Схема зарядного устройства электроника для автомобильного аккумулятора – —6/12-6- 3.1

Содержание

Автомобильные зарядные устройства. Схемы. Принцип работы.

Обзор распространённых автомобильных зарядных устройств. Принципиальные схемы. Назначение. Устройство. Возможные неисправности.

Зима. Мороз. Двигатель запускается тяжело. Резко возрастает нагрузка на аккумулятор. А за состоянием аккумулятора нужно следить: проверять и вовремя его заряжать. Летом АКБ редко когда приходится заряжать, часто хватает зарядки от генератора автомобиля, а зима — это время частого использования автомобильных зарядных устройств.

Рассмотрим некоторые модели зарядных устройств промышленного производства, выпускаемых раньше и наиболее часто используемых автомобилистами.

 УСТРОЙСТВО ЗАРЯДНО-ВЫПРЯМИТЕЛЬНОЕ БЫТОВОЕ ТИПА УЗС-П-12-6,3 УХЛ 3.1. «Электроника», «Электроника-М», «Электроника-И» 

Устройство зарядно-выпрямительные с плавным регулированием стабилизированного тока зарядки предназначена для зарядки и подзарядки стартерных свинцово-кислотных аккумуляторных батарей типа 6 СТ (12В.) и 3 СТ (6 В.) ёмкостью до 60 А-ч в автоматическом и ручном режимах.

Разрешается заряжать батареи емкостью более 60 А-ч, но при этом ток зарядки не должен превышать 6,3 А!

12-вольтовая батарея может заряжаться как автоматическом, так и в ручном режимах, а 6-вольтовая батарея заряжается только в ручном режиме. Можно заряжать последовательно соединенные две 6-вольтовые батареи.

С помощью зарядного устройства можно определить полярность аккумуляторных батарей.

Устройство зарядное имеет электронную защиту от короткого замыкания при подключении его к аккумуляторной батарее, а также при ошибочной переполюсовки.

Технические характеристики зарядного устройства
ТИПА УЗС-П-12-6,3 УХЛ 3.1. «Электроника», «Электроника-М», «Электроника-И»
  • Питание устройства осуществляется от сети переменного тока напряжением (220±22) В и частотой 50 и 60 Гц.
  • Максимальный ток зарядки — 6,3 А.
  • Диапазон регулирования стабилизированного тока зарядки от 0,2 до 6,3 А.
  • Номинальное напряжение заряжаемой батареи — 12 В.
Устройство

Органы управления и индикации устройства зарядного выведены на лицевую панель:

  • в  устройстве зарядном «Электроника» стрелочный индикатор предназначен для индикации величины тока зарядки.
  • в устройстве зарядном «Электроника–И» величина тока зарядки определяется по маркировке, нанесенной около светодиодного индикатора;
  • в устройстве зарядном «Электроника-М» величина тока зарядки определяется по нанесенной на панели маркировке;
  • регулятор предназначен для регулирования величины тока зарядки.
  • индикаторы предназначены для определения режима работы устройства зарядного.
  • кнопка КОНТРОЛЬ предназначена для контроля работоспособности и запуска устройства зарядного при подключении незаряженной емкостной нагрузки, а также слабозаряженной аккумуляторной батареи.

У зарядного устройства «Электроника–И» шаг индикации значения зарядного тока составляет :

  • 0,5А – у12 разрядного индикатора тока;
  • 1,0А – у 6 разрядного индикатора тока.
 Порядок работы

Режим зарядки батарей согласно требованиям «Инструкции по эксплуатации» батарей аккумуляторных.

Устройство зарядное функционирует только с емкостной нагрузкой. Для запуска устройства зарядного, при подключении к устройству слабозаряженной аккумуляторной батареи или незаряженной емкостной нагрузки, необходимо нажимать кнопку КОНТРОЛЬ до включения устройства (до 1/3 секунд), что определяется включением индикатора.

В устройстве зарядном «Электроника – М» величина зарядного тока определяется по маркировке, нанесенной на панели, а также по яркости свечения индикатора. Отклонение величины тока зарядки от маркированного значения при номинальном значении напряжения питания не более ±0,5А. При зарядке аккумуляторной батареи с наличием сульфатации значение зарядного тока может отличаться от указанного.

Работа устройства зарядного при зарядке 12-вольтовой и 6-вольтовой аккумуляторных батарей в ручном режиме.

Установите ручку регулятора в левое крайнее положение, переключатель на режим работы РУЧ.

Подключите к устройству зарядному с помощью кабеля нагрузки аккумуляторную батарею. Зажим со знаком «+» подключите к клемме «+» аккумуляторной батареи, со знаком «-» к клемме «-».

Включите устройство зарядное в сеть: должен включиться (загореться) индикатор, установите регулятором тока необходимую величину тока зарядки, при этом должен включиться (загореться) индикатор, сигнализирующий о протекании зарядного тока. Признаком окончания процесса зарядки является обильное газовыделение, кипение во всех элементах батареи, а также постоянство плотности электролита и напряжения на батарее в течение 2-3 часов.

Порядок работы при зарядке 12-вольтовой аккумуляторной батареи в автоматическом режиме.
  • Установите ручку регулятора в
    левое – крайнее положение
    . Подключите к устройству зарядному с помощью кабеля нагрузки аккумуляторную батарею. Зажим со знаком «+» подключите к клемме «+» аккумуляторной батареи, со знаком «-» к клемме «-».
  • Включите устройство зарядное в сеть, при этом должен включиться индикатор.
  • Установите ручкой регулятора необходимую величину зарядного тока, включается индикатор, переключатель на режим работы «АВТ». Стрелочный индикатор в устройстве зарядном «Электроника» показывает величину тока зарядки, далее наступает бестоковая пауза, индикатор отключается, а стрелка индикатора на нулевой отметке. После бестоковой паузы начинается процесс зарядки аккумуляторной батареи: зарядка-пауза-зарядка-пауза. Длительность бестоковой паузы зависит от степени заряженности аккумуляторной батареи.
  • Признаками окончания процесса зарядки являются длительные без токовые паузы, обильное газовыделение, а также постоянство плотности электролита и напряжения на аккумуляторной батарее.
  • Для окончательной зарядки аккумуляторной батареи рекомендуем в конце процесса зарядки перейти на ручной режим.

 ВНИМАНИЕ!

Стабилизация тока зарядки устройства зарядного в режиме  «РУЧ» и в режиме «АВТ» не осуществляется при зарядке аккумуляторных батарей с наличием сульфатации электродной массы, с прорастанием сепараторов или их разрушением, с короблением электродов, с наличием вредных примесей в электролите. В большинстве случаев при этом происходит самопроизвольное неуправляемое снижение тока зарядки.

Порядок работы при определении состояния 12-вольтовой аккумуляторной батареи.
  1. Подключите к устройству зарядному с помощью кабеля нагрузки аккумуляторную батарею. Зажим со знаком «+» подключите к клемме «+» аккумуляторной батареи, со знаком «-» к клемме «-».
  2. Подключите устройство зарядное к сети. Установите ручкой регулятора необходимую величину тока зарядки, переключатель на режим работы
    «АВТ»
    .
  3. Включается индикатор, а стрелочный индикатор в устройстве зарядном «Электроника» показывает величину тока зарядки, далее наступает бестоковая пауза, отключается индикатор, а стрелка индикатора на нулевой отметке. Проконтролируйте по индикаторам бестоковую паузу. Если бестоковая пауза длится (0,5-1) секунд, аккумуляторную батарею необходимо зарядить. Если бестоковая пауза длится (1-2) минуты, аккумуляторная батарея не требует зарядки.
  4. Описанный временной режим работы устройства может не совпадать при включении аккумуляторной батареи, отработавший свой гарантийный срок, а также при следующих отклонениях в аккумуляторной батарее:
  • коррозия токоотводов положительных электродов;
  • оплывание активной массы положительного электрода;
  • коробление электродов;
  • прорастание сепараторов или их разрушение;
  • короткое замыкание между электродами различной полярности;
  • необратимая сульфатация электродной массы, наличие вредных примесей в электролите.
Определение полярности аккумуляторных батарей при отсутствии на них маркировки.

Подключите зажимы зарядного устройства к клеммам аккумуляторной батареи, ручку регулятора тока установите в крайнее левое положение, переключатель на режим работы «РУЧ». Подключите устройство зарядное к сети. Поверните ручку регулятора тока по часовой стрелке. Если при этом включается индикатор, полярность клемм аккумулятора соответствует маркировке на зажимах кабеля нагрузки. Если индикатор не включается, поменяйте местами зажимы и произведите проверку повторно.

Ещё одна схема зарядного устройства «ЭЛЕКТРОНИКА»

Печатная плата зарядного устройства «ЭЛЕКТРОНИКА»

Схема пуско-зарядного устройства для автомобильного АКБ «ЭЛЕКТРОНИКА ЗП-01»

Другой вариант схемы «Электроника ЗП-01»:

Этот вариант, но перерисованый:

Устройство зарядное с автоматическим отключением УЗ-ПА-6/12-6,3-УХЛЗ.1

Устройство зарядное с автоматическим отключением УЗ-ПА-6/12-6,3-УХЛЗ-1 (в дальнейшем — устройство УЗ-ПА) предназначено для заряда 6 и 12-вольтовых стартерных аккумуляторных батарей, установленных на мотоциклах и автомобилях личного пользования. Перед началом эксплуатации устройства УЗ-ПА необходимо изучить руководство по эксплуатации, а также правила по уходу и эксплуатации аккумуляторной батареи. Устройство УЗ-ПА имеет плавную установку зарядного тока, электронную схему защиты, обеспечивающую сохранность аккумуляторной батареи при перегрузках, коротких замыканиях и неправильной полярности подключения выходных зажимов. При этом защита выполнена таким образом: что на выходе зарядный ток появляется только в случае, если к выходным зажимам подключен источник напряжения (аккумуляторная батарея).

Внимание. Данное устройство производит заряд при наличии напряжения на аккумуляторной батарее не менее 4-х вольт.

В устройстве отсутствует указанный на схеме переключатель SВ1 и кнопка   на лицевой панели. Обнуление счетчика таймера происходит автоматически при включении устройства в сеть.

Устройство УЗ-ПА рассчитано на эксплуатацию в условиях умеренного климата при температуре окружающего воздуха от минус 10° С до плюс 40° С и относительной влажности до 98% при 25° С.

ТЕХНИЧЕСКИЕ   ДАННЫЕ
Напряжение питающей сети(220±22) В
Частота сети(50 ±0,5) Гц
Диапазон установки тока зарядаот 0,5 до 6,3 А
Переменное напряжение для питания переносной автомобильной лампы(36 ±3) В
Автоматическое отключение от аккумуляторной батареичерез (10,5±1) ч
Габаритные размеры, не более240x175x85 мм
Масса, не более4,2 кг
Потребляемая мощность, не более145 Вт
Устройство УЗ-ПА-6/12-6,3 и принцип работы

Устройство УЗ-ПА представляет собой выпрямитель, с плавной установкой тока. С выводов 3,6 сетевого трансформатора TV1 напряжение поступает на 2-х-полупериодный управляемый выпрямитель, выполненный на тиристорах VS1 и VS2. Выпрямленное напряжение подается на аккумуляторную батарею через контакты XI («плюс») и Х2 («минус»).

Для контроля величины тока заряда служит индикатор тока РА1.

Для отключения цепи заряда от аккумулятора через (10,5 ±1) ч, управления работой тиристоров и установки необходимого тока заряда служит схема, собранная на транзисторах VT1, VT4, VТ8, VТ9, VТ10 и интегральной схеме (ДД1).

На транзисторе VТ1 выполнен формирователь импульсов с частотой 50 Гц, на интегральной схеме ДД1 — счетчик с импульсов, на транзисторах VТ8 и VТ10 — делитель частоты на 2, на транзисторе VТ6 — управляемый генератор (стабилизатор) тока.

При этом необходимый ток заряда устанавливается потенциометром RP1.

Генератор управляющих импульсов выполнен на транзисторах VТЗ, VТ7. Транзистор VТ2 является усилителем этих импульсов по мощности.

На диоде VД1 выполнена схема защиты от короткого замыкания и переполюсовки выводов.

Схема на транзисторах VТ4 и VТ5 служит для переключения устройства в режим уменьшенного тока (через 6 — 8 часов ток уменьшится в 1,3  — 2,5 раза).

На диодах VД7 и VД8 собран выпрямитель питания схемы формирователя импульсов и счетчика.

Диоды VД5 и VД6 запрещают подачу импульсов на управляющий электрод тиристора в момент, когда к тиристору приложено обратное напряжение.

Для индикации включения сети и конца заряда служат светодиоды VД2 и VД13.

С выводов 3 и 6 силового трансформатора снимается переменное напряжение 36 В.

Конструктивно устройство состоит из нижнего и верхнего корпуса, лицевой панели, радиатора, печатной платы с радиоэлементами и силового трансформатора.

ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И МЕТОДЫ ИХ УСТРАНЕНИЯ

Устройство зарядное просто и надежно в эксплуатации. Однако, в практике имеются случаи, когда потребители из-за неправильного использования не могут получить необходимый зарядный ток и ошибочно считают это неисправностью зарядного устройства. Некоторые неисправности приведены в таблице ниже. 

Перечень возможных неисправностей и методы их устранения

Наименование неисправностей, внешнее проявление и дополнительные признаки

Вероятная причина

Метод  устранения

Примечание

1. При подключении зарядного устройства к аккумуляторной батарее отсутствует показание зарядного тока1. Ручка недостаточно    повернута по часовой    стрелке1. Вращением    ручки установить необходимый ток
2. Плохой контакт между выходными зажимами «+» и «-» и выводами аккумуляторной батареи2. Проверить состояние выводов. При необходимости зачистить их
3.  Перепутана  полярность при подключении зарядного      устройства к выводам аккумуляторной батареи3. Проверить полярность и подключить согласно рис. 4
4. Выходные зажимы «+» и «-» замыкаются между собой4.  Разомкнуть   зажимы
5. Короткое замыкание в аккумуляторной батарее или она чрезмерно  разряжена, напряжение на ней менее 4В)5. Проверить аккумуляторную батарею, если устройство  исправноПроверить   устройство   следующим  образом:     подключить  к  выходным  зажимам соблюдая полярность («+» к «+», «-» к  «-») любой источник  постоянного напряжения не менее 4 В (заведомо исправную аккумуляторную батарею или батарею из сухих элементов): вращая ручку проверить   по     амперметру наличие тока. Если ток заряда есть, то устройство    исправно, неисправность следует искать  в  заряжаемой  аккумуляторной  батарее
2. При подключении зарядного устройства к аккумуляторной батарее стрелка амперметра зашкаливает1.  Ручка выведена   вправо до конца1. Установить ток вращением  ручки против  часовой стрелки
3. При включении зарядного   устройства    в сеть не горит светодиод СЕТЬ1. Сгорел предохранитель1. Заменить предохранитель

 Другой похожий вариант схемы устройства зарядного автоматического «ЭЛЕКТРОНИКА»

Отличие от предыдущей схемы — добавление транзистора VT11 КТ315Г, ограничивающий максимальный ток устройства.

Устройство зарядно-разрядное УЗР-П-12/6-6,3-УХЛ3,1

  На рисунке стрелками обозначены основные узлы схемы.

Назначение

Устройство зарядно-разрядное (УЗР) предназначено для заряда обычным и восстановительным режимом стартерных аккумуляторных батарей всех типов, применяемых в отечественных автомобилях, мотоциклах и мотороллерах, а также для питания низковольтной активной нагрузки.

В режиме восстановительного заряда УЗР обеспечивает восстановление структуры активных масс свинцового аккумулятора путем поляризации его электродов асимметричным током инфранизкой частоты, что позволяет снизить скорость коррозии решеток положительных пластин и увеличить срок службы аккумулятора на 20—40%.

Электронная схема зарядного устройства обеспечивает его защиту при несоответствии полярности подключаемых с аккумуляторной батарее зажимов, коротких замыканиях. А так же есть возможность плавно регулировать ток заряда от 0,1 до 6А, при входном напряжении 220 ±22 В.

Восстановительные заряды рекомендуется проводить:
  • один раз в 3—4 месяца при малоинтенсивной эксплуата­ции аккумулятора;
  • ежемесячно при длительной стоянке;
  • до и после длительного бездействия;
  • при введении в действие сухозаряженных аккумуля­торов с просроченным сроком хранения.
Технические характеристики
  • Номинальное напряжение питающей сети, В ~ 220;
  • Номинальное напряжение заряжаемой акку­муляторной батареи, 6-12;
  • Номинальный выпрямительный ток, А — 6,3;
  • Максимальная потребляемая мощность, Вт не более — 160.
  • Масса, кг, не более — 4,3 кг.
В восстановительном режиме работы:
  • время протекания тока в прямом направлении, режим заряда — от 90 до 160 с.;
  • время протекания тока в обратном направлении, режим разряда — от 9 до 24 с.

Устройство для автоматической зарядки и разрядки автомобильных аккумуляторов на таймере КР1006ВИ1

Принцип работы зарядно-разрядного устройства

Зарядно-разрядное устройство состоит из собственно зарядного устройства (ЗУ), обозначенного на схеме прямоугольником, и электронного узла управления. Питание узла управления осуществляется от аккумуляторной батареи. В качестве порогового элемента (компаратора), вырабатывающего сигнал при достижении напряжением на аккумуляторе значения свыше 14,2…14,5 В и при снижении до 10,5 В, используется интегральный таймер КР1006ВИ1 (микросхема DA1).

Ток зарядки устанавливают в соответствии с инструкцией по эксплуатации аккумуляторной батареи, т.е. равным 1/10 или 1/20 емкости батареи. Если зарядка идет без контроля оператора, следует обеспечить ограничение колебаний зарядного тока при возможных колебаниях сетевого напряжения.

Самый простой способ стабилизации тока — включение двух-трех параллельно соединенных автомобильных ламп мощностью 40… 50 Вт в разрыв одного из выходных проводов зарядного устройства. Такой же эффект может быть достигнут включением лампы напряжением 220 В и мощностью 200…300 Вт в разрыв одного из входных (сетевых) проводов ЗУ. Сопротивление вольфрамовой нити ламп накаливания возрастает с увеличением температуры, т.е. лампа обладает свойствами стабилизатора тока. Зарядный ток содержит дозированную разрядную составляющую, что благотворно сказывается на протекании электрохимических процессов в батарее. Разрядная составляющая тока протекает через резистор R 19 и транзистор VT3 и равна примерно 0,5 А.

В процессе зарядки напряжение на полюсных выводах аккумулятора плавно увеличивается. Известно, что напряжение полностью заряженной батареи составляет 14,2…14,5 В. Измерение этого напряжения следует производить в отсутствие зарядного тока, поскольку импульсы зарядного тока в зависимости от степени разряженности аккумуляторной батареи увеличивают мгновенное значение напряжения на ее зажимах на 1…3 В по сравнению с режимом, когда ток зарядки не протекает. Для обеспечения такого режима измерения в устройстве использованы элементы U1, R4, VT2. В режиме зарядки транзистор VT2 открыт.

Подробнее о работе этого зарядно-разрядного устройства Вы можете прочитать скоро в следующей статье.

Ещё один вариант автоматического зарядного устройства на двух счётчиках К176ИЕ12 и К176ИЕ8

На транзисторе VT6 КТ503Б собран формирователь импульсов для работы счётчиков (100 Гц).

Запускается зарядное устройство кнопкой «Пуск» после чего счётчики сбрасываются и начинается отчёт времени. По истечении заданного числа импульсов с выв 3 МС К176ИЕ8  логич. 0 сначала закрывается полевой транзистор VT5 (КП103Б), тем самым ограничивая ток зарядки.  Затем после появления лог. 0 (сигнала закрытия) с выв.4 МС К176ИЕ8 закрывается VT4 (КП103Б), тем самым отключается зарядка АКБ. Через VT1, VT2, VT3 осуществляется регулировка управления тиристорами.

Зарядное устройство «КЕДР-АВТО»

Ниже приведены несколько схем зарядного устройства семейства «Кедр»

При написании статьи использовались руководства по эксплуатации вышеописанных устройств.





А. Зотов, Волгоградская обл. 




П О П У Л Я Р Н О Е:

  • Способы отопления гаража
  • Очень удобно хранить машину в гараже. Особенно зимой — она лучше заводится, меньше происходит износ деталей и т.д. и т.п. Гараж — это хороший домик для вашего любимого авто 🙂  Он охраняет его и от хулиганов, и от угонщиков, и от атмосферного воздействия. Также в гараже можно хранить инструменты, приборы и устройства для ремонта и поддержания автомобиля в исправном состоянии. Конечно, в зимнее время встаёт вопрос об отоплении гаража.

    Подробнее…

  • Двухтональный автомобильный сигнал своими руками
  • В автомобилях часто устанавливают два клаксона, тем самым звук получается двухголосным — оба  звучат одновременно. Один сигнал высокого тона с частотой звуковых колебаний около 430 Гц, другой низкого тона с частотой около 320 Гц.

       Но при поочередном звучании клаксонов резко контрастирует автомобильный сигнал на фоне ему подобных. Ранее мы рассматривали похожую схему: «Электронный переключатель сигнала и светодиодных ламп.»

    Есть ещё другой вариант…

    Подробнее…

  • Веломобиль своими руками
  • PodRide — электровеломобиль

    Велосипед — хорошо, а с крышей да ещё и с мотором — это вообще круто! Лёгкий, удобный, экономичный и палаткой крытый сверху для защиты от дождя и ветра… много только положительного можно сказать об разработке от JMK-Innovation — PodRide.

    Много похожих самоделок, как показано на фото изготавливается по всему миру и даже встречаются проекты мелкосерийного выпуска.

    Подробнее…


— н а в и г а т о р —


Популярность: 153 039 просм.


ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ


www.mastervintik.ru

Эволюция импульсных зарядных устройств для автомобильного аккумулятора на основе AT/ATX.

РадиоКот >Схемы >Питание >Зарядные устройства >

Эволюция импульсных зарядных устройств для автомобильного аккумулятора на основе AT/ATX.

В инструкциях по эксплуатации к первым отечественным автомобилям было написано, что аккумулятор нельзя эксплуатировать летом (начинать заводить автомобиль и двигаться) при заряде менее 50%, и зимой менее 75%. Проанализируем, почему аккумулятор в некоторых случаях не будет успевать полностью заряжаться. Например, на улице зима, вам нужно за день съездить в 3-4 места, на улице -25, двигатель остывает уже через 15 мин, а перерывы межу поездками 1-3 часа. Уже темно и вы пользуетесь фарами, а также подогревом сиденья и стекол. В результате все это дело потребляет не менее 400- 500 ватт. Генератор дает ватт 800 и у вас остается ватт 300 (в теории) на зарядку аккумулятора. 300 ватт при 14 В в бортовой сети автомобиля это примерно 20 А. Так вот полностью разряженный аккумулятор с емкостью, например, в 52 Ач даже в теории полностью может зарядиться не быстрее чем за 3,5 часа (70 Ач химической емкости 3,5 часа * 20 А). А реально ток заряда никогда не достигнет значения 20 А, в первые минуты зарядка будет происходить током 10-15А, а далее 3-5А. В результате аккумулятор не успевает зарядиться по пути до ближайшего места стоянки. Конечно, он не полностью разряжен. Давайте посчитаем, насколько он разряжается стартером в зимнее время. При температуре -25 общее время работы стартера составит от 30 сек до 5 мин, например ваш стартер в общей сложности проработал 3 мин в день. Стартер потребляет при такой температуре двигателя в среднем 250А (при пуске может и 900А), при этом за 3 мин расходуется 360 часа * 250А = 12,5 Ач. Это много или мало? Как отмечалось выше, у аккумулятора есть химическая емкость и полезная. Химическая — это та, что запасается в химической реакции, а полезная, та, что расходуется на нагрузку. Естественно, что часть энергии при разряде в виде тепла теряется на самом аккумуляторе и полезная емкость зависит от нагрузки и температуры. Например, разряжаете аккумулятор в течении 10 часов при +25 градусах — его емкость становится 52 Ач (а химическая около 70), если разряжаете за час в тепле — его емкость падает до 35 Ач, остальные 35, от химической, идут на нагрев самого аккумулятора. Если же разряд идет при -25, то сопротивление электролита возрастает, и на самом аккумуляторе тепла теряется еще больше. Реальная емкость на морозе может составить 60% от номинальной, т.е при стартерном режиме 35*0,6= 21 Ач. Так много ли потраченных 12,5 Ач для работы стартера за день? В этой ситуации самым не приятным является то, что химическая емкость не меняется. И для того чтобы зарядить аккумулятор надо потратить в любой ситуации 70 Ач. Покрутили 3 минуты стартер, потратили 12.5 Ач (60 % емкости), вернуть придется 40 Ач. Если же вы не ездите по 4 часа до гаража, не стоите с работающем двигателем в морозы во многочасовых пробках, то ваш генератор не в состоянии обеспечить полный заряд аккумулятора, поэтому его и необходимо периодически дозаряжать.

Конечное напряжение заряда при температуре 20 градусов Цельсия равно 2.25-2.3 вольта на элемент батареи. Для батареи с номинальным напряжением 12 В (6 элементов) конечное напряжение заряда равно 13.5-13.8 В. Если батарея эксплуатируется при других температурах, то для увеличения ресурса батарей рекомендуется уменьшать конечное напряжение заряда до 2.2-2.25 В/эл при температуре 40 градусов и увеличивать напряжение до 2.35-2.4 В при температуре 0 градусов. Применение такой температурной компенсации зарядного напряжения позволяет увеличить ресурс батареи при 40 градусах Цельсия на 15 %. Но чтобы аккумулятор заряжался нужно выходное напряжение зарядного поднять хотя бы на один вольт выше максимального напряжения заряженного аккумулятора (напряжение примерно 15,8 вольта). Для полного заряда разряженной батареи рекомендуется проводить заряд в течение 24 часов. Если необходим более быстрый (в течение 8-10 часов) заряд батареи в случае циклического режима эксплуатации, конечное напряжение заряда увеличивают до 2.4-2.48 В/эл (при 20 градусах Цельсия) и обязательно ограничивают время заряда в соответствии с остаточным зарядом батареи перед зарядкой. Следует отметить, что потенциал электрохимической поляризации свинца примерно при 65С падает до нуля, и выше этой температуры аккумулятор не может существовать, т.е. его невозможно будет зарядить, так как на «-» будет идти исключительно побочная реакция, при которой будет восстанавливаться только водород, да и сам свинец начнет реагировать с серной кислотой. Подача на аккумулятор при заряде напряжения ЭДС в 2В + потенциал электрохимической поляризации 1,3В (примерно 3, 3В на ячейку) также ведет к полному смещению процесса к побочным реакциям. При эксплуатации для сведения к минимуму побочного газообразования и скорости коррозии положительных пластин подаваемое напряжения на элемент не следует делать выше 2,4В на ячейку. Если точнее, то максимальное напряжение заряда 2.33 В на банку при +25С. Температурный коэффициент 0,002 Вград. Т.е. зимой при -25 это будет составлять на каждую банку плюс 50град.*0.002 Вград = 0.1 В . Батарею из 6 банок летом надо заряжать напряжением не выше, чем 2,33*6=13,98 В, а зимой (2,33+0,1)*6= 14,58В. При этом, ни какого специального ограничения тока иили времени заряда не требуется. Ток будет ограничиваться естественным образом, за счет сопротивления проводников и переходного сопротивления на клеммах. А жестко заданное напряжение не приведет к закипанию аккумулятора и не создаст условий для повышенной коррозии положительных пластин. Фактически это будет эквивалентно заряду аккумулятора генератором в бортовой сети. И теперь самое важное, на что никогда не акцентируется внимание. Все эти напряжения являются максимальными (пиковыми), и справедливы для зарядных устройств с ограничением максимального напряжения, т.е. стабилизированных источников питания. Многие зарядные устройства не ограничивают напряжение, а регулируют мощность, отдаваемую в батарею. Действующее значение напряжение, которое будет показывать вольтметр может быть и меньше указанных 14 В, но аккумулятор будет кипеть и плохо заряжаться. Потому что часть времени подводимое напряжение будет превышать норму в 14 В, и большая часть подводимой мощности уйдет на электролиз воды и разрушение анода электрода, а оставшуюся часть периода напряжение будет ниже 14 В, ток будет равен 0. Вольтметр на зарядном устройстве может показывать и 11 В, но аккумулятор при этом будет кипеть и едва заряжаться. В нашем зарядном устройстве аккумулятор почти не кипит и хорошо заряжается. Огромный плюс зарядных устройств с ограничением пиковых напряжений — это возможность ставить аккумулятор на заряд не отключая клеммы аккумулятора от бортовой сети. При этом электроника не сбрасывается, крепления клемм не снашиваются, а времени на периодический подзаряд уходит минимум (открыл капот, поставил на заряд минут на 10-15). Зарядка автомобильного аккумулятора при постоянном напряжении: при этом методе, в течение всего времени заряда напряжение зарядного устройства остается постоянным. Зарядный ток убывает в ходе заряда по причине повышения внутреннего сопротивления батареи. В первый момент после включения, сила зарядного тока определяется следующими факторами: выходным напряжением источника питания, уровнем заряженности батареи и числом последовательно включенных батарей, а также температурой электролита батарей. Сила зарядного тока в первоначальный момент заряда может достигать (1,0-1,5)С20. Для исправных, но разряженных автомобильных аккумуляторов такие токи не принесут вредных последствий. Несмотря на большие токи в первоначальный момент зарядного процесса, общая длительность полного заряда аккумуляторных батарей приблизительно соответствует режиму при постоянстве тока. Дело в том, что завершающий этап заряда при постоянстве напряжения происходит при достаточно малой силе тока. Однако, заряд по такой методике в ряде случаев предпочтителен, так как он обеспечивает более быстрое доведение батареи до состояния, позволяющего обеспечить пуск двигателя. Кроме того, сообщаемая на первоначальном этапе заряда энергия тратится преимущественно на основной зарядный процесс, то есть на восстановление активной массы электродов. При этом реакция газообразования в аккумуляторе еще не возможна. Итак, зарядка при постоянстве напряжения позволяет ускорять процесс заряда аккумуляторов при подготовке к использованию.

Различных зарядных устройств на основе блока питания гуляет по просторам интернета немало. Вот решил поведать и я об истории развития своей схемы зарядок. Схема создавалась для того, чтобы наш котомобиль в морозы зимой все же продолжал ездить на авто, а собрать мог каждый желающий, мало-мальски радиокот. Основной упор в схемотехнике зарядных устройств -простота переделки. В наш век «китайтизации» электроники и электронной промышленности зачастую проще, дешевле и доступнее взять готовый AT/ATX блок питания и переделать его под любые свои нужды, нежели купить отдельно силовой трансформатор, диоды на мост, тиристор и прочие детали. Сначала поведаю о самом простом (ну уже проще просто не бывает!!!) и надежном зарядном на основе AT блока питания, без индикатора тока (хотя амперметр никто не мешает поставить).

Ну, вот блоков для переделки вы уже поднасобирали, тогда начнем-с пожалуй:

Подходим поближе и отыскиваем блоки АТ

Эх, наконец-то раздобыли. Разбираем и смотрим на плату. Для нашей схемы берем самого распространенного китайца, собранного на TL494. Его моем, чистим, сушим и смазываем кулер.

Надо сказать небольшое отступление. О качестве комплектующих для АТ и АТХ блоков. Хочу сказать о важном элементе схемы — фильтрующий конденсатор 310 вольт в первичной цепи. От него зависит не только такой параметр как пульсации выходного напряжения с частотой сети под большой нагрузкой, но и, что очень важно — нагрев самих выходных ключей. Если емкости не хватает, то им приходится работать до 35% своего времени на большей ширине импульса, чем при нормальной емкости, так как среднее средневыпрямленное напряжение уже не 310 вольт, а 250 — 260 вольт напряжение, за счет пульсаций. Контроллеру приходится отрабатывать такие провалы, увеличивая ширину и время открытого состояния транзистора. Следовательно, им приходится работать на большем токе, чем при достаточной емкости. Больше ток — больше нагрев — меньше кпд. (Он и так небольшой 60 — 75% в зависимости от блока). Проведя некоторые измерения более древних и очень старых АТ блоков питания и более новых АТХ выяснилось — китайцы совсем совесть потеряли. Если раньше ставили конденсаторы — как на нем написано,

так оно и есть. То теперь 50% допуск всегда в минус. Перебрал сотни блоков: Написано 470МКФ, выпаиваешь замеряешь — 300 -330МКФ, даже новый конденсатор — та же история.

Ну, да и ладно, пусть пишут что хотят: Ну, а нам необходимо заменить в АТ блоке, на основе которого мы будем строить зарядку 200МКФ на эти самые 330МКФ, или еще лучше 470МКФ (настоящих 470). Транзисторам легче будет.
С дросселями та же история. АТ дроссель:

АТХ дроссель:

Не домотаны, и кольцо меньше… Следствием уменьшения индуктивности дросселя групповой стабилизации будет акустический свист на малых токах (1-2 ампера). Индуктивность этого дросселя рассчитывается, исходя из режима непрерывности тока через него при минимальных нагрузках. При включении блока, он сразу выходит на мощность не менее 150Вт (зависит от компьютера). Через дроссель протекают определённые токи, не менее какой то величины. Дроссель можно рассчитать на это минимальное значение тока, но тогда, при включении без нагрузки, ток через дроссель станет прерывистым, что повлечёт за собой некоторые неприятности… Схема ШИМ регулирования рассчитана для случая непрерывности тока, по этому, при прерывистом токе, регулирование будет сбиваться, дроссель будет петь, напряжения на выходах будут прыгать, вызывая дополнительные токи перезарядки электролитических конденсаторов… Конечно, в данном случае нам на помощь придет цепь RC коррекции обратной связи (некоторые расчеты ниже), но притуплять скорость реакции на изменение напряжения бесконечно нельзя, В какой-то момент TL494 при КЗ просто не успеет снизить ширину импульса и транзисторы выйдут из строя. Этот процесс достаточно быстрый. Поэтому с этим нужно быть осторожнее. Ну ладно, это было лирическое отступление. Продолжим с зарядным устройством.

Схема с мягкой характеристикой зарядного тока.

Плата стандартного АТ блока. Смотрим на схему, что надо выпаять (а выпаять надо много-много лишнего), а что запаять, чтобы получить самую простую зарядку для аккума. Схема взята стандартная, стандартного блока АТ и номиналы уже установленных элементов могут существенно отличаться от ваших. Менять их на указанные на схеме НЕ НАДО! Выпаиваем только ставшие ненужными защиты от перенапряжения, канал 5 вольт, канал -12 вольт. В общем, согласно схеме, оставляем следующее.

В итоге чтобы получить полноценную, регулируемую зарядку на 10 ампер и 15,8в с управляемым от тока нагрузки вентилятором, надо добавить всего восемь деталек!!! А именно: заменить два электролита, добавить шунт очень приближенного сопротивления 0,01ома -0,08 ома (например, три сантиметра шунта с китайского мультика — работает отлично). Фото исходного шунта (Авторский донор снят с советской Цэшки):

Резистор на 120ом, на 3,9к, и примерно 18к, переменный резистор на 10к, конденсатор на 10 нано и перевернуть обмотку на дросселе по каналу -5 вольта для вентилятора. Только не забудьте, что вентилятор теперь подключать надо так: красный на корпус, а черный на -5:.-12в. Шунт припаиваем в разрыв косички с силового трансформатора. Когда будете настраивать резистор на 3,9к то его сопротивление подберите по току заряда 10 ампер на реальном аккумуляторе. Вы не поверите — это всё! Это просто небывалая простота переделки практически уже металлолома во вполне достойную вещь! Если диоды по каналу +12в у Вас изначально стояли FR302, то надо заменить на более мощные, например выпаять из более современного ATX блока питания. Причем короткого замыкания он не боится — входит в ограничение тока. А вот переполюсовка подключения к аккумулятору приведет к большому ба-баху! Про «НОУ-ХАУ», уникальную защиту от перегрузки и короткого замыкания, в конце статьи. Цветными кружочками и линиями обозначены добавленные дополнительные элементы.

Настройка: Все включения до полной настройки проводить включая в сеть только последовательно с лампочкой накаливания 60 ватт. Проверяем монтаж.
Настройка канала напряжения. Подключаем крокодилами мультиметр в режиме измерения напряжении на диапазоне до 200вольт. Включаем в сеть. Напряжение на выходе должно быть в пределах 16 вольт плюс/минус 4 вольта. Если что-то около 5 вольт, значит забыли заменить резистор в цепи контроля напряжения (1 вывод TL494) на 18к. Если около 23-25в, и постепенно без нагрузки нагреваются выходные ключи, то значит в цепи контроля напряжения (1 вывод TL494) обрыв или сопротивление 18к слишком большое, и блок вышел на полную ширину импульса и все равно не может набрать напряжение, для включения обратной связи. Настраиваем подбором этого резистора на напряжение примерно 15,8 — 16,2 вольта. Если вы выставите 14,4 в то акум через примерно 1 час перестанет у вас заряжаться вообще (проверено многократно на разных аккумуляторах).
Настройка канала тока. Резистор включенный последовательно с регулятором тока временно меняем на подстроечник 22к выставляем его в положение минимального сопротивления. Подключаем крокодилами мультиметр в режиме измерения тока на диапазоне 10 ампер. Включаем в сеть блок через лампочку. Если лампочка вспыхнула и продолжает ярко светиться, значит что-то напутали, проверяем монтаж. Если амперметр показывает ток в пределах от 1 до 4 ампер то все нормально. Выставляем переменный резистор в режим максимального сопротивления, а подстроечным резистором настраиваем ток 15 -16 ампер. Иногда лампочка не дает так настроить, поэтому настройте примерно такой ток. Теперь подключив на выход разряженный аккумулятор и амперметр последовательно, убираем лампочку и включаем в сеть. Подстроечным резистором подстраиваем более точно ток, но уже 10 ампер. Затем подстроечник выпаиваем, меряем и впаиваем постоянный резистор такого же сопротивления. Вентилятор охлаждения должен вращаться с оборотами пропорционально току. Если на максимальном токе или коротком обороты слишком велики (напряжение выше 20 вольт), то необходимо отмотать витков 10 с обмотки минус 5 вольт канала питания вентилятора Напряжение на вентиляторе при подобранных витках должно быть от 6 вольт до 17 вольт. Все, на этом настройка закончена.
В итоге на выходе сборочного стола получаем такое зарядное устройство. И даже с корпусом практически никаких слесарных работ не нужно. Выходные/входные провода выведены сзади через пластмассовые разъемы. Таких зарядных в свое время было сделано десятки, и все работают до сих пор :-).

Далее приспособим сюда индикатор тока на светодиодах или на люминесцентном индикаторе, кому, как нравится. В итоге чтобы получить на выходе такое симпатичное зарядное устройство, надо всего совсем немного доработать нашу схему. На люминесцентном индикаторе:

На светодиодах:

И корпус без покраски, индикатор на КТ315И.

Если всё устраивает, то тогда продолжаю мурлыкать по теме. Для измерения тока с более менее сносной точностью, нужно собрать усилитель напряжения с шунта на LM358 и сам индикатор на двух LM324 или на КТ315-х и всё :-). Приведу схему отдельно усилителя, с простой платой, и отдельно самого индикатора. Крепить внутри лучше и проще. Индикаторов два варианта.

Схема усилителя. Диод D1, резистор R3, конденсатор С3 интегрирующая цепь, так как на входе пульсирующее напряжение отрицательной полярности, а нам надо на выходе получить постоянное напряжение пропорциональное току. Настройка: обязательно проверить 12 вольт, часто попадаются бракованные КРЕН-ки, затем резистором R2 калибруют показания индикатора по мультиметру. Резистором регулировки тока выставляете максимальный ток и резистором настраиваете, чтобы только-только зажегся, последний светодиод. Конденсатор С3 работает как интегратор и задает плавность спадания показаний индикатора.
Фото собранных плат усилителей напряжения с шунта (подстроечные сопротивления еще не запаяны).

Схема индикатора на КТ 315. Конечно, «прошлый век» и все такое, скажите Вы, но, а если их в наличии 3 литровая банка. Куда прикажите девать? Выбросить? А SMD-шные транзисторы надо идти на базар и купить, а места в корпусе все равно много. Сверлить отверстия под 315 тоже не надо. Но все же на ваш выбор, схема не критична к выбору транзисторов, хоть МП10 запаяйте, все равно будет работать.

Количество транзисторов и светодиодов можно уменьшить, например до 6 шт., но когда много, то красивше. Фото собранной линейки, пока еще без впаянных светодиодов.

И более ранняя разводка

Эмитерный повторитель можно и не запаивать, а включить напрямую, работает и без него, только спадают показания быстро, а не плавно по одному светодиоду. Иногда на некоторых экземплярах требовалось включать прямо включенный диод, типа КД522, между выходом усилителя и линейкой. Это было необходимо, когда при нулевом токе светились один — два первых светодиода. Налаживание линейки. Правильно собранный без ошибок индикатор работает сразу. Подключаем на вход переменный резистор — бегунок ко входу, правый конец резистора на +, левый на -. Подаем питание, вращаем резистор и смотрим на светодиоды, должны поочередно вспыхивать и гаснуть. Данный индикатор обладает существенной нелинейностью показаний (сначала завал и посередине бывают горбы), но для зарядного вполне подойдет. Просто при настройке значение каждого светодиода отмаркируете.
В схеме блока на плате надо добавить источник 6…8в для светодиодной линейки. Для люминесцентного индикатора добавлять этот источник не надо.

Фото собранной зарядки по вышеприведенным схемам, но на блоке ATX (разницы с АТ особой нет, отличие что питание TL494 питается от дежурки):

Фото крепления платы усилителя. Припаивается в основную плату выводами: корпус и +22в.

Далее приведу схему индикатора на операционных усилителях. В качестве самого индикатора лучше использовать люминесцентный индикатор (схема проще). Если использовать светодиоды, то надо будет добавить еще 8 резисторов по 2к и подключать катодами на корпус. Принцип работы прост. Схема в настройке не нуждается, кроме подбора резистора в цепи накала.

В данной схеме используется два счетверенных усилителя, для формирования восемь уровней индикации. Операционные усилители, используемые в этой схеме — LM324 (Или LM393 если используете светодиоды. Тогда подключаем их аноды на +, а катоды каждый на свой выход). Это довольно распространенная ИМС и найти ее не составит труда. Резисторы R2:.R10 образуют делитель, задающий пороги срабатывания каждого усилителя. Усилители работают в режиме компараторов.
Фото собранного индикатора тока на люминесцентный индикатор

Крепится к передней стенке с помощью термоклея пистолетом или паяльником.
Вышеприведенная схема имеет мягкую характеристику зарядного тока. Ток снижается плавно на протяжении всего времени заряда (Как в автомобиле).

Теперь рассмотрим схему с жесткой характеристикой зарядного тока.
Здесь ток снижается более круто и только к концу заряда. На протяжении основного времени ток стабильный. Здесь нам потребуется уже АТХ блок питания. Нововведение коснулось и защиты от переполюсовки и короткого замыкания. В данном зарядном шунт установлен по минусовой шине, поэтому необходимо разрезать соединение платы с корпусом блока. Если этого не сделать то при случайном касании плюсовым проводом металлического корпуса блок питания придется ремонтировать (менять джентльменский комплект — предохранитель, мост, пара MJE13007, резисторы 10 ом базовые :-)). Схема содержит усилитель напряжения с шунта, компаратор с обратной связью на конденсаторе ( о конденсаторе и его расчетах ниже) для более плавной работы и для устранения перерегулирования и любая из рассмотренных выше линеек индикаторов, но предпочтительней на LM324. В данном случае управление микросхемой TL494 осуществляем через вывод 4, как имеющий самое маленькое усиление и следовательно саму малую реакцию на изменение напряжения на его входе, а не 3, 1,16. При управлении через 4 вывод вся схема зарядного работает устойчиво, отсутствуют возбуждения, перерегулирования, нет нагрева выходных транзисторов.

Теперь немного теории. Для устойчивой работы замкнутых обратными связями преобразователей, необходимо, чтобы коэффициент усиления разомкнутого контура стал меньше единицы до того, как фазовый угол достигнет значения -180 гр. Кроме того, в области среза должен быть сформирован наклон ЛАХ (логарифмическая амплитудная характеристика) разомкнутой системы -20дБ/Дек, а в области низких частот коэффициент усиления должен быть достаточно большим для того, чтобы снизить погрешность при измерениях входного напряжения и тока нагрузки. Т.е. мы считаем частоту индуктора выходной емкости по формуле для LC. Потом для этой же частоты по формуле RC считаем сопротивление и емкость в цепи обратной связи. А если у нас выходной конденсатор низкого сопротивления, то по этой же формуле еще раз считаем следующий конденсатор и пару для него берем сопротивление из высокого плеча делителя выходного напряжения.

Правда там не сказано, от чего отталкиваться, выбирая соотношение для величины емкости и сопротивления. Т.е. знаем частоту, знаем формулу, но два неизвестных. А вот в этом

есть эмпирическая формула для подбора величины сопротивления в цепи обратной связи ОУ. R = 5800 * Cвых * Fперекрест * Vвых, где Fперекрест — численно принимается 1/10 от частоты работы преобразователя. Правда почему-то в 2й картинке они емкость считают отталкиваясь от 1/3 частоты LC, что вносит несуразицу, т.к. в 1й картинке считалось ровно по частоте LC. Но хотя бы примерный порядок для подбора величин эти данные дают.
Защита от переполюсовки и КЗ выполнена на двух транзисторах и светодиоде. Схема:

Настройка заключается в подборе R3 в зависимости от вашего шунта, и подборе R5 для ограничения максимального выходного тока на уровне 10 ампер. Доработки линеек индикаторов состоят только в установке и подстройке подстроечного сопротивления для диапазона отображения тока 3 — 10 ампер. Настройка канала тока. Резистор R5 временно меняем на подстроечник 10к выставляем его в положение максимального сопротивления. Подключаем мультиметр в режиме измерения тока на диапазоне 10 ампер. Включаем в сеть блок через лампочку. Если лампочка вспыхнула и продолжает ярко светиться, значит что-то напутали, проверяем монтаж. Если амперметр показывает ток в пределах от 0,2 до 1 ампер то все нормально. Выставляем переменный резистор R6 в режим максимального напряжения с бегунка, а подстроечным резистором настраиваем ток 10 ампер. Затем выпаиваем подстроечник, замеряем и впаиваем постоянный резистор такого же сопротивления. Работа и настройка канала напряжения аналогично первой схеме.
Доработки основной платы АТХ блока для схемы управления на LM358.

Доработки схемы линеек:

В схеме с операционными усилителями ставим Р1 и подбираем его или подбираем R2, а Р1 не добавляем, а подключаем напрямую.

Подробней остановимся на защите от переполюсовки и от короткого замыкания. Схема своего рода «НОУ-ХАУ», по простоте и надежности. Плюс в том, что не нужно использовать мощное реле, или тиристор, на котором падение напряжения около двух вольт. Схема как самостоятельное устройство может быть встроена в любое зарядное устройство и блок питания. Выход из режима защиты автоматический, как только устранится короткое замыкание или преполюсовка. При срабатывании светится светодиод «ошибка подключения».

Описание работы: При нормальном режиме напряжение через светодиод и резистор R9 отпирает VT1 и все напряжение со входа поступает на выход. При коротком замыкании или переполюсовке ток импульсно резко возрастает, падение напряжения на полевике и шунте резко увеличивается, что приводит к открыванию VT2, который в свою очередь шунтирует затвор исток. Добавочное отрицательное напряжение по отношению к истоку (падение на шунте) прикрывает VT1. Далее происходит лавинный процесс закрытия VT1. Светодиод засвечивается через открытый VT2. Схема может находиться в данном состоянии сколь угодно долго, до устранения замыкания.
Для зарядки дополнительно и мотоциклетных аккумуляторов можно добавить переключатель подключающий дополнительный подобранный резистор в цепи вывода 1 TL494. Конструкция будет универсальной если поставите переменный резистор. На выходе можно регулировать напряжение до 20 вольт.

Если поставить мост в выходном канале 12в, то тогда можно регулировать напряжение до 35 вольт. Дальнейшие доработки ограничены только фантазией.
Дабы не быть голословным, привожу фотки работы зарядного
Фото работы зарядного устройства. Ток зарядки 10 ампер.

Также разработаны и другие схемные решения. Продолжение следует…

Файлы:
Печатные платы в формате SL 5.0.

Вопросы, как обычно, складываем тут.


Как вам эта статья?

Заработало ли это устройство у вас?

www.radiokot.ru

Самодельное зарядное устройство для аккумулятора автомобиля

Внешний вид самодельного зарядного устройства для автомобиля

На фотографии представлено самодельное автоматическое зарядное устройство для зарядки автомобильных аккумуляторов на 12 В током величиной до 8 А, собранного в корпусе от милливольтметра В3-38.

Почему нужно заряжать аккумулятор автомобиля
зарядным устройством

АКБ в автомобиле заряжается с помощью электрического генератора. Для защиты электрооборудования и приборов от повышенного напряжения, которое вырабатывает автомобильным генератором, после него устанавливают реле-регулятор, который ограничивает напряжение в бортовой сети автомобиля до 14,1±0,2 В. Для полной же зарядки аккумулятора требуется напряжение не менее 14,5 В.

Таким образом, полностью зарядить АКБ от генератора невозможно и перед наступлением холодов необходимо подзаряжать аккумулятор от зарядного устройства.

Анализ схем зарядных устройств

Для зарядки автомобильного аккумулятора служат зарядные устройства. Его можно купить готовое, но при желании и небольшом радиолюбительском опыте можно сделать своими руками, сэкономив при этом немалые деньги.

Схем зарядных устройств автомобильных аккумуляторов в Интернете опубликовано много, но все они имеют недостатки.

Зарядные устройства, сделанные на транзисторах, выделяют много тепла, как правило, боятся короткого замыкания и ошибочного подключения полярности аккумулятора. Схемы на тиристорах и симисторах не обеспечивают требуемой стабильность зарядного тока и издают акустический шум, не допускают ошибок подключения аккумулятора и излучают мощные радиопомехи, которые можно уменьшить, одев на сетевой провод ферритовое кольцо.

Привлекательной выглядит схема изготовления зарядного устройства из блока питания компьютера. Структурные схемы компьютерных блоков питания одинаковые, но электрические разные, и для доработки требуется высокая радиотехническая квалификация.

Интерес у меня вызвала конденсаторная схема зарядного устройства, КПД высокий, тепла не выделяет, обеспечивает стабильный ток заряда вне зависимости от степени заряда аккумулятора и колебаний питающей сети, не боится коротких замыканий выхода. Но тоже имеет недостаток. Если в процессе заряда пропадет контакт с аккумулятором, то напряжение на конденсаторах возрастает в несколько раз, (конденсаторы и трансформатор образуют резонансный колебательный контур с частотой электросети), и они пробиваются. Надо было устранить только этот единственный недостаток, что мне и удалось сделать.

В результате получилась схема зарядного устройства без выше перечисленных недостатков. Более 16 лет заряжаю ним любые кислотные аккумуляторы на 12 В. Устройство работает безотказно.

Принципиальная схема автомобильного зарядного устройства

При кажущейся сложности, схема самодельного зарядного устройства простая и состоит всего из нескольких законченных функциональных узлов.

Схема автоматического зарядного устройства на конденсаторах

Если схема для повторения Вам показалась сложной, то можно собрать более простую, работающую на таком же принципе, но без функции автоматического отключения при полной зарядке аккумулятора.

Схема ограничителя тока на балластных конденсаторах

В конденсаторном автомобильном зарядном устройстве регулировка величины и стабилизация силы тока заряда аккумулятора обеспечивается за счет включения последовательно с первичной обмоткой силового трансформатора Т1 балластных конденсаторов С4-С9. Чем больше емкость конденсатора, тем больше будет ток заряда аккумулятора.

Схема регулятора тока на конденсаторах

Практически это законченный вариант зарядного устройства, можно подключить после диодного моста аккумулятор и зарядить его, но надежность такой схемы низкая. Если нарушится контакт с клеммами аккумулятора, то конденсаторы могут выйти из строя.

Емкость конденсаторов, которая зависит от величины тока и напряжения на вторичной обмотке трансформатора, можно приблизительно определить по формуле, но легче ориентироваться по данным таблицы.

Для регулировки тока, чтобы сократить количество конденсаторов, их можно подключать параллельно группами. У меня переключение осуществляется с помощью двух галетного переключателя, но можно поставить несколько тумблеров.

Схема защиты
от ошибочного подключения полюсов аккумулятора

Схема защиты от переполюсовки зарядного устройства при неправильном подключении аккумулятора к выводам выполнена на реле Р3. Если аккумулятор подключен неправильно, диод VD13 не пропускает ток, реле обесточено, контакты реле К3.1 разомкнуты и ток не поступает на клеммы аккумулятора. При правильном подключении реле срабатывает, контакты К3.1 замыкаются, и аккумулятор подключается к схеме зарядки. Такую схему защиты от переполюсовки можно использовать с любым зарядным устройством, как транзисторным, так и тиристорным. Ее достаточно включить в разрыв проводов, с помощью которых аккумулятор подключается к зарядному устройству.

Схема защиты от неправильного подключения полюсов аккумулятора - переполюсовки зарядного устройства

Схема измерения тока и напряжения зарядки аккумулятора

Благодаря наличию переключателя S3 на схеме выше, при зарядке аккумулятора есть возможность контролировать не только величину

ydoma.info

Обзор схем зарядных устройств

Соблюдение режима эксплуатации аккумуляторных батарей, и в частности режима зарядки, гарантирует их безотказную работу в течение всего срока службы. Зарядку аккумуляторных батарей производят током, значение которого можно определить по формуле

I=0,1Q

где I — средний зарядный ток, А., а Q — паспортная электрическая емкость аккумуляторной батареи, А-ч.

Зарядный ток, рекомендуемый в инструкции по эксплуатации аккумуляторной батареи, обеспечивает оптимальное протекание электрохимических процессов в ней и нормальную работу в течение длительного времени.

Классическая схема зарядного устройства для автомобильного аккумулятора состоит из понижающего трансформатора, выпрямителя и регулятора тока зарядки. В качестве регуляторов тока применяют проволочные реостаты (см. Рис. 1) и транзисторные стабилизаторы тока.

В обоих случаях на этих элементах выделяется значительная тепловая мощность, что снижает КПД зарядного устройства и увеличивает вероятность выхода его из строя.

Для регулировки зарядного тока можно использовать магазин конденсаторов, включаемых последовательно с первичной (сетевой) обмоткой трансформатора и выполняющих функцию реактивных сопротивлений, гасящих избыточное напряжение сети. Упрощенная схема такого устройства приведена на рис. 2.

В этой схеме тепловая (активная) мощность выделяется лишь на диодах VD1-VD4 выпрямительного моста и трансформаторе, поэтому нагрев устройства незначителен.

Недостатком схемы на Рис. 2 является необходимость обеспечить напряжение на вторичной обмотке трансформатора в полтора раза большее, чем номинальное напряжение нагрузки (~ 18÷20В).

Схема зарядного устройства, обеспечивающее зарядку 12-вольтовых аккумуляторных батарей током до 15 А, причем ток зарядки можно изменять от 1 до 15 А ступенями через 1 А, приведена на Рис. 3.

Предусмотрена возможность автоматического выключения устройства, когда батарея полностью зарядится. Оно не боится кратковременных коротких замыканий в цепи нагрузки и обрывов в ней.

Выключателями Q1 — Q4 можно подключать различные комбинации конденсаторов и тем самым регулировать ток зарядки.

Переменным резистором R4 устанавливают порог срабатывания реле К2, которое должно срабатывать при напряжении на зажимах аккумулятора, равном напряжению полностью заряженной батареи.

На Рис. 4 представлена схема еще одного зарядного устройства, в котором ток зарядки плавно регулируется от нуля до максимального значения.

Изменение тока в нагрузке достигается регулированием угла открывания тринистора VS1. Узел регулирования выполнен на однопереходном транзисторе VT1. Значение этого тока определяется положением движка переменного резистора R5. Максимальный ток заряда аккумулятора 10А , устанавливается амперметром. Защита устройства обеспечена со стороны сети и нагрузки предохранителями F1 и F2.

Вариант печатной платы зарядного устройства (см. рис. 4), размером 60х75 мм приведен на следующем рисунке:

В схеме на рис. 4 вторичная обмотка трансформатора должна быть рассчитана на ток, втрое больший зарядного тока, и соответственно мощность трансформатора также должна быть втрое больше мощности, потребляемой аккумулятором.

Названное обстоятельство является существенным недостатком зарядных устройств с регулятором тока тринистором (тиристором).

Примечание:

Диоды выпрямительного мостика VD1-VD4 и тиристор VS1 необходимо установить на радиаторы.

Значительно снизить потери мощности в тринисторе, а следовательно, повысить КПД зарядного устройства можно, если регулирующий элемент перенести из цепи вторичной обмотки трансформатора в цепь первичной обмотки. Схема такого устройства показана на рис. 5.

В схеме на Рис. 5 регулирующий узел аналогичен примененному в предыдущем варианте устройства. Тринистор VS1 включен в диагональ выпрямительного моста VD1 — VD4. Поскольку ток первичной обмотки трансформатора примерно в 10 раз меньше тока заряда, на диодах VD1-VD4 и тринисторе VS1 выделяется относительно небольшая тепловая мощность и они не требуют установки на радиаторы. Кроме того, применение тринистора в цепи первичной обмотки трансформатора позволило несколько улучшить форму кривой зарядного тока и снизить значение коэффициента формы кривой тока (что также приводит к повышению КПД зарядного устройства). К недостатку этого зарядного устройства следует отнести гальваническую связь с сетью элементов узла регулирования, что необходимо учитывать при разработке конструктивного исполнения (например, использовать переменный резистор с пластмассовой осью).

Вариант печатной платы зарядного устройства на рисенке 5, размером 60х75 мм приведен на рисунке ниже:

Примечание:

Диоды выпрямительного мостика VD5-VD8 необходимо установить на радиаторы.

В зарядном устройстве на рисунке 5 диодный мостик VD1-VD4 типа КЦ402 или КЦ405 с буквами А, Б, В. Стабилитрон VD3 типа КС518, КС522, КС524, или составленный из двух одинаковых стабилитронов с суммарным напряжением стабилизации 16÷24 вольта (КС482, Д808, КС510 и др.). Транзистор VT1 однопереходной, типа КТ117А, Б, В, Г. Диодный мостик VD5-VD8 составлен из диодов, с рабочим током не менее 10 ампер (Д242÷Д247 и др.). Диоды устанавливаются на радиаторы площадью не менее 200 кв.см, а если радиаторы будут сильно нагреваться, в корпус зарядного устройства можно установить вентилятор для обдува.

www.radiolub.ru

Автоматическое зарядное устройство 12 В

Это очень простая схема приставки к вашему уже имеющемуся зарядному устройству. Которая будет контролировать напряжение заряда аккумуляторной батареи и при достижении выставленного уровня — отключать его от зарядника, тем самым предотвращая перезарядку аккумулятора.
Это устройство не имеет абсолютно никаких дефицитных деталей. Вся схема построена всего на одном транзисторе. Имеет светодиодные индикаторы, отображающие состояние: идет зарядка или батарея заряжена.

Кому пригодятся это устройство?


Такое устройство обязательно пригодится автомобилистам. Тем у кого есть не автоматическое зарядное устройство. Это приспособление сделает из вашего обычного зарядного устройства — полностью автоматический зарядник. Вам больше не придется постоянного контролировать зарядку вашей батареи. Все что нужно будет сделать, это поставить аккумулятор заряжаться, а его отключение произойдет автоматически, только после полной зарядки.
Автоматическое зарядное устройство 12 В

Схема автоматического зарядного устройства


Автоматическое зарядное устройство 12 В
Вот собственно и сама схема автомата. Фактически это пороговое реле, которое срабатывает при превышении определенного напряжения. Порог срабатывания устанавливается переменным резистором R2. Для полностью заряженного автомобильного аккумулятора он обычно равен — 14,4 В.
Схему можете скачать здесь — http://www.mediafire.com/file/0ldtxs4ma6mt2q2/12V-Auto-Cut-Off-Charger_circuit_By_hawkar_Fariq.pdf Источник: https://sdelaysam-svoimirukami.ru/?do=lastcomments

Печатная плата


Автоматическое зарядное устройство 12 В
Как делать печатную плату, решать Вам. Она не сложная и поэтому ее запросто можно накидать на макетной плате. Ну или можно заморочиться и сделать на текстолите с травлением.

Настройка


Если все детали исправные настройка автомата сводиться только к выставлению порогового напряжения резистором R2. Для этого подключаем схему к зарядному устройству, но аккумулятор пока не подключаем. Переводим резистор R2 в крайнее нижнее положение по схеме. Устанавливаем выходное напряжение на заряднике 14,4 В. Затем медленно вращаем переменный резистор до тех пор, пока не сработает реле. Все настроено.
Поиграемся с напряжением, чтобы убедиться что приставка надежно срабатывает при 14,4 В. После этого ваш автоматический зарядник готов к работе.

Смотрите видео работы зарядного устройства



В этом видео вы можете подробно посмотреть процесс всей сборки, регулировки и испытания в работе.
Original article in English

sdelaysam-svoimirukami.ru

Схема зарядного устройства для восстановления АКБ реверсивным током

Всем привет, в этой статье поговорим о том, как собрать устройство для зарядки автомобильного аккумулятора реверсивным, ассиметричным током на полевых транзисторах.

Что такое зарядка АКБ реверсивным током, подробно останавливаться не буду, так как этой информации полно в инете. Для данного устройства было перепробовано много различных схем, большинство из них или не работало вообще, или работа остальных, тем или иным способом не устраивала по параметрам.

Поэтому пришлось начинать с нуля и сделать надёжную, работающую схему, что в конце концов и получилось. Вот так выглядит схема для зарядки аккумуляторов реверсивным током.Схема зарядного устройства для АКБ реверсивным токомДанная схема очень элементарна, очень надёжна и очень проста в повторении. Что мы видим на этой схеме, два 555-ых таймера включенных здесь в качестве генераторов импульсов. Каждая микросхема управляет своим полевым ключом.

Соответственно один мосфет отвечает за зарядку аккумулятора, второй мосфет за разрядку. Сначала давайте рассмотрим узел, который отвечает у нас за разрядку аккумулятора.Схема зарядного устройства для АКБ реверсивным током555-ый таймер (№2) здесь настроен на частоту около 1Кгц с коэффициентом заполнения около 85%. Питание данной схемы осуществляется непосредственно от самого аккумулятора, именно поэтому в данной схеме очень важно использовать полевые транзисторы. Потому что в них присутствует, так называемый обратный диод, благодаря этому диоду и возможна работа данной схемы.

Вторая микросхема (№1) отвечает за зарядку аккумулятора, соответственно от того, как вы подберёте частота-задающую обвязку данной микросхемы и будет, в конечном итоге, зависеть время заряда и время разряда вашего аккумулятора.Схема зарядного устройства

Значит как же эта схема работает в целом…

Как только на выход нашего устройства мы подключаем какой-либо АКБ, соответственно у нас запускается микросхема №2 и начинает на своём выходе генерировать прямоугольные импульсы, в следствии чего у нас открывается транзистор VT2, который в свою очередь разряжает наш аккумулятор на какую-либо нагрузку, в моём случаи это автомобильная лампа на 21 ватт.

Микросхема под №1 у нас не запускается, так как на выходе нашего устройства стоит диод VD1 (сдвоенный диод-шоттки). На вход нашего устройства мы подключаем какой-либо источник питания, будь то зарядное устройство или какой-нибудь блок питания, соответственно у нас запускается микросхема под №1 и начинает также на своём выходе вырабатывать прямоугольные импульсы с той частотой с которой вы ей задали с помощью частота-задающей обвязки.для восстановления АКБ реверсивным токомИ как только на выходе №1 микросхемы появляется высокий уровень у нас открываются транзисторы VT1 и VT3. Ну и как видно из схемы транзистор VT1 у нас закорачивает 5 вывод микросхемы №2 на землю, тем самым останавливая генерацию прямоугольных импульсов и запирая транзистор VT2, тем самым прекращая разрядку нашего аккумулятора.

И в то же время открытый транзистор VT3 соединяет наш аккумулятор с нашим источником питания, тем самым обеспечивая его зарядку.

Ну и соответственно, как только с выхода микросхемы №1 высокий уровень исчезает два транзистора VT1 и VT3 закрываются, тем самым разъединяя наше зарядное устройство от нашего аккумулятора и в то же время рассоединяя 5 вывод микросхемы №2 с землёй, тем самым восстанавливая генерацию прямоугольных импульсов на выходе.

Схема для восстановления АКБ

По деталям…

Обе микросхемы питаются через 12-ти вольтовые стабилизаторы 7812.

Время заряда и время разряда АКБ можно регулировать изменяя номиналы резисторов R2,R3,R4 и частота-задающего конденсатора С3.

Плата получилась довольно компактная, мосфеты и диод установил на небольшой радиатор.

Схема АКБ реверсивным током

Хотя они работают в ключевом режиме и нагрев минимальный.

Клемники поставил для подключения разрядной лампы и аккумулятора. устройство для восстановления АКБВот подключил, загорелась лампочка, то есть пошла разрядка аккумулятора. устройство для восстановления АКБЦикл разряда и цикл заряда устройство для восстановления АКБПоворачивая бегунок подстроечного резистора можно менять скорость заряда и разряда данной схемы. устройство для восстановления АКБДанную платку можно разместить непосредственно в корпусе зарядного устройства, тем самым добавив ему очень полезную функцию десульфатации.

реверсивным токомПечатку в формате .lay можно скачать здесь.

xn--100—j4dau4ec0ao.xn--p1ai

РадиоДом — Сайт радиолюбителей

Выпрямительные диоды в зарядных приспособлениях могут быть выведены из строя при случайном замыкании выходных клемм либо неверном включении АКБ. Обычное средство защиты — плавкие предохранители, но для возобновления работоспособности прибора в этом потребуется замена спаленного предохранителя новым, которого как традиционно в нужный момент под рукою нет. Приходится ставить «жучок», чем ещё более снижается защищённость зарядного устройства.

Добавлено: 07.10.2018 | Просмотров: 6677 | Зарядное устройство

Зарядное устройство (ЗУ) обеспечивает условия заряда, близкие к оптимальным. Основным его отличием данной схемы от остальных является то, что сравнение напряжения на заряжаемой батарее с образцовым происходит в течение отрезка времени, при котором через батарею не протекает зарядный ток (при зарядном токе по напряжению на батарее затруднительно судить о степени её заряда). Сравнение происходит в начале каждого положительного полупериода, пока тиристор VS1 ещё закрыт.

Добавлено: 07.10.2018 | Просмотров: 4974 | Зарядное устройство

Устройство с электронным управлением зарядным током, выполнено на базе тиристорного фазоимпульсного регулятора мощности. Оно не содержит редкие радиокомпоненты, при заведомо рабочих деталях не требует налаживания. Зарядное устройство позволяет заряжать АКБ током от 0 до 10 ампер, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы и просто блока питания на все случаи жизни.

Добавлено: 24.09.2018 | Просмотров: 12600 | Зарядное устройство

Устройство в условиях хранения аккумулятора в зимнее время позволяет автоматом подключать его на зарядку при понижении напряжения и также автоматом отключать зарядку при достижении напряжения, соответственного полностью заряженному аккумулятору. Схема обеспечивает 2 режима работы — ручной и автоматический.

Добавлено: 01.07.2018 | Просмотров: 4938 | Зарядное устройство

Схемы зарядных устройств для автомобильных АКБ довольно распространены и каждая обладает своими достоинствами и недостатками.  Большинство простейших схем зарядных устройств построено по принципу регулятора напряжения с выходным узлом, собранным на тиристорах или мощных транзисторах. Эти схемы обладают существенными недостатками — ток заряда непостоянен и зависит от достигнутого на АКБ напряжения.

Добавлено: 27.06.2018 | Просмотров: 3096 | Зарядное устройство

При зарядке автомобильных АКБ производители рекомендуют поддерживать средний зарядный ток на постоянном уровне. Обычно в стабилизаторах тока в качестве регулирующего элемента используют транзистор, но в процессе работы на нем рассеивается большая мощность, снижая КПД устройства и в связи с этим приходится применять огромные радиаторы.

Добавлено: 25.06.2018 | Просмотров: 3870 | Зарядное устройство

В статье представлена схема автомобильного зарядного устройства для мобильного телефона работающего от прикуривателя автомобиля. Схема данного устройства типовая и может немного отличатся у отдельных производителей. При включении зарядного устройства в гнездо прикуривателя без телефона, горит зеленый светодиод (G).

Добавлено: 25.03.2018 | Просмотров: 1801 | Зарядное устройство

Правильное соблюдение режима эксплуатации аккумуляторных батарей (АКБ), и главное, режима зарядки, гарантирует их безотказную работу в течение всего срока службы. Зарядку АКБ производят током, значение которого можно определить по формуле: I=0,1*Q. Где I — средний зарядный ток в амперах., а Q — паспортная электрическая емкость АКБ в ампер-часах. Например, АКБ ёмкостью 70 ампер-час заряжают током не более 7 ампер.

Добавлено: 25.03.2018 | Просмотров: 7101 | Зарядное устройство

Описываемое зарядное устройство было разработано для восстановления и заряда АКБ автомобилей и мотоциклов. Его главная особенность — это импульсный ток заряда, что положительно сказывается на времени и качестве регенерации АКБ. В новой разработке использована схема на составных тиристорах, расширена полоса регулирования, не требуются мощные охлаждающие теплоотводы.

Добавлено: 11.03.2018 | Просмотров: 9272 | Зарядное устройство

Схема зарядного устройства для автомобильного АКБ с выходным плавно регулируемым напряжением от 2 до 20 вольт с током до 6 ампер. Снабжен стабилизатором. Состоит из сетевого понижающего трансформатора на 200 Вт, зарубежная микросхема TL494CN и ключ на транзисторе КТ825.

Добавлено: 09.12.2017 | Просмотров: 6728 | Зарядное устройство

radiohome.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *