — получаем необходимый рабочий объём.

  • Двигатель R3 (А). Угол между кривошипами — 120°.
  • Добиться равномерности вспышек в двухцилиндровом двигателе (В) можно только при двухтактном цикле.
  • А такой мотор (C), например, стоит на «Оке». Поршни движутся синфазно.

Двух- и трёхцилиндровые двигатели встречаются на автомобилях нечасто, хотя мода на «двухгоршковые» моторчики набирает обороты. Тому способствуют продвинутые системы смесеобразования и применение турбонаддува (как, например, на 85-сильной двухцилиндровой турбоверсии хэтчбека Fiat 500).

А вот рядная «четвёрка» попала в самый массовый диапазон рабочего объёма легковых автомобилей — от 1,0 до 2,4 л.

В современных четырёхтактных двухцилиндровых двигателях, вроде турбомотора Фиата 500, проблему вибраций отчасти решает балансирный вал.

Пятицилиндровые рядные моторы появились на серийных автомобилях сравнительно недавно — в середине 70-х годов. Первым был Mercedes-Benz со своими дизельными «пятёрками» — они появились в 1974 году (на модели 300D с кузовом W123). Через два года увидел свет пятицилиндровый двухлитровый бензиновый двигатель Audi. А в конце 80-х годов такие моторы сделали Volvo и FIAT.

Рядные «шестёрки», до недавнего времени столь популярные в Европе, нынче во мгновение ока стали вымирающим видом. А про рядную «восьмёрку» и говорить нечего — с ней практически распрощались еще в 30-х годах. Почему?

Ответ прост. С ростом числа цилиндров двигатель становится длиннее, и это создаёт массу неудобств при компоновке.

Например, втиснуть поперёк моторного отсека переднеприводного автомобиля рядную «шестёрку» удавалось в считанных случаях — можно припомнить лишь английский Austin Maxi 2200 середины 60-х годов (тогда конструкторам пришлось спрятать коробку передач под двигателем) и Volvo S80 с суперкомпактной коробкой передач.

Два мотора R3, составленные друг за другом, дают великолепный результат — абсолютно уравновешенную рядную «шестёрку».

Как укоротить рядный мотор? Его можно «распилить» пополам, поставить две половинки рядом друг с другом и заставить работать на один коленвал. Такие моторы, у которых цилиндры расположены в виде латинской буквы V, вдвое короче рядных — наибольшее распространение получили двигатели с углом развала блока 60° и 90°. А V-образный мотор с углом развала блока 180°, в котором цилиндры расположены друг против друга, называют оппозитным (или «боксером» — обозначения В2, В4, В6 и т. д. происходят именно от слова boxer).

Такие моторы сложнее рядных — например, у них две головки цилиндров (каждая со своей прокладкой и коллекторами), больше распредвалов, сложнее схема их привода. А оппозитные двигатели ещё и занимают много места в ширину. Поэтому из компоновочных соображений они применяются довольно редко — производителей «боксеров» можно пересчитать по пальцам.

А как сделать V-образный двигатель еще компактнее? Одно из простых, на первый взгляд, решений — установить угол развала блока менее 60°. Действительно, такие моторы были, но редко — можно вспомнить, например, автомобили Lancia Fulvia 70-х годов с моторами V4, угол развала блока которых составлял 23°. Почему же этим не пользовались все? Дело в том, что перед конструктором двигателя всегда стоит ещё одна проблема — вибрации.

О силах и моментах

Вообще без вибраций поршневой двигатель внутреннего сгорания работать не может — так уж он устроен. Но бороться с ними нужно, и не только для повышения комфорта пассажиров. Сильные неуравновешенные вибрации могут вызвать разрушения деталей мотора — со всеми вылетающими и выпадающими оттуда последствиями…

Отчего возникают вибрации? Во-первых, в некоторых схемах двигателей вспышки в цилиндрах происходят неравномерно. Таких схем конструкторы по возможности избегают или стараются делать массивней маховик — это помогает сгладить пульсации крутящего момента. Во-вторых, при движении поршней вверх-вниз они то разгоняются, то замедляются, из-за чего возникают силы инерции — сродни тем силам, что заставляют пассажиров автомобиля кланяться при торможении или вдавливают их в спинки сидений при разгоне. В-третьих, шатун в двигателе движется вовсе не вверх-вниз, а совершает сложное движение. Да и возвратно-поступательное перемещение поршня от верхней мёртвой точки к нижней тоже нельзя описать простой синусоидой.

  • Силы инерции от двух масс, вращающихся на одном валу поодаль друг от друга, создают свободный момент.
  • В простейшем моторе есть свободные силы инерции, но нет моментов. Цилиндр-то один.

Поэтому среди сил инерции появляются составляющие с удвоенной, утроенной, учетверённой частотой вращения коленвала… Этими так называемыми силами инерции высших порядков, как правило, пренебрегают — они по сравнению с основной силой инерции (которой присвоили первый порядок) очень малы.

Исключение составляют силы инерции второго порядка, с которыми приходится считаться. Плюс к этому, пары сил, приложенные на определённом расстоянии, образуют моменты — так происходит, когда в соседних цилиндрах силы инерции направлены в разные стороны.

Что сделать для того, чтобы уравновесить силы и моменты? Во-первых, можно выбрать схему мотора, в которой цилиндры и кривошипы коленчатого вала расположены таким образом, что силы и моменты взаимно уравновесят друг друга — всегда будут равны и направлены в противоположные стороны.

Яркий представитель вымершего племени автомобилей с рядной «восьмёркой» — модель 1930-х годов Alfa Romeo 8C.

А если ни одна из уравновешенных схем не подходит — например, из компоновочных соображений? Тогда можно попытаться по-другому расположить шейки коленвала и применить всякого рода противовесы, создающие силы и моменты, равные по величине, но противоположные по направлению основным уравновешиваемым силам. Иногда это можно сделать, разместив противовесы на коленчатом валу мотора.

А иногда — на дополнительных валах, которые называют балансирными валами противовращения. Называются они так потому, что крутятся в другую сторону, нежели коленвал. Но это усложняет и удорожает двигатель.

Чтобы облегчить описание степени уравновешенности разных двигателей, мы подготовили сводную таблицу. Зелёным в ней выделены самоуравновешенные силы и моменты, а красным — свободные (те, что не уравновешены и вырываются на свободу — через опоры силового агрегата проходят на кузов автомобиля).

Степень уравновешенности (зелёная ячейка — уравновешенные силы или моменты, красная — свободные)
1 R2 R2* V2 B2 R3 R4
V4
B4 R5 VR5 R6 V6 VR6 B6 R8 V8 B8 V10 V12 B12
Силы инерции первого порядка
Силы инерции второго порядка
Центробежные силы**
Моменты от сил инерции первого порядка
Моменты от сил инерции второго порядка
Моменты от центробежных сил
* Поршни в противофазе.
** Уравновешиваются противовесами на коленчатом вале.

Что же получается? Из распространённых типов двигателей абсолютно уравновешенных всего два — это рядная и оппозитная «шестёрки». Теперь понимаете, почему BMW и Porsche так крепко держатся за такие моторы? Ну а о причинах, по которым от них отказываются остальные, мы уже упоминали. Теперь рассмотрим поподробнее остальные схемы.

Шестицилиндровый «оппозитник» водяного охлаждения Porsche. С левой и правой сторон блока в целях экономии стоят одинаковые головки, поэтому цепные приводы распредвалов пришлось устраивать и спереди, и сзади.

Уравновешенные и не очень

Из двухцилиндровых двигателей на автомобилях нынче применяется только один — двухцилиндровый рядный мотор с коленчатым валом, у которого кривошипы направлены в одну сторону (такой, например, стоял на отечественной «Оке»). Как видно, этот двигатель по степени уравновешенности похож на одноцилиндровый, поскольку оба поршня движутся вверх и вниз одновременно, в фазе. Для того чтобы уравновесить свободные силы инерции первого порядка, в моторе «Оки» слева и справа от коленвала применялись два вала с противовесами. А как же быть с силами второго порядка? Для того чтобы с ними справиться, пришлось бы добавить ещё два балансирных вала, что на двухцилиндровом моторе, изначально предназначенном для маленьких и дешёвых автомобилей, было бы совершенно неуместным.

Впрочем, это ещё ничего — много двухцилиндровых моторов выпускалось вообще без балансирных валов. Так было, например, на малышках Fiat 500 образца 1957 года. Да, вибрации были, их старались погасить подвеской силового агрегата… Но мотор зато получался простым и дешёвым! Дешевизна двухцилиндровых двигателей соблазняет разработчиков и сегодня: не зря же эту схему использовали создатели самого доступного автомобиля планеты, индийского хэтчбека Tata Nano.

Машин с оппозитной «двойкой» — по экономическим и компоновочным соображениям — было немного. Можно упомянуть, например, французский Citroen 2CV.

Двухцилиндровый двигатель, у которого кривошипы направлены в разные стороны (под углом 180°), можно встретить сегодня только на мотоциклах. Поскольку поршни в нём всегда движутся в противофазе, то он уравновешен лучше. Однако равномерного чередования вспышек в цилиндрах можно добиться только на двухтактных моторах — такие двигатели устанавливались на довоенные DKW и их прямых наследников, пластиковые гэдээровские Трабанты. По причине простоты и дешевизны никаких балансирных валов на них тоже не было, а с возникающими вибрациями просто мирились.

Автомобиль с двухцилиндровым V-образным мотором припоминается только один — отечественный НАМИ-1. А до наших дней этот тип двигателя дожил только на мотоциклах — вспомните американский Harley Davidson и его японских последователей с их V-образными «двойками» во всей хромированной красе. Такой мотор можно уравновесить практически полностью с помощью противовесов на коленчатом валу, но достичь равномерного чередования вспышек невозможно. Хорошо, что байкеры особого внимания на вибрации не обращают…

НАМИ-1 — прототип 1927 года.

Трёхцилиндровый двигатель уравновешен хуже, чем рядная «четвёрка», и поэтому производители трёхцилиндровых моторов — например, Subaru и Daihatsu — стараются оснащать их балансирными валами. В своё время опелевские двигателисты решили отказаться от балансирного вала, разрабатывая трёхцилиндровый мотор семейства Ecotec для Корсы второго поколения — в целях удешевления и уменьшения механических потерь. И трёхцилиндровая Corsa после дебюта в 1996-м была раскритикована немецкими автожурналистами: «По городу на переменных режимах ездить совершенно невозможно».

В самой популярной среди двигателистов рядной «четвёрке» остаётся свободной сила инерции второго порядка. Её можно уравновесить только балансирным валом, вращающимся с удвоенной скоростью. (Вы не забыли — сила инерции второго порядка действует с удвоенной частотой?) А для компенсации момента от балансирного вала придётся ставить ещё один, вращающийся в противоположную сторону. Дорого? Безусловно. Однако моторы с балансирными валами можно встретить на автомобилях Mitsubishi, Saab, Ford, Fiat и самых разных марок концерна Volkswagen.

Пример рядной «четвёрки» с балансирными валами — двухлитровый двигатель Audi. Валы располагаются по обе стороны от коленвала и с удвоенной скоростью вращаются в противоположные стороны. Здесь балансирные валы расположены снизу и соединены зубчатой передачей, а раньше (как, например, на приведённом на картинке внизу двигателе Saab 2.3) их располагали сверху и у каждого был свой шкив цепного привода.

Кстати, оппозитная «четвёрка» уравновешена лучше, чем рядная, — здесь есть только момент от сил инерции второго порядка, который стремится развернуть двигатель вокруг вертикальной оси. Однако и «оппозитник» воздушного охлаждения легендарного «Жука», и знаменитые «боксеры» Subaru обходились и обходятся без балансирных валов.

Subaru из компоновочных соображений предпочитает рядной «четвёрке» оппозитную. Что до вибраций, то силы инерции второго порядка у «боксера» уравновешены, но момент от них всё же остаётся свободным.

У рядных «пятёрок» с уравновешенностью дела обстоят не очень. Силы инерции компенсируются, но вот моменты от этих сил… Во время работы двигателя по блоку постоянно «пробегает» волна изгибающего момента, поэтому блок должен быть весьма жёстким. Однако и Mercedes-Benz, и Audi, и Volvo борются с вибрациями, дорабатывая подвеску силового агрегата или применяя специальные противовесы (как у наддувной «пятёрки» 2.5 TFSI на Audi TT RS). И только фиатовские мотористы применяли балансирный вал, который полностью уравновешивал все моменты.

  • На картинке FIAT JTD от хэтчбека Croma — потомок пятицилиндрового турбодизеля Fiat TD 125 объёмом 2387 см³, образованного путём добавления одного цилиндра к 1,9-литровой «четвёрке» TD 100. Балансирный вал — слева, в нижней части картера.
  • Под каким углом расположить кривошипы коленвала рядной «пятёрки»? 360° делим на пять. .. Правильно — 72°!

Кстати, практически все «пятёрки» образованы путём прибавления ещё одного цилиндра к четырёхцилиндровому двигателю — как кубики в конструкторе. Делают это для того, чтобы с минимальными производственными и конструкторскими затратами получить более мощные моторы. При этом всю начинку, включая поршни, шатуны, клапаны и т. д., можно взять от «четвёрки». Понадобятся иные блок и головка цилиндров и, само собой, коленчатый вал, кривошипы которого должны быть расположены под углом в 72°.

О шестицилиндровых моторах — мечте с точки зрения уравновешенности — мы уже упоминали. А вот в моторах V6, которые вытесняют рядные «шестёрки», ситуация с уравновешенностью такая же, как у «трёшки», то есть не ахти. Поэтому, например, балансирным валом в развале блока цилиндров был оснащён самый первый двигатель V6 фирмы Mercedes-Benz — заслуженный М112 с тремя клапанами на цилиндр. У трёхлитровой «шестёрки» концерна PSA вал находился в одной из головок блока. На других моторах того времени инженеры пытались не усложнять конструкцию и старались свести уровень вибраций к минимуму за счёт усовершенствованной подвески силового агрегата и хитроумного смещённого расположения шатунных шеек коленчатого вала (как, например, на Audi V6).

  • В моторе V6 с углом развала блока 90° сдвоенные кривошипы расположены под углом 120°. А в моторах с развалом 60° каждый шатун приходится устанавливать на своём кривошипе.
  • Для уравновешивания свободного момента от сил второго порядка мотору V6 90° необходим один балансирный вал (показан стрелкой). В двигателе Citroen 3.0 V6 он был установлен в одной из головок блока.

У новейших мерседесовских двигателей V6 угол развала блока сократился до 60°, в результате чего необходимость в балансирном вале отпала.

Добавим сюда ещё одно замечание — в моторах V6 с развалом в 90° не обеспечивается равномерное чередование вспышек в цилиндрах. Возникающая неравномерность хода может компенсироваться за счёт утяжелённого маховика, но лишь отчасти. Вот вам и ещё один источник вибраций…

Двигатели V8 с углом развала цилиндров в 90° и коленвалом, кривошипы которых располагаются в двух взаимно перпендикулярных плоскостях, весьма неплохо уравновешены. В таком моторе можно обеспечить равномерное чередование вспышек, что тоже работает на плавность хода. Остаются неуравновешенными два момента, которые можно полностью утихомирить с помощью двух противовесов на коленчатом валу — на щеках крайних цилиндров. Понимаете, почему американцы раньше других прочувствовали всю прелесть V-образных моторов? Вибрации и тряски в своих автомобилях они очень не любят…

Двигатель V8: и развал блока, и угол между кривошипами — 90°.

Напоследок можно поговорить о схемах необычных. Сначала вспомнить о моторах V4. Таких было немного — европейский Ford образца 60-х годов (который стоял на автомобилях Ford Taunus, Capri и Saab 96) да чудо-двигатель отечественного «Запорожца». Здесь не обошлось без уравновешивающего вала для момента от сил инерции первого порядка. Впрочем, конструкторы вышеупомянутых автомобилей выбирали эту схему из условий компактности и отчасти экономии, а не за хорошую уравновешенность.

  • Ford и ЗАЗ выбрали экзотику: мотор V4, в котором и угол развала блока, и угол между кривошипами составляют 90°.
  • Угол развала цилиндров моторов V2 колеблется от 25° до 90°.

А что насчёт V-образных «десяток»? Как можно видеть, степень уравновешенности таких моторов точно такая же, как и у моторов R5. Впрочем, конструкторы прежних моторов Формулы-1 или монстров Dodge Viper и Dodge RAM, где стоят двигатели V10, о вибрациях думали далеко не в первую очередь.

Как жаль, что Viper и его коллосальный V10 — уже история.

Двигателями V10 отметилась целая череда знаковых машин: BMW M5, Audi S6 и S8, а также RS6 с наддувной «десяткой». Не говоря уже об автомобилях Lamborghini. Наконец, Lexus LFA тоже оснащается двигателем V10.

Ну а прочие схемы легко свести к предыдущим. Например, оппозитная «восьмёрка» (пример применения — гоночные болиды Porsche 917) — это две «четвёрки», работающие на один коленвал. А V-образный и оппозитный двенадцатицилиндровые двигатели можно свести к двум рядным «шестёркам».

VR6, VR5, W12…

Помните, мы упоминали о V-образных моторах с малым углом развала блока — как на Лянчах? Раньше таких схем избегали — уравновесить их сложнее, чем моторы с развалом в 60° или 90°, а выигрыш в компактности тогда ценили не так…

Но теперь ситуация изменилась. Во-первых, повсеместно применяются гидроопоры силового агрегата, которые значительно ослабляют вибрации. Во-вторых, пространство под капотом нынче на вес золота. Ведь кто раньше мог себе представить скромный хэтчбек с 2,8-литровым мотором? А теперь — пожалуйста! Всё началось с Фольксвагена Golf VR6 третьего поколения.

Знаменитый фольксвагеновский двигатель VR6, «V-образно-рядный» мотор (об этом и говорит обозначение VR), стал дальнейшим развитием V-образных двигателей с малым углом развала блока. Цилиндры этого мотора разведены на ещё меньший угол, чем на Лянчах, — всего на 15°. Угол настолько мал, что такой мотор называют ещё «смещённо-рядным». Гениальное решение — «шестёрка» 2. 8 компактнее, чем обычный мотор V6, да ещё и имеет одну головку блока! Потом появился двигатель VR5 — это VR6, от которого «отрезали» один цилиндр. После этого мотористы концерна Volkswagen вообще словно с цепи сорвались.

Двигатель VR5 2.3 конструкторы Фольксвагена получили, отняв один цилиндр от мотора VR6. Угол развала компактного блока — 15°, все пять цилиндров укрыты одной головкой блока.

Они придумали суперкомпактный двигатель W12, который дебютировал в 1998 году на концепт-каре W12 Roadster. Это два двигателя VR6, установленные под углом 72° на одном коленвале. Но прежде в серию пошёл мотор W8, которым оснащалась топ-модель седана Passat. Там тоже два мотора VR6, от которых «отрезано» по два цилиндра и которые тоже объединены в одном блоке на одном коленвале. Когда-то в Вольфсбурге подумывали и о восемнадцатицилиндровом двигателе — но в итоге остановились на W16 с четырьмя турбокомпрессорами, который разгоняет Bugatti Veyron до 431 км/ч.

Супермотор W12, показанный на концепте имени себя, приводит в движение представительские модели фирм Audi, Volkswagen и Bentley. На фото хорошо видно шахматное расположение цилиндров пары блоков, объединённых в одной отливке под углом 72°. Длина 420-сильного мотора — всего 51 см, ширина — 70 см.

Почему же таких моторов не было раньше? Взгляните, к примеру, на коленвал двигателя W12 — такое технологу и в страшном сне не приснится! Создателям новых схем должен помогать компьютер. Чтобы просчитать все варианты угла развала блока, расположения шатунных шеек, порядка вспышек в цилиндрах и выбрать самый уравновешенный, без помощи вычислительных мощностей обойтись очень сложно.

Теория и практика

Как видно, при выборе схемы силового агрегата конструкторы ставят во главу угла вовсе не степень уравновешенности. Главное — это удачно вписать в моторный отсек такой двигатель, который будет обладать наилучшим соотношением массы, размеров и мощности. Потом, двигатели сейчас всё чаще строятся по модульному принципу. Говоря упрощённо, на одной поршневой группе можно построить любой мотор — и трёхцилиндровый, и W12. Вслед за Фольксвагеном на модульные конструкции переходит всё больше производителей. Новейшая линейка моторов Mercedes — тому отличное подтверждение.

А вибрации… Во-первых, следует различать теоретическую и действительную уравновешенность двигателя. Если коленчатый вал в сборе с маховиком не отбалансирован, а поршни и шатуны заметно отличаются по массе, то трясти будет даже рядную «шестёрку». А потом, действительная уравновешенность всегда значительно хуже теоретической — по причинам отклонения деталей от номинальных размеров и из-за деформации узлов под нагрузкой. Так что вибрации «прорываются» из двигателя наружу при любой схеме. Поэтому автомобильные инженеры и уделяют такое внимание подвеске силового агрегата. На самом деле конструкция и расположение опор двигателя — не менее важный фактор, чем степень уравновешенности самого мотора. ..

Материал адаптирован к публикации с разрешения ООО «Газета «Авторевю». Все права на перепечатку принадлежат Авторевю.

Схемы двигателей | Мото вики

Типичный одноцилиндровый двухтактный двигатель

Типичный четырехтактный одноцилиндровый двигатель

Простейшей схемой двигателя служит одноцилиндровая схема. Ее основными достоинствами являются простота и небольшие габариты. Это означает, что себестоимость и трудоемкость изготовления такого двигателя невелики, и он проще в обслуживании и ремонте. Поэтому одноцилиндровый двигатель идеально подходит для мопедов, скутеров и небольших внедорожных мотоциклов.

Однако он обладает множеством недостатков с точки зрения характеристик двигателя. Поскольку воспламенение смеси в одноцилиндровом четырехтактном двигателе происходит один раз за каждые 720 градусов поворота коленчатого вала, для поддержания вращения двигателя до его следующего рабочего хода необходимы большие маховики.

Для того чтобы избежать чрезмерного увеличения веса, маховики должны обладать большим диаметром и небольшой толщиной. Приходится максимально облегчать поршень, также необходим длинный шатун, и в итоге получается двигатель, называемый длинноходным. Характеристики такого двигателя хороши до определенного момента: он экономичен, обладает хорошей кривой мощности и характеристики момента таковы, что он может относительно легко обеспечивать динамичный разгон с низких частот вращения двигателя. Для использования великолепной характеристики мощности передаточные числа коробки передач могут быть «растянуты», за счет этого управление машиной становится не столь напряженным. Действительно, влияние вибрации двигателя до определенной степени субъективно и, как правило, довольно высокие уровни низкочастотных колебаний предпочтительнее менее интенсивного, но более раздражающего «дребезжания».

Однако если попытаться заставить такой двигатель работать при больших частотах вращения, его недостатки станут очевидными. Наличие массивных маховиков означает большое количество накопленной энергии или инерции, и ускорение, по сегодняшним меркам, будет ограничиваться медленным набором скорости. Маленький диаметр цилиндра и большой ход поршня означают высокие скорости линейного перемещения поршня, а следовательно, высокий уровень износа этих узлов. При попытке уменьшить ход поршня сглаживающий эффект больших маховиков теряется, а неуравновешенные силы увеличиваются. Это плохо сказывается на комфортабельности мотоцикла — покладистый одноцилиндровый двигатель превращает его в «дрель, передвигающуюся по дороге».

Другая проблема двигателей большого объема связана с затруднением запуска, даже если для этого применяется электрический стартер. Но, поскольку большинство одноцилиндровых двигателей большого объема используются для соревнований в условиях бездорожья и не оснащаются электрическим запуском, то каждый раз коленчатый вал приходится устанавливать в положение, когда он чуть не доходит до ВМТ на такте сжатия, затем давать ему здоровенный пинок, чтобы заставить его вращаться. Кроме того, есть проблема отдачи, которая проявляется, когда коленчатый вал установлен неправильно или когда на кик-стартер нажали недостаточно сильно. При этом усилия для того, чтобы поршень миновал такт сжатия, недостаточно, и он резко отскакивает назад из-за воздействия компрессии. При этом рычаг кик-стартера отпрыгивает назад и перекидывает вас через руль или ломает вам ногу. Некоторые одноцилиндровые двигатели оснащаются декомпрессором, предназначенным для облегчения запуска и уменьшения отдачи. Компания Honda разработала систему, в которой при нажатии на кик- стартер небольшой кулачок воздействует на выпускной клапан с целью немного приоткрыть его в ВМТ на такте сжатия. Это снижает усилие, необходимое для прокручивания коленчатого вала двигателя. Второй кулачок начинает работать, когда происходит отдача, также слегка приоткрывая выпускной клапан и снижая силу отдачи.

Четырехтактный рядный двухцилиндровый двигатель с чередованием вспышек через 360 градусов[править | править код]

Четырехтактный рядный двухцилиндровый двигатель с чередованием вспышек через 360 градусов

Исторически рядный двухцилиндровый двигатель был удивительно похож на одноцилиндровый. измененный соответствующим образом для того, чтобы вместить два цилиндра, поршня и шатуна.

Стоит отметить, что в традиционном английском двухцилиндровом четырехтактном двигателе поршни перемещаются вверх и вниз одновременно, но вспышки в цилиндрах чередуются через один оборот двигателя (или с интервалом в 360 градусов). Поэтому он получил название двухцилиндрового рядного двигателя с чередованием вспышек через 360 градусов.

На первый взгляд может показаться, что выбор такого коленчатого вала нерационален, поскольку проблемы, которые появлялись при уравновешивании одноцилиндровых двигателей, остались, хотя в некоторых отношениях конструкция двигателя улучшилась. Вес коленчатого вала увеличился, потому что вал расширился, чтобы разместить дополнительный палец кривошипа и шатун. Это изменение носит противоречивый характер, так как диаметр вала уменьшился. Неуравновешенные силы можно несколько уменьшить за счет установки поршней достаточно большого диаметра и уменьшения их хода. При этом мы не устраняем неуравновешенность, но все-таки она снижается. Гораздо значительнее то, что традиционный «толчок» рабочего хода одно-цилиндрового двигателя сглаживается при наличии двух меньших импульсов мощности, равномерно распределенных в пределах двух оборотов коленвала двигателя.

Двухцилиндровый рядный двигатель с углом чередования вспышек через 360 градусов не был лишен недостатков, но обладал множеством преимуществ в отношении увеличения мощности по сравнению с одноцилиндровым. Главное преимущество скорее связано с конструктивными ограничениями одноцилиндровых двигателей, а не с самой задачей уравновешивания.

Четырехтактный рядный двухцилиндровый двигатель с чередованием вспышек через 180 градусов[править | править код]

Четырехтактный рядный двухцилиндровый двигатель с чередованием вспышек через 180 градусов

Альтернативой рядному двухцилиндровому двигателю с коленчатым валом, обеспечивающим чередование вспышек через 360 градусов, может служить двигатель, пальцы кривошипа которого выполнены раздельно и располагаются через 180 градусов. При такой схеме неуравновешенные силы первого порядка сводятся к минимуму. На первый взгляд, такой двигатель намного лучше, чем тот, у которого вспышки чередуются через 360 градусов, и на современных конструкциях используется именно такая схема.

Один недостаток такого коленчатого вала в том, что в пределах двух оборотов рабочие хода следуют неравномерно, а другой в том, что он образуют так называемую «качающуюся пару». Этот эффект со странным названием проявляется на двигателях всевозможных конструкций, число цилиндров которых превышает один, за исключением V-образного двухцилиндрового двигателя.

Представьте воздействие на коленчатый вал в момент вспышки в одном из цилиндров: по мере движения поршня вниз давление на эту сторону коленчатого вала возрастает, и у него появляется стремление «накрениться» на одну из сторон. Когда воспламенение происходит во втором цилиндре, воздействие на коленчатый вал повторяется, «накреняя» его на другую сторону. Единственный способ, позволяющий избежать этого, заключается в том. чтобы расположить оба кривошипных пальца в одной и той же плоскости, но в рядном двухцилиндровом двигателе это физически невозможно.

Если сравнить две этих схемы, можно обнаружить, что чередование вспышек как через 360 градусов, так и через 180 имеет свои собственные преимущества и недостатки, исходя из чего невозможно сказать, какая из схем лучше. Чтобы еще больше облегчить задачу уравновешивания, необходимо большее количество цилиндров.

Двухтактный рядный двухцилиндровый двигатель[править | править код]

Почти все двигатели, работающие по двухтактному циклу, работают по одной и той же схеме, в которой используется коленчатый вал с расположением шатунных шеек под углом 180 градусов.

У таких двигателей по сравнению с четырехтактными аналогичной схемы меньше недостатков. Это связано с тем, что вспышка в каждом цилиндре происходит после одного целого оборота коленчатого вала, и, следовательно, в данном случае отсутствует неравномерность вспышек, обнаруженная в четырехтактном двигателе. Однако неприятный эффект «качающейся пары» все еще велик, и при более высоких частотах вращения, обычно присущих двухтактным двигателям, неуравновешенные силы могут проявиться в виде довольно навязчивого уровня вибраций. Эта проблема осложняется тем, что двухцилиндровым двухтактным двигателям необходимы отдельные кривошипные камеры, что означает наличие центрального коренного подшипника и сальников. В итоге коленчатый вал получается шире, чем на аналогичном четырехтактном двигателе. Таким образом, с учетом увеличившегося плеча полученный на шатунных шейках эффект «качающейся пары» возрастает.

Четырехтактный V-образный двухцилиндровый двигатель[править | править код]

Четырехтактный V-образный двухцилиндровый двигатель

Возраст идеи V-образного двухцилиндрового двигателя сравним с возрастом самого мотоцикла. Тот факт, что на сегодняшний день она все еще жива, служит доказательством ее разумности.

Первоначальная схема двигателя с V-образным расположением двух цилиндров и обшей шатунной шейкой избегает проблем «качающейся пары» двухцилиндрового рядного двигателя — особенно, если нижняя головка одного шатуна располагается внутри вильчатой головки другого. При расположении двух шатунов на одной пинии эффект «качающейся пары» отсутствует, и даже тогда, когда два обычных шатуна располагаются рядом на более широкой шатунной шейке коленвала, смещение настолько мало, что эффект оказывается незначительным.

С точки зрения уравновешивания, лучший угол развала цилиндров — 90 градусов. Если поступательно движущиеся массы поршней и шатунов полностью сбалансированы (100% показатель уравновешенности), то неуравновешенные силы одного цилиндра неизбежно уравновешиваются противодействующими силами в середине хода другого. Все еще присутствует задача суммарных сил, которые служат причиной горизонтальной вибрации двигателя, но такая вибрация сравнительно умеренна по отношению к уже рассмотренным уровням вибраций. На практике продольно установленный двигатель обладает относительно незначительным уровнем вибраций, в основном обязанным своим происхождением «толчкам» при каждом рабочем ходе поршня (чередование вспышек через 270 и 450 градусов). При поперечном расположении двигателя силы ощущаются сильнее, как раскачивание «из стороны в сторону» при низких частотах вращения, но, опять же, они гораздо менее раздражающие, чем на двухцилиндровом рядном двигателе.

В то время как V-образный двухцилиндровый двигатель с углом развала 90 градусов  кажется идеальным мотоциклетным двигателем, его широко раздвинутые цилиндры увеличивают габариты и, таким образом, затрудняют его установку в мотоциклетную раму. В то же время сделать это возможно, что подтверждается примером компании Ducati . Такая схема до сих пор не стала традиционной, хотя становится все популярнее на спортивных моделях благодаря успеху этой компании в мировых чемпионатах. Большинство конструкций с продольной установкой V-образного двухцилиндрового двигателя представляют собой компромисс между оптимальной уравновешенностью и компактностью за счет меньшего угла развале между цилиндрами (хотя это влияет на интервалы между вспышками, которые становятся еще более неравномерными). У продольного расположения V-образного двухцилиндрового двигателя есть свое преимущество — двигатель получается более узким, но, если не использовать жидкостное охлаждение, задний цилиндр может работать в условиях большей теплонапряженности, чем передний.

Поперечное расположениеV-образного двухцилиндрового двигателя успешно применяется в течение многих лет компанией Moto Guzzi, такой двигатель легко располагается в раме и имеет превосходное охлаждение, поскольку обе головки обдуваются встречным потоком воздуха. Кроме того, такая конструкция оптимальна с точки зрения использования карданного вала.

Двухтактный V-образный двухцилиндровый двигатель[править | править код]

Двухтактный V-образный двухцилиндровый двигатель

Двухтактный V-образный двухцилиндровый двигатель большая редкость, но существует пример такого двигателя — модель NS 250 компании Honda, предназначенная для японского рынка. Поскольку двигатель двухтактный, и каждый цилиндр нуждается в отдельной кривошипной камера, использовать общую шатунную шейку четырехтактного V-образного двигателя невозможно. Следовательно, двигатель неизбежно подвергается эффекту «качающейся пары», характерному для всех двухтактных двухцилиндровых двигателей. Но даже в этом случае многие неуравновешенные силы, свойственные рядному двухцилиндровому двигателю, исчезают.

Двигатель с двумя горизонтальными противолежащими цилиндрами (двухцилиндровый оппозитный двигатель)[править | править код]

Четырехтактный двухцилиндровый оппозитный двигатель

Двухцилиндровый оппозитный двигатель предлагает почти идеальное решение задачи уравновешивания, которая затрагивалась в конструкциях, рассмотренных ранее. Если оба поршня перемещаются одновременно в противоположных направлениях неуравновешенные силы первого порядка от поршня и шатуна одного цилиндра компенсируются другим. Но, так как приходится применять две шатунные шейки вместо одной, между двумя этими цилиндрами возникает эффект «качающейся пары», однако возникающий в итоге уровень вибраций обычно небольшой.

Более практическое соображение — как устанавливать столь неудобный агрегат в раму мотоцикла. Существует несколько случаев продольной установки — например, довоенные модели компании Douglas, хотя это и приводит к удлинению машины и затрудняет поиск соответствующего места для узлов трансмиссии. Другая проблема связана с задним цилиндром, который затенен основной частью двигателя, а, следовательно, перегревается. Наиболее известный пример конструкции оппозитного двигателя на современном мотоцикле производит компания BMW. Как в большинстве других конструкций, она использует поперечную схему установки оппоэитных двигателей, которая также упрощает использование карданного вала в качестве главной передачи.

Рядный трехцилиндровый двигатель[править | править код]

Четырехтактный трехцилиндровый рядный двигатель с чередованием вспышек через 120 градусов

Четырехтактный трехцилиндровый рядный двигатель с чередованием вспышек через 360/180 градусов

Рядный трехцилиндровый двигатель, установленный поперечно, в действительности представляет собой развитие конструкции рядного двухцилиндрового в попытке обрести компромисс между проблемами вибрации последнего и шириной четырехцилиндрового двигателя. В особенности это относится к двухтактным двигателям, кривошипные камеры которых становятся чрезмерно широкими в трехцилиндровом варианте, а в четырехцилиндровом он был бы безусловно громоздким.

Двухтактный трехцилиндровый двигатель был фаворитом фирм в 70-х, тому есть множество примеров среди мотоциклов компаний Suzuki и Kawasaki. Оба этих изготовителя даже решились на создание двухтактных двигателей объемом 750 куб. см; GT 750 с водяным охлаждением от компании Suzuki и КН 750 от Kawasaki.

Шатунные шейки коленчатого вала располагались между собой под углом 120 градусов, и силы первого порядка были достаточно хорошо сбалансированы, но из-за сложного эффекта «качающейся пары» (скорее, «качающейся тройни»), они прославились высоким уровнем высокочастотной вибрации, особенно, если агрегат был недостаточно хорошо изолирован от рамы резиновыми подушками.

Четырехтактных представителей такой схемы также достаточно много, от BSA RocketThree, и Triumph Trident конца 60-х, до «туреров» с карданным валом от компании Yamaha — XS 750 и 850, а также трехцилиндровых мотоциклов компании LaVerda, выпускавшихся в 70-х и 80-хгодах. Много лет компания LaVerda использовала коленчатый вал, в котором шатунные шейки располагались под углом 180/360 градусов (когда центральный поршень достигает ВМТ, а два других — НМТ и наоборот), но позже переняла схему с 120-градусным коленчатым валом, и следующий двигатель стал более уравновешенным.

Triumph осталась верна трехцилиндровому двигателю, многие модели этой компании отличаются рядным трехцилиндровьм двигателем поперечного расположения. Однако, по мнению большинства изготовителей, у трехцилиндрового двигателя есть небольшое преимущество по сравнению с рядным четырехцилиндровым, он представляет собой превосходный компромисс между низкооборотным двухцилиндровым двигателем и четырехцилиндровым с его запредельной мощностью.

Рядный трехцилиндровый двигатель горизонтального расположения[править | править код]

Компания BMW выступила с интересной вариацией на вышеупомянутую тему в виде своего К 75, цилиндры которого располагаются горизонтально в ряд, а коленчатый вал — продольно вдоль рамы мотоцикла; по существу он был развитием их горизонтального четырехцилиндрового двигателя, появившегося ранее. Несмотря на то, что на первый взгляд двигатель несколько необычный (головка цилиндра этого двигателя располагается с одной стороны, а кривошипная камера — с другой], он достаточно узок и компактен, а также обладает низким центром тяжести и хорошо подходит для карданной схемы привода.

Трехцилиндровый V-образный двухтактный двигатель[править | править код]

Двухтактный V-образный трехцилиндровый двигатель

Согласно любым стандартам, трехцилиндровый V-образный двухтактный двигатель — причуда, и кажется, что такая конструкция двигателя вряд ли может получить развитие.

Впервые такой двигатель появился в роли силовой установки для 500-кубового мотоцикла класса Grand Prix. Странное расположение цилиндров было выбрано с целью избежать проблемы увеличения ширины, присущей двухтактным рядным трехцилиндровым двигателям; даже если уменьшить длину коленчатого вала до минимально возможных размеров, при разделенных кривошипных камерах двигатель все же, остается большим из-за широких цилиндров с продувочными каналами. Благодаря смещению центрального цилиндра допускается их частичное наложение, и общая ширина, таким образом, снижается. После удачного выступления на соревнованиях компания Honda выпустила дорожную версию — NS 400R.

Рядный четырехцилиндровый двигатель[править | править код]

Рядный четырехцилиндровый двигатель

Когда в 1969 году компания Honda представила СВ 750 Four мотоциклетной публике, до сих пор не мечтавшей о сложности, она на доброе десятилетие утвердила основную конструкцию мотоциклетных двигателей среднего и большого объемов. Конечно, в конструкции рядного четырехцилиндрового двигателя не было ничего нового — десятки лет назад производители автомобилей остановили свой выбор на этой конструкции, как на лучшем компромиссе между уравновешенностью и компактностью, но большинство малолитражных четырехцилиндровых автомобильных двигателей слишком велики и тяжелы для мотоцикла. Однако у компании Honda в 60-х годах было несколько четырехцилиндровых двигателей для небольших спортивных автомобилей, которые получились компактнее, чем у других изготовителей. Тогда их и переделали для применения на мотоцикле. Получившийся в результате двигатель был не намного шире рядного двухцилиндрового, который он заменил, хотя все-таки получившийся двигатель был достаточно широким.

Устанавливаемый поперечно рядный четырехцилиндровый двигатель в своей основе заключает две двухцилиндровых, объединенных между собой общим картером со смещением шатунных шеек коленчатых валов на 180 градусов. В большинстве двигателей такого типа коленчатый вал устроен так, чтобы два центральных поршня двигались вверх и вниз вместе, со смешением на 180 градусов относительно двух других поршней. Хотя коленчатый вал неизбежно получается длинным из-за необходимости разместить коренные подшипники и четыре шатуна, его диаметр не должен быть большим. Это связано с тем, что рабочие хода происходят относительно часто, один за каждый полуоборот коленчатого вала, следовательно, потребность в больших маховиках для поддержания движения отпадает.

Также важен небольшой размер и вес поршней и шатунов, отражающийся в невысоких значениях сил первого порядка от каждого цилиндра в отдельности. Распределение сил получается более равномерным, чем в одно-, двух- или трехцилиндровом двигателе. За счет хорошей уравновешенности коленчатого вала и относительно небольшого диаметра маховиков четырехцилиндровый двигатель об падает достаточно небольшим ходом поршня, поэтому он динамичен и может предназначаться для работы с достаточно высокими частотами вращения двигателя. Это получило одобрение в рядах как потребителей, так и производителей. Единственными существенными проблемами, помимо соображений явной сложности конструкции, являются длина коленчатого вала и неизбежная высокочастотная вибрация, вызванная силами второго порядка и эффектом «качающейся пары». Хотя этого не избежать, но силы невелики, и уровень вибрации лишь немного превышает порог раздражения. В большинстве случаев она может быть снижена благодаря грамотной конструкции рамы, опор двигателя и всех окружающих двигатель узлов. Чтобы уменьшить ширину картера, некоторые производители, ранее устанавливавшие генератор на одной из цапф коленчатого вала, обратились к схеме его расположения над картером с цепным или шестеренчатым приводом от коленчатого вала. Сейчас, когда небольшие приборы электронного зажигания сменили механизмы ограничения оборотов и контактные прерыватели с механическим регулятором опережения (которые обычно устанавливались на противоположной генератору цапфе коленчатого вала), ширина картера на нtкоторых двигателях стала меньше ширины блока цилиндров.

Также можно установить двигатель в раме не поперечно, а продольно, как на традиционном автомобиле с задним приводом. Существуют примеры такой конструкции в продукции компаний Brough Superior, Wilkinson. Henderson и Indian, но удлинение силового агрегата и, следовательно, колесной базы со многих точек зрения неприемлемо.

Что касается двухтактного четырехцилиндрового двигателя — четыре разделенные кривошипные камеры получаются слишком громоздкими, чтобы иметь практическое применение, и поэтому такая схема всегда воспринималась нежизнеспособной.

Рядный четырехцилиндровый двигатель горизонтального расположения[править | править код]

Рядный четырехцилиндровый двигатель горизонтального расположения

Как и в версии рядного трехцилиндрового, четырехцилиндровый рядный двигатель компании BMW, аналогичный тому, что используется на К 100, установлен горизонтально, его цилиндры располагаются поперек рамы, а коленчатый вал — вдоль нее. По стандартам нормальных четырехцилиндровых двигателей ширина данного силового агрегата очень невелика, а его высота причиняет меньше беспокойства, чем при вертикальном расположении двигателя. Он также обладает преимуществами низкого центра тяжести и простоты с точки зрения использования карданного вала.

Двигатель с четырьмя противолежащими цилиндрами горизонтального расположения (четырехцилиндровый оппозитный двигатель)[править | править код]

Четырехцилиндровый оппозитный двигатель

По аналогии с тем, как двухцилиндровый рядный двигатель превратился в четырехцилиндровый, такие два цилиндра добавились к двух-цилиндровому оппозитному двигателю для получения четырехцилиндрового. Получившийся двигатель может быть проиллюстрирован моделями Gold Wing компании Honda объемом 1000, 1100 и 1200 куб.см. — наверное, единственным примером этой схемы в современном мире мотоциклов. Мотор необычайно уравновешен и придает мотоциклу Honda Gold Wing превосходную управляемость за счет низкого центра тяжести. Главный недостаток — чрезмерная ширина двигателя, делающая его непригодным для всех мотоциклов, кроме «туреров» и «круизеров». Ширина двигателя — постоянная проблема, с которой сталкивается мотоциклетный конструктор, и, хотя «четырехцилиндровый оппозит» идеален почти во всех отношениях, этот единственный фактор служит главной причиной сдерживающей его повсеместное использование.

Четырехцилиндровый двигатель с квадратным расположением цилиндров[править | править код]

Четырехцилиндровый двигатель с квадратным расположением цилиндров

Четырехцилиндровый двигатель с квадратным расположением цилиндров представляет собой другой вариант объединения рядных двухцилиндровых двигателей для получения четырехцилиндрового. На сей раз — с двумя отдельными коленчатыми валами, располагающимися один за другим и объединенными цепным или шестеренчатым приводом. Эта схема позволяет сохранить ширину двигателя на уровне двухцилиндрового при небольшом увеличении его длины и предлагает преимущества рядного четырехцилиндрового двигателя без проблем, связанных с увеличением ширины.

Такая конструкция получила наибольшее распространение на моделях Square Four компании Ariel. Все эти модели оснащались четырехтактными двигателями, которые обладали поразительным по тем временам объемом 1000 куб.см. Немного позже эта схема успешно использовалась на спортивных двухтактных двигателях, так как позволяла применить дисковый клапан для улучшения наполнения. Она нашла свое продолжение в модели RG 500 компании Suzuki. Главная проблема четырехцилиндрового двигателя с квадратным расположением цилиндров заключается в ухудшении охлаждения задних цилиндров. При использовании воздушного охлаждения два передних цилиндра сильно затеняют задние, и даже при тщательной проработке оребрения очевидна склонность к перегреву во время движения. Единственный способ решить эту проблему — использовать жидкостное охлаждение, но это приводит к увеличению веса и сложности конструкции.

V-образный четырехцилиндровый двигатель[править | править код]

Четырехтактный V-образный четырехцилиндровый двигатель

Еще одним способом компоновки четырех цилиндров является V-образное расположение, служащее альтернативой квадратному с точки зрения компактности, но частично лишенное проблем, связанных с перегревом, за счет того, что задние цилиндры чуть более открыты воздушному потоку (хотя, опять же. использование жидкостного охлаждения — единственный эффективный путь решения этойпроблемы).

Вообще, V-образный четырехцилиндровый — не более чем сдвоенный V-образный двухцилиндровый двигатель, и, таким образом, большинство замечаний, относящихся к последнему, могут быть применены и в данном случае. При этой схеме коленчатый вал можно выполнить так, чтобы пара шатунных шеек располагалась параллельно(коленчатый вал с расположением шатунных шеек под углом 360 градусов), и такое расположение с точки зрения снижения вибрации и устранения эффекта «качающейся пары» является наилучшим. Другой подход состоит в том. чтобы разместить шатунные шейки под углом 180 градусов друг к другу. Несмотря на то, что вибрация усиливается, она уравновешивается более регулярными вспышками в этих четырех цилиндрах (через каждые 180 градусов).

Как и в случае V- образных двухцилиндровых двигателей, оптимальный угол развала блоков составляет 90 градусов, но могут применяться и меньшие углы развала.

Хотя данный двигатель сложен с точки зрения обслуживания и дорог с точки зрения производства, V-образные четырехцилиндровые двигатели прославились благодаря широкому использованию в модельном ряде VFR компании Honda и достигли успеха в гонках в качестве силового агрегата мотоциклов RC 30 и RC 45. Другими знаменательными примерами использования V-образных четырехцилиндровых двигателей стали: модель V-Max объемом 1200 куб.см. компании Yamaha, двухтактный RD 500 той же компании, ну и, конечно, двухтактные V-образные четырехцилиндровые двигатели, использованные в соревнованиях класса Grand Prix. Конечно, наиболее совершенным V-o6paзными четырехцилиндровым двигателем с точки зрения технологии должен быть двигатель модели NR 750, выпущенной в ограниченном количестве компанией Honda. Применив технологию производства и материалы авиационной промышленности, компания Honda разработала V-обраэный четырехцилиндровый двигатель с овальными поршнями и 32-мя клапанами.

V-образный пятиципиндровый двигатель[править | править код]

С появлением четырехтактных двигателей в соревнованиях класса Gran Prix в 2002 году производители обратили свое внимание на разработку машин, согласующихся с всевозможными ограничениями веса и размеров. Для себя компания Honda сделала вывод, что V-образный пятицилиндровый двигатель служит идеальной схемой, отвечающей этим ограничениям. Этот двигатель с тремя цилиндрами, расположенными спереди, и двумя сзади, с поперечным расположением коленчатого вала в раме, подобен старому V-образному трехцилиндровому двухтактному двигателю и чрезвычайно компактен. Это не первый пятицилиндровый мотоциклетный двигатель (при том они очень популярны в автомобильной отрасли). Еще в 1965 году компания Honda (впервые) создала рядный пятиципиндровый двухтактный двигатель, способный развивать частоту 20.000 оборотов в минуту.

Рядный шестицилиндровый двигатель[править | править код]

Рядный шестицилиндровый двигатель

Увеличение числа цилиндров — это один из путей дальнейшего снижения вибрации рядного четырехцилиндрового двигателя. При тщательной проработке конструкции можно избавиться от большинства сил первого и второго порядков и получить уравновешенный шестицилиндровый двигатель. Относительно небольшие поршни такого двигателя формируют равномерный выходной крутящий момент — таким образом, потребность в больших массивных маховиках отпадает. Плата за эту равномерность — сложность конструкции, высокая стоимость и неизбежная ширина силового агрегата.

Наиболее известным среди шестицилиндровых мотоциклов является модель СВХ 1000 компании Honda. Компания Kawasaki тоже испробовала рядный шестицилиндровый двигатель на модели Z 1300, которая изначально разрабатывалась, как туристическая машина и отличалась жидкостным охлаждением и карданной передачей. Среди европейских производителей только компания Benelli применила рядный шестицилиндровый двигатель для исследования его возможностей на своей 750 кубовой модели Sei которая стала первой серийной моделью.

Шестицилиндровый двигатель с противолежащим (горизонтальным) расположением цилиндров (оппозитный шестицилиндровый двигатель)[править | править код]

В 1988 году компания Honda продолжила развитие своего оппозитного четырахцилиндрового двигателя объемом 1200 куб.см., добавив к нему еще два цилиндра и соответствующие им 300 куб.см. Получившийся в результате двигатель объемом 1500 куб. см. применялся на моделях Gold Wing до 2001 года, когда его объем еще раз увеличили до 1800 куб.см. Подобно своему предшественнику, скорее всего, такой двигатель единственный представитель такой компоновки среди мотоциклов.

V-образный восьмицилиндровый двигатель[править | править код]

Несомненно, V-образный восьмицилиндровый двигатель это уже крайность, они были чрезвычайно популярны в качестве автомобильных двигателей на протяжении ряда лет за равномерность работы и высокую мощность, но, по вине своих размеров и сложности, редко встречаются на серийных мотоциклах. Модель V-8 Nemesis компании Norton представляет собой самую позднюю разработку в этом направлении.

Подобно большинству идей, V-образный восьмицилиндровый двигатель уже был опробован на мотоцикле компанией Moto Guzzi. Она среди немногих добилась успеха в реализации данной схемы, выпустив в 1955 году опережавший свое время двигатель объемом 500куб.см., картер которого даже изготавливали из магния. К сожалению, рама и шины были недостаточно хороши для двигателя и мотоцикла, страдавшего плохой управляемостью. Его последний лучший результат был зафиксирован на гонках 1957 года, когда он достиг невероятной скорости 178 миль в час в гонках «Masta» по прямой, в местечке Спа в Бельгии.

Асинхронный двигатель: пуск, резервирование, управление — Энергетика и промышленность России — № 01-02 (141-142) январь 2010 года — WWW.EPRUSSIA.RU

Газета «Энергетика и промышленность России» | № 01-02 (141-142) январь 2010 года

В промышленных системах существует категория потребителей, которые требуют непрерывного и качественного электроснабжения независимо от присутствия и качества напряжения в электрической сети.

Построение систем гарантированного электроснабжения

Для этого применяются системы, построенные на основе электронных преобразователей напряжения и аккумуляторной батареи, обозначаемые UPS (Uninterruptible Power System). Стандартный UPS, выполненный по технологии Online, обеспечивает бесперебойное питание потребителей переменным напряжением стабильной амплитуды и частоты, не зависящим от качества напряжения в электрической сети.

Стандартные UPS применяют для питания большинства потребителей, таких, как: компьютерные системы, аварийные источники освещения, устройства телекоммуникации, контроллеры КИПиА, контроллеры АСУ ТП и т. д. Однако существуют категории потребителей, требующих индивидуального подхода в решении вопроса гарантированного электроснабжения. Стандартные UPS допускают кратковременную перегрузку на выходе максимум до трех номинальных значений выходного тока. В частности, для запуска асинхронных двигателей, подключенных в качестве потребителей, такой перегрузочной способности стандартного UPS недостаточно, т. к. пусковые токи двигателей могут шестикратно превышать номинальный ток. Дополнительный фактор, что ток питания двигателя, получаемый от перегруженного UPS, не обладает синусоидальной формой, что может привести к нарушениям во время запуска, а также к полному отсутствию запуска. Проблему можно решить увеличением номинальной мощности UPS, но это приводит к удорожанию всей системы. Фирма APS Energia предлагает техническое решение для данной категории потребителей.

FAT – система гарантированного электроснабжения асинхронных электродвигателей

В промышленных системах различных отраслей в качестве одной из составляющих применяются приводные системы, которые должны бесперебойно вращаться электродвигателями, либо необходим старт двигателя в момент исчезновения напряжения в электрической сети. В качестве примера подобных приводных систем можно рассматривать:
• маслонасосы смазки подшипников турбогенераторов;
• механизмы турбогенераторов, поддерживающие вращения ротора после прекращения подачи пара в турбину;
• вентиляторы подачи выхлопных газов к дымоходам;
• мазутные насосы;
• циркуляционные насосы, водяные насосы, пополняющие котлы и т. п.

Одним из вариантов решения проблемы гарантированного электроснабжения вышеупомянутых приводных систем является использование двигателей постоянного тока с электронными регуляторами и резервным питанием от аккумуляторных батарей. К сожалению, существующие недостатки двигателей постоянного тока исключают повсеместное применение этих систем. К этим недостаткам относятся:
• большие габариты, а также стоимость двигателя постоянного тока по отношению к асинхронному двигателю;
• ограниченный срок службы из‑за износа коллектора и потребность в обслуживании;
• искрение коллектора.

Последний недостаток особенно нужно брать во внимание, когда двигатель используется в приводе масляных насосов или работает вблизи или внутри взрывоопасных производственных зон.

Этих недостатков лишена система, построенная на основе асинхронного двигателя и системы FAT, схема которой изображена на рисунке 2a.

В нормальном состоянии двигатель запитан от электрической сети через выпрямитель и преобразователь DC/AC. При исчезновении напряжения в электрической сети двигатель через этот же преобразователь бесперебойно переходит на питание от аккумуляторной батареи. Кроме того, при включении FAT обеспечивает плавный пуск двигателя за счет автоматического регулирования частоты напряжения питания двигателя, в результате чего отсутствуют пусковые токи и перегрузка силовых цепей на выходе FAT.

Представленная на рисунке 2а схема является стандартной схемой системы FAT. По желанию заказчика APS Energia может расширить функции системы, как показано на рисунках 2б и 2в.

Данная система обеспечивает гарантированное питание дополнительных потребителей за счет применения второго инвертора.

В данной системе возможность регулирования частоты напряжения, питающего двигатель, позволяет регулировать производительность насоса. Это обеспечивает стабилизацию давления или расхода в системе, к которой подключен насос.

Преимущества использования

системы FAT производства APS Energia
В качестве двигателя приводной системы используется очень простой и дешевый асинхронный электродвигатель.

В сети отсутствуют броски тока, потребляемого системой FAT при пуске двигателя. Рисунок 4б представляет запуск двигателя насоса, запитанного от системы FAT. Пусковой ток двигателя равен номинальному току, но при этом двигатель сразу после пуска развивает максимальный момент на валу. Данный режим работы достигается за счет автоматического регулирования частоты и напряжения питания на выходе FAT. Это значительно облегчает запуск любого двигателя, а особенно тяжелый запуск двигателя, например запуск мазутного насоса зимой. Для сравнения, момент на валу и протекание тока в двигателе, запитанном от электрической сети или от стандартного UPS, представлены на рисунке 4а.

Путем подбора емкости аккумуляторной батареи в системе FAT обеспечивается требуемое время работы потребителей во время аварии в сети.

Путем введения в систему FAT обратной связи от приводной системы, например сигналов от датчиков давления или расхода трубопровода, можно легко регулировать параметры установок, в которых работают насосы, приводом которых являются асинхронные двигатели (регулируемая частота выходного напряжения FAT).

Путем установки дополнительных элементов в систему FAT:
• появляется возможность запитать дополнительных потребителей стабильным переменным напряжением;
• после запуска и синхронизации с напряжением сети двигатель, питающийся от FAT, может быть переключен на питание от электрической сети. При исчезновении напряжения в сети FAT выполнит обратное переключение и обеспечит работу двигателя от аккумуляторных батарей. Данное решение аналогично функции By-pass, используемой в стандартном UPS.

Путем установки дополнительного программатора система FAT может обеспечить, при больших мощностях и стартовых нагрузках, запуск двигателя в запрограммированном под его индивидуальные параметры режиме.

Ракетный двигатель на взрывной тяге – Наука – Коммерсантъ

Новая физическая идея — использование детонационного горения вместо обычного, дефлаграционного — позволяет радикально улучшить характеристики реактивного двигателя.

Говоря о космических программах, мы в первую очередь думаем о мощных ракетах, которые выводят на орбиту космические корабли. Сердце ракеты-носителя — ее двигатели, создающие реактивную тягу. Ракетный двигатель — это сложнейшее энергопреобразующее устройство, во многом напоминающее живой организм со своим характером и манерами поведения, которое создается поколениями ученых и инженеров. Поэтому изменить что-то в работающей машине практически невозможно: ракетчики говорят: «Не мешай машине работать…» Такой консерватизм, хотя он многократно оправдан практикой космических пусков, все же тормозит ракетно-космическое двигателестроение — одну из самых наукоемких областей деятельности человека. Необходимость изменений назрела уже давно: для решения целого ряда задач нужны существенно более энергоэффективные двигатели, чем те, которые эксплуатируются сегодня и которые по своему совершенству достигли предела.

Нужны новые идеи, новые физические принципы. Ниже речь пойдет именно о такой идее и о ее воплощении в демонстрационном образце ракетного двигателя нового типа.

Дефлаграция и детонация

В большинстве существующих ракетных двигателей химическая энергия горючего преобразуется в тепло и механическую работу за счет медленного (дозвукового) горения — дефлаграции — при практически постоянном давлении: P=const. Однако, кроме дефлаграции, известен и другой режим горения — детонация. При детонации химическая реакция окисления горючего протекает в режиме самовоспламенения при высоких значениях температуры и давления за сильной ударной волной, бегущей с высокой сверхзвуковой скоростью. Если при дефлаграции углеводородного горючего мощность тепловыделения с единицы площади поверхности фронта реакции составляет ~1 МВт/м2, то мощность тепловыделения в детонационном фронте на три-четыре порядка выше и может достигать 10000 МВт/м2 (выше мощности излучения с поверхности Солнца!). Кроме того, в отличие от продуктов медленного горения, продукты детонации обладают огромной кинетической энергией: скорость продуктов детонации в ~20-25 раз выше скорости продуктов медленного горения. Возникают вопросы: нельзя ли в ракетном двигателе вместо дефлаграции использовать детонацию и приведет ли замена режима горения к повышению энергоэффективности двигателя?

Приведем простой пример, который иллюстрирует преимущества детонационного горения в ракетном двигателе над дефлаграционным. Рассмотрим три одинаковых камеры сгорания (КС) в виде трубы с одним закрытым и другим открытым концом, которые заполнены одинаковой горючей смесью при одинаковых условиях и поставлены закрытым концом вертикально на тягоизмерительные весы (рис. 1). Энергию зажигания будем считать пренебрежимо малой по сравнению с химической энергией горючего в трубе.

Рис. 1. Энергоэффективность детонационного двигателя

Пусть в первой трубе горючая смесь зажигается одним источником, например, автомобильной свечой, расположенной у закрытого конца. После зажигания вверх по трубе побежит медленное пламя, видимая скорость которого обычно не превышает 10 м/c, то есть много меньше скорости звука (около 340 м/с). Это означает, что давление в трубе P будет очень мало отличаться от атмосферного Pa, и показания весов практически не изменятся. Другими словами, такое (дефлаграционное) сжигание смеси фактически не приводит к появлению избыточного давления на закрытом конце трубы, и, следовательно, дополнительной силы, действующей на весы. В таких случаях говорят, что полезная работа цикла с P=Pa=const равна нулю и, следовательно, равен нулю термодинамический коэффициент полезного действия (КПД). Именно поэтому в существующих силовых установках горение организуется не при атмосферном, а при повышенном давлении P«Pa, получаемом с помощью турбонасосов. В современных ракетных двигателях среднее давление в КС достигает 200-300 атм.

Попытаемся изменить ситуацию, установив во второй трубе множество источников зажигания, которые одновременно зажигают горючую смесь по всему объему. В этом случае давление в трубе P быстро возрастет, как правило, в семь-десять раз, и показания весов изменятся: на закрытый конец трубы в течение некоторого времени — времени истечения продуктов горения в атмосферу — будет действовать достаточно большая сила, которая способна совершить большую работу. Что же изменилось? Изменилась организация процесса горения в КС: вместо горения при постоянном давлении P=const мы организовали горение при постоянном объеме V=const.

Теперь вспомним о возможности организации детонационного горения нашей смеси и в третьей трубе вместо множества распределенных слабых источников зажигания установим, как и в первой трубе, один источник зажигания у закрытого конца трубы, но не слабый, а сильный — такой, который приведет к возникновению не пламени, а детонационной волны. Возникнув, детонационная волна побежит вверх по трубе с высокой сверхзвуковой скоростью (около 2000 м/с), так что вся смесь в трубе сгорит очень быстро, и давление в среднем повысится как при постоянном объеме — в семь-десять раз. При более детальном рассмотрении оказывается, что работа, совершенная в цикле с детонационным горением, будет даже выше, чем в цикле V = const.

Таким образом, при прочих равных условиях детонационное сгорание горючей смеси в КС позволяет получить максимальную полезную работу по сравнению с дефлаграционным горением при P=const и V=const, то есть позволяет получить максимальный термодинамический КПД. Если вместо существующих ракетных двигателей с дефлаграционным горением использовать двигатели с детонационным горением, то такие двигатели могли бы дать чрезвычайно большие выгоды. Этот результат был впервые получен нашим великим соотечественником академиком Яковом Борисовичем Зельдовичем еще в 1940 году, однако до сих пор не нашел практического применения. Основная причина этому — сложность организации управляемого детонационного горения штатных ракетных топлив.

Демонстрационный образец ДРД, установленный на испытательном стенде

Фото: Сергей Фролов

Импульсный и непрерывный режимы

До настоящего времени предложено множество схем организации управляемого детонационного горения, включая схемы с импульсно-детонационным и с непрерывно-детонационным рабочим процессом. Импульсно-детонационный рабочий процесс основан на циклическом заполнении КС горючей смесью с последующим зажиганием, распространением детонации и истечением продуктов в окружающее пространство (как в третьей трубе в рассмотренном выше примере). Непрерывно-детонационный рабочий процесс основан на непрерывной подаче горючей смеси в КС и ее непрерывном сгорании в одной или нескольких детонационных волнах, непрерывно циркулирующих в тангенциальном направлении поперек потока.

Концепция КС с непрерывной детонацией предложена в 1959 году академиком Богданом Вячеславовичем Войцеховским и долгое время изучалась в Институте гидродинамики СО РАН. Простейшая непрерывно-детонационная КС представляет собой кольцевой канал, образованный стенками двух коаксиальных цилиндров (рис. 2). Если на днище кольцевого канала поместить смесительную головку, а другой конец канала оборудовать реактивным соплом, то получится проточный кольцевой реактивный двигатель. Детонационное горение в такой КС можно организовать, сжигая горючую смесь, подаваемую через смесительную головку, в детонационной волне, непрерывно циркулирующей над днищем. При этом в детонационной волне будет сгорать горючая смесь, вновь поступившая в КС за время одного оборота волны по окружности кольцевого канала. К другим достоинствам таких КС относят простоту конструкции, однократное зажигание, квазистационарное истечение продуктов детонации, высокую частоту циклов (килогерцы), малый продольный размер, низкий уровень эмиссии вредных веществ, низкий уровень шума и вибраций.

Рис. 2. Схема детонационного ракетного двигателя

Демонстрационный образец

В рамках проекта Минобрнауки создан демонстрационный образец непрерывно-детонационного ракетного двигателя (ДРД) с КС диаметром 100 мм и шириной кольцевого канала 5 мм, который испытан при работе на топливных парах водород—кислород, сжиженный природный газ—кислород и пропан-бутан—кислород. Огневые испытания ДРД проводились на специально разработанном испытательном стенде. Длительность каждого огневого испытания — не более 2 с. За это время с помощью специальной диагностической аппаратуры регистрировались десятки тысяч оборотов детонационных волн в кольцевом канале КС. При работе ДРД на топливной паре водород—кислород впервые в мире экспериментально доказано, что термодинамический цикл с детонационным горением (цикл Зельдовича) на 7-8% эффективнее, чем термодинамический цикл с обычным горением при прочих равных условиях.

В рамках проекта создана уникальная, не имеющая мировых аналогов вычислительная технология, предназначенная для полномасштабного моделирования рабочего процесса в ДРД. Эта технология фактически позволяет проектировать двигатели нового типа. При сравнении результатов расчетов с измерениями оказалось, что расчет точно прогнозирует количество детонационных волн, циркулирующих в тангенциальном направлении в кольцевой КС ДРД заданной конструкции (четыре, три или одну волну, рис.  3). Расчет с приемлемой точностью предсказывает и рабочую частоту процесса, то есть дает значения скорости детонации, близкие к измеренным, и тягу, фактически развиваемую ДРД. Кроме того, расчет правильно предсказывает тенденции изменения параметров рабочего процесса при повышении расхода горючей смеси в ДРД заданной конструкции — как и в эксперименте, количество детонационных волн, частота вращения детонации и тяга при этом увеличиваются.

Рис. 3. Квазистационарные расчетные поля давления (а, б) и температуры (в) в условиях трех экспериментов (слева направо). Как и в экспериментах, в расчетах получены режимы с четырьмя, тремя и одной детонационными волнами

ДРД против ЖРД

Основной показатель энергоэффективности ракетного двигателя — удельный импульс тяги, равный отношению тяги, развиваемой двигателем, к весовому секундному расходу горючей смеси. Удельный импульс измеряется в секундах (с). Зависимость удельного импульса тяги ДРД от среднего давления в КС, полученная в ходе огневых испытаний двигателя нового типа, такова, что удельный импульс увеличивается с ростом среднего давления в КС. Основной целевой показатель проекта — удельный импульс тяги 270 с в условиях на уровне моря — достигнут в огневых испытаниях при среднем давлении в КС, равном 32 атм. Измеренная тяга ДРД при этом превысила 3 кН.

При сравнении удельных характеристик ДРД с удельными характеристиками в традиционных жидкостных ракетных двигателях (ЖРД) оказывается, что заданный удельный импульс в ДРД достигается при значительно меньшем среднем давлении, чем в ЖРД. Так, в ДРД удельный импульс в 260 с достигается при давлении в КС всего 24 атм, тогда как удельный импульс 263,3 с в известном отечественном двигателе РД-107А достигается при давлении в КС 61,2 атм, которое в 2,5 раза выше. Отметим, что двигатель РД-107А работает на топливной паре керосин—кислород и используется в первой ступени ракеты-носителя «Союз-ФГ». Такое значительное снижение среднего давления в ДРД позволит в перспективе кардинально изменить массогабаритные характеристики ракетных двигателей и снизить требования к турбонасосным агрегатам.

Вот и новая идея, и новые физические принципы.

Один из результатов проекта — разработанное техническое задание на проведение опытно-конструкторской работы (ОКР) по созданию опытного образца ДРД. Основная проблема, которую планируется решить в рамках ОКР,— обеспечить непрерывную работу ДРД в течение длительного времени (десятки минут). Для этого потребуется разработать эффективную систему охлаждения стенок двигателя.

Ввиду своего прорывного характера задача создания практического ДРД, несомненно, должна стать одной из приоритетных задач отечественного космического двигателестроения.

Сергей Фролов, доктор физико-математических наук, Институт химической физики им. Н.Н. Семенова РАН, профессор НИЯУ-МИФИ



Газ вместо керосина


Кадр видеосъемки огневых испытаний ДРД

Фото: Сергей Фролов

В 2014-2016 годах Министерством образования и науки РФ поддержан проект «Разработка технологий использования сжиженного природного газа (метан, пропан, бутан) в качестве топлива для ракетно-космической техники нового поколения и создание стендового демонстрационного образца ракетного двигателя». Проект предусматривает создание демонстрационного образца непрерывно-детонационного ракетного двигателя (ДРД), работающего на топливной паре «сжиженный природный газ (СПГ)—кислород». Исполнитель проекта — Центр импульсно-детонационного горения Института химической физики РАН. Индустриальный партнер проекта — Тураевское машиностроительное конструкторское бюро «Союз». В заявке на проект целесообразность использования в жидкостном ракетном двигателе (ЖРД) непрерывно-детонационного горения объяснялась более высоким термодинамическим КПД по сравнению с традиционным циклом, использующим медленное горение, а целесообразность использования СПГ объяснялась целым рядом преимуществ по сравнению с керосином: повышенным удельным импульсом тяги, доступностью и дешевизной, существенно меньшим сажеобразованием при горении и более высокими экологическими характеристиками. Теоретически замена керосина на СПГ в традиционном ЖРД сулит повышение удельного импульса на 3-4%, а переход от традиционного ЖРД к ДРД — на 13-15%.


Схемы подключения многоскоростного трехфазного электродвигателя

Схема присоединения многоскоростного асинхронного электродвигателя с короткозамкнутым ротором

Схема присоединения многоскоростного асинхронного электродвигателя с короткозамкнутым ротором 
Треугольник(или звезда)\\ двойная звезда —— Д/YY.

Низшая скорость — Д(треугольник(или звезда Y ): 750 об/мин



2U, 2V, 2W свободны, на 1U, 1V, 1W подается напряжение. 
Высшая скорость — YY. 1500 об мин.
1U, 1V, 1W замкнуты между собой, на 2U, 2V, 2W подается напряжение
Двухскоростные двигатели имеют одну полюсопереключаемую обмотку с шестью выводными концами. Обмотка двигателей с соотношением частот вращения 1 : 2 выполняется по схеме Даландера и соединяется в треугольник Д (или в звезду Y) при низшей частоте вращения и в двойную звезду (YY) при высшей частоте вращения Схема соединения обмоток показана на рисунке.
Средняя скорость. 1000 об мин. 
Обмотка на 1000 об мин подключается независимо от остальных своим пускателем, не участвующим в схеме Даландера.
Запуск двухскоростного двигателя с переключающимися полюсами без инверсии вращения для схемы Даландера.
Электрические характеристики элементов контроля и защиты необходимые для выполнения этого типа запуска, как минимум должны быть: 
Контактор К1, для включения и выключения двигателя на маленькой скорости (PV). Мощность должна быть такой же либо превышать In двигателя в треугольном соединении и с категорией обслуживания АС3.
Контакторы К2 и К3, для включения и выключения двигателя на большой скорости (GV). Мощность этих контакторов должна быть такой же либо превышать In двигателя соединенного двойной звездой и категориеи обслуживания АС3.
Термореле F3 и F4, для защиты от перегрузок на обоих скоростях. Каждый из них будет измерять In, употребляемый двигателем на защищаемой скорости.
Предохранители F1 и F2, для защиты от К.З. должно быть типа аМ и мощностью такой же или превышающей максимальное In двигателя, в каждой из своих двух скоростей.
Предохранитель F5, для защиты цепей контроля.
Система кнопок, с простым прерывателем остановки S0 и двумя двойными прерывателями движения S1 и S2.
Перейдем к описанию в краткой форме процесса запуска, как на малой скорости, так и на большой: 
а) запуск и остановка на маленькой скорости (PV).
Запуск путем нажатия на S1.
Замыкание контактора цепи К1 и запуск двигателя соединенного треугольником.
Автопитание через (К1, 13–14).
Открытие К1, которое действует как шторка для того, чтобы хотя запущен в движение S2, контакторы большой скорости К2 и К3 не были активизированы.
Остановка путем нажатия на S0.
б) запуск и остановка на большой скорости (GV).
Запуск путем нажатия на S2.
Замыкание контактора звезды К2, которое формирует звезду двигателя при коротком замыкании: U1, V1 и W1.
Замыкание контактора К3 (К2, 21–22) таким образом, что двигатель работает соединением в двойную звезду.
Автопитание через (К2, 13–14).
Открытие (К2, 21–22) и (К3, 21–22), которые действуют как шторки для того, чтобы никогда не закрывался К1 в то время, как закрыты К2 или К3.
Остановка путем нажатия на S0.
Вспомогательные контакты системы кнопок (S1 и S2, 21–22)действуют как защитные двойные шторки системы кнопок в том случае, если на оба прерывателя попытаются нажать одновременно, чтобы никакой из контакторов не активизировался и эти контакты можно было бы убрать в том случае, если есть защитные шторки механического типа между К1 и К2.


Китайцы сделали микроволновый плазменный воздушно-реактивный двигатель

Испытания двигателя. Шар колеблется плазменным факелом

Ye et al. / AIP Advances, 2020

Китайские инженеры собрали демонстрационный образец плазменного воздушно-реактивного двигателя для атмосферных полетов. В нем воздух раскаляется при помощи микроволн и выбрасывается, создавая тягу. Такая схема обладает высокой тягой на квадратный метр по сравнению с другими плазменными воздушно-реактивными двигателями, что делает ее предпочтительной для электросамолетов. Статья опубликована в журнале AIP Advances.

Реактивный двигатель использует закон сохранения импульса: выбрасывает массу назад, отчего сам ускоряется вперед. Традиционный воздушно-реактивный двигатель сжигает топливо в кислороде воздуха под большим давлением. В ходе сгорания топливо-воздушная смесь приобретает температуру больше тысячи градусов, отчего в ней растет давление, которое выталкивает продукты сгорания из двигателя.

Для реактивного двигателя электросамолета необходимо придумать другую схему, поскольку в нем не используется горючее топливо, и один из вариантов — плазменный двигатель, где рабочее тело ускоряется не в результате сгорания, а из-за давления плазмы, получаемой при помощи электричества. Несколькими годами ранее в Германии уже создавали атмосферный плазменный двигатель. В нем воздух ионизируется электрическим разрядом в сотни вольт, после чего в состоянии плазмы выбрасывается из него электромагнитным полем. Такая конструкция дает маленькую удельную тягу на площадь сечения, то есть при большой тяге двигатель будет неприемлемо громоздким.

Группа китайских инженеров под руководством Даня Е (Dan Ye) из Уханьского университета предложила нагревать воздух микроволнами. Они собрали следующую конструкцию. В кварцевую трубку компрессор нагнетает воздух. К ней  подсоединен волновод, на другом конце которого располагается магнетрон, испускающий радиоволны частотой 2,24 гигагерц. В трубке микроволны нагревают воздух, он превращается в плазму с высоким давлением, после чего она выбрасывается и создает тягу. Поскольку в процессе выделяется много паразитного тепла, вся установка в сборе охлаждается водяным контуром.

Схема экспериментальной установки

Ye et al. / AIP Advances, 2020

Тяга, длина плазменного факела и его температура прямо пропорциональны потребляемой электрической мощности. При мощности в один киловатт тяга была равна 28 ньютонов.

Длина факела в зависимости от мощности

Ye et al. / AIP Advances, 2020

Учитывая диаметр трубки, это дает удельную тягу 24 килоньютонов на квадратный метр сечения двигателя. Это сопоставимо с керосиновыми, например современный двигатель Pratt & Whitney F100 имеет диаметр 88 сантиметров и тягу 64 килоньютона, что равно примерно 23 килоньютонам на метр. Тягу и эффективность нового двигателя можно в дальнейшем улучшить за счет увеличения температуры выходящей плазмы, но для этого необходимо использовать термостойкие материалы.

На данный момент электросамолеты обладают винтовыми двигателями, как произведенный в Швейцарии в прошлом году.

Василий Зайцев

Схемы подключения асинхронных электродвигателей

Чтобы привести ротор электродвигателя в движение необходимо правильно подключить концы обмоток статора к трехфазной сети, где рабочее напряжение может быть:

  • 220 вольт
  • 380 вольт
  • 660 вольт

Заказать новый электродвигатель по телефону
Асинхронные электродвигатели АИР предполагают два способа подключения к трехфазной промышленной сети — «треугольник» и «звезда». В основном электродвигатели АИР рассчитаны на 2 номинальных напряжения 220/380 В, либо 380/660 В и имеют два способа подключения к трехфазной промышленной сети: «звезда» и «треугольник»

220/380

220 В — «треугольник»

380 В — «звезда»

380/660

380 В — «треугольник»

660 В — «звезда»

Как правильно подключить шесть проводов электродвигателя?

Как правило двигатели имеют шесть выводов для возможности выбора схемы подключения: «звезда» либо «треугольник».Но встречаются и три вывода — уже соединенных внутри двигателя по схеме «звезда».

Схема подключения «звезда»

При подключении обмоток звездой начала обмоток подключаются к фазам, а концы обмоток собираются общую точку (0 точку).

Таким образом напряжение фазной обмотки составит 220В, а линейное напряжение между обмотками 380В. Основным преимуществом подключения электродвигателя по схеме звезда является:

  1. Плавный пуск
  2. Возможность перегрузки (недлительной)
  3. Повышенная надежность

При этом эта схема подключения обеспечит более низкую мощность от заявленной.

Схема подключения «треугольник»

При треугольнике последовательного конца одной обмотки соединяется с следующим началом обмотки.

Главными преимуществами такого подключения являются:

  1. Максимальная мощность
  2. Повышенный вращающий момент
  3. Увеличенные тяговые способности

Однако, электродвигатели подключенные по схеме звезда больше нагреваются.

Комбинированный тип подключения

Как уже было достигнуто, «звездой» обеспечивает более плавный пуск, но при этом не достигается максимальная заявленная мощность электромотора.При подключении треугольником ток достигается полная мощность, но пуск может повредить изоляцию. Поэтому для мощных двигателей (начиная с АИР100L2) часто применяют комбинированную схему подключения трехфазных электродвигателей «звезда-треугольник», когда запуск двигателя происходит по схеме «звезда», в рабочем состоянии он переключается на схему «треугольник». Переключение обеспечивается магнитным пускателем или пакетным переключателем.

Наиболее популярные модели асинхронных электродвигателей:

Схема подключения многоскоростного трехфазного электродвигателя

Схема установки многоскоростного асинхронного электродвигателя с короткозамкнутым ротором

Схема присоединения многоскоростного асинхронного электродвигателя с короткозамкнутым ротором
Треугольник (или звезда) \\ двойная звезда —— Д / YY.

Низкая скорость — Д (треугольник (или звезда Y): 750 об / мин



2U, 2V, 2W свободны, на 1U, 1V, 1W подается напряжение.
Высшая скорость — YY. 1500 об мин.
1U, 1V, 1W замкнуты между собой, на 2U, 2V, 2W напряжение
Двухскоростные двигатели имеют одну полюсопереключаемую обмотку с шестью выводными концами. Обмотка двигателей с вращением вращения 1: 2 выполняется по схеме Даландера и соединяется в треугольник Д (или в звезду Y) при низшей частоте вращения и в двойную звезду (YY) при высшей частоте вращения Схема соединения обмоток начала на рисунке.
Средняя скорость. 1000 об мин.
Обмотка на 1000 об мин подключается независимо от других своим пускателем, не участвующим в схеме Даландера.
Запуск двухскоростного двигателя с переключающими полюсами без инверсии вращения для схемы Даландера.
Электрические характеристики элементов контроля и необходимые для выполнения этого типа запуска, как минимум должны быть:
Контактор К1, для включения и выключения двигателя на маленькой скорости (PV).Мощность должна быть такой же либо в двигателя в треугольном соединении и с категорией положения АС3.
Контакторы К2 и К3, для включения и выключения двигателя на большой скорости (ГВ). Мощность этих контакторов должна быть такая же либо в двигателя соединенного двойной звездой и категориеи обслуживания АС3.
Термореле F3 и F4, для защиты от перегрузок на обоих скоростях. Каждый из них будет измерять, употребляемый двигателем на защищаемой скорости.
Предохранители F1 и F2, для защиты от К.З. Должно быть типа аМ и мощностью такого же или превышающего максимума в двигателе, в каждой из своих двух скоростей.
Предохранитель F5, для защиты цепей контроля.
Система кнопок с общим прерывателем остановки S0 и двумя двойными прерывателями движения S1 и S2.
Перейдем к описанию в краткой форме процесса запуска, как на малой скорости, так и на большой:
а) запуск и остановка на маленькой скорости (PV).
Запуск путем на S1.
Замыкание контактора цепи К1 и запуск двигателя соединенного треугольником.
Автопитание через (К1, 13–14).
Открытие К1, которое работает как шторка для того, чтобы запущен в движение S2, контакторы большой скорости К2 и К3 не были активизированы.
Остановка путем использования на S0.
б) запуск и остановка на большой скорости (GV).
Запуск путем на S2.
Замыкание контактора звезды К2, которое формируется звезду двигателя при коротком замыкании: U1, V1 и W1.
Замыкание контактора К3 (К2, 21–22) таким образом, что двигатель работает соединением в двойную звезду.
Автопитание через (К2, 13–14).
Открытие (К2, 21–22) и (К3, 21–22), которые закрывают шторки для того, чтобы никогда не закрывался К1 в то время, как закрыты К2 или К3.
Остановка путем использования на S0.
Вспомогательные контакты системы кнопок (S1 и S2, 21–22) как защитные двойные шторки системы кнопок в том случае, если на оба прерывателя используются одновременно, чтобы никакой из контакторов не активизировался и эти контакты можно было бы убрать в том случае, если есть защитные шторки механического типа между К1 и К2.


Схемы подключения трехфазного двигателя. К 3-х и 1-фазной сети

Схемы подключения трехфазного двигателя — двигатели, рассчитанные на работу от трехфазной сети, имеют гораздо выше, чем однофазные моторы на 220 вольт. Поэтому, если в рабочем триедином режиме переменного тока, то оборудование необходимо монтировать с учетом подключения к трем фазам. В итоге, трехфазный двигатель, подключенный к сети, дает экономию энергии, стабильную эксплуатацию устройства.Не нужно подключать дополнительные элементы для запуска. Единственным условием хорошей работы устройства является безошибочное подключение и монтаж схемы, с соблюдением правил.

Схема подключения трехфазного двигателя

Из множества созданных схем специалист для монтажа асинхронного двигателя использует два метода:

  • Схема звезды.
  • Схема треугольника.

Названия схем даны по методу подключения обмоток в питающую сеть.Чтобы на электродвигателе определить, по какой схеме он подключен, необходимо посмотреть данные на металлической табличке, которая установлена ​​на корпусе двигателя.

Даже на старых образцах моторов можно определить метод соединения статорных обмоток, а также напряжение сети. Эта информация будет верна, если двигатель уже был в эксплуатации, никаких проблем в работе нет. Но иногда нужно произвести электрическое измерение.

Схемы подключения трехфазного двигателя звездой дают возможность плавного запуска мотора, но мощность оказывается меньше номинального значения на 30%.Поэтому по мощности схема треугольника остается в выигрыше. Существует особенность по нагрузке тока. Сила тока увеличивается при запуске, это отрицательно сказывается на обмотке статора. Возрастает выделяемое тепло, которое губительно воздействует на изоляцию обмотки. Это приводит к нарушению изоляции и поломке электродвигателя.

Много европейских устройств, поставленных на отечественный рынок, имеют в комплекте европейские электродвигатели, действующие с напряжением от 400 до 690 В.Такие 3-фазные моторы необходимо монтировать в сеть 380 вольт отечественного напряжения только по треугольной схеме обмоток статора. В случае аварии моторы сразу будут выходить из строя. Российские моторы на три фазы подключаются по звезде. Изредка производится монтаж схемы треугольника для получения двигателя наивысшей мощности, применяемой в специальном промышленном оборудовании.

Изготовители сегодня дают возможность подключать трехфазные электромоторы по любой схеме.Если в монтажной коробке три конца, то произведена заводская схема звезды. А если есть шесть выводов, то мотор можно подключить по любой схеме. При устройстве по звезде нужно три вывода начал обмоток объединить в один узел. Остальные три вывода подать на фазное питание напряжением 380 вольт. В схеме треугольника концы обмоток соединяют последовательно по порядку между собой. Фазное питание присоединяется к точкам узлов концов обмоток.

Проверка схемы подключения мотора

Представлен худший вариант выполненного подключения обмоток, когда на заводе не обозначены выводы проводов, сборка схемы проведена во внутренней части корпуса мотора, и наружу выведен один кабель.В этом случае необходимо разобрать электродвигатель, снять крышку, разобрать внутреннюю часть, разобраться с проводами.

Метод определения фаз статора

После разъединения выводных концов проводов применяют мультиметр для измерения сопротивления. Один щуп подключают к любому проводу, другой подносят по очереди ко всем выводам проводов, пока не найдется вывод, принадлежащий к обмотке первого провода. Аналогично поступают на остальные выводых. Нужно помнить, что обязательна маркировка проводов любым способом.

Если в наличии нет мультиметра или другого прибора, то использовать самодельные пробники, сделанные из лампочки, проводов и батарейки.

Полярность обмоток
Чтобы определить полярность обмоток, необходимо применить некоторые приемы:
  • Подключить импульсный постоянный ток.
  • Подключить переменный источник тока.

Два принципа подачи напряжения на одну катушку и его трансформации по магнитопроводу сердечника.

Как проверить полярность обмоток батарейкой и тестером

На контакты одного обмотки подключают вольтметр с повышенной чувствительностью, может отреагировать на импульс. К другой катушке быстро присоединяют напряжение одним полюсом. В момент подключения контролируют отклонение стрелки вольтметра. Если стрелка двигается к плюсу, то совпадала с другой обмоткой. При размыкании контакта стрелка пойдет к минусу. Для 3-й обмотки опыт повторяют.

Путем изменения выводов на другую обмотку при включении батарейки определяют, насколько правильно сделана маркировка концов обмоток статора.

Проверка переменным током

Две любые обмотки параллельно концами мультиметру. На третью обмотку включение. Смотрят, что показывает вольтметр: если полярность обмоток совпадает, то вольтметр показывает напряжение, если полярности разные, то покажет ноль.

Полярность 3-й фазы определяет переключение вольтметра, изменение положения трансформатора на другую обмотку.Далее, производят контрольные измерения.

Схема звезды

Этот тип схемы подключения трехфазного двигателя образует соединение обмоток в разные цепи, объединенные нейтралью и общей точкой точки.

Такую схему после того, как проверена полярность обмоток статора в электромоторе. Однофазное напряжение на 220В через автомат фазу на начала 2-х обмоток. К одной врезают в разрыв конденсаторы: рабочие и пусковые. На третий конец звезды подводят нулевой провод питания.

Величину емкости конденсаторов (рабочих) определяют по эмпирической формуле:

С = (2800 · I) / U

Для схемы запуска емкость повышают в 3 раза. В работе мотора при нагрузке нужно контролировать токов обмотокми измерений, корректировать емкость конденсатора по средним нагрузке привода механизма. В случае аварии, перегрев устройства, пробой изоляции.

Подключение мотора в работу хорошо делать через выключатель ПНВС, как показано на рисунке.

В нем уже сделана пара контактов замыкания, которые вместе напряжение на 2 схемы путем кнопки «Пуск». Во время отпускания кнопки цепь разрывается. Такой контакт применют для запуска цепи. Полное отключение питания делают, повреждение на «Стоп».

Схема треугольника

Схема подключения трехфазного двигателя треугольником является повтором прошлого варианта запуска, но имеет отличие методом включения обмоток статора.

Токи, проходящие в них, больше значений цепи звезды.Рабочие емкости конденсаторов нуждаются в повышенных номинальных емкостях. Они рассчитываются по формуле:

С = (4800 · I) / U

Правильность выбора емкостей также вычисляют по отношению токов в катушках статора путем измерения с нагрузкой.

Двигатель с магнитным пускателем

Трехфазный электродвигатель работает через магнитный пускатель по аналогичной схеме с автоматическим выключателем. Такая схема имеет примерно блок включения и выключения, с кнопками Пуск и Стоп.

Одна фаза, нормально замкнутая, соединенная с мотором, подключается к кнопке Пуск. При ее использовании контакты замыкаются, ток идет к электромотору. Необходимо учитывать, что при отпускании кнопки Пуск, клеммы разомкнутся, питание отключится. Чтобы такая ситуация не произошла, магнитный пускатель оборудуют вспомогательными контактами, которые называют самоподхватом. Они блокируют цепь, не дают ей разорваться при отпущенной кнопке Пуск. Выключить питание можно кнопкой Стоп.

В результате 3-фазный электромотор можно подключить к сети трехфазного напряжения совершенно разными методами, которые выбираются по модели и типу устройства, условиям эксплуатации.

Подключение мотора от автомата
Общий вариант такой схемы подключения выглядит как на рисунке:

Здесь показан автомат защиты, который выключает напряжение питания электромотора при чрезмерной нагрузке по току, и по короткому замыканию. Автоматический защитный выключатель — это простой 3-полюсный выключатель с тепловой характеристикой нагруженности.

Для примерного расчета и оценки нужного тока тепловой защиты, необходима мощность по номиналу двигателя, рассчитанного на работу от трех фаз, увеличить в два раза. Номинальная мощность указывается на металлической табличке на корпусе мотора.

Такие схемы подключения трехфазного двигателя вполне могут работать, если нет других вариантов подключения. Длительность работы нельзя прогнозировать. Это тоже самое, если скрутить алюминиевый провод с медным. Никогда не знаешь, через какое время скрутка сгорит.

При применении схемы подключения трехфазного двигателя нужно аккуратно выбрать ток для автомата, который должен быть на 20% больше тока работы мотора. Свойства тепловой защиты выбрать с запасом, чтобы при запуске не сработала блокировка.

Если для примера, двигатель на 1,5 киловатта, наибольший ток 3 ампера, то автомат нужен минимум на 4 ампера. Осуществляет эту схему соединения мотора является низкой стоимостью, простое исполнение и техобслуживание.

Если электродвигатель в одном, и работает полную смену, то есть следующие недостатки:
  • Нельзя отрегулировать тепловой ток сработки автоматического выключателя.Чтобы защитить мотор, ток защитного отключения автомата установить на 20% больше рабочего тока по номиналу мотора. Ток электродвигателя нужно через определенное время замерять клещами, настраивать ток защиты. Но у простого автоматического выключателя нет возможности настроить ток.
  • Нельзя дистанционно выключить и включить электродвигатель.
Похожие темы:

Многоскоростные электродвигатели | двухскоростные | трехскоростные

Электродвигатели многоскоростные

Многоскоростные электродвигатели изготавливаются на базе основного исполнения односкоростных двигателей и подразделяются на:

  • двухскоростные с отношением числа оборотов 1500/3000 (4/2 — число полюсов), 1000/1500 (6/4), 750/1500 (8/4), 750/1000 (8/6), 500/1000 ( 12/6)
  • трехскоростные — 1000/1500/3000 (6/4/2), 750/1500/3000 (8/4/2), 750/1000/1500 (8/6/4)
  • четырехскоростные — 500/750/1000/1500 (12/8/6/4)

Схемы подключения двухскоростных электродвигателей отличаются в зависимости от соотношения числа оборотов.
При использовании 1/2, т.е — 1500/3000, 750/1500 и 500/1000 применяется следующая схема:

При использовании 2/3 и 3/4, т. е -1000/1500, 750/1000 используется другая схема:

Схема подключения трехскоростных электродвигателей:

Схема подключения четырехскоростных электродвигателей:

Основные технические характеристики двухскоростных двигателей

Марка Мощн.
кВт
Об / мин Ток, А Момент
Н * м
Iп / Iн Момент
инерции
кгм 2
Масса
кг
1500/3000 об / мин
АИР132S4 / 2 6 1455 12,5 39,4 7 0,032 70
7,1 2900 14,6 23,4 7
АИР132М4 / 2 8,5 1455 17,3 55,8 7,5 0,045 83,5
9,5 2925 19,1 31 год 8,5
АИР180S4 / 2 17 1470 34,5 110 6,7 0,16 170
20 2930 39,3 65,2 6,4
АИР180М4 / 2 22 1470 43,7 143 7,5 0,2 190
26 2935 50,5 84,6 7,5
5А200М4 / 2 27 1475 53,4 175 7,4 0,27 245
35 год 2945 64,9 114 7,2
5А200L4 / 2 30 1470 57,6 195 7 0,32 270
38 2945 67,8 123 7
5А225М4 / 2 42 1480 81,7 271 7 0,5 345
48 2960 87,6 155 7,5
5АМ250С4 / 2 55 1485 102 354 7,3 1,2 485
60 2975 114 193 7,8
5АМ250М4 / 2 66 1485 121 424 7,2 1,7 520
80 2970 148 257 7,2
1000/1500 об / мин
АИР132S6 / 4 5 965 12 49,5 5,6 0,053 68,5
5,5 1435 11,1 36,6 5,7
АИР132М6 / 4 6,7 970 16 66 6,2 0,074 81,5
7,5 1440 14,7 49,7 6,2
АИР180М6 / 4 15 975 33,6 147 6,6 0,27 180
17 1450 33 112 6
5А200М6 / 4 20 980 44 195 6,5 0,41 245
22 1460 42,2 144 6
5А200L6 / 4 24 980 55,2 234 6,9 0,46 265
27 1480 51,5 174 6,5
500/1000 об / мин
АИР180М12 / 6 7 485 22,4 138 4,5 0,27 200
13 975 25,9 127 6
5А200М12 / 6 8 485 30,6 158 4 0,41 245
15 980 30,1 146 6
5А200Л12 / 6 10 485 31,1 197 4 0,46 265
18,5 975 36,3 181 6
5А225М12 / 6 14 485 43,9 276 4 0,65 320
25 980 48,5 244 6
5АМ250С12 / 6 16 495 56,5 309 4,4 1,2 435
30 990 58,3 289 6,6
5АМ250М12 / 6 18,5 490 60,1 361 4 1,4 455
36 985 71,1 349 5,3
750/1500 об / мин
АИР132S8 / 4 3,6 715 9,7 48,1 4,8 0,053 68,5
5 1435 10,3 33,3 5,9
АИР132М8 / 4 4,7 715 12,4 62,8 5 0,074 82
7,5 1440 15,8 49,7 6,4
АИР180М8 / 4 13 730 33,6 170 5,5 0,27 180
18,5 1465 35,9 121 6,7
5А200М8 / 4 15 730 40,2 196 5,3 0,41 245
22 1460 42,2 144 6,4
5А200L8 / 4 17 725 39 224 5 0,46 275
24 1450 45,5 158 5,5
5А225М8 / 4 23 735 55,3 299 5,5 0,7 330
34 1475 62,7 220 6,5
5АМ250С8 / 4 33 740 75,3 426 5,3 1,2 435
47 1480 87,2 303 6,4
5АМ250М8 / 4 37 740 81,5 478 6 1,4 465
55 1480 99,8 355 7
750/1000 об / мин
АИР132S8 / 6 3,2 725 8,7 42,2 4,6 0,053 68,5
4 965 9,1 39,6 5
АИР132М8 / 6 4,5 720 11,9 59,7 5,4 0,074 81,5
5,5 970 12,3 54,1 6
АИР180М8 / 6 11 730 26,3 144 5,3 0,27 180
15 970 30,1 148 6
5А200М8 / 6 15 730 35,4 196 5,5 0,41 245
18,5 975 37,2 181 6
5А200L8 / 6 18,5 730 43,6 242 5,5 0,46 265
23 975 46,2 225 6
5А225М8 / 6 22 740 51,7 284 6 0,7 330
30 985 58,6 291 6
5АМ250С8 / 6 30 740 70,8 387 6 1,2 435
37 990 73,2 357 6,4
5АМ250М8 / 6 42 740 93,2 542 5,5 1,4 485
50 985 96,6 485 6,1


Основные технические характеристики трехскоростных двигателей

Марка Мощность
кВт
Об / мин Ток
А
Момент
Н * м
Iп / Iн Момент
инерц.
кгм 2
Вес
кг
1000/1500/3000 об / мин
АИР132S6 / 4/2 2,8 955 7,6 28 5 0,053 70
4 1440 8,9 26,5 5
4,5 2895 9,7 14,8 6,3
АИР132М6 / 4/2 3,8 955 10,1 38 5,5 0,074 83,5
5,3 1440 11,3 35,1 6,5
6,3 2895 13 20,8 7
750/1500/3000 об / мин
АИР132S8 / 4/2 1,8 710 6,1 24,2 4 0,053 70
3,4 1440 7,5 22,5 6
4 2895 8,6 13,2 6,5
АИР132М8 / 4/2 2,4 710 8,5 32,3 4,5 0,074 83,5
4,5 1440 9,8 29,8 6,3
5,6 2895 11,7 18,5 6,7
750/1000/1500 об / мин
АИР132S8 / 6/4 1,9 710 6,4 25,5 4 0,053 68,5
2,4 950 6,1 24,1 4,4
3,4 1410 7,7 23 4,6
АИР132М8 / 6/4 2,8 720 9,4 37,1 4,5 0,074 81,5
3 960 7,7 29,8 5
5 1425 10,7 33,5 5,2
АИР180М8 / 6/4 8 740 22,9 103 5,4 0,27 180
11 975 24,3 108 6,1
12,5 1475 27 80,9 6,5
5А200М8 / 6/4 10 740 30,3 129 5,5 0,41 245
12 985 27 116 6
17 1475 36 110 6,5
5А200L8 / 6/4 12 735 31,6 156 5,3 0,46 270
15 985 31,9 145 6
20 1475 39,9 130 6,5
5А225М8 / 6/4 15 740 38,9 194 5,5 0,7 330
17 985 34,9 165 6,5
25 1480 48 160 6,3
5АМ250С8 / 6/4 22 740 52 284 5,7 1,2 435
25 990 51,1 241 7,6
33 1485 62,2 212 7
5АМ250М8 / 6/4 24 740 56,8 310 5,7 1,4 465
33 990 65,6 318 7,4
38 1485 71,7 244 6,8

Основные технические характеристики четырехскоростных двигателей

Марка Мощность
кВт
Об / мин Ток
А
Момент
Н * м
Iп / Iн Момент
инерц. кгм 2
Вес
кг
500/750/1000/1500 об / мин
АИР180М12 / 8/6/4 3 485 12,7 59,1 4,1 0,27 180
5 730 15,5 72 4,8
6 965 12,7 59,4 4,8
9 1465 18,6 58,7 6
5А200М12 / 8/6/4 4,5 490 16,8 87,7 3,5 0,41 245
8 735 20,5 104 4,5
9 980 18,9 87,7 5
12 1470 23,3 78 5,1
5А200L12 / 8/6/4 5 490 18,1 97,4 4 0,46 270
9 735 23,8 123 5
11 980 23,5 107 4,5
15 1470 29,5 97 5
5А225М12 / 8/6/4 7,1 490 26,4 138 4,5 0,7 325
13 740 36,6 168 6
14 985 28,4 136 6
20 1490 38,4 128 7,3
5АМ250С12 / 8/6/4 9 495 32,5 174 4,7 1,2 435
17 745 43,5 218 5,9
18,5 990 37,1 179 5,9
27 1485 52,4 173 7
5АМ250М12 / 8/6/4 12 495 42,2 232 4,8 1,4 465
21 год 745 51,7 269 6,1
24 990 47,6 232 6,6
30 1490 57,5 192 7,8

Цены на многоскоростные эл-двигатели составлют + (40-60)% к цене базового исполнения


Подключение электродвигателя по схеме звезда и треугольник

Схема подключения электродвигателя. Звезда, треугольник, звезда — треугольник.

Асинхронные двигатели, имеющие ряд неоспоримых достоинств, как надежность в эксплуатации, высокую производительность, способность выдерживать большие механические перегрузки, неприхотливость и невысокая стоимость обслуживания и ремонта, обусловленные простотой конструкции, имеют, конечно и свои недостатки.

На практике используются способы подключения к сети трёхфазных электродвигателей: «подключение звездой» и «подключение треугольником».

При соединении трёхфазного электродвигателя звездой, концы его статорных обмоток соединяются вместе, происходит соединение в одной точке, а в начале обмоток подаётся трехфазное напряжение (рис 1).

При соединении трёхфазного электродвигателя по схеме подключения «треугольником» обмотки статора электродвигателя соединяются последовательно таким образом, что конец одного обмотки соединяется следующим и так далее (рис 2).

Не вдаваясь в технические и теоретические электротехники, известно, что электродвигатели у которого обмотки, соединенные звездой работают плавнее и мягче, чем электродвигатели с соединенными обмотками треугольником, необходимо отметить, что при соединении обмоток звездой электродвигатель не может развить полную мощность. При соединении обмоток по схеме треугольник электродвигатель работает на полную паспортную мощность (что составляет в 1,5 раз больше по мощности, чем при соединении звездой), но при этом имеет очень большие значения пусковых токов.

В связи с этим для снижения пусковых токов целесообразно (особенно для электродвигателей с большей мощностью) подключение по схеме звезда — треугольник; устанавливается запуск осуществляется по схеме «звезда», после этого (когда электродвигатель «набрал обороты») происходит автоматическое переключение по схеме «треугольник».

Схема управления:

Еще вариант схемы управления двигателем

Подключение напряжения питания через контакт NC (нормально закрытый) реле времени К1 и контакт NC К2, в цепи катушки пускателя К3.

После включения пускателя К3, своими нормально замкнутыми контактами размыкает цепь катушки пускателя К2 контактами К3 (блокировка случайного включения) и замыкает контакт К3, в цепи питания катушки магнитного пускателя К1, который совмещен с контактами реле времени.

При включении пускателя К1 происходит замыкание контактов К1 в цепи катушки магнитного пускателя К1 и одновременно включается реле времени, размыкается контакт времени К1 в цепи катушки пускателя К3, замыкает контакт реле времени К1 в цепи катушки пускателя К2.

Отключение обмотки пускателя К3, замыкается контакт К3 в цепи катушки магнитного пускателя К2. После включения пускателя К2, размыкает своими контактами К2 в цепи катушки питания пускателя К3.

(Начало обмоток статора: U1; V1; W1.Концы обмоток: U2; V2; W2. На клеммной доске шпильки начала и концов обмоток установлена ​​в строгой установке: W2; U2; V2; под ними расположены: U1; V1; W1. При подключении двигателя в «треугольник» шпильки соединяются перемычками: W2-U1; U2-V1; V2-W1.)

На начало обмоток U1, V1 и W1 через силовые контакты магнитного пускателя К1 подаётся трехфазное напряжение. При срабатывании магнитного пускателя К3 с помощью его контактов К3 происходит замыкание, соединяя концы обмоток U2, V2 и W2 между собой обмотки двигателя соединены звездой.

Через некоторое время срабатывает реле времени, совмещенное с пускателем К1, отключая пускатель К3 и одновременно происходит К2, замыкаются силовые контакты К2 и подача напряжения на концы обмоток электродвигателя U2, V2 и W2. Таким образом электродвигатель включается по схеме треугольник.

Для запуска двигателей по схеме звезда-треугольник разными производителями выпускаются так называемые пусковые реле, название они могут иметь разные «Пусковые времени», реле «старт-дельта» и др., но назначение у них одно и тоже:

РВП-3, ВЛ-32М1, D6DS (Австрия), ВЛ-163 (Украина), CRM-2T (Чехия), TRS2D (Чехия), 1SVR630210R3300 (ABB), серия 80 (Finder) и другие .

Типовая схема с пусковым реле времени (реле «звезда / треугольник») для управления запуском трехфазного асинхронного двигателя:

Вывод : Для снижения уровня токов запускать двигатель необходимо в следующую пуск: сначала включите по схеме «звезда» на пониженных оборотах, далее переключаться на треугольник.
Запуск сначала треугольником максимальный момент, когда электродвигатель «набрал обороты», происходит автоматическое переключение на схему треугольник, стоит какая нагрузка на валу перед запуском , ведь вращающий момент при звезде ослаблен, поэтому такой способ запуска может легко подойдет для очень загруженных двигателей, может выйти из строя.

Схемы подключения двигателя стиральной машины


Стиральные машины, со временем, выходят из строя или морально устаревают.Как правило,
используется любой стиралки есть ее электродвигатель, который может найти свое применение и
после разборки стиралки на запчасти.

Мощность таких двигателей, как правило, не меньше 200 Вт, а порой и куда больше, скорость
оборотов вала может доходить и до 11 000 оборотов в минуту, что вполне может подойти для использования такого двигателя в хозяйственных или мелких промышленных нуждах.

Вот лишь несколько идей удачного применения электродвигателя от стиралки:

  • Точильный («наждачный») станок для заточки ножей и мелкого домашнего и садового инструмента. Двигатель устанавливают на прочном основании, а на вал закрепляют точильный камень или наждачный круг.
  • Вибростол для производства декоративной плитки, тротуарной плитки или других бетонных изделий, где необходимо уплотнение и удаление от туда воздушных пузырей. А возможно вы занимаетесь производством силиконовых форм, для этого также нужен вибростол.
  • Вибратор для усадки бетона. Самодельные конструкции полно в интернете, вполне могут быть реализованы с применением небольшого двигателя от стиральной машинки.
  • Бетономешалка. Вполне подойдет такой двигатель и для небольшой бетономешалки. После небольшой переделки, можно использовать и штатный бак от стиральной машинки.
  • Ручной строительный миксер. С помощью такого миксера можно замешивать штукатурные смеси, плиточный клей, бетон.
  • Газонокосилка. Отличный вариант по мощности и габаритам для газонокосилки на колесах. Подойдет любая готовая платформа на 4-х колесных дисках с закрепленным в центре двигателем с прямым приводом на ножах, которые находятся в снизу. Высоту газона можно регулировать посадкой, например, поднимая или опуская колеса на шарнирах по отношению к основной платформе.
  • Мельница для измельчения травы и сена или зерна. Особенно актуально для фермеров и людей занимающихся разведением домашней птицей и другой живности. Также можно делать заготовки корма на зиму.

Варианты применения электромотора могут быть очень много, суть процесса в возможности вращать на высоких оборотах разные механизмы и приспособления.Но какой бы механизм сконструировать вы б не собирались, все равно вам нужно будит правильно
подключить двигатель от стиральной машинки.

Виды двигателей


В стиральных машинках разных поколений и стран производства, могут быть и разные типы
электродвигателей. Как правило это один из трех вариантов:

Асинхронный .
В основном это все трехфазные двигатели, могут быть и двухфазными, но это большая редкость.
Такие двигатели просты в своей конструкции и обслуживании, в основном все сводится к смазке подшипников. Недостатком есть большой вес и габариты при небольшом КПД.
Такие двигатели стоят в старинных, маломощных и недорогих моделях стиральных машин.

Коллекторный.
Двигатели пришли на смену большим и тяжелым асинхронным устройствам.
Такой двигатель может работать как от переменного так и от постоянного тока, на практике он будет вращаться от автомобильного аккумулятора на 12 вольт.
Двигатель может вращаться в нужную нам сторону, для этого нужно всего лишь сменить полярность подключения щеток к обмоткам статора.
Высокая скорость вращения, плавное изменение оборотов изменением прилагаемого напряжения, небольшие размеры и большой пусковой момент — вот лишь небольшая часть такого типа двигателей.
К недостаткам можно отнести износ коллекторного барабана и щеток и повышенный нагрев при не столь продолжительной работе. Также необходима более частая профилактика, например чистка коллектора и замена щеток.

Инверторный (бесколлекторный)
Инновационный тип двигателей с прямым приводом и небольшими габаритами при довольно не малой мощности и высоком КПД.
В конструкции двигателя все так же присутствует статор и ротор, однако количество соединительных элементов сведено к минимуму. Отсутствие элементов подверженных быстрому износу, а так же низкий уровень шума.
Такие двигатели стоят в последних моделях стиральных машин и их производство требует сравнительно больше затрат и усилий что конечно же влияет на цену.

Схемы подключения

Тип двигателя с пусковой обмоткой (старые / дешевые стиралки)


Для начала нужен тестер или мультиметр.Нужно найти две соответствующие другу пары выводов.
Щупами тестера, в режиме прозвонки или сопротивления, нужно отыскать два провода между собой прозваниваются, остальные два провода автоматически будут парой второй обмотки.

Дальше следует определить, где у нас пусковая, а где — рабочая обмотки. Нужно замерить их сопротивление: более высокое сопротивление укажет на пуск обмотку (ПО) , которая создает начальный крутящий момент. Более низкое сопротивление укажет нам на обмотку возбуждения (ОВ) или другими словами — рабочую обмотку, создающую магнитное поле вращения.

Вместо контактора «SB» может стоять неполярный конденсатор малой емкости (около 2-4 мкФ)
Как это обустроено в самой стиралке для удобства.

Если же двигатель будет запускаться без нагрузки, то есть, не будит на его валу шкива с нагрузкой в ​​момент запуска, то такой двигатель может запускаться и сам, без конденсатора и кратковременной «запитки» пусковой обмотки.

Если двигатель сильно перегревается или греется даже без нагрузки непродолжительное время, то может быть несколько.Возможно изношены подшипники или уменьшился зазор между статором и ротором в следствие чего они задевают друг друга. Но чаще всего причиной может быть высокая емкость конденсатора, проверить несложно — дайте поработать двигателю с отключенным пусковым конденсатором и сразу все станет ясно. При необходимости емкости конденсатора лучше уменьшить до минимума при котором он справляется с запуском электродвигателя.

В кнопке контакт «SB» строго должен быть не фиксируемым, можно попросту воспользоваться кнопкой от дверного звонка, в противном случае пусковая обмотка может сгореть.

В момент запуска кнопку «SB» зажимают до момента раскрутки вала на полную (1-2 сек.), Дальше кнопка отпускается и напряжение на пусковую обмотку не подается. Если необходима реверс — нужно сменить контакты обмотки.

Иногда в таком двигателе может быть не четыре провода, в таком случае две обмотки уже соединены в средней точке между собой, как показано в схеме.
В любом случае разбирая старую стиралку, можно присмотреться, как там был подключен к ней ее двигатель.

Когда возникает необходимость реализовать реверс или сменить направления вращения двигателя с пусковой обмоткой, можно подключить по следующей схеме:

Интересный момент. Если в двигателе не использовать (не задействовать) пусковую обмотку, то направление вращения может быть всевозможным (в любую из сторон) и зависеть, например, от того, в какую сторону провернуть вал в тот момент, когда подключается напряжение.

Коллекторный тип двигателя (современные, стиралки автомат с вертикальной загрузкой)


Как правило, это коллекторные двигатели без пусковой обмотки, которые не нуждаются в пусковом конденсаторе, такие двигатели работают и от постоянного тока и от переменного.

Такой двигатель может иметь около 5 — 8 выводов на клемном устройстве, но для работы двигателя вне стиральной машинки. В первую очередь нужно исключить ненужные контакты тахометра. Сопротивления обмоток тахометра составляет примерно 60 — 70 Ом.

Также могут быть выведены и выводы термозащиты, которые встречаются редко, но они нам так же не потребуются, как правило, замкнутый или разомкнутый контакт с «нулевым» сопротивлением.

Дальше подключаем напряжение к одному из выводов обмотки.Второй ее вывод соединяют с
первой щеткой. Вторая щетка подключается к оставшемуся 220-вольтовому проводу. Двигатель должен заработать и вращаться в одну сторону.


Чтобы изменить направление движения двигателя, подключение щеток следует поменять местами: теперь первая будет включена в сеть, а вторая соединена с выходом обмотки.

Такой двигатель можно проверить автомобильным аккумулятором на 12 вольт, не боясь при этом «спалить» его из того, что неправильно подключили, спокойно можно и
«поэкспериментировать» и с реверсом и посмотреть как двигатель работает на малых оборотах от низкого напряжения.

Подключая к напряжению 220 вольт, имейте в виду что двигатель резко запустится с рывком,
поэтому лучше его закрепить неподвижно чтоб он не повредил и не замкнул провода.

О том как подключить трехфазные асинхронные двигатели к обычной бытовой сети 220 вольт, довольно подробно можно узнать в статье — «Подключение трехфазного двигателя»

Регулятор оборотов


Если возникает необходимость регулирования количества оборотов, можно воспользоваться
бытовым регулятором освещения (диммером).Для этой цели нужно подбирать такой диммер, который по мощности будет с запасом большей мощности двигателя, или потребуется доработка, можно из той же стиральной машинки извлечь симистор с радиатором и впаять его на место маломощной детали в конструкции регулятора освещения. Но здесь уже нужно иметь навыки работы с электроникой.

Если же вам удастся найти специальны диммер для подобных электродвигателей то это будет
самым первым решением. Как правило, их можно подыскать в точках продажа систем вентиляции и они используются для регулировки оборотов двигателей приточных и вытяжных систем вентиляции.

Почему авиастроительные корпорации делают одинаковые самолеты?

  • Павел Аксенов
  • Русская служба Би-би-си

Автор фото, Getty Images

Подпись к фото,

Конструкторы нашли оптимальную форму для пассажирского самолета

Когда в очередной раз вы Вы видите презентацию нового авиалайнера, не появляется ли у вас ощущение дежавю, не кажется ли вам, что каждый раз из ангара выкатывают самолет, который вы уже много раз видели раньше?

В понедельник открывается парижский авиасалон Ле Бурже, где будут представлены самые последние новинки авиационного рынка.2017 год вообще богат на премьеры — только в мае в воздух впервые поднялись российский лайнер МС-21 и китайский С919, а Boeing 737MAX и А321NEO уже поступили к первым покупателям.

Но если стереть со всех этих самолетов опознавательные знаки, ливреи, отличить ли вы на летном поле один от другого? На фото в конце этого абзаца изображены Airbus A320 и Boeing 737. Сможете ли вы, не прибегая к помощи интернета, понять, какой где?

Подпись к фото,

Проверьте себя. На этом снимке — Airbus A320 и Boeing 737.Сможете отгадать, какой где? Ответ — в последнем абзаце текста

Мы привыкли к тому, что самолеты похожи друг на друга, однако, оказывается, так было не всегда. В первые десятилетия после Второй мировой войны — во время расцвета гражданской авиации — у каждого пассажирского самолета было свое «лицо».

1950-е годы, Caravelle, Ту-104, Boeing 707, Comet — каждый из них можно было узнать по неповторимому силуэту. В 1960-е и 70-е небо было тоже более пестрым: Ил-62, Боинг 727, Ту-154.Все они были легко отличимы друг от друга даже на большом расстоянии. Посмотрите, какими они были:

Автор фото, Getty Images

Подпись к фото,

Британский лайнер Комета — первый серийный реактивный пассажирский самолет

Автор фото, ТАСС / Белозеров

Подпись к фото,

Ту-104 — первый советский реактивный авиалайнер

Автор фото, Wikimedia / Garitzko

Подпись к фото,

У германского VFW 614 двигатели располагались над крыльями — наверное, самая причудливая модель за всю историю гражданской авиации

Автор фото, Hulton Archive

Подпись к фото,

DC-10 — еще один неповторимый силуэт в гражданской авиации

Автор фото, Анатолий Егоров / ТАСС

Подпись к фото,

Ил-62 — советский дальнемагистральный лайнер не похож на своего американского конкурента Boeing 707

Автор фото, Hulton Archive

Под к фото ,

Боинг 707 — «одноклассник» Ил-62

Так что же случилось? Все очень просто. Похоже, авиаконструкторы во всем мире оптимальную форму самолета. В авиации не бывает дизайна ради красоты (ну разве чуть-чуть) — каждая мелочь имеет свое объяснение и обоснование.

Русская служба Би-би-си попросила авиационных экспертов, включая представителей мировых авиастроительных корпораций Boeing и Airbus, объяснить особенности конструкции современных современных авиалайнеров.

Почему у самолета крылья снизу?

Начнем с крыльев. Когда у самолета они расположены внизу фюзеляжа, он называется «низкопланом».Абсолютное большинство пассажирских самолетов -низкопланы.

В компании Boeing нам объяснили, что причиняет сразу несколько. «Расположение крыла ниже (схема — низкоплан) позволяет сделать более короткое шасси (снизить вес), расположить двигатели под крылом достаточно близко к земле, удобно скомпоновать пассажирский салон», условия для безопасного покидания самолета в случае аварийной посадки на воду «, — рассказали в американской компании.

Автор фото, Getty Images

Подпись к фото,

Низкорасположенное крыло более безопасно при аварийных посадках даже при полных топливных баках. В 2009 году А320 компании US Airways приводнился на реку Гудзон сразу после взлета. Все пассажиры и экипаж спаслись

Давайте чуть подробнее поговорим о безопасности. Центральная часть самолета — место, где крылья соединяются с фюзеляжем, — называется центроплан. Это самая прочная и самая тяжелая его часть. В ней же расположены и топливные баки.Если самолет придется совершать аварийную посадку, то, очевидно, лучше сидеть на самой прочной и тяжелой части, а не под ней, не правда ли? А если при этом самолет сядет на воду, то полупустые, или почти пустые топливные баки, будут его рода понтонами, которые будут поддерживать его на плаву.

Среди региональных и ближнемагистральных хватает высокопланов, у которых крылья находятся сверху. Есть совсем немного среднепланов, крылья которых соединяются с фюзеляжем в середине, и даже биплан — Ан-2, но это уже авиационная экзотика, хотя и весьма симпатичная.

Автор фото, AFP

Подпись к фото,

Ан-158 проще садиться на плохо подготовленные полосы

Схема «высокоплана» тоже имеет свои преимущества. Самолетам с пропеллерами удобней располагать их выше от земли, а реактивные высокопланы, такие как украинский Ан-158, могут приземляться на аэродромах с не очень хорошо подготовленной полосой, где есть опасность того, что пыль или мелкие камни могут попасть в двигатели.

Наконец, высокопланы очень удобны для посадки и высадки — фюзеляж находится близко к земле, можно сойти на нее даже без трапа (особенно актуально как раз для плохо оборудованных аэродромов).Конструкторы транспортных самолетов от этой схемы в полном восторге — загрузить такой самолет намного проще.

Почему у самолетов два реактивных двигателя, а не один, три или четыре?

Расцвет гражданской авиации пришелся на послевоенные годы, и некоторое время турбореактивные (без пропеллера) и турбовинтовые (с пропеллером) двигатели соперничали друг с другом.

Первые позволяли самолетам летать быстро, вторые — экономить топливо. Сегодня средне- и дальнемагистральные самолеты летают на турбовентиляторных реактивных двигателях, которые становятся все более экономичными, надежными и, что немаловажно, более тихими.

Тяжеловозы А380, А340 и B747 все еще использовать по четыре двигателя (Россия добавить к ним модернизированный Ил-96), до сих пор летают трехдвигательные DC-10 и Ту-154, но в мировой авиации давно наметилась тенденция делать пассажирские самолеты, даже большие и тяжелые, с двумя моторами.

Автор фото, Марина Лысцева / ТАСС

Подпись к фото,

Новейший российский лайнер МС-21 построен по схеме, ставшей классической

«Расход топлива, аэродинамическое сопротивление и вес силовой установки самолета с двумя мощными двигателями значительно меньше, чем у такого же самолета с тремя или четырьмя двигателями поменьше «, — объяснили в Boeing.

Два — идеальное число двигателей авиалайнера. Оставлять один небезопасно — двигатели иногда отказывают в полете.

Впрочем, есть еще «Мрия», у которой под крыльями целых шесть моторов. Но это особый самолет. И невероятно красивый — полюбуйтесь на него.

Почему двигатели находятся под крыльями?

За всю историю гражданской авиации конструкторы великого множества вариантов того, как прикрепить к самолету двигатель.Их размещали в корне крыла, в хвостовой части фюзеляжа, под крыльями, встречались и более экзотические схемы — на американском широкофюзеляжном DC-10 два мотора находились под крыльями, а третий — в хвосте, а у германского Fokker 614 — над крыльями на двух стойках- пилонах.

Теперь на абсолютном большинстве новых лайнеров двигатели подвешены на пилонах под крыльями. Это может показаться странным, когда два тяжелых грузовых автомобиля создают большую нагрузку на крылья.Не лучше ли, например, оставить их в задней части фюзеляжа, как это делали поколения авиаконструкторов?

Автор фото, AFP

Подпись к фото,

Новый Boeing 737MAX — обратите внимание, что к двигателю можно просто подойти по земле, совершенно необязательно при этом бегать за стремянкой. При этой стойке шасси настолько короткие, что гондолы двигателей пришлось в нижней части немного подрезать

«Преимущество двигателей под крылом — это в первую очередь короткий путь к топливному баку, находящемуся, опять же, в крыле.Это означает более простую и более легкую систему подачи топлива. Проще регулировать центр тяжести самолета в полете, так как масса двигателей находится практически в центре авиации, — объяснил Би-би-си германский эксперт в области авиации Александр Вайц.

Для того, чтобы обеспечить центровку лайнеров, двигатели, которые установлены в хвосте, действительно надо

Корпорация Airbus Русская служба Би-би-си объяснили, что еще одним достоинством современных схем самолетов является то, что двигатели под крыльями работают эффективнее, поскольку находятся в «невозмущенном потоке» — вне завихрений воздуха, которые образуются в полете возле фюзеляжа.

Еще одна причина, на которую указали в Airbus, — уменьшение нагрузки на крыло. Во время полета самолет «опирается» на воздух целиком, и крыльями, и фюзеляжем, и хвостовым оперением. И чем равномернее будет распределена нагрузка по всей площади, тем лучше для всех узлов и сочленений. При этом если тяжелые двигатели будут на фюзеляже, сила притяжения будет стараться как бы «сложить» самолет подобно. Сделать это, конечно, не получится, но и лишняя нагрузка планеру ни к чему.

Схема расположения двигателей в хвостовой части самолета, от которой сейчас отказываются производители больших авиалайнеров, долгое время было очень популярной.Вспомним советские Ту-154, Ту-134, Як-40, Як-42, Ил-62, американский Boeing 727 и другие многие. Она имеет преимущества, поскольку позволяет сделать крыло более тонким, аэродинамически более совершенным.

Кроме того, если в полете откажет один двигатель, самолет будет продолжать полет на втором, в случае, если тот будет расположен под крылом, самолет неизбежно будет немного разворачивать (толкать детскую коляску одной рукой, взявшись за ручку с краю) . Это немного дискомфортно для пилота, но не так уж опасно.Когда двигатели находятся в хвостовой части, экипаж не будет испытывать даже и этого дискомфорта.

Однако когда речь заходит о комфорте во время технического обслуживания, разница между двигателем под крылом и в хвосте становится колоссальной. Инженер по техническому обслуживанию самолетов Алексей Ребик рассказал Би-би-си об обслуживании самолета на примере самой простой операции — установка на двигатель заглушки (алюминиевый щит или кусок ткани, которым закрывают воздухозаборник). Эту выполняет каждый раз, когда самолет отправляется на более-менее длительную стоянку.

Автор фото, Юрий Белозеров / ТАСС

Подпись к фото,

1982 год, техники зимой пытаются добраться до двигателей Ту-134

Автор фото, Анатолий Седельников / ТАСС

Подпись к фото,

1994 год. Более современный «Туполев» — Ту-204.

«Установить стремянку, подтащить ее вокруг всего самолета, подтащить к каждому двигателю, заглушить . .. А там несколько точек крепления, и с одной стремянки, бывает, не достать до всех точек — на магистральных самолетах воздухозаборник обычно диаметром не меньше двух метров.

При этом в случае с Ту-154 или Boeing 727 можно прикрепить заглушку в следующей точке и повторить это еще раз », — рассказал он. На самолетах с низкорасположенными двигателями такая процедура, как минимум на полчаса, делается по его словам, как минимум на полчаса быстрее.

А ведь установка заглушки — простая операция, при более сложном обслуживании проблемы с доступом еще более острыми, а их решение — еще более длительным.

Если вы считаете, что пассажир это не очень касается, то напрасно — техническое обслуживание самолета авиакомпания обычно оплачивает по времени работы техники. И в соответствии с этим фактом, что самолеты теперь стало проще и быстрее обслуживать, отразился на стоимости билетов — полеты стали более доступными.

Есть еще одна причина, по которой двигатели вешают не просто под крылом, но и поотдаль от фюзеляжа. В корпорации Airbus Би-би-си объяснили, что это делается для того, чтобы в салоне не было слышно шума от них.

Почему у самолета именно такой хвост?

Прежде чем окончательно прийти к той форме, которую обычно устанавливают современные самолеты (хвостовое оперение с двумя горизонтальными плоскостями на основании), авиаконструкторы перепробовали великое множество вариантов.Самым экзотическим был, наверное, Constellation — лайнер, который выпускала с 1943 по 1958 год американская компания Lockheed. Его разработали во время Второй мировой, и самолету нужен был невысокий хвост, чтобы вписываться в ворота ангаров — вместо одного большого в результате сделали три маленьких.

Автор фото, Hulton Archive

Подпись к фото,

Lockheed Constellation можно наградить призом за самый пышный хвост

За всю историю авиации хвостовое оперение приобретало самые причудливые формы — одно- и двухвостое оперение, Н-образное, V-образное, Т -образное и многие другие. Если бы не нашли в результате оптимальную конструкцию, они бы, наверное, перепробовали весь алфавит.

В настоящее время классическими можно считать два типа: оперение с одним вертикальным стабилизатором (рулем направления) и двумя горизонтальными (рулями высоты), которые расположены у его основания, а также Т-образное, как на Ту-134 или Boeing 727. У каждого типа есть свои преимущества и недостатки, но в результате большинства авиалайнеров есть первый вариант.

Автор фото, Carl Ford / Airteamimages

Подпись к фото,

Boeing 727-225 авиакомпании Дональда Трампа Trump Shuttle (действовала с 1989 по 1992 годы).Обслуживать такое Т-образное хвостовое оперение намного сложнее, чем у самолета, стабилизаторы которого находятся на фюзеляже

Проблема тут в том, что обе схемы обладают своими достоинствами и недостатками. К недостаткам схемы, ставшей традиционной на современных лайнерах, можно отнести то, что стабилизаторы «попадают в возмущенный поток, сходящий с расположенного впереди крыла», рассказали специалисты Boeing. Другими словами, воздушные завихрения за крыльями образуются ровно в том месте, где находятся рули высоты.

Автор фото, AFP

Подпись к фото,

Новый китайский авиалайнер С919 — никаких сюрпризов в компоновке, традиционная схема с низкорасположенными стабилизаторами

у Т-образной схемы недостатков больше. Как объяснили в Airbus, нижнее расположение рулей высоты, продиктовано вопросов безопасности: «При сваливании стабилизаторы на вершине находятся в» тени «воздушного потока крыла, такой самолет тяжелее вывести в стабильное управляемое положение».

В Boeing тоже обращают внимание на проблему: «Основным недостатком этой схемы полета является возможность попадания стабилизатора и положения на нем рулей высоты в зоне полета полета с крыла в случае полета самолета на очень больших углах атаки».

Поясним, речь идет о положении самолета, при котором его нос сильно задран, а сам он продолжает лететь вперед — в такой ситуации крылья, как бы раздвигают воздух, оставляя за собой сильно разреженный его слой. В этой «тени» и оказываются горизонтальные стабилизаторы на вершине хвоста (и двигатели, расположенные сзади), при помощи которых можно выровнять самолет — из-за отсутствия плотного воздуха сделать это почти невозможно. В такую ​​ситуацию лайнеры попадают нечасто, но этот набор проблем серьезно усугубляет весь набор проблем Т-образной схемы хвоста.

В Airbus указали еще на одну проблему такого хвостового оперения — большой вес. Горизонтальные рули и сами по себе весят немало, но сверху нужно еще link различные механизмы, да и сам хвост укрепить, увеличив тем самым его массу.

Наконец, судя по рассказу инженера по техобслуживанию самолетов Алексея Ребика, эта схема — настоящее наказание для техников. Он объяснил это на примере стабилизаторов на Ту-154.

«Высота горизонтального оперения на Ту-154 — 11-12 метров.Здесь не обойдешься стремянкой. Надо вызвать машину и ждать, пока она приедет. Когда приезжает машина, у нее выдвигаются аутригеры — гидравлические подъемники, опоры, которые она ставит на землю. Это занимает время. Чтобы переместиться от одной половины стабилизатора к другому, ей нужно опустить стрелу, затем поднять эту машину, затем вы управляете машиной, подъездом-отъездом, потом она снова выдвигает опоры, вы залезаете в корзину, едете наверх, выполняете работы. По сравнению с тем, как вы одну стремянку под Boeing 737 подкатили, это плюс полчаса получается «, — рассказал инженер.

Что же нового в современных самолетах?

Мы знаем, как будет выглядеть новый авиалайнер, который представят на ближайшем авиасалоне. И человеку, далекому от авиации, будет сложно отличить новинку производителя одного от другого. Но если авиаконструкторы уже нащупали оптимальную форму самолета, как происходит эволюция самолетов, по какому пути они развиваются?

В корпорации Airbus Би-би-си сказали, что основные направления развития пассажирской авиации — экономичность, летно-технические характеристики, комфорт, удобство эксплуатации, надежность, связанная с безопасностью, — это отдельная и большая тема, чем с проектированием).

Автор фото, Дениз Алтиндас

Подпись к фото,

Прогресс в авиации идет по малозаметному со стороны пути — использование новых материалов, новых систем управления самолетом

«Наверное, бесконечными можно назвать модификации в салоне самолета, ведущие, с одной стороны, Улучшение показателей экономической эффективности самолетов: это более современные двигатели, новые законцовки крыла, шарклеты, новая геометрия крыла, как на А350, ну и, конечно же, это новые материалы.Прежде всего это композитные материалы, они более лёгкие и более надежные «, — рассказал авиационный эксперт Александр Вайц.

В Boeing указали на» широкое применение новых композитных материалов, новых прочных и легких сплавов «, а также прочих систем, главная задача —

Кроме того, в американской авиалайнерах будет «защита» до попадания самолета в стоянку. какие-либо критические ситуации в результате ошибок экипажа или / и отказов двигателя или систем «.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *