Соединения, клеммы, разъемы.
Трафарет Visio Соединения, клеммы, разъемы.
Символы условных обозначений электрических соединений.
Условные обозначения соединения, представлены тремя отдельными фигурами: соединение неразборное, соединение разборное и соединение клеммное:
Соединение неразборное.
Соединение разборное.
Соединение клеммное.
Текстовый блок символа соединения, пожно переместить в одно из 8 фиксированных положений. При этом выравнивание текста происходит автоматически.
Примеры расположения текста относительно обозначения соединения.
Ввод текста производится в таблице данные фигуры или непосредственно, в выделенную фигуру. В контекстном меню фигуры имеется команда для поворота текста вертикально или горизонтально.
Посмотреть на видео:
Условные обозначения Перемычки контактные.
Переключение типа контактного соединения перемычки, производится в таблице данных фигуры.
Перемычка контактная, соединение неразборное — неразборное.
Перемычка контактная, соединение разборное — разборное.
Перемычка контактная, соединение разборное — неразборное.
Используя маркеры изменения размера и маркер управления, можно изменить конфигурацию условного обозначения перемычки:
Различные конфигурации условного обозначения контактной перемычки.
Изменение условного обозначения перемычки контактной — видео:
Условные обозначения колодки зажимов и разъемных контактных соединений.
1. Фигура условного обозначения колодки зажимов
Фигура колодки зажимов позволяет получить условные обозначения колодок с числом зажимов от 1 до 12, а так же показать символ вида контактных соединений: с разборными контактами, с неразборными контактами или с разборными и неразборными контактами.
Изменить число зажимов и вид контактных соединений можно в таблице данных фигуры.
Например:
Колодка на 4 зажима.
Колодка 6 зажимов с разборными контактами.
Колодка 8 зажимов с неразборными контактами.
Колодка с разборными и неразборными контактами.
Если требуется начертить колодку с числом зажимов более 12, необходимо воспользоваться фигурой колодка зажимов дополнительных. В отличии от предыдущей фигуры она не имеет текстовых полей и символа вида контактных соединений. Число зажимов можно изменить от 1 до 12.
2. Фигура условного обозначения соединения контактного разъемного однопроводного.
Соединение контактное разъемное однопроводное, гнездо.
Соединение контактное разъемное однопроводное, штырь.
3. Соединение контактное разъемное 2-12 проводное.
Условное обозначение соединения контактного разъемного многопроводного, представлено тремя типами фигур, позволяющими получить обозначения соединений типа: штырь, гнездо и разъем.
Число подключаемых проводов к условному обозначению можно изменить в таблице данных фигуры, повернуть в контекстном меню фигуры.
Примеры:
Соединение контактное разъемное двенадцатипроводное.
Соединение контактное разъемное двенадцатипроводное, типа гнездо.
Соединение контактное разъемное трехпроводное, типа гнездо.
Соединение контактное разъемное шестипроводное, типа гнездо.
Соединение контактное разъемное четырехпроводное, типа штырь.
Если требуется начертить соединение контактное разъемное с числом подключаемых проводов более 12, необходимо воспользоваться соответствующей дополнительной фигурой. В отличии от предыдущей фигуры она не имеет текстовых полей. Число подключаемых проводов можно изменить от1 до 12.
Пример изменения условных обозначений колодки зажимов и соединений контактных разъемных, видео:
Символы прочих соединений разъемных, разъемов и перемычкек.
Разъем:
Разъем, фиксированная и подвижная части.
Разъем, фиксированная часть.
Разъем, подвижная часть.
Соединение разъемное с защитным контактом:
Соединение разъемное с защитным контактом (гнездо).
Соединение разъемное коаксиальное:
Разъем коаксиальный (гнездо).
Разъем коаксиальный (штырь).
Соединительное звено:
Соединительное звено, положение разомкнуто.
Соединительное звено, положение замкнуто.
Перемычки коммутационные:
Перемычка коммутационная: с выведенным гнездом.
Перемычка коммутационная: с выведенным штырем.
Перемычка коммутационная.
Используя маркеры изменения размера и маркер управления, можно изменить конфигурацию условного обозначения перемычек:
Примеры конфигурации перемычек коммутационных.
Поворот всех условных обозначений, в контекстном меню фигуры.
графические и буквенные по ГОСТ
Как невозможно читать книгу без знания букв, так невозможно понять ни один электрический чертеж без знания условных обозначений.
В этой статье рассмотрим условные обозначения в электрических схемах: какие бываю, где найти расшифровку, если в проекте она не указана, как правильно должен быть обозначен и подписан тот или иной элемент на схеме.
Введение
Но начнем немного издалека…
Каждый молодой специалист, который приходит в проектирование, начинает либо со складывания чертежей, либо с чтения нормативной документации, либо нарисуй «вот это» по такому примеру. Вообще, нормативная литература изучается по ходу работы, проектирования.
Невозможно прочитать всю нормативную литературу, относящуюся к твоей специальности или, даже, более узкой специализации. Тем более, что ГОСТ, СНиП и другие нормативы периодически обновляются. И каждому проектировщику приходится отслеживать изменения и новые требования нормативных документов, изменения в линейках производителей электрооборудования, постоянно поддерживать свою квалификацию на должном уровне.
Помните, как Льюиса Кэролла в «Алисе в Стране Чудес»?
«Нужно бежать со всех ног, чтобы только оставаться на месте, а чтобы куда-то попасть, надо бежать как минимум вдвое быстрее!»
Это я не к тому, чтобы поплакаться «как тяжела жизнь проектировщика» или похвастаться «смотрите, какая у нас интересная работа». Речь сейчас не об этом. Учитывая такие обстоятельства, проектировщики перенимают практический опыт от более опытных коллег, многие вещи просто знают как делать правильно, но не знают почему. Работают по принципу «Здесь так заведено».
Порой, это достаточно элементарные вещи. Знаешь, как сделать правильно, но, если спросят «Почему так?», ответить сразу не сможешь, сославшись хотя бы на название нормативного документа.
В этой статье я решил структурировать информацию, касающуюся условных обозначений, разложить всё по полочкам, собрать всё в одном месте.
Виды и типы электрических схем
Прежде, чем говорить об условных обозначения на схемах, нужно разобраться, какие виды и типы схем бывают. С 01.07.2009 на территории РФ введен в действие ГОСТ 2.701-2008 «ЕСКД. Схемы. Виды и типы. Общие требования к выполнению».
В соответствии с этим ГОСТ, схемы разделяются на 10 видов:
- Схема электрическая
- Схема гидравлическая
- Схема пневматическая
- Схема газовая
- Схема кинематическая
- Схема вакуумная
- Схема оптическая
- Схема энергетическая
- Схема деления
- Схема комбинированная
Виды схем подразделяются на восемь типов:
- Схема структурная
- Схема функциональная
- Схема принципиальная (полная)
- Схема соединений (монтажная)
- Схема подключения
- Схема общая
- Схема расположения
- Схема объединенная
Меня, как электрика, интересуют схемы вида «Схема электрическая». Вообще, описание и требования к схемам приведены в ГОСТ 2.701-2008 на примере электрических схем, но с 01 января 2012 действует ГОСТ 2.702-2011 «ЕСКД. Правила выполнения электрических схем». Большей частью текст этого ГОСТ дублирует текст ГОСТ 2.701-2008, ссылается на него и другие ГОСТ.
ГОСТ 2.702-2011 подробно описывает требования к каждому виду электрической схемы. При выполнении электрических схем следует руководствоваться именно этим ГОСТ.
ГОСТ 2.702-2011 дает следующее определение понятия электрической схемы: «Схема электрическая — документ, содержащий в виде условных изображений или обозначений составные части изделия, действующие при помощи электрической энергии, и их взаимосвязи». Далее ГОСТ ссылается на документы, регламентирующие правила выполнения условных графических изображения, буквенных обозначений и обозначений проводов и контактных соединений электрических элементов. Рассмотрим каждый отдельно.
Графические обозначения в электрических схемах
В части графических обозначений в электрических схемах ГОСТ 2. 702-2011 ссылается на три других ГОСТ:
- ГОСТ 2.709-89 «ЕСКД. Обозначения условные проводов и контактных соединений электрических элементов, оборудования и участков цепей в электрических схемах».
- ГОСТ 2.721-74 «ЕСКД. Обозначения условные графические в схемах. Обозначения общего применения»
- ГОСТ 2.755-87 «ЕСКД. Обозначения условные графические в электрических схемах. Устройства коммутационные и контактные соединения».
Условные графические обозначения (УГО) автоматов, рубильников, контакторов, тепловых реле и прочего коммутационного оборудования, которое используется в однолинейных схемах электрических щитов, определены в ГОСТ 2.755-87.
Однако, обозначение УЗО и дифавтоматов в ГОСТ отсутствует. Думаю, в скором времени он будет перевыпущен и обозначение УЗО будет добавлено. А пока, каждый проектировщик изображает УЗО по собственному вкусу, тем более, что ГОСТ 2.702-2011 это предусматривает. Достаточно привести обозначение УГО и его расшифровку в пояснениях к схеме.
Дополнительно к ГОСТ 2.755-87 для полноты схемы понадобится использование изображений из ГОСТ 2.721-74 (в основном для вторичных цепей).
Все обозначения коммутационных аппаратов построены на четырех базовых изображениях:
с использованием девяти функциональных признаков:
Основные условные графические обозначения, используемые в однолинейных схемах электрических щитов:
Наименование | Изображение |
Автоматический выключатель (автомат) | |
Выключатель нагрузки (рубильник) | |
Контакт контактора | |
Тепловое реле | |
УЗО | |
Дифференциальный автомат | |
Предохранитель | |
Автоматический выключатель для защиты двигателя (автомат со встроенным тепловым реле) | |
Выключатель нагрузки с предохранителем (рубильник с предохранителем) | |
Трансформатор тока | |
Трансформатор напряжения | |
Счетчик электрической энергии | |
Частотный преобразователь | |
Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления автоматически | |
Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления посредством вторичного нажатия кнопки | |
Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления посредством вытягивания кнопки | |
Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления посредством отдельного привода (например, нажатия кнопки-сброс) | |
Контакт замыкающий с замедлением, действующим при срабатывании | |
Контакт замыкающий с замедлением, действующим при возврате | |
Контакт замыкающий с замедлением, действующим при срабатывании и возврате | |
Контакт размыкающий с замедлением, действующим при срабатывании | |
Контакт размыкающий с замедлением, действующим при возврате | |
Контакт замыкающий с замедлением, действующим при срабатывании и возврате | |
Катушка контактора, общее обозначение катушки реле | |
Катушка импульсного реле | |
Катушка фотореле | |
Катушка реле времени | |
Мотор-привод | |
Лампа осветительная, световая индикация (лампочка) | |
Нагревательный элемент | |
Разъемное соединение (розетка): гнездо штырь | |
Разрядник | |
Ограничитель перенапряжения (ОПН), варистор | |
Разборное соединение (клемма) | |
Амперметр | |
Вольтметр | |
Ваттметр | |
Частотометр |
Обозначения проводов, шин в электрических щитах определяется ГОСТ 2. 721-74.
Буквенные обозначения в электрических схемах
Буквенные обозначения определены ГОСТ 2.710-81 «ЕСКД. Обозначения буквенно-цифровые в электрических схемах».
Обозначения дифавтоматов и УЗО в этом ГОСТ отсутствует. На различных сайтах и форумах в интернете долго обсуждали как же правильно обозначать УЗО и дифавтомат. ГОСТ 2.710-81 в п.2.2.12. допускает использование многобуквенных кодов (а не только одно- и двухбуквенных), поэтому до введения нормативного обозначения я для себя принял трехбуквенное обозначение УЗО и дифавтомата. К двухбуквенному обозначению рубильника я добавил букву D и получил обозначение УЗО. Аналогично поступил с дифавтоматом.
Думаю, в скором времени он будет перевыпущен и обозначение УЗО будет добавлено.
Обозначения основных элементов, используемых в однолинейных схемах электрических щитов:
Наименование | Обозначение |
Автоматический выключатель в силовых цепях | QF |
Автоматический выключатель в цепях управления | SF |
Автоматический выключатель с дифференциальной защитой (дифавтомат) | QFD |
Выключатель нагрузки (рубильник) | QS |
Устройство защитного отключения (УЗО) | QSD |
Контактор | KM |
Тепловое реле | F, KK |
Реле времени | KT |
Реле напряжения | KV |
Фотореле | KL |
Импульсное реле | KI |
Разрядник, ОПН | FV |
Плавкий предохранитель | FU |
Трансформатор тока | TA |
Трансформатор напряжения | TV |
Частотный преобразователь | UZ |
Амперметр | PA |
Вольтметр | PV |
Ваттметр | PW |
Частотометр | PF |
Счетчик активной энергии | PI |
Счетчик реактивной энергии | PK |
Фотоэлемент | BL |
Нагревательный элемент | EK |
Лампа осветительная | EL |
Прибор световой индикации (лампочка) | HL |
Штепсельный разъем (розетка) | XS |
Выключатель или переключатель в цепях управления | SA |
Выключатель кнопочный в цепях управления | SB |
Клеммы | XT |
Изображение электрооборудования на планах
Хотя ГОСТ 2. 701-2008 и ГОСТ 2.702-2011 предусматривают вид электрической схемы «схема расположения», при проектировании зданий и сооружений следует руководствоваться ГОСТ 21.210-2014 «СПДС. Изображения условные графические электрооборудования и проводок на планах». Данный ГОСТ устанавливает условные обозначения электропроводок, прокладок шин, шинопроводов, кабельных линий, электрического оборудования (трансформаторов, электрических щитов, розеток, выключателей, светильников) на планах прокладки электрических сетей.
Эти условные обозначения применяются при выполнении чертежей электроснабжения, силового электрооборудования, электрического освещения и других чертежей. Также данные обозначения используются для изображении потребителей в однолинейных принципиальных схемах электрических щитов.
Условные графические изображения электрооборудования, электротехнических устройств и электроприемников
Условные графические обозначения линий проводок и токопроводов
К сожалению, AutoCAD в базовой поставке не содержит все необходимые типы линий.
Проектировщики решают эту проблему по-разному:
- большинство выполняет отрисовку проводки обычной линией, а потом дополняет обозначениями кружков, квадратиков и пр.;
- продвинутые пользователи AutoCAD создают собственные типы линий.
Я — сторонник второго способа, т.к. он гораздо удобнее. Если вы используете специальный тип линии, то при её перемещении все «дополнительные» обозначения также перемещаются, ведь они часть линии.
Создать собственный тип линии в AutoCAD достаточно просто. Вы потратите некоторое время на освоение этого навыка, зато сэкономите потом массу времени при проектировании.
Изображение вертикальной прокладки удобнее всего сделать при помощи блоков AutoCAD, а лучше при помощи динамических блоков.
Условные графические изображения шин и шинопроводов
Отрисовку шин и шинопроводов в AutoCAD удобно выполнять при помощи полилинии и/или динамических блоков.
Условные графические изображения коробок, шкафов, щитов и пультов
Наименование | Изображение |
Коробка ответвительная | |
Коробка вводная | |
Коробка протяжная, ящик протяжной | |
Коробка, ящик с зажимами | |
Шкаф распределительный | |
Щиток групповой рабочего освещения | |
Щиток групповой аварийного освещения | |
Щиток лабораторный | |
Ящик с аппаратурой | |
Ящик управления | |
Шкаф, панель, пульт, щиток одностороннего обслуживания, пост местного управления | |
Шкаф, панель двухстороннего обслуживания | |
Шкаф, щит, пульт из нескольких панелей одностороннего обслуживания | |
Шкаф, щит, пульт из нескольких панелей двухстороннего обслуживания | |
Щит открытый | |
Ящик трансформаторный понижающий (ЯТП) |
Отрисовку в AutoCAD удобно выполнять при помощи блоков и динамических блоков.
Условные графические обозначения выключателей, переключателей
ГОСТ 21.210-2014 не предусматривает условных изображения для светорегуляторов (диммеров) и отдельного изображения для кнопочных выключателей, поэтому я ввёл для них собственные обозначения в соответствии с п.4.7.
Отрисовку в AutoCAD удобно выполнять при помощи динамических блоков. Я себе сделал один динамический блок для всех типов выключателей.
Условные графические обозначения штепсельных розеток
Отрисовку в AutoCAD удобно выполнять при помощи динамических блоков. Я себе сделал один динамический блок для всех типов розеток.
Условные графические обозначения светильников и прожекторов
Радует, что в обновленной версии ГОСТ добавлены изображения светодиодных светильников и светильников с компактными люминесцентными лампами.
Отрисовку светильников в AutoCAD удобно выполнять при помощи динамических блоков.
Условные графические обозначения аппаратов контроля и управления
Отрисовку в AutoCAD удобно выполнять при помощи динамических блоков.
Подпишитесь и получайте уведомления о новых статьях на e-mail
Читайте также:
Как на электрических схемах показывать клеммники. AutoCAD Electrical
Здесь рядом со стандартными элементами Э3 видим не совсем стандартное изображение клеммной колодки (ящика)
Таких условно-графических элементов (УГО) в базе электрикала конечно нет. Поэтому мы создадим специальное УГО для этого типа схем.
Рассмотрим из каких составляющих состоит клеммная колодка.
Условно ее можно разбить на два фрагмента
1 часть – «шапка» клеммной колодки
2 часть – клеммы колодки
А так как в Автокад электрикал любая клеммная колодка – это набор
Элементов, имеющий «тип – клемма», то колодка будет иметь два образа УГО
1 – шапка,
2 – непосредственно клеммы.
Все решается очень просто. Теперь дело за реализацией
Создадим отдельно графику шапки клеммной колодки и самой клеммы
Теперь создаем уго шапки — изюминка здесь будет та, что мы укажем обязательные атрибуты, в том числе TAG, служащий для обозначения клеммной колодки
…. и не будем указывать точек подключения, чтобы случайно не подключить «шапку» в сеть
Вставляем «шапку» в чертеж, т.к. точек подключения мы не указывали при создании УГО, то как и задумывалось, они нам не доступны, здесь задаем только номер клеммной колодки,
Теперь создадим уго клеммы.
Точку вставки укажем левый верхний угол
здесь вставляем все обязательные атрибуты,
для удобства атрибут TAG сделаем невидимым (чтобы имя клеммной колодки не вставлялось каждый раз при вставке клеммы),
атрибут DESC1 будет служить для описания цепи.
Корректно указываем точки подключения.
а теперь вставляем полученное уго в чертеж, задаем номера клемм и описание цепи «ремонт», «отсек2»
Для проверки командой «многопроводная шина» подключаем провода.
как видите точки подключения подсвечиваеются корректно.
провода подключаются без проблем.
Таким образом, поставленная задача выполнена: клеммники имеют требуемый вид, с точки зрения AutoCAD Electrical тоже все выполнено правильно: элемент имеет тип «клемма», отчеты сформируются нормально
Обозначение клемм на схеме
Любые электрические цепи могут быть представлены в виде чертежей (принципиальных и монтажных схем), оформление которых должно соответствовать стандартам ЕСКД. Эти нормы распространяются как на схемы электропроводки или силовых цепей, так и электронные приборы. Соответственно, чтобы «читать» такие документы, необходимо понимать условные обозначения в электрических схемах.
Нормативные документы
Учитывая большое количество электроэлементов, для их буквенно-цифровых (далее БО) и условно графических обозначений (УГО) был разработан ряд нормативных документов исключающих разночтение. Ниже представлена таблица, в которой представлены основные стандарты.
Таблица 1. Нормативы графического обозначения отдельных элементов в монтажных и принципиальных электрических схемах.
Номер ГОСТа | Краткое описание |
2.710 81 | В данном документе собраны требования ГОСТа к БО различных типов электроэлементов, включая электроприборы. |
2.747 68 | Требования к размерам отображения элементов в графическом виде. |
21.614 88 | Принятые нормы для планов электрооборудования и проводки. |
2.755 87 | Отображение на схемах коммутационных устройств и контактных соединений |
2. 756 76 | Нормы для воспринимающих частей электромеханического оборудования. |
2.709 89 | Настоящий стандарт регулирует нормы, в соответствии с которыми на схемах обозначаются контактные соединения и провода. |
21.404 85 | Схематические обозначения для оборудования, используемого в системах автоматизации |
Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения и в нормативные документы, правда это процесс более инертен. Приведем простой пример, УЗО и дифавтоматы широко эксплуатируются в России уже более десятка лет, но единого стандарта по нормам ГОСТ 2.755-87 для этих устройств до сих пор нет, в отличие от автоматических выключателей. Вполне возможно, в ближайшее время это вопрос будет урегулирован. Чтобы быть в курсе подобных нововведений, профессионалы отслеживают изменения в нормативных документах, любителям это делать не обязательно, достаточно знать расшифровку основных обозначений.
Виды электрических схем
В соответствии с нормами ЕСКД под схемами подразумеваются графические документы, на которых при помощи принятых обозначений отображаются основные элементы или узлы конструкции, а также объединяющие их связи. Согласно принятой классификации различают десять видов схем, из которых в электротехнике, чаще всего, используется три:
- Функциональная, на ней представлены узловые элементы (изображаются как прямоугольники), а также соединяющие их линии связи. Характерная особенность такой схемы – минимальная детализация. Для описания основных функций узлов, отображающие их прямоугольники, подписываются стандартными буквенными обозначениями. Это могут быть различные части изделия, отличающиеся функциональным назначением, например, автоматический диммер с фотореле в качестве датчика или обычный телевизор. Пример такой схемы представлен ниже. Пример функциональной схемы телевизионного приемника
- Принципиальная. Данный вид графического документа подробно отображает как используемые в конструкции элементы, так и их связи и контакты. Электрические параметры некоторых элементов могут быть отображены, непосредственно в документе, или представлены отдельно в виде таблицы. Пример принципиальной схемы фрезерного станка
Если на схеме отображается только силовая часть установки, то она называется однолинейной, если приведены все элементы, то – полной.
Пример однолинейной схемы
- Монтажные электрические схемы. В данных документах применяются позиционные обозначения элементов, то есть указывается их место расположения на плате, способ и очередность монтажа. Монтажная схема стационарного сигнализатора горючих газов
Если на чертеже отображается проводка квартиры, то места расположения осветительных приборов, розеток и другого оборудования указываются на плане. Иногда можно услышать, как такой документ называют схемой электроснабжения, это неверно, поскольку последняя отображает способ подключения потребителей к подстанции или другому источнику питания.
Разобравшись с электрическими схемами, можем переходить к обозначениям указанных на них элементов.
Графические обозначения
Для каждого типа графического документа предусмотрены свои обозначения, регулируемые соответствующими нормативными документами. Приведем в качестве примера основные графические обозначения для разных видов электрических схем.
Примеры УГО в функциональных схемах
Ниже представлен рисунок с изображением основных узлов систем автоматизации.
Примеры условных обозначений электроприборов и средств автоматизации в соответствии с ГОСТом 21.404-85
Описание обозначений:
- А – Основные (1) и допускаемые (2) изображения приборов, которые устанавливаются за пределами электрощита или распределительной коробки.
- В – Тоже самое, что и пункт А, за исключением того, что элементы располагаются на пульте или электрощите.
- С – Отображение исполнительных механизмов (ИМ).
- D – Влияние ИМ на регулирующий орган (далее РО) при отключении питания:
- Происходит открытие РО
- Закрытие РО
- Положение РО остается неизменным.
- Е — ИМ, на который дополнительно установлен ручной привод. Данный символ может использоваться для любых положений РО, указанных в пункте D.
- F- Принятые отображения линий связи:
- Общее.
- Отсутствует соединение при пересечении.
- Наличие соединения при пересечении.
УГО в однолинейных и полных электросхемах
Для данных схем существует несколько групп условных обозначений, приведем наиболее распространенные из них. Для получения полной информации необходимо обратиться к нормативным документам, номера государственных стандартов будут приведены для каждой группы.
Источники питания.
Для их обозначения приняты символы, приведенные на рисунке ниже.
УГО источников питания на принципиальных схемах (ГОСТ 2.742-68 и ГОСТ 2.750.68)
Описание обозначений:
- A – источник с постоянным напряжением, его полярность обозначается символами «+» и «-».
- В – значок электричества, отображающий переменное напряжение.
- С – символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников.
- D – Отображение аккумуляторного или гальванического источника питания.
- E- Символ батареи, состоящей из нескольких элементов питания.
Линии связи
Базовые элементы электрических соединителей представлены ниже.
Обозначение линий связи на принципиальных схемах (ГОСТ 2.721-74 и ГОСТ 2.751.73)
Описание обозначений:
- А – Общее отображение, принятое для различных видов электрических связей.
- В – Токоведущая или заземляющая шина.
- С – Обозначение экранирования, может быть электростатическим (помечается символом «Е») или электромагнитным («М»).
- D — Символ заземления.
- E – Электрическая связь с корпусом прибора.
- F – На сложных схемах, из нескольких составных частей, таким образом обозначается обрыв связи, в таких случаях «Х» это информация о том, где будет продолжена линия (как правило, указывается номер элемента).
- G – Пересечение с отсутствием соединения.
- H – Соединение в месте пересечения.
- I – Ответвления.
Обозначения электромеханических приборов и контактных соединений
Примеры обозначения магнитных пускателей, реле, а также контактов коммуникационных устройств, можно посмотреть ниже.
УГО, принятые для электромеханических устройств и контакторов (ГОСТы 2.756-76, 2.755-74, 2.755-87)
Описание обозначений:
- А – символ катушки электромеханического прибора (реле, магнитный пускатель и т.д.).
- В – УГО воспринимающей части электротепловой защиты.
- С – отображение катушки устройства с механической блокировкой.
- D – контакты коммутационных приборов:
- Замыкающие.
- Размыкающие.
- Переключающие.
- Е – Символ для обозначения ручных выключателей (кнопок).
- F – Групповой выключатель (рубильник).
УГО электромашин
Приведем несколько примеров, отображения электрических машин (далее ЭМ) в соответствии с действующим стандартом.
Обозначение электродвигателей и генераторов на принципиальных схемах (ГОСТ 2.722-68)
Описание обозначений:
- A – трехфазные ЭМ:
- Асинхронные (ротор короткозамкнутый).
- Тоже, что и пункт 1, только в двухскоростном исполнении.
- Асинхронные ЭМ с фазным исполнением ротора.
- Синхронные двигатели и генераторы.
- B – Коллекторные, с питанием от постоянного тока:
- ЭМ с возбуждением на постоянном магните.
- ЭМ с катушкой возбуждения.
Обозначение электродвигателей на схемах
УГО трансформаторов и дросселей
С примерами графических обозначений данных устройств можно ознакомиться на представленном ниже рисунке.
Правильные обозначения трансформаторов, катушек индуктивности и дросселей (ГОСТ 2.723-78)
Описание обозначений:
- А – Данным графическим символом могут быть обозначены катушки индуктивности или обмотки трансформаторов.
- В – Дроссель, у которого имеется ферримагнитный сердечник (магнитопровод).
- С – Отображение двухкатушечного трансформатора.
- D – Устройство с тремя катушками.
- Е – Символ автотрансформатора.
- F – Графическое отображение ТТ (трансформатора тока).
Обозначение измерительных приборов и радиодеталей
Краткий обзор УГО данных электронных компонентов показан ниже. Тем, кто хочет более широко ознакомиться с этой информацией рекомендуем просмотреть ГОСТы 2.729 68 и 2.730 73.
Примеры условных графических обозначений электронных компонентов и измерительных приборов
Описание обозначений:
- Счетчик электроэнергии.
- Изображение амперметра.
- Прибор для измерения напряжения сети.
- Термодатчик.
- Резистор с постоянным номиналом.
- Переменный резистор.
- Конденсатор (общее обозначение).
- Электролитическая емкость.
- Обозначение диода.
- Светодиод.
- Изображение диодной оптопары.
- УГО транзистора (в данном случае npn).
- Обозначение предохранителя.
УГО осветительных приборов
Рассмотрим, как на принципиальной схеме отображаются электрические лампы.
Пример того, как указываются лампочки на схемах (ГОСТ 2.732-68)
Описание обозначений:
- А – Общее изображение ламп накаливания (ЛН).
- В — ЛН в качестве сигнализатора.
- С – Типовое обозначение газоразрядных ламп.
- D – Газоразрядный источник света повышенного давления (на рисунке приведен пример исполнения с двумя электродами)
Обозначение элементов в монтажной схеме электропроводки
Завершая тему графических обозначений, приведем примеры отображения розеток и выключателей.
Пример изображения на монтажных схемах розеток скрытой установки
Как изображаются розетки других типов, несложной найти в нормативных документах, которые доступны в сети.
Обозначение выключатели скрытой установки Обозначение розеток и выключателей
Буквенные обозначения
В электрических схемах помимо графических обозначений также используются буквенные, поскольку без последних чтение чертежей будет довольно проблематичным. Буквенно-цифровая маркировка так же, как и УГО регулируется нормативными документами, для электро это ГОСТ 7624 55. Ниже представлена таблица с БО для основных компонентов электросхем.
Буквенные обозначения основных элементов
К сожалению, размеры данной статьи не позволяют привести все правильные графические и буквенные обозначения, но мы указали нормативные документы, из которых можно получить всю недостающую информацию. Следует учитывать, что действующие стандарты могут меняться в зависимости от модернизации технической базы, поэтому, рекомендуем отслеживать выход новых дополнений к нормативным актам.
Если для обычного человека восприятие информации происходит при чтении слов и букв, то для слесарей и монтажников их заменяют буквенные, цифровые или графические обозначения. Сложность в том, что пока электрик закончит обучение, устроится на работу, научится чему-то на практике, как появляются новые СНиПы и ГОСТы, согласно которым вносятся коррективы. Поэтому не стоит пытаться выучить всю документацию и сразу же. Достаточно почерпнуть базовые познания, а по ходу трудовых будней добавлять актуальные данные.
Введение
Для конструкторов цепей, слесарей КИПиА, электромонтеров, умение прочитать электросхему – ключевое качество и показатель квалификации. Без специальных знаний сходу разобраться в тонкостях проектирования приборов, цепей и способах соединения электроузлов невозможно.
Условные обозначения можно считать особым криптографическим кодом, поясняющим работу и принцип действия конкретной схемы. В Японии, США и Европе значки существенно отличаются от отечественной маркировки, что необходимо учитывать.
Виды и типы электрических схем
Перед тем, как начать изучать существующие обозначения электрооборудования и его соединения, необходимо разобраться с типологией схем. На территории нашей страны введена стандартизация по ГОСТ 2.701-2008 от 1.07.2009 года, согласно «ЕСКД. Схемы. Типы и виды. Общие требования».
- Объединенные.
- Расположенные.
- Общие.
- Подключения.
- Монтажные соединений.
- Полные принципиальные.
- Функциональные.
- Структурные.
Среди существующих 10 видов, указанных в данном документе, выделяют:
- Комбинированные.
- Деления.
- Энергетические.
- Оптические.
- Вакуумные.
- Кинематические.
- Газовые.
- Пневматические.
- Гидравлические.
- Электрические.
Для электриков представляет наибольший интерес среди всех вышеперечисленных типов и видов схем, а также самая востребованная и часто используемая в работе – электрическая схема.
Последний ГОСТ, который вышел, дополнен многими новыми обознвачениями, актуальный на сегодня с шифром 2.702-2011 от 1.01.2012 года. Называется документ «ЕСКД. Правила выполнения электрических схем», ссылается на другие ГОСТы, среди которых упомянутый выше.
В тексте норматива изложены четкие требования в подробностях к электросхемам всех видов. Поэтому руководствоваться при монтажных работах с электрическими схемами следует именно данным документом. Определение понятия электрической схемы, согласно ГОСТ 2.702-2011 следующее:
«Под электрической схемой следует понимать документ, содержащий условные обозначения частей изделия и/или отдельных деталей с описанием взаимосвязи между ними, принципов действия от электрической энергии».
После определения в документе содержатся правила реализации на бумаге и в программных средах обозначений контактных соединений, маркировки проводов, буквенных обозначений и графического изображения электрических элементов.
Следует заметить, что чаще в домашней практике используются всего три типа электросхем:
- Монтажные – для прибора изображается печатная плата с расположением элементов при четком указании места, номинала, принципа крепления и подведения к другим деталям. В схемах электропроводки для жилых помещений указывается количество, место расположения, номинал, способ подключения и другие точные указания для монтажа проводов, выключателей, светильников, розеток и т. п.
- Принципиальные – на них указываются подробно связи, контакты и характеристика каждого элемента для сетей или приборов. Различают полные и линейные принципиальные схемы. В первом случае изображается контроль, управление элементами и сама силовая цепь; в линейной схеме ограничиваются только цепью с изображением остальных элементов на отдельных листах.
- Функциональные – здесь без детализации физических габаритов и других параметров указывается основные узлы прибора или цепи. Любая деталь может изображаться в виде блока с буквенным обозначением, дополненного связями с другими элементами устройства.
Графические обозначения в электрических схемах
- 2.755-87 – графические условные обозначения контактных и коммутационных соединений.
- 2.721-74 – графические условные обозначения деталей и узлов общего применения.
- 2.709-89 – графические условные обозначения в электросхемах участков цепей, оборудования, контактных соединений проводов, электроэлементов.
В нормативе с шифром 2.755-87 применяется для схем однолинейных электрощитов, условные графические изображения (УГО) тепловых реле, контакторов, рубильников, автоматических выключателей, иного коммутационного оборудования. Отсутствует обозначение в нормативах дифавтоматов и УЗО.
На страницах ГОСТ 2.702-2011 допускается изображение этих элементов в произвольном порядке, с приведением пояснений, расшифровки УГО и самой схемы дифавтоматов и УЗО.
В ГОСТ 2.721-74 содержатся УГО, применяемые для вторичных электрических цепей.
ВАЖНО: Для обозначения коммутационного оборудования существует:
4 базовых изображения УГО
УГО | Наименование |
Замыкающий | |
Размыкающий | |
Переключающий | |
Переключающий с наличием нейтрального положения |
9 функциональных признаков УГО
ВАЖНО: Обозначения 1 – 3 и 6 – 9 наносятся на неподвижные контакты, 4 и 5 – помещаются на подвижные контакты.
Основные УГО для однолинейных схем электрощитов
УГО | Наименование |
Тепловое реле | |
Контакт контактора | |
Рубильник – выключатель нагрузки | |
Автомат – автоматический выключатель | |
Предохранитель | |
Дифференциальный автоматический выключатель | |
УЗО | |
Трансформатор напряжения | |
Трансформатор тока | |
Рубильник (выключатель нагрузки) с предохранителем | |
Автомат для защиты двигателя (со встроенным тепловым реле) | |
Частотный преобразователь | |
Электросчетчик | |
Замыкающий контакт с кнопкой «сброс» или другим нажимным кнопочным выключателем, с возвратом и размыканием посредством специального привода элемента управления | |
Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием посредством втягивания кнопки элемента управления | |
Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием посредством повторного нажатия на кнопку элемента управления | |
Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием автоматически элемента управления | |
Замыкающий контакт с замедленным действием, который инициируется при возврате и срабатывании | |
Замыкающий контакт с замедленным действием, который срабатывает только при возврате | |
Замыкающий контакт с замедленным действием, который инициируется только при срабатывании | |
Замыкающий контакт с замедленным действием, который приводится в работу при возврате и срабатывании | |
Замыкающий контакт с замедленным действием, который срабатывает только при возврате | |
Замыкающий контакт с замедленным действием, который включается только при срабатывании | |
Катушка временного реле | |
Катушка фотореле | |
Катушка реле импульсного | |
Общее обозначение катушки реле или катушки контактора | |
Лампочка индикационная (световая), осветительная | |
Мотор-привод | |
Клемма (разборное соединение) | |
Варистор, ОПН (ограничитель перенапряжения) | |
Разрядник | |
Розетка (разъемное соединение): |
Обозначение измерительных электроприборов для характеристики параметров цепи
УГО | Наименование |
PF | Частотомер |
PW | Ваттметр |
PV | Вольтметр |
PA | Амперметр |
ГОСТ 2. 271-74 приняты следующие обозначения в электрощитах для шин и проводов:
Буквенные обозначения в электрических схемах
Нормативы буквенного обозначения элементов на электрических схемах описываются в нормативе ГОСТ 2.710-81 с названием текста «ЕСКД. Буквенно-цифровые обозначения в электрических схемах». Здесь не указывается отметка для дифавтоматов и УЗО, что в п. 2.2.12 этого норматива прописывается, как обозначение многобуквенными кодами. Для основных элементов электрощитов приняты следующие буквенные кодировки:
Наименование | Обозначение |
Выключатель автоматический в силовой цепи | QF |
Выключатель автоматический в управляющей цепи | SF |
Выключатель автоматический с дифференциальной защитой или дифавтомат | QFD |
Рубильник или выключатель нагрузки | QS |
УЗО (устройство защитного отключения) | QSD |
Контактор | KM |
Реле тепловое | F, KK |
Временное реле | KT |
Реле напряжения | KV |
Импульсное реле | KI |
Фотореле | KL |
ОПН, разрядник | FV |
Предохранитель плавкий | FU |
Трансформатор напряжения | TV |
Трансформатор тока | TA |
Частотный преобразователь | UZ |
Амперметр | PA |
Ваттметр | PW |
Частотомер | PF |
Вольтметр | PV |
Счетчик энергии активной | PI |
Счетчик энергии реактивной | PK |
Элемент нагревания | EK |
Фотоэлемент | BL |
Осветительная лампа | EL |
Лампочка или прибор индикации световой | HL |
Разъем штепсельный или розетка | XS |
Переключатель или выключатель в управляющих цепях | SA |
Кнопочный выключатель в управляющих цепях | SB |
Клеммы | XT |
Изображение электрооборудования на планах
Несмотря на то, что ГОСТ 2. 702-2011 и ГОСТ 2.701-2008 учитывает такой вид электросхемы как «схема расположения» для проектирования сооружений и зданий, при этом нужно руководствоваться нормативами ГОСТ 21.210-2014, в которых указывается «СПДС.
Изображения на планах условных графических проводок и электрооборудования». В документе установлено УГО на планах прокладки электросетей электрооборудования (светильников, выключателей, розеток, электрощитов, трансформаторов), кабельных линий, шинопроводов, шин.
Применение этих условных обозначений используется для составления чертежей электрического освещения, силового электрооборудования, электроснабжения и других планов. Использование данных обозначений применяется также в принципиальных однолинейных схемах электрощитов.
Условные графические изображения электрооборудования, электротехнических устройств и электроприемников
Контуры всех изображаемых устройств, в зависимости от информационной насыщенности и сложности конфигурации, принимаются согласно ГОСТ 2. 302 в масштабе чертежа по фактическим габаритам.
Условные графические обозначения линий проводок и токопроводов
Условные графические изображения шин и шинопроводов
ВАЖНО: Проектное положение шинопровода должно точно совпадать на схеме с местом его крепления.
Условные графические изображения коробок, шкафов, щитов и пультов
Условные графические обозначения выключателей, переключателей
На страницах документации ГОСТ 21.210-2014 для кнопочных выключателей, диммеров (светорегуляторов) отдельно отведенного обозначения не предусмотрено. В некоторых схемах, согласно п. 4.7. нормативного акта используются произвольные обозначения.
Условные графические обозначения штепсельных розеток
Условные графические обозначения светильников и прожекторов
Обновленная версия ГОСТ содержит изображения светильников с лампами люминесцентными и светодиодными.
Условные графические обозначения аппаратов контроля и управления
Заключение
Приведенные графические и буквенные изображения электродеталей и электрических цепей являются не полным списком, поскольку в нормативах содержится много специальных знаков и шифров, которые в быту практически не применяются. Для чтения электрических схем потребуется учитывать много факторов, прежде всего – страну производителя прибора или электрооборудования, проводки и кабелей. Существует разница в маркировке и условном обозначении на схемах, что может изрядно сбить с толку.
Во-вторых, следует внимательно рассматривать такие участки, как пересечение или отсутствие общей сети для расположенных с накладкой проводов. На зарубежных схемах при отсутствии у шины или кабеля общего питания с пересекающими объектами, рисуется полукруговое продолжение в месте соприкосновения. В отечественных схемах это не используется.
Если схема изображается без соблюдения установленных ГОСТами нормативов, то ее называют эскизом. Но для этой категории также есть определенные требования, согласно которым по приведенному эскизу должно составляться примерное понимание будущей электропроводки или конструкции прибора. Рисунки могут использоваться для составления по ним более точных чертежей и схем, с нужными обозначениями, маркировкой и соблюдением масштабов.
Трафарет Visio Соединения, клеммы, разъемы.
Символы условных обозначений электрических соединений.
Условные обозначения соединения, представлены тремя отдельными фигурами: соединение неразборное, соединение разборное и соединение клеммное:
Текстовый блок символа соединения, пожно переместить в одно из 8 фиксированных положений. При этом выравнивание текста происходит автоматически.
Примеры расположения текста относительно обозначения соединения.
Ввод текста производится в таблице данные фигуры или непосредственно, в выделенную фигуру. В контекстном меню фигуры имеется команда для поворота текста вертикально или горизонтально.
Посмотреть на видео:
работа с клеммными блоками и разъемами
Михаил Чуйков
Ведущий специалист, ООО «Розмысел»
Светлана Капитанова
Специалист по маркетингу,
ООО «Розмысел»
Большинству проектировщиков, разрабатывающих электрические системы управления, знакомы неприятные хлопоты при использовании в проекте технологических элементов — клеммных блоков и разъемов. Слишком много времени уходит на их создание и поддержку актуальности при оперативной разработке электрооборудования. Переход на электронное проектирование позволяет автоматизировать их создание, ускорив процесс проектирования и уменьшив количество ошибок.
В процессе своего развития клеммные блоки (клеммники, клеммные колодки, ряды зажимов) стали наборными: на монтажной шине устанавливается переменное количество клемм. Для экономии пространства клеммы стали многоярусными, при этом изолированные друг от друга ярусы должны иметь свой уникальный номер. Кроме того, в клеммнике, наряду с обычными проходными, могут использоваться и специальные клеммы, выполняющие специфичные функции: измерительные клеммы, гальванические развязки, реле, индикаторы, переключатели и многое другое.
Однако в проектной документации клеммники зачастую оформляются традиционно: клеммный блок попрежнему имеет только одно обозначение (типа XT1) и лишь для специальных клемм допускается использование дополнительных обозначений (например, для реле — XT1:K1).
Таким образом, пользователю, с одной стороны, необходимо свести к минимуму трудоемкость формирования клеммника, а с другой — обеспечить выпуск проектной документации в строгом соответствии с принятыми стандартами.
Рассмотрим основные возможности работы с клеммными блоками и разъемами в системе проектирования электрооборудования ElectriCS Pro 7.
Гибкость проектирования
При работе с клеммными блоками на разных стадиях создания проекта можно использовать несколько технологий:
- формирование состава клеммника вручную применяется, когда проектировщик задал определенное количество клемм, задействованных в клеммнике. Подключение клеммника к электрическим связям осуществляется в принципиальной схеме. Эта традиционная технология довольно трудоемка;
- автоматическое формирование клеммника на этапе разработки принципиальной схемы — клеммник создается на выходе из шкафа, а количество клемм вычисляется программой по количеству выходящих из шкафа электрических связей. При использовании данной технологии создание клеммника занимает небольшое время, а возможность появления ошибок сводится к минимуму. Применяется в проектах, где разрабатывается только принципиальная схема, а монтажные схемы (соединений и подключений) отсутствуют;
- автоматическое формирование клеммника на этапе разработки схемы соединений или подключений — эта технология отличается от предыдущей тем, что применяется после трассировки электрических связей на проводники; клеммник автоматически подключается к выходящим из шкафа проводникам и кабелям.
Следует отметить, что при автоматическом формировании клеммного блока отображение элементов клеммника на принципиальной схеме не является обязательным.
Выбор технологии работы с клеммником зависит от принятого пользователем способа проектирования, стандартов оформления документации, степени детализации проектируемого объекта.
Окно Редактора клеммного блока. Присутствуют клеммы двух видов: первая клемма — двухъярусная, остальные — одноярусные. Для двухъярусной клеммы каждый ярус имеет свой номер. Для объединения соседних клемм использованы две перемычки. В нижней части окна отображен состав клеммного блока. Электрические связи показаны синим цветом, провода — желтым
Редактор клеммного блока
Основным инструментом при работе с клеммниками является Редактор клеммного блока, который позволяет создавать наборные клеммники как в ручном, так и в автоматизированном режиме, работать с многоярусными клеммами, использовать в составе клеммного блока специальные клеммы с активными элементами, разделять и объединять клеммные блоки.
Дополнительные функции Редактора клеммного блока:
- нумерация клемм: по порядку возрастания, вручную, по номерам подходящих к клемме линий связи;
- соединение клемм внешними перемычками, которые могут являться как готовыми изделиями типа «мостик», так и обычными проводами;
- подключение на одну клемму электрических связей с разными номерами, но одного потенциала;
- переподключение проводов с клеммы на клемму, с контакта на контакт.
Клеммник после автоматического подключения к электрическим связям. Использованы двухъярусные проходные клеммы. На закладке электрических связей включен фильтр, показывающий уходящие из оболочки электрические связи
Клеммник после автоматической вставки на провода. Использованы одноярусные проходные клеммы. Проводники обозначены желтым цветом. Пунктир показывает, что клеммники являются проходными
Автоматическое формирование клеммника на этапе разработки принципиальной схемы
По выходящим из шкафа электрическим связям создается клеммный блок с необходимым количеством проходных клемм. Пользователю достаточно лишь указать в базе изделий тип используемых клемм. При автоматическом подсчете клемм также учитываются изолированные уровни в выбранных клеммах.
Автоматическое формирование клеммника на этапе разработки схемы соединений или подключений
Данная операция применяется на этапе проектирования схемы соединений (подключений) и является наиболее удобной при работе с клеммниками. Пользователь указывает в проекте шкаф, в который нужно вставить клеммник, и выбирает из базы изделий тип клеммы. Автоматическое формирование клеммника осуществляется с учетом количества проводов и жил кабелей, выходящих из шкафа.
Клеммник на принципиальной электрической схеме. Одно УГО отображает несколько реальных контактов на клемме
Клеммник на схеме соединений. Клеммы отображаются с подключенными проводниками
Отображение клеммных блоков на принципиальных схемах
Чаще всего на принципиальной схеме клеммник отображается разнесенным способом. Каждая клемма представлена в виде условнографического обозначения (УГО) — символа Æ, который заменяет собой несколько реальных контактов.
Отображение клеммных блоков на схемах соединений (подключений)
Для отображения клеммного блока на монтажных схемах используется динамическое УГО. Диалог вставки УГО позволяет размещать клеммный блок на схеме частями. Проводники отрисовываются автоматически, на конце проводника указывается адрес его подключения.
Генерация отчета «Ряд зажимов»
Для генерации табличного документа типа «Ряд зажимов» используется Мастер отчетов. В отчет выводятся клеммные блоки по выбранному шкафу. Мастер отчетов в ElectriCS Pro 7 позволяет разрабатывать собственные формы сопроводительной документации для схем.
Отчет «Ряд зажимов»
Применение специальных типов клемм
Система ElectriCS Pro позволяет использовать в составе клеммного блока, наряду с обычными проходными клеммами, клеммы специального назначения, например измерительные клеммы, гальванические развязки, реле, индикаторы, переключатели и т.д. Особенностью этих элементов является поддержка дополнительного обозначения. Например, провод, идущий на такую специальную клемму, будет иметь в адресе подключения — XT1:K1:21.
Использование в клеммнике специальных клемм (реле)
Разделение и «склеивание» клеммных блоков
В процессе проектирования может оказаться, что клеммник получился слишком длинным и его необходимо разделить на два клеммника. В Редакторе клеммного блока указываются клеммы, подлежащие переносу в другой клеммник, и выполняется соответствующая команда. Существует и обратная операция — соединение двух клеммных блоков в один. При переносе из одного клеммника в другой клеммы сохраняют маркировку, тип и соединения проводами.
Инструмент автоматической вставки разъема
ElectriCS Pro поддерживает работу с любыми видами промышленных разъемов. Для удобства создания разъемов используется инструмент автоматической вставки разъема на провода — Разрезка проводов разъемом. Для создания разъема достаточно выбрать в базе изделий его тип и указать «разрезаемые» проводники.
Инструмент автоматической вставки разъема на провода
Заключение
В системе ElectriCS Pro 7 работа с такими технологическими элементами, как клеммные блоки и разъемы, максимально автоматизирована. Достаточно выбрать провода и применить команду их «разрезки» клеммным блоком или разъемом. Если стандарты проектирования не предусматривают обязательное размещение данных технологических элементов на принципиальной схеме, то размещать их необязательно. Однако они, естественно, будут учитываться на монтажных документах — схемах подключений, соединений и в табличных отчетах.
САПР и графика 9`2012
Условные обозначения в электрических схемах: графические, буквенные
Чтение схем невозможно без знания условных графических и буквенных обозначений элементов. Большая их часть стандартизована и описана в нормативных документах. Большая их часть была издана еще в прошлом веке а новый стандарт был принят только один, в 2011 году (ГОСТ 2-702-2011 ЕСКД. Правила выполнения электрических схем), так что иногда новая элементная база обозначается по принципу «как кто придумал». И в этом сложность чтения схем новых устройств. Но, в основном, условные обозначения в электрических схемах описаны и хорошо знакомы многим.
Неправильно, но наглядно и условные обозначения в электрических схемах не нужны
На схемах используют часто два типа обозначений: графические и буквенные, также часто проставляют номиналы. По этим данным многие сразу могут сказать как работает схема. Этот навык развивается годами практики, а для начала надо уяснить и запомнить условные обозначения в электрических схемах. Потом, зная работу каждого элемента, можно представить себе конечный результат работы устройства.
Содержание статьи
Виды схем в электрике
Для составления и чтения различных схем обычно требуются разные элементы. Типов схем есть много, но в электрике обычно используются:
- Функциональные, на которых отображаются основные узлы устройства, без детализации. Внешне выглядит как набор прямоугольников с проложенными между ними связями. Дает общее представление о функционировании объекта.
На функциональной схеме указаны блоки и связи между ними
- Принципиальные. Этот тип схем подробный, с указанием каждого элемента, его контактов и связей. Есть принципиальные схемы устройств, есть — электросетей. Принципиальные схемы могут быть однолинейными и полными. На однолинейных изображены только силовые цепи, а управление и контроль прорисованы на отдельном листе. Если электросеть или устройство несложное, все можно разместить на одном листе. Это и будет полная принципиальная схема.
Принципиальная схема детализирует устройство
- Монтажная. На монтажных схемах присутствуют не только элементы, но и указано их точное расположение. В случае с электросетями (проводкой в доме или квартире) указаны конкретные места расположения светильников, выключателей, розеток и других элементов. Часто тут же проставлены расстояния и номиналы. На монтажных схемах устройств указано расположение деталей на печатной плате, порядок и способ их соединения.
На монтажной отображается местоположение и прохождение кабелей/линий связи
Есть еще много других видов электрических схем, но в домашней практике они не используются. Исключение — трасса прохождения кабелей по участку, подвод электричества к дому. Этот тип документа точно понадобится и будет полезным, но это больше план, чем схема.
Базовые изображения и функциональные признаки
Коммутационные устройства (выключатели, контакторы и т. д.) построены на контактах различной механики. Есть замыкающий, размыкающий, переключающий контакты. Замыкающий контакт в нормальном состоянии разомкнут, при переводе его в рабочее состояние цепь замыкается. Размыкающий контакт в нормальном состоянии замкнут, а при определенных условиях он срабатывает, размыкая цепь.
Виды контактов
Переключающий контакт бывает двух и трех позиционным. В первом случае работает то одна цепь, то другая. Во втором есть нейтральное положение.
Кроме того, контакты могут выполнять разные функции: контактора, разъединителя, выключателя и т.п. Все они также имеют условное обозначение и наносятся на соответствующие контакты. Есть функции, которые выполняют только подвижные контакты. Они приведены на фото ниже.
Функции подвижных контактов
Основные функции могут выполнять только неподвижные контакты.
Функции неподвижных контактов
Условные обозначения однолинейных схем
Как уже говорили, на однолинейных схемах указывается только силовая часть: УЗО, автоматы, дифавтоматы, розетки, рубильники, переключатели и т. д. и связи между ними. Обозначения этих условных элементов могут использоваться в схемах электрических щитов.
Основная особенность графических условных обозначений в электросхемах в том, что сходные по принципу действия устройства отличаются какой-то мелочью. Например, автомат (автоматический выключатель) и рубильник отличаются лишь двумя мелкими деталями — наличием/отсутствием прямоугольника на контакте и формой значка на неподвижном контакте, которые отображают функции данных контактов. Контактор от обозначения рубильника отличает только форма значка на неподвижном контакте. Совсем небольшая разница, а устройство и его функции другие. Ко всем этим мелочам надо присматриваться и запоминать.
Обозначения элементов на однолинейной схеме
Также небольшая разница между условными обозначениями УЗО и дифференциального автомата. Она тоже только в функциях подвижных и неподвижных контактов.
Примерно так же обстоит дело и с катушками реле и контакторов. Выглядят они как прямоугольник с небольшими графическими дополнениями.
Условные обозначения катушек контакторов и реле разных типов (импульсная, фотореле, реле времени)
В данном случае запомнить проще, так как есть довольно серьезные отличия во внешнем виде дополнительных значков. С фотореле так совсем просто — лучи солнца ассоциируются со стрелками. Импульсное реле — тоже довольно легко отличить по характерной форме знака.
Условные обозначения разъемного (вилка-штепсель) и разборного (клеммная колодка) соединения), измерительных приборов
Немного проще с лампами и соединениями. Они имеют разные «картинки». Разъемное соединение (типа розетка/вилка или гнездо/штепсель) выглядит как две скобочки, а разборное (типа клеммной колодки) — кружочки. Причем количество пар галочек или кружочков обозначает количество проводов.
Изображение шин и проводов
В любой схеме приличествуют связи и в большинстве своем они выполнены проводами. Некоторые связи представляют собой шины — более мощные проводниковые элементы, от которых могут отходить отводы. Провода обозначаются тонкой линией, а места ответвлений/соединений — точками. Если точек нет — это не соединение, а пересечение (без электрического соединения).
Обозначение линий связи, шин и их соединений/ответвлений/пересечений
Есть отдельные изображения для шин, но они используются в том случае, если надо графически их отделить от линий связи, проводов и кабелей.
Как обозначаются провода, кабели, количество жил и способы их прокладки
На монтажных схемах часто необходимо обозначить не только как проходит кабель или провод, но и его характеристики или способ укладки. Все это также отображается графически. Для чтения чертежей это тоже необходимая информация.
Как изображают выключатели, переключатели, розетки
На некоторые виды этого оборудования утвержденных стандартами изображений нет. Так, без обозначения остались диммеры (светорегуляторы) и кнопочные выключатели.
Зато все другие типы выключателей имеют свои условные обозначения в электрических схемах. Они бывают открытой и скрытой установки, соответственно, групп значков тоже две. Различие — положение черты на изображении клавиши. Чтобы на схеме понимать о каком именно типе выключателя идет речь, это надо помнить.
Есть отдельные обозначения для двухклавишных и трехклавшных выключателей. В документации они называются «сдвоенные» и «строенные» соответственно. Есть отличия и для корпусов с разной степенью защиты. В помещения с нормальными условиями эксплуатации ставят выключатели с IP20, может до IP23. Во влажных комнатах (ванная комната, бассейн) или на улице степень защиты должна быть не ниже IP44. Их изображения отличаются тем, что кружки закрашены. Так что их отличить просто.
Условные обозначения выключателей на чертежах и схемах
Есть отдельные изображения для переключателей. Это выключатели, которые позволяют управлять включением/выключением света из двух точек (есть и из трех, но без стандартных изображений).
В обозначениях розеток и розеточных групп наблюдается та же тенденция: есть одинарные, сдвоенные розетки, есть группы из нескольких штук. Изделия для помещений с нормальными условиями эксплуатации (IP от 20 до 23) имеют неокрашенную середину, для влажных с корпусом повышенной защиты (IP44 и выше) середина тонируется темным цветом.
Условные обозначения в электрических схемах: розетки разного типа установки (открытого, скрытого)
Поняв логику обозначения и запомнив некоторые исходные данные (чем отличается условное изображение розетки открытой и скрытой установки, например), через некоторое время вы уверенно сможете ориентироваться в чертежах и схемах.
Светильники на схемах
В этом разделе описаны условные обозначения в электрических схемах различных ламп и светильников. Тут ситуация с обозначениями новой элементной базы лучше: есть даже знаки для светодиодных ламп и светильников, компактных люминесцентных ламп (экономок). Неплохо также что изображения ламп разного типа значительно отличаются — перепутать сложно. Например, светильники с лампами накаливания изображают в виде кружка, с длинными линейными люминесцентными — длинного узкого прямоугольника. Не очень велика разница в изображении линейной лампы люминесцентного типа и светодиодного — только черточки на концах — но и тут можно запомнить.
Изображение ламп (накаливания, светодиодных, галогенных) и светильников (потолочных, встроенных, навесных) на схемах
В стандарте есть даже условные обозначения в электрических схемах для потолочного и подвесного светильника (патрона). Они тоже имеют довольно необычную форму — круги малого диаметра с черточками. В общем, в этом разделе ориентироваться легче чем в других.
Элементы принципиальных электрических схем
Принципиальные схемы устройств содержат другую элементную базу. Линии связи, клеммы, разъемы, лампочки изображаются также, но, кроме того, присутствует большое количество радиоэлементов: резисторов, емкостей, предохранителей, диодов, тиристоров, светодиодов. Большая часть условных обозначений в электрических схемах этой элементной базы приведена на рисунках ниже.
Обозначение электрических элементов на схемах устройств
Изображение радиоэлементов на схемах
Более редкие придется искать отдельно. Но в большинство схем содержит эти элементы.
Буквенные условные обозначения в электрических схемах
Кроме графических изображений элементы на схемах подписываются. Это также помогает читать схемы. Рядом с буквенным обозначением элемента часто стоит его порядковый номер. Это сделано для того чтобы потом легко было найти в спецификации тип и параметры.
Буквенные обозначения элементов на схемах: основные и дополнительные
В таблице выше приведены международные обозначения. Есть и отечественный стандарт — ГОСТ 7624-55. Выдержки оттуда с таблице ниже.
Буквенно цифровые обозначения в схемах
Клемма на электрической схеме — Морской флот
Чтобы понять, что конкретно нарисовано на схеме или чертеже, необходимо знать расшифровку тех значков, которые на ней есть. Это распознавание еще называют чтением чертежей. А чтоб облегчить это занятие почти все элементы имеют свои условные значки. Почти, потому что стандарты давно не обновлялись и некоторые элементы рисуют каждый как может. Но, в большинстве своем, условные обозначения в электрических схемах есть в нормативны документах.
Условные обозначения в электрических схемах: лампы,трансформаторы, измерительные приборы, основная элементная база
Нормативная база
Разновидностей электрических схем насчитывается около десятка, количество различных элементов, которые могут там встречаться, исчисляется десятками если не сотнями. Чтобы облегчить распознавание этих элементов, введены единые условные обозначения в электрических схемах. Все правила прописаны в ГОСТах. Этих нормативов немало, но основная информация есть в следующих стандартах:
Нормативные документы, в которых прописаны графические обозначения элементной базы электрических схем
Изучение ГОСТов дело полезное, но требующее времени, которое не у всех есть в достаточном количестве. Потому в статье приведем условные обозначения в электрических схемах — основную элементную базу для создания чертежей и схем электропроводки, принципиальных схем устройств.
Обозначение электрических элементов на схемах
Некоторые специалисты внимательно посмотрев на схему, могут сказать что это и как оно работает. Некоторые даже могут сразу выдать возможные проблемы, которые могут возникнуть при эксплуатации. Все просто — они хороша знают схемотехнику и элементную базу, а также хорошо ориентируются в условных обозначениях элементов схем. Такой навык нарабатывается годами, а, для «чайников», важно запомнить для начала наиболее распространенные.
Обозначение светодиода, стабилитрона, транзистора (разного типа)
Электрические щиты, шкафы, коробки
На схемах электроснабжения дома или квартиры обязательно будет присутствовать обозначение электрического щитка или шкафа. В квартирах, в основном устанавливается там оконечное устройство, так как проводка дальше не идет. В домах могут запроектировать установку разветвительного электрошкафа — если из него будет идти трасса на освещение других построек, находящихся на некотором расстоянии от дома — бани, летней кухни, гостевого дома. Эти другие обозначения есть на следующей картинке.
Обозначение электрических элементов на схемах: шкафы, щитки, пульты
Если говорить об изображениях «начинки» электрических щитков, она тоже стандартизована. Есть условные обозначения УЗО, автоматических выключателей, кнопок, трансформаторов тока и напряжения и некоторых других элементов. Они приведены следующей таблице (в таблице две страницы, листайте нажав на слово «Следующая»)
Элементная база для схем электропроводки
При составлении или чтении схемы пригодятся также обозначения проводов, клемм, заземления, нуля и т.д. Это то, что просто необходимо начинающему электрику или для того чтобы понять, что же изображено на чертеже и в какой последовательности соединены ее элементы.
Пример использования приведенных выше графических изображений есть на следующей схеме. Благодаря буквенным обозначениям все и без графики понятно, но дублирование информации в схемах никогда лишним не было.
Пример схемы электропитания и графическое изображение проводов на ней
Изображение розеток
На схеме электропроводки должны быть отмечены места установки розеток и выключателей. Типов розеток много — на 220 В, на 380 в, скрытого и открытого типа установки, с разным количеством «посадочных» мест, влагозащищенные и т.д. Приводить обозначение каждой — слишком длинно и ни к чему. Важно запомнить как изображаются основные группы, а количество групп контактов определяется по штрихам.
Обозначение розеток на чертежах
Розетки для однофазной сети 220 В обозначаются на схемах в виде полукруга с одним или несколькими торчащими вверх отрезками. Количество отрезков — количество розеток на одном корпусе (на фото ниже иллюстрация). Если в розетку можно включить только одну вилку — вверх рисуют один отрезок, если два — два, и т.д.
Условные обозначения розеток в электрических схемах
Если посмотрите на изображения внимательно, обратите внимание, что условное изображение, которое находится справа, не имеет горизонтальной черты, которая отделяет две части значка. Эта черта указывает на то, что розетка скрытого монтажа, то есть под нее необходимо в стене сделать отверстие, установить подрозетник и т.д. Вариант справа — для открытого монтажа. На стену крепится токонепроводящая подложка, на нее сама розетка.
Также обратите внимание, что нижняя часть левого схематического изображения перечеркнута вертикальной линией. Так обозначают наличие защитного контакта, к которому подводится заземление. Установка розеток с заземлением обязательна при включении сложной бытовой техники типа стиральной или посудомоечной машины, духовки и т.д.
Обозначение трехфазной розетки на чертежах
Ни с чем не перепутаешь условное обозначение трехфазной розетки (на 380 В). Количество торчащих вверх отрезков равно количеству проводников, которые к данному устройству подключаются — три фазы, ноль и земля. Итого пять.
Бывает, что нижняя часть изображения закрашена черным (темным). Это обозначает что розетка влагозащищенная. Такие ставят на улице, в помещениях с повышенной влажностью (бани, бассейны и т.д.).
Отображение выключателей
Схематическое обозначение выключателей выглядит как небольшого размера кружок с одним или несколькими Г- или Т- образными ответвлениями. Отводы в виде буквы «Г» обозначают выключатель открытого монтажа, с виде буквы «Т» — скрытого монтажа. Количество отводов отображает количество клавиш на этом устройстве.
Условные графические обозначения выключателей на электрических схемах
Кроме обычных могут стоять проходные выключатели — для возможности включения/выключения одного источника света из нескольких точек. К такой же небольшой окружности с противоположных сторон пририсовывают две буквы «Г». Так обозначается одноклавишный проходной переключатель.
Как выглядит схематичное изображение проходных выключателей
В отличие от обычных выключателей, в этих при использовании двухклавишных моделей добавляется еще одна планка, параллельная верхней.
Лампы и светильники
Свои обозначения имеют лампы. Причем отличаются лампы дневного света (люминесцентные) и лампы накаливания. На схемах отображается даже форма и размеры светильников. В данном случае надо только запомнить как выглядит на схеме каждый из типов ламп.
Изображение светильников на схемах и чертежах
Радиоэлементы
При прочтении принципиальных схем устройств, необходимо знать условные обозначения диодов, резисторов, и других подобных элементов.
Условные обозначения радиоэлементов в чертежах
Знание условных графических элементов поможет вам прочесть практически любую схему — какого-нибудь устройства или электропроводки. Номиналы требуемых деталей иногда проставляются рядом с изображением, но в больших многоэлементных схемах они прописываются в отдельной таблице. В ней стоят буквенные обозначения элементов схемы и номиналы.
Буквенные обозначения
Кроме того, что элементы на схемах имеют условные графические названия, они имеют буквенные обозначения, причем тоже стандартизованные (ГОСТ 7624-55).
Название элемента электрической схемы | Буквенное обозначение | |
---|---|---|
1 | Выключатель, контролер, переключатель | В |
2 | Электрогенератор | Г |
3 | Диод | Д |
4 | Выпрямитель | Вп |
5 | Звуковая сигнализация (звонок, сирена) | Зв |
6 | Кнопка | Кн |
7 | Лампа накаливания | Л |
8 | Электрический двигатель | М |
9 | Предохранитель | Пр |
10 | Контактор, магнитный пускатель | К |
11 | Реле | Р |
12 | Трансформатор (автотрансформатор) | Тр |
13 | Штепсельный разъем | Ш |
14 | Электромагнит | Эм |
15 | Резистор | R |
16 | Конденсатор | С |
17 | Катушка индуктивности | L |
18 | Кнопка управления | Ку |
19 | Конечный выключатель | Кв |
20 | Дроссель | Др |
21 | Телефон | Т |
22 | Микрофон | Мк |
23 | Громкоговоритель | Гр |
24 | Батарея (гальванический элемент) | Б |
25 | Главный двигатель | Дг |
26 | Двигатель насоса охлаждения | До |
Обратите внимание, что в большинстве случаев используются русские буквы, но резистор, конденсатор и катушка индуктивности обозначаются латинскими буквами.
Есть одна тонкость в обозначении реле. Они бывают разного типа, соответственно маркируются:
- реле тока — РТ;
- мощности — РМ;
- напряжения — РН;
- времени — РВ;
- сопротивления — РС;
- указательное — РУ;
- промежуточное — РП;
- газовое — РГ;
- с выдержкой времени — РТВ.
В основном, это только наиболее условные обозначения в электрических схемах. Но большую часть чертежей и планов вы теперь сможете понять. Если потребуется знать изображения более редких элементов, изучайте ГОСТы.
Чтение чертежей по электрике требует определенных знаний, которые можно почерпнуть из нормативных документов. Своеобразным «языком» чтения являются условные обозначения в электрических схемах – система знаков и символов, преимущественно графических и буквенных. Кроме них иногда цифрами проставляются номиналы.
Сгласитесь, понимание стандартных обозначений просто необходимо для любого домашнего мастера. Эти знания помогут прочесть электросхему, самостоятельно составить план разводки в квартире или в частном доме. Предлагаем разобраться во всех тонкостях написания проектной документации.
В статье описаны основные виды электрических схем, а также приведена подробная расшифровка базовых изображений, символов, значков и буквенно-цифровых маркеров, используемых при составлении чертежей по устройству электросети.
Какие виды электросхем могут пригодиться?
Рассмотрим проектную информацию с точки зрения электромонтажника-любителя, желающего своими руками поменять проводку в доме или составить чертеж подключения дачи к электрокоммуникациям.
Сначала нужно понять, какие знания будут полезными, а какие не понадобятся. Первый шаг – это знакомство с видами электрических схем.
Вся информация о видах схем изложена в новой редакции ГОСТ 2.702-2011, которая носит название «ЕСКД. Правила выполнения электрических схем».
Это дубликат более раннего документа – ГОСТ 2.701-2008, в котором как раз подробно говорится о классификации схем. Всего выделяют 10 видов, но на практике может потребоваться только одна – электрическая.
Кроме видовой классификации, существует и типовая, которая подразделяет все чертежные документы на структурные, общие и пр., всего 8 пунктов.
Домашнему мастеру будут интересны 3 типа схем: функциональная, принципиальная, монтажная.
Тип #1 – функциональная схема
Функциональная схема не содержит детализации, в ней указываются основные блоки и узлы. Она дает общее представление о работе системы. Для устройства электроснабжения частного дома не всегда есть смысл составлять такие чертежи, так как они обычно типовые.
А вот при описании сложного электронного устройства или для оснащения электрикой цеха, студии или пункта управления они могут пригодиться.
Тип #2 – принципиальная схема
Принципиальная схема, в отличие от функциональной – это набор условных обозначений, без знания которых сложно разобраться в устройстве сети в целом. На чертеже указываются все устройства и связи между ними.
Если нужно отразить только силовые линии, достаточно начертить линейную схему, а для изображения всех видов цепей с приборами контроля и управления понадобится полная.
Тип #3 – монтажная схема
Монтажная схема – документ, которым удобно пользоваться при установке сетей. По ней можно узнать, какие устройства следует подключать, где именно и как далеко друг от друга они находятся.
Указано расположение таких элементов, как выключатели и розетки, светильники, автоматы защиты. Прямо в схеме можно расставить номиналы и длину цепей.
Требования по всем видам схематической документации изложены в ГОСТ 2.702-2011, именно им и следует в дальнейшем руководствоваться при составлении собственных проектов.
Здесь же можно найти в полном объеме ссылки на другие полезные документы, в которых размещены таблицы графических и буквенных обозначений различных элементов, использующихся на электрических схемах, а также правила их использования.
Графические изображения в электросхемах
Чертеж электросети представляет собой набор графических элементов, которые в совокупности образуют неразрывную систему. На практике это комплект устройств, соединенных проводами.
Большая часть обозначений – графические. Буквы и цифры применяются для символьного обозначения отдельных элементов, их номиналов и расстояний между объектами.
Основные базовые изображения
Электрические цепи ведут к устройствам и установкам, которые оборудованы контактами, способными разорвать или соединить эти цепи.
Самый простой пример – обыкновенный выключатель. Все контакты делятся на замыкающие, размыкающие и переключающие – именно они и отображаются в схемах.
Перечисленные графические изображения являются обязательными при составлении принципиальных схем и обычно понятны даже начинающему электрику.
Символика однолинейных схем
Для сборки электрощитов также используют чертежи. Обычно они представляют собой однолинейную схему с обозначением УЗО, автоматических выключателей, контакторов и другого защитного оборудования.
Некоторые графические символы похожи между собой, поэтому при составлении схемы требуется особое внимание. Например, контактор и рубильник обозначаются одинаково, разница – в небольшом элементе на неподвижном контакте.
Специальными символами обозначаются катушки реле – во всех изображениях за основу взят прямоугольник.
Для запоминания значков часто используют ассоциации или буквенно-графические подсказки. Например, мотор-привод изображается кружком, внутри которого находится буква «М».
При составлении схемы следует учитывать, что для обозначения некоторых символов также важно количество.
Например, если нужно указать 4-контактный клеммник, то следует начертить четыре перечеркнутых кружочка в ряд, а не один. Парные галочки при изображении розеток – это количество проводов.
Как изображаются шины и провода?
Для обозначений шин, кабелей и проводов используется линейная графика – практически все символы состоят из прямых линий.
Соединения проводников указываются точками. Если в месте соединения двух линий никакой пометки нет, то это простое пересечение.
Провода бывают разные по виду, назначению, нагрузке, способу прокладки. Все это также можно отобразить схематически.
Дополнительные характеристики облегчают подбор материалов и монтаж электросети. В дальнейшем благодаря указанным на схеме характеристикам можно судить о потенциальных возможностях уже установленной электросистемы.
Розетки и выключатели на схемах
Обозначение выключателей разбито на несколько групп – по степени защиты, способу установки (скрытой или открытой). Отдельно вынесены переключатели на два направления. 2- и 3-клавишные выключатели обозначаются по-разному.
Для некоторых устройств управления источниками света обозначений нет – например, для кнопочных устройств и диммеров.
Сейчас для экономии электроэнергии в больших помещениях часто устанавливают проходные переключатели, которыми управляют с 2 или 3 точек. Для них также можно найти соответствующие значки.
Розетки, как и выключатели, поделены на группы по степени защиты. Внутри групп устройства делятся по количеству полюсов, наличию защиты. Для обозначения блоков используются буквенно-цифровые подписи, указывающие на количество и назначение установок в одном блоке.
При запоминании обозначений различных электрических элементов на схемах следует каждое условно изображенное устройство соотносить с реальным изделием.
Например, популярные виды розеток выглядят следующим образом:
На деле же электромонтажные устройства выглядят так:
Выключатели и розетки – одни из самых «востребованных» элементов в схемах для домашнего применения, поэтому их следует запомнить в первую очередь. Подробнее об обозначении таких устройств на чертежах и схемах читайте в этой статье.
Обозначение источников света
Для различных видов ламп и светильников также предусмотрены отдельные символы. Удобно то, что для светодиодных и люминесцентных лампочек есть специальные значки.
Стандартные изображения разного рода светильников часто применяют для составления монтажных схем.
Если использовать одинаковые значки, придется включать дополнительные уточнения, а с типовыми символами можно нарисовать схему намного быстрее.
Элементы для составления принципиальных электросхем
Базовые символы для принципиальных схем отличаются мало, но кроме них есть еще специальные значки для обозначения всевозможных радиоэлементов: тиристоров, резисторов, диодов и пр.
Существуют отдельные обозначения для радиоустройств, но при проектировании домашней электросети они обычно не требуются.
Буквенные обозначения на электросхемах
Чтобы дать более полную информацию об устройстве, его подписывают сокращенным буквенным обозначением. Количество букв – 2 или 3. Иногда буквенное обозначение превращается в буквенно-цифровое, если рядом поставить порядковый номер устройства.
Наряду с международными есть и российские стандарты. Они перечислены в ГОСТ 7624-55, но этот документ признан недействующим.
В статье приведена информация не обо всех условных обозначениях. Полные материалы о графических символах можно отыскать в ГОСТ 2.709-89, 2.721-74, 2.755-87.
Выводы и полезное видео по теме
От рисунка – до принципиальной электрической схемы:
Пример чтения схем электроустройств (часть 1):
Продолжение, а точнее, часть 2 о тонкостях чтения схем электроустройств (часть 2):
Подробно о самостоятельном составлении схем:
Владение информацией по чтению и составлению электросхем может пригодиться и для монтажных работ по благоустройству жилья, и для ремонта электроприборов. Ни к чему придумывать собственную символику, когда есть профессиональная система условных обозначений, выучить которую не так уж и сложно.
Есть, что дополнить, или возникли вопросы по составлению и прочтению электрических схем? Можете оставлять комментарии к публикации, участвовать в обсуждениях и делиться собственным опытом разработки чертежей. Форма для связи находится в нижнем блоке.
Было дело – занимался электромонтажом, в основном, по осветительным сетям. Монтажная схема дает представление о количестве розеток, выключателей, светильников и прочего и их примерном расположении. Но способ их соединения, то есть, варианты устройства разводки в распределительных коробках – это уже знания электромонтажника. А высота закладки провода и установки приборов зависит от применяемого ГОСТа.
Добрый день, Владимир.
Чтобы не дезориентировать читателей статьи, вынужден несколько подкорректировать вашу трактовку монтажной схемы.
Прежде всего, монтажная схема задает способ подключение потребителей электроэнергии к распределительному щитку.
Среди «популярных» для многоквартирных домов – схема, предусматривающая проброску питающей магистрали через все комнаты квартиры с последующим обустройством распределительных коробок, от которых запитываются светильники, розетки, прочие.
Кардинально отличается и практически не применяется схема электроснабжения «звездой» – от распредщита через автоматы подключаются отдельные токоприемники.
Следующий вариант – смешанная схема: все потребители делятся на категории и от щита их запитывают отдельными защищенными линиями, от которых через распредкоробки идут ответвления.
Могут быть и другие варианты, предлагаемые заказчику проекта подрядчиком-разработчиком схемы электроснабжения. То есть, творчество электромонтажника – это ваша фантазия.
Трафарет Visio Соединения, клеммы, разъемы.
Символы условных обозначений электрических соединений.
Условные обозначения соединения, представлены тремя отдельными фигурами: соединение неразборное, соединение разборное и соединение клеммное:
Текстовый блок символа соединения, пожно переместить в одно из 8 фиксированных положений. При этом выравнивание текста происходит автоматически.
Примеры расположения текста относительно обозначения соединения.
Ввод текста производится в таблице данные фигуры или непосредственно, в выделенную фигуру. В контекстном меню фигуры имеется команда для поворота текста вертикально или горизонтально.
Посмотреть на видео:
Обозначения клемм термостата HVAC Подключение 101 Made Simple
Обозначения клемм термостата Пояснения — Вы подключаете новый термостат или собираетесь подключить новый термостат, и вы хотите понять, какие обозначения клемм есть на вашем старом и новом термостате. Почему с этими обозначениями клемм такая загадка? Как только вы поймете, как это работает, все станет здравым смыслом. Это при условии, что тот, кто подключал термостат, изначально следовал здравому смыслу кодов обозначений.
Хорошим примером этого является то, что я открыл термостаты и увидел черный цвет на клемме R. Зеленый используется на клемме W, а красный — на клемме Y. Как только вы увидите провод термостата и доступные цвета проводов термостата, вы поймете. Что касается тех нетрадиционных проводных термостатов, которые я видел, я могу только думать, что этот человек был дальтоником. И это дает им преимущество в сомнениях. Теперь по обозначениям.
Здесь мы объясним обозначения, куда они идут и что они контролируют.Мы также сошлемся на другую статью о цветах обозначений термостатов. Мы получаем массу писем и комментариев по этому поводу, поэтому подумали, что постараемся вам помочь. Надеюсь, вы лучше поймете, как работает ваш термостат, изучив эти обозначения клемм термостата.
Обозначения клемм термостата Пояснения
Сначала мы начнем с самой клеммной колодки термостата. Он спрятан за самим термостатом и на небольшой пластине, называемой основанием термостата.На нем есть маленькие буквы, которые отличаются от термостата к термостату, но наиболее распространенные обозначения: R или RH и RC, G, Y, W и C .
Для тепловых насосов обычно также имеются клеммы O и B . Есть и другие, и мы объясним их по ходу дела. Что это за загадочные терминалы, куда они идут и что контролируют?
Список
Обозначения клемм термостата Пояснения
Обозначения клемм термостатов Объяснение | |
---|---|
Клемма R | Клемма R — это клемма под напряжением 24 В.Он исходит от трансформатора на 24 В и подает питание на термостат и передает питание на устройство, которым он управляет. Например — если вы включаете только вентилятор, переключатель на термостате, переключатель внутри термостата полностью замыкает цепь и включает реле вентилятора. Таким образом, питание 24 В будет поступать от трансформатора и поступать на клемму G, которая управляет реле вентилятора. Если ваш термостат имеет только клемму R (в отличие от отдельных клемм RH и RC), то клемма R будет передавать питание на все другие клеммы, кроме клеммы C. |
Клеммы RC / RH | Клемма RC — это клемма для 24-вольтного горячего питания, которая передает питание на контур охлаждения для кондиционеров. Если у вас есть RC-терминал, то у вас также есть RH-терминал. Клемма RH передает 24-вольтовую мощность в цепь нагрева по запросу на тепло. Если у вас выскочили эти клеммы (провод, проходящий между этими двумя клеммами), то у вас один трансформатор. Если у вас есть отдельные красные провода на этих клеммах, то у вас есть две системы трансформаторов — одна для системы отопления, а другая — для системы охлаждения.См. Эту страницу для объяснения того, почему ваша система будет иметь два трансформатора. |
Клемма G | Клемма G предназначена для реле вентилятора внутреннего вентилятора. Он получает питание 24 В от клеммы R и включает внутренний вентилятор при вызове вентилятора на работу или при вызове охлаждения. Вентилятор регулируется по-разному по теплу. |
Y-клемма | Y-клемма — это клемма для реле охлаждения в конденсаторном блоке вашего кондиционера (и тепловых насосов).Когда термостат вызывает кондиционер, контакты внутри термостата замыкаются, и Y получает питание 24 В и передает его на контактор компрессора внутри конденсаторного блока. Это, в свою очередь, приводит в действие компрессор и двигатель вентилятора конденсатора. То же самое происходит с течением, но с еще одним случаем, описанным ниже. Дополнением к этому выводу является вывод Y2 для второй ступени охлаждения, если система так оборудована двухступенчатым охлаждением. |
Клемма W | Клемма W управляет системой отопления.Если у вас есть печь или бойлер, то эти приборы получают сигнал 24 В от клеммы W на термостате. С котлами это немного отличается в зависимости от типа котла, который у вас есть. Водогрейный котел управляется аквастатом, который включает и выключает котел в зависимости от температуры котла. Есть много других способов управления котлом, но обычно при вызове нагрева клемма W на термостате закрывается и получает питание от клеммы R. Эта мощность обычно приводит в действие реле, которое включает циркуляционный насос в трубопроводном контуре котла.Вода циркулирует по контуру, и вы получаете тепло. Котел включается и выключается в зависимости от температуры воды, а не от термостата. Печи включаются клеммой W при включении реле. Газовые печи автоматически включают внутренний вентилятор другим элементом управления в печи. Дополнением к клемме W является клемма W2, предназначенная для нагрева второй ступени. Некоторые системы и термостаты даже имеют W3 для третьей ступени нагрева. |
Клемма C | Клемма C является общей на 24 В (в отличие от горячего).Эта клемма необходима для питания термостата, так как для работы термостату требуется источник питания. Этот вывод похож на нейтраль в цепи на 120 вольт. Базовая схема требует источника, пути и нагрузки. В этом случае источником является трансформатор, нагрузкой является термостат, а путь — клемма R и клемма C, которая обеспечивает обратный путь к 24-вольтовому трансформатору. |
O-клемма | O-клемма — это элемент управления реверсивным клапаном в тепловых насосах большинства марок.Когда термостат теплового насоса требует охлаждения, эта клемма закрывается и активирует реверсивный клапан, заставляя его переключаться из положения нагрева по умолчанию в положение охлаждения. Это сделано для обеспечения отказоустойчивости нагрева, который считается более важным, чем охлаждение. Если реверсивный клапан или его соленоид выйдет из строя по какой-либо причине, у вас, скорее всего, будет тепло. В большинстве случаев безопаснее обходиться без кондиционера, чем без отопления. |
Клемма B | Клемма B также предназначена для реверсивного клапана, за исключением того, что в этом случае она меняет положение с охлаждения по умолчанию на положение нагрева внутри теплового насоса.Обычно это используется в тепловых насосах Rheem и Ruud. |
Клеммы S1, S2 или T | Эти клеммы используются для датчика температуры наружного воздуха. Этот тип настройки обычно используется для тепловых насосов, но также может применяться и для термостата кондиционирования воздуха. |
Обозначения клемм термостата — Заключение
Существуют и другие обозначения клемм в различных термостатах от разных производителей, и клеммы обычно предназначены для управления различными объектами в системе HVAC, такими как увлажнитель или электронный воздухоочиститель.Всегда читайте руководство пользователя и делайте снимки того, как текущий термостат подключен, прежде чем отсоединять проводку. Кроме того, всегда отключайте питание, прежде чем прикасаться к проводам. Во-первых, для безопасности, а во-вторых, потому что вы можете нанести вред системе, соприкоснувшись не с тем проводами. Надеюсь, этот базовый список обозначений клемм проводки термостата вам поможет.
Обозначения терминала термостата
Ресурс: Книга домашнего комфорта: полное руководство по созданию комфортного, здорового, долговечного и эффективного дома
Связанные% PDF-1.4 % 171 0 объект > эндобдж xref 171 89 0000000016 00000 н. 0000003345 00000 п. 0000003558 00000 н. 0000003610 00000 н. 0000003739 00000 н. 0000004275 00000 н. 0000005032 00000 н. 0000005727 00000 н. 0000006477 00000 н. 0000007652 00000 н. 0000008568 00000 н. 0000008605 00000 н. 0000009025 00000 н. 0000013859 00000 п. 0000014230 00000 п. 0000014298 00000 п. 0000014729 00000 п. 0000014998 00000 н. 0000015058 00000 п. 0000019526 00000 п. 0000020030 00000 н. 0000020419 00000 п. 0000020792 00000 п. 0000026652 00000 п. 0000027430 00000 н. 0000027897 00000 н. 0000028581 00000 п. 0000028645 00000 п. 0000029064 00000 н. 0000039678 00000 п. 0000040665 00000 п. 0000041618 00000 п. 0000042326 00000 п. 0000042854 00000 п. 0000043830 00000 п. 0000044364 00000 п. 0000044444 00000 п. 0000044526 00000 п. 0000052562 00000 н. 0000053012 00000 п. 0000053398 00000 п. 0000053668 00000 п. 0000054114 00000 п. 0000055165 00000 п. 0000055788 00000 п. 0000056818 00000 п. 0000057864 00000 п. 0000067173 00000 п. 0000067939 00000 п. 0000068807 00000 п. 0000069316 00000 п. 0000069584 00000 п. 0000069865 00000 п. 0000070688 00000 п. 0000071937 00000 п. 0000074630 00000 п. 0000075586 00000 п. 0000137695 00000 н. 0000187828 00000 н. 0000192553 00000 н. 0000192993 00000 н. 0000193405 00000 н. 0000193731 00000 н. 0000193812 00000 н. 0000193884 00000 н. 0000194016 00000 н. 0000194108 00000 н. 0000194162 00000 н. 0000194280 00000 н. 0000194335 00000 н. 0000194432 00000 н. 0000194486 00000 н. 0000194610 00000 н. 0000194664 00000 н. 0000194796 00000 н. 0000194877 00000 н. 0000194931 00000 н. 0000195012 00000 н. 0000195066 00000 н. 0000195163 00000 н. 0000195217 00000 н. 0000195313 00000 н. 0000195367 00000 н. 0000195421 00000 н. 0000195501 00000 н. 0000195557 00000 н. 0000195639 00000 н. 0000195692 00000 н. 0000002076 00000 н. трейлер ] >> startxref 0 %% EOF 259 0 объект > поток x ڬ U {L [Uν} ܲ9 ڎ 6 G) [GDYcAy & шPoHel # LH & \ dcȦC> hQ_ |;
Как читать схему
Добавлено в избранное Любимый 98Обзор
Схемы— это наша карта для проектирования, создания и устранения неисправностей схем.Понимание того, как читать схемы и следовать им, — важный навык для любого инженера-электронщика.
Это руководство должно превратить вас в полностью грамотного читателя схем! Мы рассмотрим все основные символы схемы:
Затем мы поговорим о том, как эти символы связаны на схемах, чтобы создать модель цепи. Мы также рассмотрим несколько советов и приемов, на которые следует обратить внимание.
Рекомендуемая литература
Понимание схем — это довольно базовый навык работы с электроникой, но есть несколько вещей, которые вы должны знать, прежде чем читать это руководство.Посмотрите эти уроки, если они звучат как пробелы в вашем растущем мозгу:
Условные обозначения (часть 1)
Готовы ли вы к шквалу компонентов схемы? Вот некоторые из стандартизованных основных схематических символов для различных компонентов.
Резисторы
Самый фундаментальный из схемных компонентов и символов! Резисторы на схеме обычно представлены несколькими зигзагообразными линиями, с двумя выводами , выходящими наружу.В схемах, использующих международные символы, вместо волнистых линий может использоваться безликий прямоугольник.
Потенциометры и переменные резисторы
Переменные резисторы и потенциометры дополняют обозначение стандартного резистора стрелкой. Переменный резистор остается устройством с двумя выводами, поэтому стрелка просто расположена по диагонали посередине. Потенциометр — это трехконтактное устройство, поэтому стрелка становится третьей клеммой (дворником).
Конденсаторы
Обычно используются два символа конденсатора.Один символ представляет поляризованный (обычно электролитический или танталовый) конденсатор, а другой — неполяризованные колпачки. В каждом случае есть две клеммы, перпендикулярно входящие в пластины.
Символ с одной изогнутой пластиной указывает на то, что конденсатор поляризован. Изогнутая пластина обычно представляет собой катод конденсатора, который должен иметь более низкое напряжение, чем положительный анодный вывод. Знак плюс также должен быть добавлен к положительному выводу символа поляризованного конденсатора.
Катушки индуктивности
Катушки индуктивности обычно представлены сериями изогнутых выступов или петлевых катушек. Международные символы могут просто обозначать катушку индуктивности как закрашенный прямоугольник.
Переключатели
Коммутаторы существуют во многих различных формах. Самый простой переключатель, однополюсный / однопозиционный (SPST), представляет собой две клеммы с полусоединенной линией, представляющей исполнительный механизм (часть, которая соединяет клеммы вместе).
Переключатели с более чем одним ходом, такие как SPDT и SP3T ниже, добавляют больше точек посадки для привода.
Многополюсные переключатели обычно имеют несколько одинаковых переключателей с пунктирной линией, пересекающей средний привод.
Источники энергии
Так же, как существует множество вариантов питания вашего проекта, существует большое количество символов схем источника питания, которые помогают указать источник питания.
Источники постоянного или переменного напряжения
В большинстве случаев при работе с электроникой вы будете использовать источники постоянного напряжения. Мы можем использовать любой из этих двух символов, чтобы определить, подает ли источник постоянный ток (DC) или переменный ток (AC):
Батареи
Батарейки, будь то цилиндрические, щелочные батарейки типа AA или литий-полимерные аккумуляторные батареи, обычно выглядят как пара непропорциональных параллельных линий:
Чем больше пар линий, тем больше ячеек в батарее.Кроме того, более длинная линия обычно используется для обозначения положительной клеммы, а более короткая линия соединяется с отрицательной клеммой.
Узлы напряжения
Иногда — особенно на очень загруженных схемах — вы можете назначить специальные символы для узловых напряжений. Вы можете подключать устройства к этим символам с одним контактом , и они будут напрямую связаны с 5 В, 3,3 В, VCC или GND (землей). Узлы положительного напряжения обычно обозначаются стрелкой, направленной вверх, в то время как узлы заземления обычно включают от одной до трех плоских линий (или иногда стрелку или треугольник, направленную вниз).
Условные обозначения (часть 2)
Диоды
Базовые диоды обычно представляют собой треугольник, прижатый к линии. Диоды также поляризованы, поэтому для каждой из двух клемм требуются отличительные идентификаторы. Положительный анод — это вывод, входящий в плоский край треугольника. Отрицательный катод выходит за линию символа (воспринимайте его как знак -).
Существует множество различных типов диодов, каждый из которых имеет специальный рифф на стандартном символе диода. Светодиоды (LED) дополняют символ диода парой линий, направленных в сторону. Фотодиоды , которые генерируют энергию из света (в основном, крошечные солнечные элементы), переворачивают стрелки и направляют их в сторону диода.
Другие специальные типы диодов, такие как диоды Шоттки или стабилитроны, имеют свои собственные символы с небольшими вариациями на штриховой части символа.
Транзисторы
Транзисторы, будь то биполярные транзисторы или полевые МОП-транзисторы, могут существовать в двух конфигурациях: положительно легированные или отрицательно легированные.Итак, для каждого из этих типов транзисторов есть как минимум два способа его нарисовать.
Биполярные переходные транзисторы (БЮТ)
БЮТ — трехполюсные устройства; у них есть коллектор (C), эмиттер (E) и база (B). Есть два типа BJT — NPN и PNP — и каждый имеет свой уникальный символ.
Контакты коллектора (C) и эмиттера (E) расположены на одной линии друг с другом, но на эмиттере всегда должна быть стрелка. Если стрелка указывает внутрь, это PNP, а если стрелка указывает наружу, это NPN.Мнемоника для запоминания: «NPN: n ot p ointing i n ».
Металлооксидные полевые транзисторы (МОП-транзисторы)
Как и BJT, полевые МОП-транзисторы имеют три терминала, но на этот раз они названы исток (S), сток (D) и затвор (G). И снова, есть две разные версии символа, в зависимости от того, какой у вас полевой МОП-транзистор с n-каналом или p-каналом. Для каждого типа полевого МОП-транзистора существует ряд часто используемых символов:
Стрелка в середине символа (называемая основной частью) определяет, является ли полевой МОП-транзистор n-канальным или p-канальным.Если стрелка указывает внутрь, это означает, что это n-канальный MOSFET, а если он указывает, это p-канал. Помните: «n is in» (своего рода противоположность мнемонике NPN).
Цифровые логические ворота
Наши стандартные логические функции — И, ИЛИ, НЕ и ИСКЛЮЧИТЕЛЬНОЕ ИЛИ — имеют уникальные условные обозначения:
Добавление пузыря к выходу отменяет функцию, создавая NAND, NOR и XNOR:
У них может быть более двух входов, но формы должны оставаться такими же (ну, может быть, немного больше), и все равно должен быть только один выход.
Интегральные схемы
Интегральные схемырешают такие уникальные задачи, и их так много, что они действительно не получают уникального обозначения схемы. Обычно интегральная схема представляет собой прямоугольник с выступающими по бокам выводами. Каждый вывод должен быть помечен как номером, так и функцией.
Схематические символы для микроконтроллера ATmega328 (обычно присутствующего на Arduinos), микросхемы шифрования ATSHA204 и микроконтроллера ATtiny45. Как видите, эти компоненты сильно различаются по размеру и количеству выводов.Поскольку микросхемы имеют такой общий символ схемы, имена, значения и метки становятся очень важными. Каждая микросхема должна иметь значение, точно идентифицирующее имя микросхемы.
Уникальные ИС: операционные усилители, регуляторы напряжения
Некоторые из наиболее распространенных интегральных схем получают уникальный символ схемы. Обычно вы увидите операционные усилители, расположенные, как показано ниже, с 5 выводами: неинвертирующий вход (+), инвертирующий вход (-), выход и два входа питания.
Часто в один корпус интегральной схемы встроено два операционных усилителя, для которых требуется только один вывод для питания и один для заземления, поэтому тот, что справа, имеет только три контакта.
Простые регуляторы напряжения обычно представляют собой трехконтактные компоненты с входными, выходными и заземляющими (или регулирующими) контактами. Обычно они имеют форму прямоугольника с выводами слева (вход), справа (выход) и внизу (заземление / регулировка).
Разное
Кристаллы и резонаторы
Кристаллы или резонаторы обычно являются важной частью схем микроконтроллера. Они помогают обеспечить тактовый сигнал. Кристаллические символы обычно имеют два вывода, в то время как резонаторы, которые добавляют два конденсатора к кристаллу, обычно имеют три вывода.
Заголовки и разъемы
Будь то обеспечение питания или отправка информации, разъемы необходимы для большинства цепей. Эти символы различаются в зависимости от того, как выглядит разъем, вот образец:
Двигатели, трансформаторы, динамики и реле
Мы объединим их вместе, так как они (в основном) все так или иначе используют катушки. Трансформаторы (не самые очевидные) обычно включают две катушки, прижатые друг к другу, с парой линий, разделяющих их:
Реле обычно соединяет катушку с переключателем:
Динамики и зуммеры обычно имеют форму, аналогичную их реальным аналогам:
Двигателии обычно имеют обведенную буквой «М», иногда с небольшим количеством украшений вокруг клемм:
Предохранители и PTC
Предохранители и PTC — устройства, которые обычно используются для ограничения значительных скачков тока — каждое имеет свой уникальный символ:
Символ PTC на самом деле является общим символом для термистора , резистора, зависящего от температуры (обратите внимание на международный символ резистора там?).
Без сомнения, многие символы схем не включены в этот список, но те, что указаны выше, должны дать вам 90% грамотности в чтении схем. В общем, символы должны иметь довольно много общего с реальными компонентами, которые они моделируют. Помимо символа, каждый компонент на схеме должен иметь уникальное имя и значение, которое в дальнейшем помогает его идентифицировать.
Обозначения имен и значения
Один из важнейших ключей к схематической грамотности — это способность распознавать, какие компоненты какие.Компонентные символы рассказывают половину истории, но для завершения каждый символ должен сочетаться с именем и значением.
Имена и значения
Значения помогают точно определить, что такое компонент. Для схемных компонентов, таких как резисторы, конденсаторы и катушки индуктивности, значение говорит нам, сколько у них Ом, фарад или генри. Для других компонентов, таких как интегральные схемы, значением может быть просто название микросхемы. Кристаллы могут указывать свою частоту колебаний как свою ценность.По сути, значение компонента схемы вызывает его наиболее важную характеристику .
Имена компонентов обычно представляют собой комбинацию одной или двух букв и числа. Буквенная часть имени определяет тип компонента — R для резисторов, C для конденсаторов, U для интегральных схем и т. Д. Каждое имя компонента на схеме должно быть уникальным; если в цепи несколько резисторов, например, они должны называться R 1 , R 2 , R 3 и т. д.Имена компонентов помогают нам ссылаться на определенные точки на схемах.
Префиксы имен довольно хорошо стандартизированы. Для некоторых компонентов, таких как резисторы, префикс — это просто первая буква компонента. Другие префиксы имен не столь буквальны; индукторы, например, L (потому что ток уже взял I [но он начинается с C … электроника — глупое место]). Вот краткая таблица общих компонентов и их префиксов:
Имя Идентификатор | Компонент |
---|---|
R | Резисторы |
C | Конденсаторы |
L | Катушки индуктивности |
S | Переключатели |
Diodes | |
Diodes | |
Q | Транзисторы |
U | Интегральные схемы |
Y | Кристаллы и осцилляторы |
Хотя тезисы являются «стандартизованными» названиями символов компонентов, они не всегда соблюдаются.Вы можете увидеть интегральные схемы с префиксом IC вместо U , например, или кристаллы с маркировкой XTAL вместо Y . Используйте свой здравый смысл при диагностике, какая часть есть какая. Символ обычно должен передавать достаточно информации.
Чтение схемы
Понимание того, какие компоненты есть на схеме, — это более чем полдела на пути к ее пониманию. Теперь все, что осталось, — это определить, как все символы связаны друг с другом.
Сети, узлы и метки
Схематические цепи показывают, как компоненты соединяются в цепи. Цепи представлены в виде линий между клеммами компонентов. Иногда (но не всегда) они имеют уникальный цвет, например, зеленые линии на этой схеме:
Соединения и узлы
Провода могут соединять две клеммы вместе, или их можно соединять десятки. Когда провод разделяется на два направления, образуется соединение . На схемах изображаем стыки с узлами , маленькие точки размещены на пересечении проводов.
Узлыдают нам возможность сказать, что «провода, пересекающие этот переход , соединены ». Отсутствие узла на стыке означает, что два отдельных провода просто проходят мимо, не образуя никакого соединения. (При разработке схем обычно рекомендуется по возможности избегать этих несвязанных перекрытий, но иногда это неизбежно).
Сетевые имена
Иногда, чтобы схема была более разборчивой, мы даем цепи имя и маркируем ее, а не прокладываем провод по всей схеме.Предполагается, что цепи с таким же именем подключены, даже если между ними нет видимого провода. Имена могут быть написаны прямо поверх сети, или они могут быть «тегами», свисающими с провода.
Каждая цепь с таким же именем подключена, как на этой схеме для коммутационной платы FT231X. Имена и метки помогают избежать излишнего хаоса в схемах (представьте, если бы все эти цепи были действительно соединены проводами). Цепямобычно дается имя, в котором конкретно указывается назначение сигналов на этом проводе.Например, цепи питания могут быть обозначены «VCC» или «5V», а цепи последовательной связи — «RX» или «TX».
Советы по чтению схем
Идентифицировать блоки
Действительно обширные схемы следует разбивать на функциональные блоки. Это может быть раздел для ввода мощности и регулирования напряжения, или раздел микроконтроллера, или раздел, посвященный разъемам. Попытайтесь распознать, какие секции какие, и проследить за цепочкой от входа к выходу. По-настоящему хорошие разработчики схем могут даже выложить схему в виде книги: входы слева, выходы — справа.
Если ящик схемы действительно хорош (например, инженер, который разработал эту схему для RedBoard), они могут разделить части схемы на логические помеченные блоки.Распознать узлы напряжения
Узлы напряжения — это одноконтактные компоненты схемы, к которым мы можем подключать клеммы компонентов, чтобы назначить им определенный уровень напряжения. Это специальное приложение имен цепей, означающее, что все клеммы, подключенные к узлу напряжения с одинаковым именем, соединены вместе.
Узлы напряжения с одинаковыми названиями — например, GND, 5 В и 3,3 В — все подключены к своим аналогам, даже если между ними нет проводов.
Узел заземления особенно полезен, потому что очень многие компоненты нуждаются в заземлении.
Таблицы технических данных эталонных компонентов
Если на схеме есть что-то, что не имеет смысла, попробуйте найти таблицу для наиболее важного компонента. Обычно компонент, выполняющий большую часть работы со схемой, — это интегральная схема, такая как микроконтроллер или датчик.Обычно это самый крупный компонент, часто расположенный в центре схемы.
Ресурсы и дальнейшее развитие
Вот и все, что нужно для чтения схем! Зная символы компонентов, отслеживание цепей и определение общих меток. Понимание того, как работает схема, открывает вам целый мир электроники! Ознакомьтесь с некоторыми из этих руководств, чтобы попрактиковаться в новых знаниях схемотехники:
- Делители напряжения — это одна из самых основных принципиальных схем.Узнайте, как с помощью всего двух резисторов превратить большое напряжение в меньшее!
- Как использовать макетную плату — Теперь, когда вы знаете, как читать схемы, почему бы не сделать ее! Макетные платы — отличный способ создавать временные функциональные прототипы схем.
- Работа с проводом — Или пропустите макет и сразу начните с проводки. Умение разрезать, зачищать и подключать провода — важный навык электроники.
- Последовательные и параллельные схемы — Построение последовательных или параллельных схем требует хорошего понимания схем.
- Шитье проводящей нитью — Если вы не хотите работать с проволокой, как насчет создания схемы электронного текстиля с проводящей нитью? В этом прелесть схематических схем, одна и та же схематическая схема может быть построена множеством различных способов с использованием различных носителей.
Общие сведения о электрических чертежах
Голы
1. Распознавайте символы, часто используемые на диаграммах двигателя и управления.
2. Прочтите и постройте лестничные диаграммы.
3. Прочтите электрические схемы, однолинейные и блок-схемы.
4. Ознакомьтесь с клеммными соединениями для различных типов. моторов.
5. Прочтите информацию, содержащуюся на паспортных табличках двигателя.
6. Ознакомьтесь с терминологией, используемой в цепях двигателей.
7. Ознакомьтесь с принципами работы ручных и магнитных пускателей двигателей.
При работе с двигателями используются разные типы электрических чертежей. и их схемы управления.Чтобы облегчить создание и чтение электрические чертежи, используются определенные стандартные символы.
Для чтения чертежей электродвигателя необходимо знать как значение символов и как работает оборудование.
Этот раздел поможет вам понять использование символов в электрических рисунки. В разделе также объясняется моторная терминология и поясняется это с практическим применением.
ЧАСТЬ 1 Символы — сокращения — лестничные диаграммы
Символы двигателя
Цепь управления двигателем может быть определена как средство подачи питания к и отключение питания от двигателя.Символы, используемые для обозначения различные компоненты системы управления двигателем можно рассматривать как тип технической стенографии.
Использование этих символов способствует упрощению схемотехнических схем. и легче читать и понимать.
В системах управления двигателями символы и соответствующие линии показывают, как цепи соединены друг с другом. К сожалению, не все электрические и электронные символы стандартизированы.Вы найдете немного разные символы, используемые разными производителями. Также символы иногда выглядят ничего похожего на настоящую вещь, поэтому вам нужно узнать, что означают символы. FGR. 1 показаны некоторые типичные символы, используемые в принципиальных схемах двигателей.
Сокращения терминов двигателя
Аббревиатура — это сокращенная форма слова или фазы. Заглавные буквы используются для большинства сокращений. Ниже приводится список некоторых сокращения, обычно используемые в принципиальных схемах двигателей.
Переменный ток Якорь ARM АВТО автоматический выключатель BKR COM общий Реле управления CR Трансформатор тока CT DC постоянный ток DB динамическое торможение Поле FLD FWD вперед GRD заземление Мощность в лошадиных силах L1, L2, L3 Соединения линии электропередачи Концевой выключатель LS MAN ручной двигатель MTR Пускатель двигателя M NEG отрицательный NC нормально замкнут NO нормально разомкнутый OL реле перегрузки PH фаза PL контрольная лампа POS положительная мощность PWR PRI первичная кнопка PB
REC выпрямитель REV обратный RH реостат SSW предохранительный выключатель SEC вторичный 1-фазный однофазный соленоид SOL SW-переключатель T1, T2, T3 клеммные соединения двигателя 3-фазный трехфазный трансформатор с выдержкой времени TD
Лестничные схемы двигателей
На чертежах управления двигателемпредставлена информация о работе схемы, устройства. расположение оборудования и инструкции по подключению.Символы, используемые для представления переключатели состоят из узловых точек (мест, где друг друга), контактные полосы и специальный символ, который идентифицирует конкретный тип переключателя, как показано в FGR. 2.
Хотя устройство управления может иметь более одного набора контактов, только Используемые в схеме контакты представлены на контрольных чертежах.
Различные схемы управления и чертежи используются для установки, обслуживания, и устранение неисправностей в системах управления двигателем.К ним относятся лестничные диаграммы, электрические схемы, линейные схемы и блок-схемы. «Лестничная диаграмма» (считается некоторыми в виде схематической диаграммы) фокусируется на электрическом функционировании цепи, а не физическое расположение устройства. Например, два кнопки остановки могут физически находиться на противоположных концах длинного конвейера, но электрически рядом на лестничной диаграмме.
Лестничные диаграммы, например, показанная в FGR. 3, нарисованы двумя вертикальные линии и любое количество горизонтальных линий.Вертикальные линии (называемые рельсами) подключаются к источнику питания и обозначаются как линия 1 (L1) и линия 2 (L2). Горизонтальные линии (называемые ступенями) соединяются через L1 и L2 и содержат схему управления.
Лестничные диаграммы предназначены для чтения, как книгу, начиная с вверху слева и читать слева направо и сверху вниз.
Поскольку лестничные диаграммы легче читать, они часто используются при трассировке. через работу цепи.Большинство программируемых логических контроллеров (ПЛК) используют концепцию лестничных диаграмм в качестве основы для своего программирования. язык.
FGR. 1 Символы управления двигателем.
FGR. 2 Переключите компоненты символа.
FGR. 3 Типовая лестничная диаграмма.
FGR. 4 Электропроводка двигателя и цепи управления.
Большинство лестничных диаграмм иллюстрируют только однофазную цепь управления. подключен к L1 и L2, а не к трехфазной цепи питания мотор.FGR. 4 показана схема подключения силовой цепи и цепи управления.
На схемах, включающих проводку силовых цепей и цепей управления, вы можете увидеть: как тяжелые, так и легкие проводники. Жирные линии используются для силовая цепь с более высоким током и более светлые линии для более слаботочной цепь управления.
Показаны проводники, которые пересекаются друг с другом, но не имеют электрического контакта. пересекающимися линиями без точки.
Проводники, которые входят в контакт, обозначены точкой на стыке.В большинстве случаев управляющее напряжение получается непосредственно от источника питания. цепи или от понижающего управляющего трансформатора, подключенного к источнику питания. схема.
Использование трансформатора позволяет снизить напряжение (120 В переменного тока) для управления цепи при питании цепи питания трехфазного двигателя с повышенным напряжение (480 В переменного тока) для более эффективной работы двигателя.
Лестничная диаграмма дает необходимую информацию для упрощения следования последовательность работы схемы.
Это отличный помощник в поиске и устранении неисправностей, поскольку он наглядно показывает, эффект, который открытие или закрытие различных контактов оказывает на других устройствах в схема. Все переключатели и релейные контакты классифицируются как обычные. открытый (NO) или нормально закрытый (NC). Позиции, изображенные на диаграммах, электрические характеристики каждого устройства, которые будут обнаружены, когда куплен и не подключен ни в какую цепь. Иногда это называют как «готовое» или обесточенное состояние.Это важно чтобы понять это, потому что он также может представлять положение обесточивания в цепи. Обесточенное положение относится к положению компонента. когда цепь обесточена или в цепи нет питания. Эта точка отсчета часто используется в качестве отправной точки в анализе. работы схемы.
FGR. 5 Идентификация катушек и связанных контактов.
Обычный метод, используемый для идентификации катушки реле и задействованных контактов им — поместить букву или буквы в круг, представляющий катушка (FGR.5). Каждый контакт, которым управляет эта катушка, будет иметь буква катушки или буквы, написанные рядом с символом контакта.
Иногда при наличии нескольких контактов, управляемых одной катушкой, число добавляется к письму для обозначения контактного номера. Хотя там являются стандартными значениями этих букв, большинство диаграмм содержат список ключей показать, что означают буквы; обычно они взяты из названия устройства.
Нагрузка — это компонент цепи, имеющий сопротивление и потребляющий электрическую энергию. питание подается от L1 к L2.Катушки управления, соленоиды, звуковые сигналы и пилот огни являются примерами нагрузок. Должно быть включено хотя бы одно загрузочное устройство. на каждой ступеньке лестничной диаграммы. Без загрузочного устройства управление устройства будут переключать разомкнутую цепь на короткое замыкание между L1 и L2. Контакты от устройств управления, таких как переключатели, кнопки, и реле считаются не имеющими сопротивления в замкнутом состоянии. Связь контактов параллельно с нагрузкой также может привести к короткому замыканию когда контакт замыкается.Ток в цепи будет минимальным. сопротивление через замкнутый контакт, замыкая нагрузку под напряжением.
Обычно нагрузки размещаются в правой части лестничной диаграммы рядом с к L2 и контактам с левой стороны рядом с L1. Одно исключение из этого Правило — размещение нормально замкнутых контактов, контролируемых устройство защиты двигателя от перегрузки. Эти контакты нарисованы справа сторона катушки стартера двигателя, как показано на FGR.6. Когда две и более загрузки должны быть запитаны одновременно, они должны быть подключены в параллельно. Это гарантирует, что полное линейное напряжение от L1 и L2 будет появляются при каждой загрузке. Если нагрузки подключены последовательно, ни один получит все сетевое напряжение, необходимое для правильной работы. Отзывать что при последовательном соединении нагрузок приложенное напряжение делится между каждая из нагрузок. При параллельном подключении нагрузок напряжение на каждая нагрузка одинакова и равна приложенному напряжению.
Управляющие устройства, такие как переключатели, кнопки, концевые выключатели и давление переключатели управляют нагрузками. Обычно подключаются устройства, запускающие нагрузку. параллельно, а устройства, останавливающие нагрузку, подключаются последовательно. Для например, несколько пусковых кнопок, управляющих одним и тем же пускателем двигателя. катушка будет подключена параллельно, а несколько кнопок останова будут подключены последовательно (FGR.7). Все устройства управления идентифицированы с соответствующей номенклатурой для устройства (например,г., стоп, старт). Точно так же все нагрузки должны иметь аббревиатуры для обозначения тип нагрузки (например, M для катушки стартера). Часто дополнительный числовой суффикс используется для различения нескольких устройств одного типа. Для Например, цепь управления с двумя пускателями двигателя может идентифицировать катушки как M1 (контакты 1-M1, 2-M1 и т. д.) и M2 (контакты 1-M2, 2-M2 и т. д.).
FGR. 6 Нагрузки размещены справа, а контакты слева.
FGR. 7 Стопорные устройства подключаются последовательно, а пусковые устройства подключаются параллельно.
FGR. 8 Лестничная диаграмма с подробным описанием номеров ступеней.
По мере увеличения сложности схемы управления ее лестничная диаграмма увеличивается в размере, что затрудняет чтение и поиск контактов контролируются какой катушкой. «Нумерация звеньев» используется для помощи в чтении и понимании больших лестничных диаграмм. Каждая ступенька обозначена лестничная диаграмма (ступеньки 1, 2, 3 и т. д.).), начиная с верхней ступени и чтение вниз. Ступеньку можно определить как полный путь от L1 до L2, содержащий нагрузку. FGR. 8 иллюстрирует маркировку каждой ступени в линейная диаграмма с тремя отдельными ступенями:
• Путь для ступени 1 завершается нажатием кнопки реверса, цикл кнопка запуска, концевой выключатель 1LS и катушка 1CR.
• Путь для ступени 2 завершается с помощью кнопки реверса, реле контакт 1CR-1, концевой выключатель 1LS и катушка 1CR.Обратите внимание, что ступень 1 и ступень 2 идентифицируются как две отдельные ступени, даже если они контролируют одну и ту же ступеньку. нагрузка. Причина в том, что либо кнопка запуска цикла, либо контакт реле 1CR-1 завершает путь от L1 до L2.
• Путь для ступени 3 завершается через контакт реле 1CR-2 к и соленоид SOL A.
«Числовые перекрестные ссылки» используются вместе с нумерация звеньев для нахождения вспомогательных контактов, управляемых катушками в цепь управления.Иногда вспомогательные контакты не находятся в непосредственной близости на лестничной диаграмме к катушке, контролирующей их работу. Чтобы найти эти контакты, номера звеньев указаны справа от L2 в скобках. на звене катушки, контролирующей их работу.
В примере, показанном в FGR. 9:
• Контакты катушки 1CR появляются в двух разных местах на линии. диаграмма.
• Цифры в скобках справа от линейной диаграммы обозначают расположение линии и тип контактов, контролируемых катушкой.
• Цифры в скобках для нормально разомкнутых контактов имеют без специальной маркировки.
• Номера, используемые для нормально замкнутых контактов, обозначаются подчеркиванием. или завышение числа, чтобы отличить их от нормально разомкнутых контактов.
• В этой схеме катушка управляющего реле 1CR управляет двумя наборами контактов: 1CR-1 и 1CR-2. Это показано цифровым кодом 2, 3.
Для правильного подключите проводники цепи управления к их компонентам в цепи.Метод, используемый для идентификации проводов, зависит от производителя. FGR. 10 иллюстрирует один метод, в котором каждая общая точка в цепи присвоен справочный номер:
• Нумерация начинается со всех проводов, подключенных к стороне L1 устройства. блок питания обозначен номером 1.
• Продолжение в верхнем левом углу диаграммы со звеном 1, новый номер назначается последовательно для каждого провода, пересекающего компонент.
• Электрически общие провода обозначены одинаковыми номерами.
• После того, как был назначен первый провод, напрямую подключенный к L2 (в в этом случае 5) все остальные провода, напрямую подключенные к L2, будут помечены с таким же номером.
• Количество компонентов в первой строке лестничной диаграммы определяет номер провода для проводников, напрямую подключенных к L2.
FGR. 9 Числовая система перекрестных ссылок.
FGR. 10 Нумерация проводов.
FGR. 11 Альтернативная идентификация проводки с документацией.
FGR. 12 Представление механических функций.
FGR. 13 Заземление управляющего трансформатора: (а) управляющий трансформатор
правильно заземлен на сторону L2 цепи; (б) управляющий трансформатор
неправильно заземлен на стороне L1 цепи.
FGR. 11 иллюстрирует альтернативный метод присвоения номеров проводов.В этом методе все провода, напрямую подключенные к L1, обозначаются 1, а все подключенные к L2 обозначены 2. После всех проводов с 1 и 2 отмечены, остальные номера присваиваются в последовательном порядке начиная с верхнего левого угла диаграммы.
Преимущество этого метода в том, что все провода подключаются напрямую. до L2 всегда обозначаются как 2. Лестничные диаграммы могут также содержать серию описаний, расположенных справа от L2, которые используются для документирования функция схемы, управляемая устройством вывода.
Пунктирная линия обычно указывает на механическое соединение. Не делают ошибка чтения ломаной линии как части электрической цепи. В FGR. 12 вертикальные пунктирные линии на кнопках прямого и обратного хода указывают, что их нормально замкнутые и нормально разомкнутые контакты механически связанный. Таким образом, нажатие на кнопку откроет один набор контактов. и закройте другой. Пунктирная линия между катушками F и R указывает что они механически взаимосвязаны.Следовательно, катушки F и R не могут одновременное закрытие контактов благодаря механическому блокирующему действию устройства.
Когда управляющий трансформатор должен иметь одну из вторичных линий заземлен, заземление должно быть выполнено так, чтобы случайное заземление в цепи управления не запустит двигатель или не сделает кнопку остановки или управление не работает. FGR. 13a иллюстрирует вторичный элемент управления. трансформатор должным образом заземлен на сторону L2 цепи.Когда цепь исправна, вся цепь слева от катушки M является Незаземленная цепь (это «горячая» нога). Путь неисправности к земле в незаземленной цепи вызовет короткое замыкание, вызывая предохранитель управляющего трансформатора разомкнут. FGR. 13b показывает ту же схему неправильно заземлен на L1. В этом случае короткое замыкание на массу на слева от катушки M возбудит катушку, неожиданно запустив двигатель. Предохранитель не сработает, чтобы размыкать цепь и нажимать стопор, но тонна не обесточила бы катушку М.Повреждение оборудования и травмы персонала было бы очень вероятно. Понятно, что выходные устройства должны быть подключены напрямую к заземленной стороне цепи.
ЧАСТЬ 1 ВИКТОРИНА
1. Определите, что означает термин «цепь управления двигателем».
2. Почему символы используются для обозначения компонентов на электрических схемах?
3. Электрическая цепь содержит три контрольных лампы. Что приемлемо можно ли использовать символ для обозначения каждого источника света?
4.Опишите базовую структуру принципиальной электрической схемы.
5. Линии используются для обозначения электрических проводов на схемах.
а. Чем провода, по которым проходит большой ток, отличаются от проводов, нести слабый ток?
г. Как провода, которые пересекаются, но не соединяются электрически, дифференцируются из тех, которые подключаются электрически?
6. Контакты кнопочного переключателя размыкаются при нажатии кнопки. К какому типу кнопок это относится? Почему?
7.Катушка реле с маркировкой TR содержит три контакта.
Какую приемлемую кодировку можно использовать для идентификации каждого из контактов?
8. Ступенька на лестничной диаграмме требует наличия двух нагрузок, каждая из которых рассчитана на полное линейное напряжение, запитывается, когда переключатель замкнут. Какая связь нагрузок необходимо использовать? Почему?
9. Одним из требований для конкретного двигателя является то, что шесть значений давления выключатели должны быть замкнуты до того, как двигатель будет запущен.Какие связи переключателей надо использовать?
10. Маркировка проводов на нескольких проводах электрического панели проверяются и обнаруживают, что имеют тот же номер. Что это значит?
11. Пунктирная линия, обозначающая механическую функцию электрического диаграмма ошибочно принята за проводник и подключена как таковая. Какие два типа проблем, к которым это могло привести?
ЧАСТЬ 2 Электромонтажные схемы — однолинейные блочные схемы
Схемы подключения
FGR.14 Типовая электрическая схема пускателя двигателя.
Этот материал и связанные с ним авторские права являются собственностью и используются с разрешения Schneider Electric.
Электрические схемы используются для демонстрации двухточечной проводки между компонентами. электрической системы, а иногда и их физического отношения друг к другу. Они могут включать идентификационные номера проводов, присвоенные проводникам в лестничная диаграмма и / или цветовое кодирование. Катушки, контакты, двигатели и как показано в фактическом положении, которое можно было бы найти на установке.Эти схемы полезны при подключении систем, потому что соединения могут делаться именно так, как показано на схеме. Схема подключения дает необходимая информация для фактического подключения устройства или группы устройств или для физического отслеживания проводов при поиске и устранении неисправностей. Тем не мение, По такому рисунку сложно определить работу схемы.
FGR. 15 Прокладка проводов в кабелях и коробах.
FGR.16 Электромонтаж с внутренними подключениями магнитного пускателя
опущено.
Схемы подключения представлены для большинства электрических устройств. FGR. 14 иллюстрирует типовая электрическая схема, предусмотренная для пускателя двигателя. На диаграмме показано, как можно точнее, фактическое расположение всех составных частей устройства. Открытые клеммы (отмечены открытым кружком) и стрелки представляют собой соединения, сделанные пользователем. Обратите внимание, что жирные линии обозначают цепь питания, а более тонкими линиями показана схема управления.
Прокладка проводов в кабелях и трубопроводах, как показано в FGR. 15, является важной частью электрической схемы. Схема компоновки кабелепровода указывает начало и конец электропроводки и показаны приблизительные путь, пройденный любым каналом при переходе от одной точки к другой. Интегрированный с рисунком такого рода — это кабелепровод и спецификация кабеля, которые сводит в таблицу каждый канал по количеству, размеру, функциям и услугам, а также включает количество и размер проводов, проложенных в кабелепроводе.
На электрических схемах показаны подробности реальных подключений. Редко они попытаться показать полную информацию о монтажной плате или оборудовании. В схема подключения FGR. 15, приведенный к более простому виду, показан на FGR. 16 без внутренних соединений магнитного пускателя. Провода заключенные в кабелепровод C1, являются частью силовой цепи и рассчитаны на текущее требование двигателя. Провода, заключенные в кабелепровод C2, являются частью цепи управления нижнего напряжения и рассчитаны на текущие требования управляющего трансформатора.
FGR. 17 Комбинированная разводка и лестничная диаграмма.
FGR. 18 Однолинейная схема моторной установки.
FGR. 19 Однолинейная схема системы распределения электроэнергии.
Электрические схемы часто используются вместе с лестничными диаграммами для упростить понимание процесса управления. Примером этого является проиллюстрировано в FGR. 17. На схеме подключения показаны питание и управление. схемы.
Включена отдельная лестничная диаграмма цепи управления, чтобы более четкое понимание его работы. Следуя лестничной диаграмме видно, что контрольная лампа подключена так, что она будет гореть всякий раз, когда стартер находится под напряжением.
Силовая цепь для ясности опущена, так как ее можно проследить. легко на монтажной схеме (жирные линии).
Однолинейные схемы
Однолинейная диаграмма (также называемая однострочной) использует символы вместе с одна линия, чтобы показать все основные компоненты электрической цепи.Некоторый производители оборудования для управления двигателем используют однолинейный рисунок, например тот, что показан в FGR. 18, как дорожная карта в изучении моторного контроля инсталляции. Установка сведена к максимально простой форме, тем не менее, он по-прежнему показывает основные требования и оборудование в цепи.
Энергетические системы — это чрезвычайно сложные электрические сети, которые могут географически распространяться на очень большие территории. По большей части они также трехфазные сети — каждая силовая цепь состоит из трех проводов и все устройства, такие как генераторы, трансформаторы, выключатели и разъединители и т.п.установлен во всех трех фазах. Эти системы могут быть настолько сложными, что полная стандартная схема, показывающая все соединения, непрактична. В этом случае использование однолинейной схемы — это краткий способ сообщение базовой компоновки компонента энергосистемы. FGR. 19 показана однолинейная схема малой системы распределения электроэнергии. Эти типы диаграмм также называют схемами «стояка мощности».
Блок-схемы
Блок-схема представляет основные функциональные части сложных электрических / электронных системы блоками, а не символами.Отдельные компоненты и провода не показаны. Вместо этого каждый блок представляет электрические цепи, которые выполнять определенные функции в системе. Функции, которые выполняют схемы написаны в каждом блоке.
Стрелки, соединяющие блоки, указывают общее направление тока пути.
FGR. 20 показана блок-схема частотно-регулируемого электродвигателя переменного тока. Частотно-регулируемый привод регулирует скорость двигателя переменного тока, изменяя частота, подаваемая на двигатель.Привод также регулирует выходную мощность. напряжение пропорционально выходной частоте, чтобы обеспечить относительно постоянное соотношение (вольт на герц; В / Гц) напряжения к частоте, если требуется характеристиками двигателя переменного тока для создания соответствующего крутящего момента. В Функция каждого блока резюмируется следующим образом:
• На выпрямительный блок подается трехфазное питание частотой 60 Гц.
• Блок выпрямителя — это схема, которая преобразует или выпрямляет трехфазную Напряжение переменного тока в напряжение постоянного тока.
• Блок инвертора — это схема, которая инвертирует или преобразует вход постоянного тока. напряжение обратно в напряжение переменного тока.
Инвертор состоит из электронных переключателей, которые переключают напряжение постоянного тока. включение и выключение для получения регулируемой выходной мощности переменного тока с желаемой частотой и напряжение.
FGR. 20 Структурная схема частотно-регулируемого привода переменного тока.
ЧАСТЬ 2 ВИКТОРИНА
1. Каково основное назначение электрической схемы?
2.Помимо цифр, какой еще метод можно использовать для идентификации провода на схеме подключения?
3. Какую роль может играть электрическая схема в поиске неисправностей двигателя? схема управления?
4. Перечислите фрагменты информации, которые, скорее всего, можно найти в канале. и перечень кабелей для установки двигателя.
5. Объясните цель использования электрической схемы двигателя вместе с с лестничной схемой цепи управления.
6. Каково основное назначение однолинейной схемы?
7. Каково основное назначение блок-схемы?
8. Объясните функцию выпрямительного и инверторного блоков переменной частоты. Привод переменного тока.
ЧАСТЬ 3 Клеммные соединения двигателя
Классификация двигателей
Электродвигатели были важным элементом нашей промышленной и коммерческая экономика более века.
Большинство используемых сегодня промышленных машин приводится в действие электродвигателями. Отрасли перестанут функционировать без должным образом спроектированных, установленных, и обслуживаемые системы управления двигателем. В целом моторы классифицируются в зависимости от типа используемой мощности (переменного или постоянного тока) и принципа работы двигателя операции. «Генеалогическое древо» моторных типов довольно обширно, как показано вверху следующей страницы:
В США Институт инженеров по электротехнике и радиоэлектронике (IEEE) устанавливает стандарты моторного тестирования и методологий тестирования, в то время как Национальная ассоциация производителей электрооборудования (NEMA) готовит стандарты характеристик двигателя и классификации.
Дополнительно должны быть установлены двигатели в соответствии со Статьей 430. Национального электротехнического кодекса (NEC).
Подключение двигателя постоянного тока
В промышленных приложениях используются двигатели постоянного тока, поскольку соотношение скорости и крутящего момента можно легко варьировать. Двигатели постоянного тока имеют регулируемую скорость. плавно спускаемся до нуля, сразу после чего разгон в обратном направление. В аварийных ситуациях электродвигатели постоянного тока могут подавать более пяти раз. номинальный крутящий момент без остановки.Динамическое торможение (энергия, генерируемая двигателем постоянного тока подается на резисторную сетку) или рекуперативное торможение (двигатель постоянного тока энергия возвращается в источник питания двигателя постоянного тока) может быть получено с двигателями постоянного тока в приложениях, требующих быстрой остановки, что устраняет необходимость в или уменьшение размеров механического тормоза.
FGR. 21 показаны символы, используемые для обозначения основных частей прямого составной двигатель постоянного тока.
FGR. 21 Детали составного двигателя постоянного тока.
Вращающаяся часть двигателя называется якорем; стационарный часть двигателя называется статором, который содержит серию обмотка возбуждения и шунтирующая обмотка возбуждения. В машинах постоянного тока A1 и A2 всегда указывают выводы якоря, S1 и S2 указывают последовательные выводы возбуждения, а Fl и F2 обозначают выводы шунтирующего поля.
Это вид возбуждения поля, обеспечиваемый полем, который отличает один тип двигателя постоянного тока от другого; конструкция арматуры не имеет отношения к моторной классификации.Есть три основных типа двигателей постоянного тока, классифицируемых по способу возбуждения поля как следует:
• В шунтирующем двигателе постоянного тока (FGR. 22) используется шунт со сравнительно высоким сопротивлением. обмотка возбуждения, состоящая из множества витков тонкой проволоки, соединенных параллельно (шунт) с арматурой.
• В последовательном двигателе постоянного тока (FGR. 23) используется последовательное поле с очень низким сопротивлением. обмотка, состоящая из очень небольшого количества витков толстого провода, соединенных последовательно с арматурой.
• Составной двигатель постоянного тока (FGR. 24) использует комбинацию шунтирующего поля (многие витков тонкой проволоки) параллельно якорю, а последовательное поле (несколько витков толстой проволоки) последовательно с якорем.
FGR. 22 Стандартные шунтирующие соединения двигателя постоянного тока для вращения против часовой стрелки и
вращение по часовой стрелке.
FGR. 23 Стандартные соединения двигателя постоянного тока для вращения против часовой стрелки и
вращение по часовой стрелке.
FGR.24 стандартных соединения постоянного (кумулятивного) двигателя для счетчика часов
мудрое и вращение по часовой стрелке. Для дифференциального соединения, обратное
S1 и S2.
Все соединения, показанные на рисунках 22, 23 и 24, выполнены против часовой стрелки. и вращение по часовой стрелке, обращенное к концу, противоположному приводу (конец коллектора). Одна из целей нанесения маркировки на клеммы двигателей в соответствии с к стандарту, чтобы помочь в установлении соединений, когда предсказуемое вращение направление обязательно.Это может быть тот случай, когда неправильное вращение может привести к небезопасной эксплуатации или повреждению. Маркировка клемм обычно используется пометить только те клеммы, к которым необходимо подключать извне схемы.
Направление вращения двигателя постоянного тока зависит от направления магнитное поле и направление тока в якоре. Если либо направление поля или направление тока, протекающего через якорь реверсируется, двигатель вращается в обратном направлении.Тем не мение, если оба этих фактора поменять местами одновременно, двигатель будет продолжайте вращаться в том же направлении.
Подключение двигателя переменного тока
Асинхронный двигатель переменного тока является доминирующей технологией двигателей, используемых сегодня, что составляет более 90 процентов установленной мощности электродвигателей. Индукция двигатели доступны в однофазной (1?) и трехфазной (3?) конфигурациях, размерами от долей лошадиных сил до десятков тысяч Лошадиные силы.Они могут работать с фиксированной скоростью — обычно 900, 1200, 1800, или 3600 об / мин — или быть оснащенным регулируемым приводом.
Наиболее часто используемые двигатели переменного тока имеют конфигурацию с короткозамкнутым ротором. (FGR.25), названный так из-за вставленной в него алюминиевой или медной беличьей клетки. внутри железных пластин ротора. Нет физического электрического подключение к беличьей клетке. Ток в роторе индуцируется вращающееся магнитное поле статора.
Роторные модели, в которых витки проволоки вращают обмотки ротора, так же доступно. Это дорого, но обеспечивает больший контроль над двигателем. эксплуатационные характеристики, поэтому их чаще всего используют для особого крутящего момента приложений для ускорения и для приложений с регулируемой скоростью.
FGR. 25 Трехфазный асинхронный двигатель переменного тока с короткозамкнутым ротором.
FGR. 26 Асинхронный двигатель переменного тока с разделением фаз.
FGR.27 Соединения статора двухфазного двигателя с двойным напряжением.
ПОДКЛЮЧЕНИЯ ДЛЯ ОДНОФАЗНЫХ ДВИГАТЕЛЕЙ
Большинство однофазных асинхронных двигателей переменного тока сконструированы в дробном исполнении. мощности для источников питания от 120 до 240 В, 60 Гц. Хотя там это несколько типов однофазных двигателей, они в основном идентичны кроме средств запуска. «Двухфазный двигатель» наиболее широко используется для приложений со средним запуском (FGR.26). Операция сплит-двигателя кратко описывается следующим образом:
• Двигатель имеет пусковую и основную или рабочую обмотки, которые находятся под напряжением. при запуске мотора.
• Пусковая обмотка создает разность фаз для запуска двигателя. и отключается центробежным переключателем при приближении к рабочей скорости. Когда двигатель достигает примерно 75 процентов своей номинальной скорости при полной нагрузке, пусковая обмотка отключена от цепи.
• Мощность двигателя с расщепленной фазой составляет примерно ½ лошадиных сил. Популярные приложения включают вентиляторы, нагнетатели, бытовую технику, такую как стиральные машины и сушилки, и инструменты, такие как небольшие пилы или сверлильные станки, к которым нагрузка прилагается после двигатель набрал свою рабочую скорость.
• Двигатель можно реверсировать, переставив провода к пусковой обмотке. или основной обмотки, но не к обеим. Обычно отраслевой стандарт поменять местами провода пусковой обмотки
В двухфазном двигателе с двойным напряжением (FGR.27) ходовая обмотка разделен на две части и может быть подключен для работы от 120-вольтной или источник 240 В. Две обмотки подключаются последовательно при работе. от источника 240 В и параллельно для работы на 120 В.
Пусковая обмотка подключается к линиям питания низкого напряжения. и по одной линии до середины ходовых обмоток для высокого напряжения. Это гарантирует, что все обмотки получат 120 В, на которые они рассчитаны. работать в.Чтобы изменить направление вращения разветвителя с двумя напряжениями фазного двигателя, поменяйте местами два провода пусковой обмотки.
Двигатели с двойным напряжением подключаются к требуемому напряжению следующим образом: схема подключения на паспортной табличке.
Номинальная мощность двухфазного двигателя с двумя напряжениями составляет 120/240 В. любого типа двигателя с двойным напряжением, более высокое напряжение предпочтительнее, когда возможен выбор между напряжениями. Мотор использует столько же мощности и производит такое же количество лошадиных сил при работе от питание 120 В или 240 В.Однако, поскольку напряжение увеличивается вдвое с 120 В до 240 В ток уменьшается вдвое. Работа двигателя на этом пониженном уровень тока позволяет использовать проводники цепи меньшего диаметра и снижает потери мощности в линии.
FGR. 28 Двигатель с постоянным разделением конденсаторов.
Во многих однофазных двигателях конденсатор используется последовательно с одним из статоров. обмотки для оптимизации разности фаз между пусковой и рабочей обмотками для запуска.Результат — более высокий пусковой крутящий момент, чем у расщепленной фазы. мотор может производить. Есть три типа конденсаторных двигателей: конденсаторные. пуск, при котором фаза конденсатора находится в цепи только при пуске; постоянно разделенный конденсатор, в котором конденсаторные фазы в цепи как для запуска, так и для работы; и двухзначный конденсатор, в котором — разные значения емкости для запуска и работы. Перманентный раскол конденсаторный двигатель, изображенный на FGR.28, постоянно использует конденсатор соединены последовательно с одной из обмоток статора. Эта конструкция ниже по стоимости, чем двигатели с конденсаторным пуском, которые включают переключение конденсаторов системы. Установки включают компрессоры, насосы, станки, воздушные кондиционеры, конвейеры, воздуходувки, вентиляторы и другие сложные для запуска приложения.
ПОДКЛЮЧЕНИЯ ТРЕХФАЗНЫХ ДВИГАТЕЛЕЙ
Трехфазный асинхронный двигатель переменного тока является наиболее распространенным двигателем, используемым в коммерческих и промышленное применение.
Однофазные двигатели большей мощности обычно не используются, потому что они неэффективны по сравнению с трехфазными двигателями. Кроме того, однофазные двигатели не запускаются самостоятельно на своих рабочих обмотках, в отличие от трехфазных моторы.
Двигатели переменного тока большой мощности обычно бывают трехфазными.
Все трехфазные двигатели имеют внутреннюю конструкцию с рядом отдельных намотанные катушки. Независимо от количества отдельных катушек, индивидуальные катушки всегда будут подключены вместе (последовательно или параллельно) для получения трех отдельные обмотки, которые называются фазой A, фазой B и фазой С.Все трехфазные двигатели подключены таким образом, чтобы фазы были подключены друг к другу. конфигурация звезды (Y) или треугольника (?), как показано на FGR. 29.
ПОДКЛЮЧЕНИЯ ДВУХНАПРЯЖНЫХ ДВИГАТЕЛЕЙ
FGR. 29 Подключение электродвигателя трехфазной звездой и треугольником.
Обычной практикой является производство трехфазных двигателей, которые могут быть подключены работать на разных уровнях напряжения.
Наиболее распространенное номинальное напряжение для трехфазных двигателей — 208/230/460. В.Всегда проверяйте характеристики двигателя или паспортную табличку на предмет надлежащего напряжения. номинал и схема подключения для способа подключения к источнику напряжения.
FGR. 30 иллюстрирует типичную идентификацию терминала и подключение. таблица для девятипроводного трехфазного двигателя с двойным напряжением, соединенным звездой. Один конец каждой фазы внутренне постоянно подключен к другим фазам.
Каждая фазная катушка (A, B, C) разделена на две равные части и соединена последовательно для работы с высоким напряжением или параллельно для работы с низким напряжением операция.Согласно номенклатуре NEMA, эти выводы имеют маркировку от T1 до Т9. Высоковольтные и низковольтные соединения приведены в прилагаемых таблица соединений и клеммная колодка двигателя. Тот же принцип серии Применяется (высоковольтное) и параллельное (низковольтное) подключение катушек для трехфазных двигателей с двойным напряжением, соединенных звездой-треугольником. Во всех случаях обратитесь к электросхеме, поставляемой с двигателем, чтобы убедиться в правильности подключения. для желаемого уровня напряжения.
Прод. к части 2 >>
Электрические чертежи и обзор схем
Проектирование, установка и устранение неисправностей электрических систем требует использования различных чертежей, чтобы дать инженерам, установщикам и техническим специалистам визуальное представление систем, с которыми они работают.
Электрооборудование и схемы часто выражаются в виде символов и линий, которые представляют различные компоненты и соединения внутри системы. Уровень сложности электрического чертежа будет варьироваться в зависимости от предполагаемого назначения и персонала, работающего с чертежом.
Инженеры-конструкторы и технические специалистыиспользуют схемы для построения и устранения неисправностей сложных цепей, в то время как операторы предприятий используют однолинейные схемы и схемы стояков для облегчения операций переключения в своей распределительной системе. Умение читать и интерпретировать различные типы электрических чертежей — важный навык, которым должны обладать все электротехники для эффективного выполнения своих задач.
Символы и линии на электрическом чертеже говорят на языке, который все участники должны понимать, чтобы проектировать, строить и устранять неисправности электрических систем.В этой статье мы кратко опишем несколько типов общих электрических схем, встречающихся в полевых условиях, и объясним их назначение.
Однолинейная схема
Однолинейная схема распределительного устройства Medoum-Voltage. Фотография: General Electric
Когда вам нужен вид энергосистемы с высоты птичьего полета, однолинейная схема часто является первым чертежом, к которому следует обратиться. Эти рисунки, также называемые однолинейными диаграммами, показывают поток электроэнергии или ход электрических цепей и то, как они связаны.
Физические взаимосвязи обычно не учитываются на однолинейной схеме, однако они должны отображать все основные компоненты в энергосистеме и перечислять все важные характеристики. Системное напряжение, полное сопротивление трансформатора, отключающие характеристики и ток короткого замыкания — это лишь некоторые из основных элементов, включенных в однолинейную схему.
Эти чертежи должны храниться в главном диспетчерском пункте предприятия, чтобы помочь в управлении операциями переключения путем определения фидеров и нагрузки, которую они обслуживают.Обычно включаются напряжение системы, частота, фаза и нормальные рабочие положения.
Другие позиции, такие как коэффициенты измерительного трансформатора и защитные реле, можно найти на однолинейной схеме. Если диаграмма не может охватить все задействованные компоненты, можно нарисовать дополнительные диаграммы вместе с основной диаграммой.
Связанные: Обозначения электрических однолинейных схем
Трехлинейная схема
Трехпроводная схема шины 4160 В.Фото: NRC.gov
Для более детального представления системы распределения электроэнергии используется трехлинейная диаграмма, показывающая соотношение фаз. В многофазных системах переменного тока эти чертежи иллюстрируют различные соединения для A, B, C, нейтрали и заземления, каждое из которых представлено своей собственной линией.
Трехлинейные схемы дополняют однолинейную, предоставляя базовое визуальное руководство по реальной прокладке питающих кабелей, соединениям измерительного трансформатора и защитным устройствам. На этих чертежах показано, как соединены фазы и конкретные конфигурации обмоток без учета их физического расположения.
Схема подъема
Схема электрического стояка. Фото: BGR Engineers.
Чтобы проиллюстрировать электрическую распределительную систему многоуровневого здания, используется диаграмма стояка. Эти чертежи похожи на однолинейные чертежи, но часто фокусируются на том, как энергия перетекает с одного уровня здания на другой.
На схемахRiser показаны компоненты распределения, такие как стояки шины, шинные вилки, щитовые панели и трансформаторы, от точки входа до небольших ответвлений на каждом уровне.Эти чертежи иногда могут использоваться совместно с системами охранной сигнализации, телекоммуникационными и интернет-кабелями.
Принципиальная схема
Пример электронной принципиальной схемы. Фото: DOE.gov
Основная цель принципиальной схемы — выделить элементы схемы и то, как их функции соотносятся друг с другом. Схемы — это чрезвычайно ценный инструмент для поиска и устранения неисправностей, который определяет, какие компоненты включены последовательно или параллельно, и как они соединяются друг с другом.
Компоненты, которые обычно встречаются на принципиальных схемах, включают резисторы, конденсаторы, катушки индуктивности, диоды, логические вентили, контакты предохранителей, переключатели и многое другое.Каждый компонент на принципиальной схеме имеет свой собственный символ, обозначающий его.
Схематические диаграммы должны быть составлены для простоты и легкости понимания без учета фактического физического расположения любого компонента, уделяя внимание только тому, как они соединяются друг с другом. Эти схемы всегда должны быть нарисованы с переключателями и контактами, показанными в обесточенном положении.
Связано: Разъяснение схемы управления автоматическим выключателем
Схема электрических соединений
Схема подключения реле датчика нагрузкиExmpale.Фото: Площадь Д.
Основная цель электрической схемы — показать все компоненты в электрической цепи и расположить их так, чтобы показать их фактическое физическое расположение. В отличие от принципиальной схемы, которую можно рассматривать как концептуальный рисунок, схема подключения предназначена для конечных пользователей и установщиков, которые сосредоточены на подключении и устранении неполадок компонентов.
На схемах подключениядолжны быть указаны все части оборудования, устройства и клеммные колодки с их соответствующими номерами, буквами или цветами.Обозначения клемм и соединений между компонентами четко обозначены, чтобы облегчить сборку или ремонт оборудования, показанного на чертеже.
Блок-схема
Пример блок-схемы. Фото: Mercer.edu
Пожалуй, самый простой тип электрических чертежей, блок-схемы представляют основные компоненты сложной системы в виде блоков, соединенных линиями, которые показывают их отношение друг к другу. Эти диаграммы не следует путать с однолинейными чертежами, поскольку они не передают никакой технической информации, а только основные компоненты сложной системы.
Блок-схема дает концептуальное представление о завершении процесса без учета электрических символов или терминов. Каждый блок представляет собой сложную схему, которая может быть объяснена с помощью других чертежей, таких как схемы и электрические схемы.
Логическая схема
Логическая схема реле отказа выключателя. Фото: SEL, Inc.
.В современных реле защиты используются логические схемы для представления сложных цепей и процессов, в которых сигнал рассматривается в двоичном формате (1 или 0).Логические функции на этих схемах представлены соответствующими символами, тогда как блоки используются для представления сложной логической схемы.
Блоки на логической схеме помечены для лучшего понимания без знания внутренней структуры и соединены линиями, которые представляют входы и выходы для двоичных сигналов. Логические схемы обычно не показывают электрические характеристики, такие как напряжение, ток и мощность.
Расписания
Примеры расписания двигателей и питателей.Фотография: Волусский уезд, Флорида
При перечислении таких позиций, как автоматические выключатели и размеры проводов для конкретного проекта или части распределительного оборудования, используется расписание. Термин «график» может также относиться к датам, в которые должна быть завершена определенная деятельность, обычно называемая «графиком проекта».
Что касается распределения электроэнергии, то графики часто включаются в чертежи распределительных щитов и щитов, чтобы указать количество автоматических выключателей, их размер и нагрузки, которые они обслуживают.Расписания фидеров используются, чтобы помочь определить размер и количество проводов, используемых для входящих и исходящих грузов в рамках строительного проекта.
Расписанияобычно представлены в табличной форме и организованы таким образом, чтобы не требовать пояснений, что упрощает быстрый поиск информации. Информация в расписании обычно не включает однолинейные схемы или схемы соединений, но они обычно идентифицируют эту информацию со справочными чертежами, легендами и примечаниями.
Рабочие чертежи
Каждый раз, когда строительный проект завершается, «Как построено» представляет собой измененный чертеж, созданный и представленный подрядчиком, чтобы выделить любые изменения, которые были внесены в первоначальные проектные чертежи в процессе строительства.Эти чертежи являются точным отражением проекта после того, как он был завершен, и должны содержать подробные сведения о форме, размерах и точном расположении всех элементов в рамках проекта.
Любые модификации, независимо от того, насколько они малы, должны быть включены в готовую конструкцию, если они отличаются от указанных в первоначальном плане. Строительные чертежи должны включать в себя записи об утверждениях, чтобы соответствовать внесенным изменениям.
Список литературы
Комментарии
Войдите или зарегистрируйтесь, чтобы комментировать.Базовый переключатель: контактный терминал NO, NC и COM | FAQ | Австралия
Основное содержание
Вопрос
Какая связь существует между контактными клеммами NO, NC, COM и структурой контактов точки контакта a, b, c?
КлеммаNO, клемма NC и клемма COM представляют собой символы контактных клемм.Каждый символ означает сам по себе один терминал: нормально открытый терминал, нормально закрытый терминал и общий терминал соответственно.
С другой стороны, точка контакта a, точка контакта b и точка контакта c представляют собой контактные структуры. Каждый означает комбинацию двух или более контактных клемм и также описывается как точка замыкания, точка размыкания и точка контакта переключения соответственно. Когда контактная структура имеет единственную комбинацию точки контакта a, она называется точкой контакта 1a, а когда она имеет две комбинации точки контакта a, она называется точкой контакта 2a.
Что касается соотношения между контактными клеммами и контактными структурами, точка контакта a состоит из двух клемм NO, точка контакта b состоит из двух клемм NC, а точка контакта c состоит из одной клеммы NO, NC и COM. Следовательно, контактная точка 1c может использоваться либо как контактная точка 1a, либо как контактная точка 1b, но не может использоваться как контактная точка 1a1b. Это связано с тем, что контактная точка 1c имеет клемму COM на одной стороне, и поэтому ее нельзя разделить.
Иногда точка контакта a называется точкой контакта NO, а точка контакта b называется точкой контакта NC, однако графические символы JIS C 0301 для диаграмм предписывают их как точку контакта a и точку контакта b соответственно.
См. Следующие схемы, которые описывают символы точек контакта, соответствующие стандарту JIS C0301 Series 1. Имейте в виду, что такие символы, как «NO», не включены в символы точек контакта, а показаны только в целях иллюстрации.
Подготовка к тестуASE — Провода, разъемы и электрические схемы
1. Два техника обсуждают конструкцию жгута проводов: Техник A говорит, что разъем №1 — это штекерный разъем, потому что в то время как пластиковый коннектор входит в коннектор №2. Техник Б говорит этот разъем №2 — это штекерный разъем, потому что он имеет штырьки с наружной резьбой внутри.Кто прав?
только техник А.
только техник B.
как техник А, так и Б.
ни техник А, ни Б.
2.
На изображении GM, показанном ниже, цифра 170 означает:
номер цепи.
размер провода.
место стыка.
цвет провода.
3. На изображении GM, показанном выше в вопросе 2, что означает буква A представляет:
ID разъема.
номинальная сила тока предохранителя.
расположение контактов внутри разъема.
ID соединения.
4. На приведенном ниже символе электрической схемы Toyota обозначено:
.сращивание корпуса №4.
компонентный соединитель № BY1.
провод к разъему # BY1.
земля # BY1
5. Клеммы предназначены для установки вместе и использования для согласования пары обозначены как:
клемма и разъем.
клемма и наконечник.
мужской и женский.
поляризованные и неполяризованные.
6. Разъемы жгута проводов:
не могут быть расположены на схемах источников питания.
сделать хорошие контрольные точки.
используются для управления текущим потоком.
никогда не должны открываться.
7. Какие два устройства обозначают следующие два символа?
Постоянный резистор и лампа.
Переменный резистор и лампа.
Лампа и мотор.
Переключатель и реле.
8. Это электрический символ для a:
.И Ворота.
ИЛИ Ворота.
NAND Gate.
IC JPET Транзистор.
9. Это электрический символ для:
.Резистор.
Диод.
Транзистор.
Цифровые часы.
10. Код «B-R» рядом с проводом означает, что это провод:
.Коричневый с красной полосой.
Черный с красной полосой.
Синий с красной полосой.
Жгут проводов стоп-сигнала, правая сторона.
11. Техник А говорит, что два разъема с одинаковым номером физически неисправны. такой же разъем. Техник B говорит, что два разъема нарисованы. так, чтобы рисунок легче читался. Кто прав?
Только.
Только B.
как A, так и B.
ни А, ни Б.
12. Число за символом Toyota, показанное ниже, означает:
Номер разъема.
Номинальная сила тока предохранителя.
Количество контактов в разъеме.
Номер контакта, используемый в схеме.
13.
Когда этот переключатель управления освещением повернут в положение «ГОЛОВА»,
замкнута цепь между:
Только контакты 4 и 3.
Только контакт 10 и контакт 3.
Только контакт 10, контакт 4 и контакт 3.
Только контакт 12, контакт 13, контакт 5 и контакт 4.
14. В электрической цепи перед нагрузкой наблюдается большое падение напряжения. Техник А говорит, что причиной может быть слабое соединение клемм. Техник B говорит, что оборванные жилы кабеля могут быть причиной причина.Кто прав?
Только техник А.
Только техник B.
как техник А, так и техник Б.
ни техник А, ни техник Б.
15. В
Схема подключения Toyota, показанная ниже, буква «B» в коде соединения
указывает, что соединение:
в тормозной секции.
Батарея заряжена.
В организме.
В блоке примыкания
16.
Буквы внутри разъема показывают:
представление схемы, например, задние тормоза или противодавление.
цвет провода.
компонентная проводка, например, стоп-сигнал, тормоза.
какой общий разъем корпуса прикреплен.
17.
На диаграмме GM ниже «C301» представляет:
выключатель номер 301.
контур № 301.
разъем № 301.
окружность проволоки (диаметр / размер).
18. Ссылаясь на изображении выше в вопросе 17, что представляет собой P500:
цвет провода.
номер цепи.
расположение резиновой втулки.
контур стояночного тормоза.
19. The
буквы внутри разъема GM, показанные ниже, обозначают:
номер цепи.
пин код.
место стыка.
цвет провода.
20. Схема прокладки проводов, показанная ниже, идеально подходит для:
информация по разборке.
получение спецификации напряжения.
понимание того, как работает схема.
поиск разъема Location.
21. Два технических специалиста обсуждают показанный компонент диаграммы GM ниже: Техник A говорит, что буквы рядом с каждым проводом обозначают цвет провода и буква «О» относится к оранжевый цвет.Техник Б говорит, что пунктирная линия между двумя переключатель указывает, что оба переключателя перемещаются вместе. Кто прав?
только техник А.
только техник B.
как техник А, так и Б.
ни техник А, ни Б.
22.Два технических специалиста обсуждают показанный компонент диаграммы GM ниже: Техник А говорит, что буква «А» внутри верхней стороны треугольник вниз указывает, что схема продолжается на следующей странице в треугольнике «А». Техник А говорит, что S221 относится к цепь стартера 221. Кто прав?
только техник А.
только техник B.
как техник А, так и Б.
ни техник А, ни Б.
23. Что касается компонента диаграммы GM выше в вопросе 22, что представляет ли «2 YEL»:
номер контакта разъема и номер цепи..
номер цепи и цвет провода.
номер контакта разъема и цвет провода.
размер и цвет провода.